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Chapter 1

Introduction

During the last few decades, many experiments such as clinical trials but also studies
outside the medical world, are designed to collect information about the subjects
included in the study, repeatedly over a specific period of time. In dealing with
this type of information existing simple univariate techniques are not sufficient to
model the data. Hence the use of so called longitudinal techniques has grown and
nowadays longitudinal data analysis is a widely spread topic of research to which many
approaches have been found useful. Currently, a considerable amount of literature
can be consulted, describing methods to handle longitudinal data (Lindsey 1993,
Longford 1993, Diggle, Liang and Zeger 1994, Hand and Crowder 1995, Verbeke and
Molenberghs 1997 and 2000, Vonesh and Chinchilli 1997). Among these methods, the
linear mixed model for normally distributed endpoints (Laird and Ware 1982) can be
considered as being mostly used due to a large extent, to the fact that for this model
one can use simple and flexible software tools such as: the SAS procedure MIXED
(Littell et al. 1996), the SPlus function LME, etc. This model is nowadays extended
in such a way that one can describe serial association (Diggle 1988 and Molenberghs
and Verbeke 2000) although one has to take care because its application is not always
straightforward. On the other hand, considering categorical outcomes such as binary
data or counts, less tools are available but also in this framework several proposals
have been made including generalized estimating equations (Liang and Zeger 1986)
and generalized linear mixed models (Wolfinger and O’Connell 1993, Breslow and
Clayton 1993).
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In dealing with longitudinal data as introduced above it is not unusual for some
measurements to be unobserved. The problem of missing data is rather common and
omnipresent in clinical trials (Piantadosi 1997, Green, Benedetti and Crowley 1997
and Friedman, Furberg and DeMets 1998), epidemiological studies (Kahn and Sempos
1989, Clayton and Hills 1993, Lilienfeld and Stoley 1994 and Selvin 1996) and maybe
even most severely in sample surveys (Fowler 1988, Schefer, Khare and Ezatti-Rice
1993, Rubin 1987 and Rubin, Stern and Vehovar 1995). On the one hand there is the
possibility of missing responses where one single measurement failed to be observed
or even a sequence of measurements can terminate early, both for reasons outside
the control of the investigator (recovery, lack of improvement, unwanted signs or
symptoms that may be related to the investigational treatment,...). In the latter case
of early termination of measurement sequences we denote the subjects so affected as
dropouts where single missing observations are denoted as intermitient missingness.
On the other hand missingness might appear in the covariates due to reasons of
different type. The main interest of research until now has been the problem of

dropout where only recently more effort is put in treating missing covariates.

Many authors, in a first attempt to handle missing data, concentrated on compu-
tational issues imposed due to unbalancedness of the data (Afifi and Elashoff 1966 and
Hartley and Hocking 1971) while more recently Dempster, Laird and Rubin (1977) de-
veloped the Expectation-Maximization algorithm whereas Rubin (1987) and Tanner
and Wong (1987) discussed imputation and aungmentation methods. Both approaches
will be briefly introduced in Chapter 3 and it is argued that together with an improve-
ment of software these methods solve largely the computational problems related to
missing data. However we still must consider the problems concerning statistical in-
ference and its validity. Again several simple but ad hoc methods can be used to
deal with missing data and we can mention complete case analysis or simple imputa-
tion as examples but the major problems with incomplete longitudinal data related
to these methods, are efficiency loss and the introduction of bias but also the im-
plementation of existing methods is not always straightforward (Laird 1988). Some
approaches next to complete case analysis, are univariate analyzes with adjustments
for variance estimates, two-step analyzes, and likelihood based methods where for
the latter Laird (1988) further distinguishes between likelihood based methods that
include an explicit model for dropout and methods that only model the measurement
process. Also several other authors recently have indicated that it might be necessary
to accommodate dropout in the modeling process. In other words one must model

the measurement process jointly with a model for dropout which itself is sometimes
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of scientific interest.

Rubin (1976) and Little and Rubin (1987, Ch. 6) make important distinctions
between different missing values processes. A dropout process is said to be completely
random (MCAR) if the dropout is independent of both unobserved and observed
data and random (MAR) if, conditional on the observed data, the dropout is inde-
pendent of the unobserved measurements; otherwise the dropout process is termed
non-random (MNAR). If a dropout process is random then a valid analysis, can be ob-
tained through a likelihood-based analysis that ignores the dropout mechanism, pro-
vided the parameter describing the measurement process is functionally independent
of the parameter describing the dropout process, the so-called parameter distinctness
condition. This situation is termed ignoraeble by Rubin (1976) and Little and Rubin
(1987). This leads to considerable simplification in the analysis. Furthermore, there
are situations where the MAR assumption gives better results than MNAR (Rubin,
Stern and Vehovar 1995). In many examples, however, the reasons for dropout are
many and varied and it is therefore difficult to justify on a priori grounds the assump-
tion of random dropout. Arguably, in the presence of non-random dropout, a wholly
satisfactory analysis of the data is not feasible and where the treatment of missing
data that are missing at random requires some caution, one needs to be even more

careful with non-randomly missing data.

One approach is to estimate from the available data the parameters of a model
representing a non-random dropout mechanism. It may be difficult to justify the
particular choice of dropout model, and it does not necessarily follow that the data
contain information on the parameters of the particular model chosen, but where
such information exists the fitted model may provide some insight into the nature
of the dropout process and of the sensitivity of the analysis to assumptions about
this process. This is the route taken by Diggle and Kenward (1994) in the context
of continuous longitudinal data. More precisely, these authors perform an MNAR
analyzes by defining a model for dropout dependent on the unobserved data and
combining this model with a linear mixed model for the measurements (see also Dig-
gle, Liang and Zeger 1994, Ch. 11). Further approaches are proposed by Schluchter
(1988), Laird, Lange and Stram (1987), Wu and Bailey (1988, 1989), Wu and Carroll
(1988). These last authors use random-effects models to describe the censoring or
non-response process. Greenlees, Reece and Zieschang (1982), combine the probit of
the dropout probability with the general linear measurement model. Little (1995)
gives a careful review of the different modeling approaches.
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Reconsidering the case of categorical outcomes one notices that also this field has
received considerable attention. A general framework is provided by Fay (1986) and
an overview of methods for missing data in longitudinal data is given in Laird (1988)
who distinguishes between ignorable and non-ignorable missingness, in the context
of both normally distributed and categorical data. Baker and Laird (1988) extend
the work of Fay (1986) and give a thorough account of the modeling of contingency
tables in which there is one response dimension and an additional dimension indicating
whether the response is absent. They pay particular attention to the circumstances in
which no solution exists for the non-random dropout models. Molenberghs, Kenward
and Lesaffre (1997) introduce a method for the analysis of longitudinal ordinal data
with non-random dropout. Their approach is based on Diggle and Kenward (1994),
who treat non-random dropout in continuous longitudinal data. Molenberghs and
Goetghebeur (1997) have introduced a simple method to construct and maximize the
observed data likelihood, whilst still formulating their models at the complete data
level. Other proposals have been made as well: Lehnen and Koch (1974) present a sa-
turated likelihood approach. They have to assume that the missingness is completely
random. Dempster, Laird and Rubin (1977) use the EM algorithm to maximize the
likelihood in case of incomplete categorical data. Fuchs (1982) uses the EM algorithm
to fit Log-linear models for ignorable incomplete data. Conaway et al. (1992) use
loglinear models and perform fitting within GLIM, with the aid of the EM algorithm.

With the volume of literature on non-random missing data increasing, there has
been growing concern about the fact that models often rest on strong assumptions
and relatively little evidence from the data themselves. Here fore there is a clear
need for methods that investigate the sensitivity of the results with respect to the
model assumptions. Some progress can be made by examining the effect of dropout
mechanism parameters for which there is no information in the data on the analyzes
of the measurement parameters and on the remaining dropout parameters; Nordheim
(1984) gives an example of such a sensitivity analysis with cross-sectional binomial
outcomes. A similar principle is advocated by Little (1994). Fitzmaurice, Molen-
berghs and Lipsitz (1995) assess the effect of the non-response mechanism on the
estimation of marginal regression parameters for repeated binary outcomes. Molen-
berghs, Goetghebeur, Lipsitz and Kenward (1999) illustrate the need for sensitivity
analysis by reviewing some of the issues that arise with models for non-random mis-

sing data.

1. Models with the same or similar fit at the level of the observed data, can dif-



Chapter 1 : Introduction 5

fer considerably in terms of prediction and interpretation of the (hypothetical)
complete data.

2. Care has to be taken with boundary solutions or even solutions that violate

parameter space restrictions.

3. Some models are overspecified in the sense that they lead to a whole family of
solutions, rather than to a point estimate.

Despite this considerable amount of literature referring to the need for sensitivity
analysis, only few actual proposals have been made. Moreover, many of these are to
be considered as useful but ad hoc approaches. On the other hand, most methods are
formulated within the selection modeling frame (Little and Rubin 1987) as opposed to
pattern-mixture modeling (Little 1993). A selection model factors the joint distribu-
tion of the measurement and missingness processes into the marginal distribution of
the measurement process and the conditional distribution of the missingness process
given the measurements and this is intuitively appealing since the marginal measure-
ment distribution would be of interest also with complete data. Also the terminology
introduced by Little and Rubin’s concerning MCAR, MAR and MNAR is most easily
developed in the selection setting. However, it is often argued that, especially in the
context of non-random missingness models, selection models, although identifiable,
should be approached with caution. This point was already raised by Rubin 1994,
Laird 1994 as discussants to Diggle and Kenward (1994), and Glynn, Laird and Rubin
(1986) who indicate that this is typical for so-called selection models, while it is much
less so for a pattern-mixture model (Little 1993, 1994, Hogan and Laird 1997), where
the reverse factorization is used. In our view, a more formal approach to sensitivity

analyzes should be fruitful as well.

Concerning the selection model of Diggle and Kenward (1994) it is fair to say
that it raised at first too high expectations. This again was made clear by the many
discussants of their paper indicating for example that formal tests for the null hy-
pothesis of random missingness should be approached with caution, even though they
are technically possible by contrasting a non-random model with its random sub-
model (e.g., by using the likelihood ratio test). On the other hand this model has
received considerable attention and since it is available within the SPlus suite of func-
tions termed Oswald (Smith, Robertson, and Diggle 1996), we have chosen to use this
model to introduce a local influence approach, suggested by Cook (1986) to investigate
the effect of extending the MAR model for dropout in the direction of non-random
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dropout. A general theoretical treatment in full detail is discussed in Chapter 4 where
we also compare these methodology with a more global approach within the selection

modeling framework.

Precisely because of the issue of identifiability (Glynn, Laird and Rubin 1986),
pattern-mixture models have gained renewed interest in recent years (Little 1993,
1994, Hogan and Laird 1997). Several authors have contrasted selection models and
pattern-mixture models. This is done to either (1) answer the same scientific ques-
tion, such as marginal treatment effect or time evolution, based on these two rather
different modeling strategies, or (2) to gain additional insight by supplementing the
selection model results with those from a pattern-mixture approach. Examples can
be found in Verbeke, Lesaffre, and Spiessens (2001), Curran, Pignatti, and Molen-
berghs (2002), and Michiels et al (1999) for continuous outcomes. The categorical
outcome case has been treated in Molenberghs, Michiels, and Lipsitz (1999), and
Michiels, Molenberghs, and Lipsitz (1999). Further references include Ekholm and
Skinner (1998), Molenberghs, Michiels, and Kenward (1998), Little and Wang (1996),
Hedeker and Gibbons (1997), Cohen and Cohen (1983), Muthén, Kaplan, and Hollis
(1987), Allison (1987), and McArdle and Hamagani (1992). An important issue is
that pattern-mixture models are by construction under-identified. Little (1993, 1994)
solves this problem through the use of identifying restrictions: inestimable parameters
of the incomplete patterns are set equal to (functions of) the parameters describing
the distribution of the completers. Identifying restrictions are not the only way to
overcome under-identification and we will discuss alternative approaches as well. All
in all, while some authors perceive this under-identification as a drawback, we believe
it is an asset since it forces one to reflect on the assumptions made. In Chapter 5 we
will introduce several strategies to deal with pattern-mixture models and we will indi-
cate how this under-identification can serve as a starting point for sensitivity analysis.
Even considering the terminology concerning random versus non-random missingness

it will be shown that this is still valid for pattern-mixture models.

An important issue now arising is whether a model for a given dropout pattern
ought to be extended and, if the answer is affirmative, how this should be approached.
In the framework of pattern-mixture models this is done rather explicitly by using
ordinary extrapolation, sufficiently simplified models or one can consider identifying
restrictions. But also using selection models one is implicitly drawing conclusions
beyond the actual time of dropout. Unfortunately, the implications for the nature of

the dropout mechanism are not always understood nor studied. Here fore we consider
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it to be of interest to further characterize which mechanisms are more general than
MAR or ACMYV but still prevent missingness to depend on future, possibly unobserved
outcomes. Therefore in Section 5.5 we provide an extra set of restrictions as a general
characterization, term them non-future dependent (NFD) and illustrate, in a realistic

setting, how these restrictions might be exploited in practice.

Since different missing data mechanisms are established in a selection model and
a pattern-mixture model context one can choose one of the models based on the sta-
tistical and scientific merits of proposed missing value models on their own terms and
one must consider the precise aim of sensitivity analysis to be reached. Furthermore,
we advocate the use of pattern-mixture models as a tool to assess sensitivity of a se-
lection model to the modeling assumptions, or vice versa (Molenberghs, Michiels and
Lipsitz 1999, Michiels, Molenberghs and Lipsitz 1998). Explicitly, extra confidence
in the conclusions can be gained if two analyzes, one within each framework, coin-
cide in key aspects, such as covariate dependencies, strength of association between
outcomes, etc. In Chapter 5, more precisely Section 5.4.1 we will compare Selection
models and Pattern-mixture models applied to the Vorozole study introduced in the
next chapter while in Chapter 6, a selection model together with methods of local
and global influence will be applied to the milk protein trial, also introduced in the
next chapter, in order to compare both analyzes.

A final topic of ongoing discussion is the fact that selection models as well as
pattern-mixture models beit implicitly or explicitely respectively, draw conclusions
beyond the actual time of dropout when dropout possibly is caused by death of the
subject. We already touched this issue before related to the non-future dependent
(NFD) restrictions but in Chapter 7 we will propose several methods how to deal with
this problem: Time reversal, Accelerated Failure Time models and Random-effects
models (Wu and Carroll 1988 and Wu and Bailey 1988, 1989). The Latter type of
models are also referred to as shared-parameter models and Little (1995) combines
them with the concepts of PMM. As an illustration we will again apply these new

methods to a set of longitudinal data.

To conclude we will formulate in Chapter 8 some general findings and we will
also indicate possibilities for further developments concerning the new methodology
introduced throughout this thesis. We hope this will convince more statisticians of
the problems related with missing data and the need for a more formal approach of

sensitivity analysis.






Chapter 2

Key Examples

In this chapter, we introduce several typical longitudinal data sets which will be used

throughout the text as key studies.

2.1 Mastitis in Dairy Cattle

A first example is a study concerning the occurrence of the infectious disease mastitis
in dairy cows. This dataset was introduced in Diggle and Kenward (1994) and re-
analyzed in Kenward (1998). Data were available of the milk yields in thousands
of liters of 107 dairy cows from a single herd in two consecutive years: Y;; (i =
1,...,107;5 = 1,2). In the first year, all animals were supposedly free of mastitis,
in the second year 27 became infected. Mastitis typically reduces milk yield, and
the question of scientific interest is whether the probability of occurrence of mastitis
is related to the yield that would have been observed had mastitis not occurred. A

graphical representation of the complete data is given in Figure 2.1.

2.2 Rats Data

Secondly we consider data from a randomized experiment, designed to study the
effect of the inhibition of the testosterone production in rats. The experiment was
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Figure 2.1: Graphical representation of the Mastitis data. The first panel shows a
scatter plot of the second measurement versus the first measurement. The second
panel shows a scatter plot of the change versus the baseline measurement.

conducted at the Department of Orthodontics of the Catholic University of Leuven
(K.U.L.) in Belgium (1997) where a total of 50 male Wistar rats have been rando-
mized to either a control group or one of the two treatment groups where treatment
consisted of a low or high dose of the drug Decapeptyl which is an inhibitor for the
testosterone production in the rats. The treatment started at the age of 45 days, and
measurements were taken every 10 days, with the first observation taken at the age of
50 days. The responses of interest are distances (in pixels) between well-defined points
on x-ray pictures of the skull of each rat, taken after the rat has been anesthetized.
Unfortunately, many rats don’t survive anesthesia implying that for only 22 (44%)
rats all 7 designed measurements could have been taken. It is therefore very important
to study how dropout affects the estimation of the treatment effects. Full details can
be found in Verdonck et al. and the individual profiles of each rat are shown in Figure
2.2.
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Figure 2.2: Graphical representation of the Rats data. Individual growth curves for

the three treatment groups separately.

2.3 Milk Protein Trial

Another example is the milk protein data introduced by Verbyla & Cullis (1990) and
re-analyzed by Diggle (1990) and Diggle and Kenward (1994). In this experiment
79 cows were randomized, after calving, to either of three diets: barley, lupins, or
a mixture of both. The sampling plan envisaged to follow all 79 cows for 19 weeks
and to determine protein content from a milk sample once in each study week. The
time profiles for all 79 cows are plotted in Figure 2.3. All cows remained on study
during the first fourteen weeks, whereafter the sample reduced to 59, 50, 46, 46 and
41 respectively, due to dropout.

The interest in these data arises from the fact that several analyzes have been
performed before. Diggle (1990) for example, assumed random dropout whereas Dig-
gle and Kenward (1994) concluded that dropout was non-random. However, several
authors have remarked that the model of Diggle and Kenward (1994) should not
be used to conclusively determine whether or not a dropout process is non-random.
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Figure 2.3: Graphical representation of the Milk data. Individual profiles for the three
diet groups separately.

Indeed, Little (1995) says that “estimates rely heavily on normal assumptions and
the correct specification of the dropout model, about which little is often known”.
Laird (1994) warns that “estimating the ‘inestimable’ can be accomplished only by
making modeling assumptions, ... . The consequences of model misspecification will
probably be far more severe in the non-ignorable case”. Rubin (1994) indicates that
“even inferences for the data parameters generally depend on the posited missingness
mechanism, a fact that typically implies greatly increased sensitivity of inference to
reasonable model specifications”. Molenberghs, Kenward and Lesaffre (1997) claim
that “conclusions are conditional on the appropriateness of the assumed model, which

in a fundamental sense is not testable”.

In addition, serious doubts have been raised about even the appropriateness of the
“dropout” concept in this study. Cullis (1994) warned that the conclusions inferred
from the statistical model are very unlikely since usually there is no relation between
dropout and a relatively low level of milk protein content. The real reason for dropout
is human intervention. Cows entered the trial as they calved and the experiment was
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Figure 2.4: Graphical representation of the Vorozole data. Individual profiles for the

two treatment groups separately.

terminated when feed availability declined in the paddock in which the animals were
grazing. Thus, there are actually no dropouts but rather five cohorts representing
the different starting times. Together with Cullis (1994), we conclude that especially
with incomplete data a statistical analysis should not proceed without a thorough

discussion with the experimenters.

2.4 Vorozole Study

The next set of data come from a randomized phase III trial comparing the new
potent and selective third generation aromatase inhibitor vorezole (VOR) with mege-
strol acetate (MEG) in postmenopausal advanced breast cancer patients. This study
was an open-label, multicenter, parallel group design conducted at 67 North Ameri-
can centers. Patients were randomized to either vorozole (225 patients, 2.5 mg taken
once daily) or megestrol acetate (227 patients, 40 mg four times daily). The pa-
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Table 2.1: Vorozole study, means (standard deviations) per time (up to two years)
and treatment arm for change in FLIC score versus baseline.

Vorozole Megestrol Acetate
Month N Mean St. Dev. N Mean St. Dev.
198 0.485 14.162 196 -1.622 15.706
176 -1.324 16.343 168 -1.268 16.988
130 1.031 17.808 136 0.971 16.825
94 4.883 17425 104 1.808 19.038
77 7.519  18.506 76 2.737 19.315
10 68 6.309 16.312 60 2.733 16.808
12 58 4.207 21.079 39 2.821 21.738
14 42 3.857 19.806 32 2.219  20.789
16 37 0.1890 18.590 22 1409 18.940
18 26 1.423  25.942 15 2533 23.086
20 24 0.750 14.405 11 5909 21.422
22 20 -1.500 15.426 6 4.500 13.248
24 15 1.733 15.068 5 1.400 8.050

W DD e N =

tient population consisted of postmenopausal patients with histologically confirmed
estrogen-receptor positive metastatic breast carcinoma. All 452 randomized patients
were followed until disease progression or death. The main objective was to compare
the treatment group with respect to response rate while secondary objectives included
a comparison relative to duration of response, time to progression, survival, safety,
pain relief, performance status and quality of life. We will focus on overall quality of
life, measured by the total Functional Living Index: Cancer (FLIC) (Schipper, Clinch
and McMurray 1984). Precisely, a higher FLIC score is the more desirable outcome.

Patients underwent screening and for those deemed eligible a detailed examination
at baseline (occasion 0) took place. Further measurement occasions were month 1,
then from month 2 at bi-monthly intervals until month 44. The median age was 66
years for VOR, and 67 for MEG, and the means were respectively 65.1 (s.e. 9.8) and
65.6 (s.e. 10.0) years. The mean duration of breast cancer was 6.8 (s.e. 5.4) years for
VOR, and 6.9 (s.e. 5.5) years for MEG. The average total FLIC score was 116.3 (s.e.
1.5) for VOR, and 117.1 (s.e. 1.3) for MEG. These total FLIC scores were calculated
based on 199 resp. 213 patients. Goss et al. (1998) analyzed the data and found no
significant differences: the response rate was 9.7% for VOR, versus 6.8% for MEG
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Figure 2.5: Graphical representation of the Behave data. Individual profiles for the

three treatment groups separately.

(p=0.24); clinical benefit from treatment was demonstrated in 23.5% of VOR-treated
patients versus 27.2% of MEG-treated patients (p=0.42). They also analyzed FLIC
using a two-way ANOVA model with effects for treatment, disease status, as well as
their interaction. Again, no significant difference was found. Figure 2.4 shows the
individual profiles of all subjects separated over the two treatment groups and full
details of this study are reported in Goss et al. (1998).

2.5 Behave Data

The last example concerns data from a three-armed clinical trial in patients with
Alzheimer’s disease (Reisberg et al. 1987). The outcome is a dementia score, ranging
from 0 to 43. Treatment arm 1 is placebo (114 patients), while arms 2 (115 patients)
and 3 (115 patients) involve active compounds. Of the patient population, 56.4% are
female. There are 341 Caucasians, 2 orientals, and 1 black subject. Age ranges from
56 to 97 years with a median of 81 years. Measurements are taken at baseline, at
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Table 2.2: Behave data, sample size per treatment arm and dropout pattern.

Pattern 1 2 3 456 7
Treatment 1 4 5 16 3 9 6 71
Treatment 2 4 9 7 6 3 5 81
Treatment 3 12 4 15 9 5 3 67

weeks 1, 2, and then every two weeks until week 12. Individual profiles are plotted in
Figure 2.5. The study was conducted in 8 countries, and 50 investigators took part.
The sample size per dropout pattern and per treatment arm is displayed in Table 2.2.
In each of the arms, about 40% drop out before the end of the study.
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Modeling Incomplete Data

As is clear from the introduction, the problem of missing data is present in almost
all longitudinal experiments. Some of these studies are designed in a way that the
number of measurements planned to be taken per subject is variable and also the time
points at which the measurements are taken can be random as well. These studies
are called unbalanced and it is usually rather hard to define missingness within these
settings. In balanced settings the number of measurements to be taken is fixed and the
measurements are mostly taken even at a fixed set of time points approximately the
same for all subjects. Because in the latter case missingness can be identified without
ambiguity we will consider only this type of experiments and more precisely we will
only take into account the case of dropout which means that a subject is completely
observed until a certain point in time, where after no more measurements are taken.
Moreover since dropout in balanced and unbalanced settings can be treated similar,

restriction to balanced studies is no loss of generality.

In the following Section 3.1 we will introduce some general notation and terminolo-
gy used to treat missing data while in Section 3.2 the difference between the selection
models and the pattern-mixture frameworks based on a different factorization will
become clear, Shared parameter models will be introduced and further details about
the taxonomy introduced by Rubin (1976) and Little and Rubin (1987) will be dis-
cussed. Finally, Section 3.3 will outline two existing an rather standard approaches

to treat missing data.

17
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3.1 General Notation and Terminology

Let us introduce some necessary notation. We assume that for subject 1 =1,..., N
in the study a sequence of responses Y;; is designed to be measured at a fixed set of
occasions j = 1,...,n;. The outcomes are grouped into a vector Y; = (Y;1,...,Yiy,)
and since we are dealing with balanced studies these vectors of measurements are all
of the same length. In addition, for each occasion j define

1 if ¥;; is observed,

Ri i =
0 otherwise.

The missing data indicators R;; are grouped into a vector R; which is, of course,
of the same length as Y';. The underlying mechanism generating these R; is denoted
by the missingness process and it is possible to consider several missing data patterns
within a study. In case the non-response process is restricted to dropout we have
that all measurements for a subject from baseline onwards up to a certain time are
recorded, after which all data are missing. The vector R; can then be represented
as a scalar D; say, defined as D; =1+ 27;1 R;;, representing the occasion at which
dropout occurs. In terms of missing data patterns we call this a dropout pattern and
we can split this further into monotone dropout patterns where all measurements
prior to the time of dropout are observed and non-monotone dropout patterns where
for some reason it is possible that also measurements prior to the actual time of
dropout are missing.

It is often necessary to split the vector Y'; into two subvectors Y7 and Y7}" where
Y7 contains those Y;; for which R;; = 1 and Y7" contains the remaining components.

The following terminology is used:

Complete data Y;: the scheduled measurements. This is the hypothetical outcome

vector that would have been recorded if there were no missing data.

Full data (Y;, R;): the complete data, together with the missing data indicators.
Note that one observes the measurements Y] together with the dropout indi-

cators R;.

Covariates X;: apart from the outcomes, additional information is measured. This
information can be collected before or during the study. The covariate vector
is allowed to change for different outcome components ¢ and can include con-
tinuous as well as discrete variables. We assume no missing values appear in
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X;. Methods for the case of missing covariates have been explored by several
authors (Little 1992, Robins, Rotnitzky and Zhao 1994, Zhao, Lipsitz and Lew
1996).

3.2 Missingness Process

In Modeling missing data it is thought to be necessary to consider a joint model for
the measurement process together with the dropout process. In other words, interest
is put into the joint density function

where X;, Z;, and W, are covariate matrices to be introduced later. We will use
the parameter vector @ to describe the measurement process while the vector ¢ des-
cribes the missingness processes respectively. Later on 8 will be split into 3 and «
representing the fixed effects and the variance parameters respectively. The above
expression represents the joint distribution of the measurements Y; and the dropout
indicators D; as defined before.

3.2.1 Different Factorizations

Starting from expression (3.1) we can factorize this density function in two ways
leading each to a different framework as briefly discussed in the introduction. A first
framework is based on following factorization:

The first factor is the marginal density of the measurement process and the second
one is the density of the missingness process, conditional on the outcomes. This
factorization forms the basis of selection Modeling and this can be explained intuitively
by considering the second factor to correspond to the (self-)selection of individuals
into ‘observed’ and ‘missing’ groups. As an alternative one can consider so-called

pattern-mizture models using the reversed factorization.
Fs,mil Xi, Z,0,40) = f(y;lrs, Xi, Z5, 0) f(ri], Wi, ) (3.3)

The factorized density (3.3) can be seen as a mixture of different populations, charac-
terized by the observed pattern of missingness. After initial mention of these models
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(Little and Rubin 1987, Glynn, Laird and Rubin 1986), they are receiving more at-
tention lately (Little 1993, 1994a, 1995, Hogan and Laird 1997, Ekholm and Skinner
1998).

Although selection models and pattern-mixture models are interchangeable from a
probabilistic point of view, in the sense that they represent different factorizations of
the same joint distribution, in practice they encourage different kinds of simplifying
assumptions. It is clear that the parameters in the selection models and these in the
pattern-mixture models have a different meaning and also converting a model into
one of the other framework is in general not straightforward, even not for normal
measurement models. One attraction of selection models is that they were used by
Rubin (1976) and Little and Rubin (1987) to define their missing data terminology.
This classical taxonomy is based on the second factor of (3.2)

f("'z|prz’a) = f(’rz|yzo’y;n’ Xz’ a) (34)

and can be described as follows

o If (3.4) is independent of the measurements, i.e., when it assumes the form
f(ri] X, @)
then the process is termed missing completely at random (MCAR).

e If (3.4) is independent of the unobserved (missing) measurements Y7, but

depends on the observed measurements Y7, thereby assuming the form
f('r'ilyf, X, OL)
then the process is referred to as missing at random (MAR).

o If (3.4) depends on the missing values Y7", the process is referred to as infor-
mative missingness or missing not at random (MNAR). An informative process
is allowed to depend on Y2.

Precisely because of this reason the selection Modeling framework is widely used
and discussed. So it is argued by several authors that using a selection model,
untestable assumptions have to be made about the mechanism of dropout (discus-
sion of Diggle and Kenward 1994, Molenberghs, Kenward and Lesaffre 1997). Only
recently, Little (1993) has suggested pattern-mixture models as a valuable alternative
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to selection models. An early reference is Glynn, Laird, and Rubin (1986). The same
reasoning concerning untestable assumptions is also true for pattern-mixture models
but here every observed value of R; leads to a different measurement process and
more precisely each dropout pattern yields a different set of parameters. Because of
this reason it is clear in the pattern-mixture settings which parameters cannot be
identified. As a solution Little (1993) proposes the use of identifying restrictions in
order to identify the non-identifiable to the identifiable parameters. It is still a pro-
blem to find evidence for the restrictions used through the data but an advantage is
that separation between verifiable and unverifiable assumptions is clearly indicated.

While pattern-mixture models appear not to fit naturally into Little and Rubin’s
taxonomy, it is shown by Molenberghs, Michiels, Kenward and Diggle (1998) that
pattern-mixture models can be classified similarly, and further that the intermediate
category of “missing at random” is connected to particular kind of restrictions on the
parameters of a pattern-mixture model in the case of monotone missingness. This
suggests to us that a purely philosophical debate about the relative merits of the
selection and pattern-mixture paradigms is unhelpful. Instead, the focus of debate
should shift to a consideration of the statistical and scientific merits of proposed
missing value models on their own terms. For example, if the question of scientific
interest regards the treatment effect, averaged over all dropout patterns, then choosing
an selection model seems to be obvious. On the other hand, if one is interested in
the treatment effect, for various dropout patterns separately, then a pattern-mixture
model is a natural choice.

3.2.2 Shared Parameter Models

Another alternative to jointly model the dropout and the measurement process is
found by using a shared parameter model as they are discussed in Little (1995),
Wu and Bailey (1989) and Mori, Woolson and Woodsworth (1992, 1994). Here one
assumes that there exists a single random effect or a shared parameter, which is able
to describe the dropout process as well as the measurement process in the sense that
this latent variable splits the population in subgroups and conditional on this latent
variable the dropout process and the measurement process are independent. This
model can be represented as in Figure 3.1a. On the other, hand Figure 3.1b shows a
possible extension by considering a categorical variable ¢; = (¢;1, ..., ¢ig) such that

Yilgiy =1,b ~ N (Xzﬂ + Zibi,2§j>)
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¢ = (i1, Qig) g values, p;
by~ N(Q 1) | >ioapi=1
/ \ b; |g;
R; |g:, b; Y; |q:, b
a: Basic b: Extended

Figure 3.1: Shared parameter model

with
bi |gi; = 1 ~ N (5, Dy)
and

eWiri+Ab;

h(P(Ri=r|Ri> a5 =10 = 7o

Although we notice that these models can be very useful in describing missing
data we will not take them into further account throughout our research. In Chapter
7 we will however, briefly suggest this type of models to deal with some unsolved

issues within sensitivity analysis.

3.2.3 Ignorability

When a likelihood-based approach is used, one has to calculate the likelihood contri-

bution of each subject ¢ as follows
L*(0’¢|Xz’ Zi’ Wi’yi’,ri) & f(ymlrz|Xz’ Zi’ 0’¢) (35)

Since inference has to be based on what is observed, the full data likelihood L* has
to be replaced by the observed data likelihood L:

L(6,v| X, Z;, Wi, y;,7:) < f(y7,7:| X4, Z;, W;,0,%)
with

f(yf,'r‘ﬂXi, Zi’Wi’o”lvb)

/f(yi,”'i|Xi,Zi,Wi,9, V)dy;" (3.6)

- / F2 X, Za, 0)F (raly?, yl, Wa 1) dy(3.7)
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Under an MAR process, we obtain

F(y2, 4]0, %) / Pyl | X, Z2,0) f(rily?, X o, ) dy

f(yﬂXi’Zi’o)f(ri|yg,Xi,¢),

i.e., the likelihood factorizes into two components of the same functional form as the
general factorization (3.2) of the complete data. If further @ and 1) are disjoint in the
sense that the parameter space of the full vector (6’,1)')’ is the product of the indi-
vidual parameter spaces then inference can be based on the marginal observed data
density only. This technical requirement is referred to as the separability condition.

In conclusion, when the separability condition is satisfied, within the likelihood
framework, ignorability is equivalent to the union of MAR and MCAR. Hence, non-
ignorability and ‘informativeness’ are synonyms in this context. A formal derivation
is given in Rubin (1976), where it is also shown that the same requirements hold for
Bayesian inference, but that frequentist inference is ignorable only under MCAR. Of
course, ignorability is unhelpful when at least part of the scientific interest is directed
towards the missingness process. Note that while the terminology introduced in the
previous section is independent of the statistical framework chosen to analyze the data
this is no longer the case with the terms ignorable and non-ignorable missingness. The
latter terms depend crucially on the inferential framework (Rubin 1976).

Classical examples of the more stringent condition with frequentist methods are
ordinary least squares and the generalized estimating equations approach of Liang
and Zeger (1986). These GEE define an asymptotically unbiased estimator only under
MCAR. Robins, Rotnizky and Zhao (1995) have established that some progress can
be made under MAR and even under informative processes. Their method is based
on including weights that depend on the missingness probability, proving the point
that at least some information on the missingness mechanism should be included and

thus that ignorability does not hold.

3.3 Standard Methodology for Incomplete Data

Missing data nearly always entail problems for the practicing statistician. First,
inference will often be invalidated when the observed measurements do not constitute
a simple random subset of the complete set of measurements. Secondly, even when
correct inference would follow, it is not always an easy task to trick standard software
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into operation on a ragged data structure.

Even in the simple case of a one-way ANOVA design and under an MCAR mech-
anism operating, problems occur since missingness destroys the balance between the
sizes of the subsamples. This implies that a slightly more complicated least squares
analysis has to be invoked. Of course, a regression module for the latter analysis is
included in most statistical software packages. The trouble is that the researcher has
to be aware which tool to choose for particular classes of incomplete data.

Little and Rubin (1987) give an extensive treatment of methods to analyze in-
complete data, many of which are intended for continuous, normally distributed
data. Some of these methods were proposed more than fifty years ago. Examples
are Yates’ (1933) iterated ANOVA and Bartlett’s (1937) ANCOVA procedures to a-
nalyze incomplete ANOVA designs. The former method is an early example of the
Expectation-Maximization (EM) algorithm (Dempster, Laird and Rubin 1977). This
EM-algorithm is discussed in Section 3.3.1.

The computationally simplest technique is a complete case analysis, in which the
analysis is restricted to the subjects for whom all intended measurements have been
observed. A complete case analysis is popular because it maps a ragged data matrix
into a rectangular one, by deleting incomplete cases. An alternative approach, with
a similar effect on the applicability of complete data software, is based on imputing
missing values. One distinguishes between single imputation and multiple imputation
(Rubin 1987). In the first case, a single value is substituted for every ‘hole’ in the
data set and the resulting data set is analyzed as if it represented the true complete
data. Also in the multiple imputation technique, ’holes’ in the data set are filled,
but to account for the uncertainty in filling in missing values, the imputation is done
multiple times, and each time the complete data are analyzed. The theory of multiple

imputation is explained in Section 3.3.2.

Another family is based on the principle of analyzing the incomplete data as such.
A simple representative is the so-called available case analysis. A popular and very
general technique to optimize incomplete data likelihoods under MAR, is the EM
algorithm (Dempster, Laird and Rubin 1977). Little and Rubin (1987) used the EM
algorithm to analyze their incomplete version of the growth data. The principle ideas
behind this method will be given in the next section.
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3.3.1 EM-algorithm

The EM algorithm consists of two components, the Expectation and Mazimization
steps. Each step is completed once within each algorithm cycle. Cycles are repeated
until a suitable convergence criterion is satisfied. In the expectation step the unob-
served (or missing) data are estimated by their expectations given the observed data
and current parameter values. In the maximization step the parameters are estimated
using maximum likelihood applied to the observed data augmented by the estimates
of the unobserved data. Effectively this maximizes, in each cycle, the expectation
of the complete data log likelihood E[log L(0)] where the expectation is taken with
respect to the observed data and the current fitted values of 8. Dempster, Laird and
Rubin (1977) show that on convergence the fitted parameters are equal to a local
maximum of the likelihood function, which is the maximum likelihood estimate in

the case of a unique maximum.

Two of the main drawbacks of the EM algorithm are its typically very slow rate of
convergence and its lack of direct provision of a measure of precision for the maximum
likelihood estimates. Both problems are in fact related and several proposals have
been made to overcome them. We mention the technique suggested by Louis (1982),
the EM-aided differentiation by Meilijson (1989), the “rate matrix” method of Meng
and Rubin (1991), and the linear transformation method of Baker (1992). Standard
errors and Wald statistics are computed directly from the observed information and
score tests are also relatively simple to compute.

We will use Meilijson’s (1989) proposal, which is based on the property that the
derivative of the complete data score vector coincides with the observed information
matrix. It leads to an easy numerical algorithm, using the classical finite differences
of the score vector to approximate the derivative. Let the constant that defines the
differences be ¢. To compute the jth column of the information matrix, one changes
to 6, where all components remain the same, except for the jth one which is changed
to ; +¢. Then one E step is carried out, yielding Y'(8;). Next, the score vector S; is
computed. An approximation for the jth column is given by (5;5)/e, where S is the
score vector at maximum. Replacing all quantities by their estimated values yields a

convenient algorithm.
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3.3.2 Multiple Imputation

The theory of multiple imputation is presented in Rubin (1987). Several other sources,
such as Rubin and Schenker (1986), Little and Rubin (1987), Rubin (1996) and
Schafer (1997), give an excellent account of the technique. As discussed by Rubin
and Schenker (1986), the theoretical justification for multiple imputation is most ea-

sily understood using Bayesian methodology.

Suppose interest lies in estimating the vector B, containing the parameters of
interest. Rubin (1987) proposed using multiple imputation to “fill-in” the unobserved
components of the outcome vectors using the observed data and then use the filled-in
data to estimate 3. His method also yields a variance estimator. In order to be able
to fill in values, we need the distribution of the missing data, given the observed data
and a parameter vector . Multiple imputation is most useful when -~ is an easily
estimated set of parameters, while 3 is complicated to estimate in the presence of

missing data.

Recall that the observed data are Y° and the complete data are Y. Multiple
imputation uses Y° to fill in Y™, leading to the complete data ¥ = (Y°,Y™). If
we knew the distribution of Y™, with parameter vector ~, then we could impute Y™
by drawing from the conditional distribution f(Y™|Y °,~). Since - is unknown, we
estimate it from the data, yielding ¥, and use the distribution f(Y™|Y?,4). Because
% is a random variable, we must also take its variability into account in drawing
imputations. In Bayesian terms, = is a random variable of which the distribution
depends on the data. So we first obtain the posterior distribution of < from the data,

a distribution which is a function of 4.
After formulating the posterior distribution of <, we use the following imputation
algorithm.
1. Draw ~4* from the posterior distribution of -+, f(+|X,Y ). We approximate this
posterior distribution by a normal.
2. Draw Y™ from f(Y™|X,Y°,v*).
3. Use the completed data Y and the model to estimate the parameter of interest

3" and its variance 3X(3%), called the within-imputation variance.

These three steps are repeated independently M times, resulting in 8;,, X(8;,),
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m=1,... , M.

In case the data to be filled in are categorical, we use a uniform random number
generator in step 2 (see Rubin 1987, pp. 169-170). Suppose the count Z is to be

distributed over the cells Z7 , £ =1,... ,c. Then, the cumulative probabilities
A = 0,
S Ve
Ny = SE=LTE k=1,...,¢c
v

are calculated and Z draws U; from a uniform U[0, 1] distribution are made. Next,
Zy is set equal to Y, (Ap—1 < U < Ap).

Finally, we combine the estimates obtained after M imputations. The overall
estimated parameter vector is the mean of all individual estimates:
M
1
B =2 B
m=1
The variance is obtained as a weighted sum of the within-imputation variance and

the between-imputations variance:

M+1

3=
W+ 1%

B

where

1 M

m=1
the mean of the within-imputation variances, and

M

1 * * * N/
B=——> (B~ 86,8

m=1

the between-imputations variance (Rubin 1987). Based on these variances, one can
calculate approximate 95% confidence intervals. Finding an appropriate reference
distribution is not an easy matter. Rubin (1987) proposes a multivariate T distribu-
tion. Shafer (1997, p. 113) suggests that the approximations by Li, Raghunathan and
Rubin (1991) work well in practice. Since in our case the number of imputations will

be large, we can certainly rely on the corresponding normal approximation.






Chapter 4

Selection Models

In this Chapter we will discuss the most popular selection model framework in more
detail. Specifically we will consider a selection model similar to the one introduced by
Diggle and Kenward (1994). While these authors consider a multivariate model for
the measurements combined with a logistic regression model for the dropout process
we will use the generalized mixed model as described in Laird and Ware (1982) and
Verbeke and Molenberghs (1997, 2000) to model the measurement process keeping
the dropout model to be based on a logistic regression. Section 4.1 treats this model
in full detail and starting from this model we will define two formal tools to perform
sensitivity analysis within the selection modeling framework. In section 4.2 Local
and Global influence methodology will be introduced and compared with respect
to similarity in results, advantages en disadvantages of both techniques. Finally
section 4.3 list the results of an application of the local influence methodology to
the rats dataset and the mastitis dataset introduced in Chapter 2. In Chapter 6 we
will apply both influence tools to the milk protein trial and furthermore in section
5.4.1 we will contrast these methods with some techniques from the pattern-mixture
framework introduced in Chapter 5. The methodology described in this chapter is also
represented in full detail in some of our publications: Verbeke et al (1998), Thijs et al
(2000) and Molenberghs et al (2001). For the categorical counterpart not discussed
here we can refer to Van Steen et al (2002).

29
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4.1 A Selection Model

While Diggle and Kenward (1994) combine a multivariate normal model for the mea-
surement process with a logistic regression model for the dropout process we will
generalize the measurement model slightly to be the linear mixed model (Laird and
Ware 1982). In section 4.1.1 the linear mixed model will be introduced in full detail
with specific emphasis on components of random variability that are typically encoun-
tered in longitudinal data while section 4.1.2 handles the logistic dropout model.

4.1.1 Measurement Model: The Linear Mixed Model

Linear mixed-effects models have been proposed by Laird and Ware (1982) and can
be written as follows:

Y. = XiB+4 Z;b; + &4, (4.1)

where Y; is the n; dimensional response vector for subject 7, 1 < ¢ < N, N is the
number of subjects, X; and Z; are (n; x p) and (n; x ¢) known design matrices, 8
is the p dimensional vector containing the fixed effects, b; ~ N(0, D) is the ¢ dimen-
sional vector containing the random effects , &; ~ N(0,%;) is a n; dimensional vector
of residual components, and bq,... ,by,21,... ,&5 are assumed to be independent.
Finally, D is a general (¢ x ¢) covariance matrix with (¢, j) element d;; = d;; and %;

is a (n; X n;) covariance matrix.

¢ Random Effects: In model (4.1) the random effects stem from heterogeneity
between individuals. This means that various aspects of their behavior may
exhibit inter-individual random variation. For example, some subjects will be
intrinsically high responders. The residual variability &; in (4.1) may be further
refined and decomposed into the following qualitatively distinct components
(Diggle, Liang and Zeger, 1994):

e Serial correlation: This component arises due to the fact that measurements

closer in time often show a stronger similarity than measurements further apart.

¢ Measurement error: Measurement errors occur when the measurement process
itself introduces an element of random variability. For instance, there might be
substantial variation in results from bioassays of blood samples, even when two
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measurements are taken at the same time from the same subject, or when a

sample is split into two subsamples which are then analyzed separately.

This distinction leads to the decomposition ¢; = sgl) + 522) (Verbeke and Molen-
berghs, 2000), where

Egl) ~ N(O,TQHi),
(4.2)
522) ~ N(0,0%L,,).

(1)

In this formula, €;

captures serial correlation. The serial covariance matrix H; only
depends on ¢ through the number n; of observations and through the time points ¢;;

at which measurements are taken.

The structure of the matrix H; is determined through the autocorrelation function
p(ti; —tix). A first simplifying assumption is that it depends only on the time interval
between two measurements Y;; and Y, ie., p(ti; — ti) = p(| ts; — tir |), where
u =| t;; — tix | denotes time lag. This function decreases such that p(0) = 1 and
p(400) = 0. Two popular choices of this function p to capture serial correlation is by
means of exponential or Gaussian decay. An exponential process is based on writing

the correlation between two residuals at times ¢;; and ¢;x as

tij — i ot
COI‘I‘(tij,tik) = exp (_%> — p|tzj tzkl’ (43)

where p = exp(—1/¢). The Gaussian counterpart is

ot )2
Corr(t;;, tir) = exp (_%) — p(tij—tik)z’ (4.4)
where p = exp(—1/¢?).

It follows from (4.1) that, conditional on the random effect b;, Y; is normally
distributed with mean vector X;3 + Z;b; and with covariance matrix ¥;. Therefore
Inference can be based on the marginal distribution of the response Y; which, after

integrating over random effects, can be expressed as

Y; ~ N(Xi8,Z:DZ| +%). (4.5)

Let o denote the vector of all variance and covariance parameters (usually called
variance components), i.e. a consists of the g(g+1)/2 different elements in D and of
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all parameters in ¥;. Finally, let 8 = (3', ')’ be the vector of all parameters in the
marginal model for Y;.

When model (4.1) contains solely a random intercept between subjects, a serially
correlated component and a measurement error, a useful aid to the formulation of an
appropriate model for the covariance structure, especially the autocorrelation func-
tion, is the variogram (Diggle, 1990). For a stochastic process Y (¢), the variogram is
defined as V(u) = %E[Y(t) — Y (t — w)]®. Under the specified model, this reduces to
V(u) = 0? + 72[1 — p(u)] (Diggle, Liang and Zeger, 1994).

Finally, decomposition (4.2) assumes that the variance of residual components e;
is constant over time. This is not always the case and one way to accommodate
variance heterogeneity is through a log-linear variance model producing exponential
local effects, also called dispersion effects (Littell, Milliken, Stroup, and Wolfinger
1996; SAS Institute Inc. 1997). In this model, measurement errors take the form
o?diaglexp(U§)], where U is a design matrix and & a vector of dispersion parameters.
This affords a way of modeling the variability in terms of effects to be specified, such

as time.

4.1.2 Dropout Model

As stated before we consider only incompleteness due to dropout and furthermore
we assume that the first measurement Y;; is obtained for all subjects in the study.
The model for the dropout process is based on a logistic regression for the probability
of dropout at occasion j, given the subject is still in the study. We denote this
probability by g(hi;,¥:;) in which h;; is a vector possibly containing all responses
observed up to but not including occasion j, as well as relevant covariates. We now
can assume that g(hi;,y;;) satisfies

logit[g(hyj, yi;)] = logit [pr(D; = jlhij, yi5)] = ¥ (R, vi5) - (4.6)

For simplicity we further assume the vector h;; to contain only an intercept and the

previous measurement y;;_1. Finally we can rewrite expression (4.6) as follows:

logit[g(yij—1,¥i5)] = logit [pr(D; = jlysi—1, %i5)] = %o + Y1ysj—1 + Yas;-
(4.7)

Based on expression (4.7) it is clear to understand the terminology introduced by
Little and Rubin (1987) and described in Chapter 3. When both the parameters



Chapter 4 : Selection Models 33

11 and o equal zero the dropout mechanism is called to be Missing Completely At
Random (MCAR). When ; # 0 dropout is termed Missing At Random (MAR) and
when )9 # 0 we call the dropout mechanism to be Missing Not At Random (MNAR).

Expression (4.7) can now in a similar way be used to construct the dropout process:

H[l — g(Rij, yi5)] completer (d; =n; + 1),
j=2

fdilys, ) =
(4.8)

d—1
111 = g(hij, yi)lg(hia,yia) ~ dropout (d; = d < ).
j=2

Since we now have the expressions for the measurement model as well as for the
dropout model we are able to combine both mechanisms in one selection model and
in doing so we can fit these models in order to analyze the data. In line with our
discussion in the introduction, Rubin (1994) points out that such analyzes heavily
depend on the assumed dropout process while it is impossible to find evidence for
or against the model, unless supplemental information on the dropouts is available.
Further, note that in practice, subjects may drop out for a variety of reasons, with
several competing dropout processes operating simultaneously. This might lead some
subjects to drop out at random while others drop out non-randomly. This possibility
is not taken into account in the above model, which at best will capture a dominant
trend, should it operate in a way that can be captured approximately by the pro-
posed model form. While a general awareness of the need for sensitivity analysis has
grown, only few actual proposals have been made. Moreover, many of these are to be
considered as useful but ad hoc approaches. In our view, a more formal approach to
sensitivity analyzes should be fruitful as well.

4.2 Sensitivity Analysis

George Box has a famous quote saying that all statistical models are wrong, but some
are useful. Cook (1986) uses this idea to motivate his assessment of local influence. He
suggests that more confidence can be put in a model which is relatively stable under
small modifications. The best known perturbation schemes are based on case-deletion
(Cook and Weisberg 1982) in which the effect is studied of completely removing
cases from the analysis. This reasoning will form the basis for our global influence
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methodology introduced in section 4.2.1 and in doing so it will be possible to determine
which subjects might be influential for the analysis. On the other hand using case
deletion all information from a single subject is deleted at once and therefore it is
hard to tell whether that subject has some influence on a specific aspect of the model.
A solution for the latter problem can be found in a quite different paradigm being a
local influence approach where one again investigates how the results of an analysis are
changed under small perturbations of the model but where these perturbations can
have specific interpretations. In the framework of the linear mixed model Beckman,
Nachtsheim and Cook (1987) used local influence to assess the effect of perturbing the
error variances, the random-effects variances and the response vector. In the same
context, Lesaffre and Verbeke (1998) have shown that the local influence approach is
also useful for the detection of influential subjects in a longitudinal data analysis. In
section 4.2.2 we will develop a similar methodology to detect influential subjects with
respect to the dropout mechanism. Moreover, since the resulting influence diagnostics
can be decomposed in interpretable components, these methods are particularly useful

for gaining insight in the reasons why some subjects are more influential than others.

It can be argued that subjects with a large impact on the (dropout) model pa-
rameters are likely to be responsible for, e.g., false conclusions about the nature of
the dropout mechanism. Indeed, due to the large sensitivity of conclusions to model
assumptions, one or a few influential observations can drive the conclusions in se-
lection models for incomplete longitudinal data. While such a statement would be
broadly true in almost any regression setting, it is even more the case in this context.
Kenward (1998) showed that two outlying subjects changed the dropout mechanism
from random into non-random when analyzing the mastitis dataset, previously ana-
lyzed in Diggle and Kenward (1994). These results will be confirmed, using influence
diagnostics. In addition, he showed that changing an appropriate conditional distri-
bution from a normal to a ¢ distribution with a low number of degrees of freedom,
also changed the conclusions. These considerations, motivate the use of influence di-
agnostics to detect subjects that may distort conclusions based on selection models
for incomplete longitudinal data. We can already conclude that the local and global
approaches are complimentary, rather than competitors and can both take part in a

complete sensitivity analysis.
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4.2.1 Global Influence

A first tool to perform sensitivity analysis as stated before is by means of global
influence starting from case-deletion. This methodology is based on the difference in
log-likelihood between the model fitted to the dataset as a whole on the one hand
and the dataset minus one subject on the other hand. Denote the likelihood function,

corresponding to measurement model (4.5) and dropout model (4.8) as follows
) = Y bl (4.9)

in which #;(v) is the contribution of the 0 individual to the log-likelihood, and
where v = (0,%,w) is the s-dimensional vector, grouping the parameters of the
measurement model and the dropout model. Further, we denote by

Ly (), (4.10)

the log-likelihood function, where the contribution of the ith subject has been re-
moved. Cook’s distances are based on measuring the discrepancy between either the
maximized likelihoods (4.9) and (4.10) or (subsets of) the estimated parameter vectors
7 and ¥ _;), with obvious notation. Precisely, we will consider both

CDy; = 2@\— Z\(—i)),
as well as
CDa(v) = 2 (A=) L™ (3 —F i) (4.11)

Formulation (4.11) easily allows to consider the global influence in a subvector of +,
such as the dropout parameters 1, or the non-random parameter w. This will be
indicated using notation of the form CDy; (1)), C'Da;(w), ete.

Alternative global influence measures are possible. One could think of the behavior
of a test statistic, such as a Wald test for treatment or time effect, under a case deletion

scheme. A more formal study of such a quantity is topic of ongoing research.

In linear regression, global influence is conceptually simple, straightforward in
computation and well studied. The latter two of these features do not carry over
to more general settings. Indeed, the calculation of the Cook’s distances requires N
model fits (even though one-step approximations can reduce the burden somewhat).
There is a more fundamental problem, however. It is hard to assess the influence that
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can be ascribed to a specific cause, since by deleting a subject all types of influence
stemming from it are lumped together and for this reason we will now develop the so
called local influence tool where it is easier to interpret the perturbation.

4.2.2 Local Influence

As a second tool for sensitivity analysis the local influence method will now be des-
cribed for the linear mixed-effects model with respect to the different variance com-
ponents as introduced in previous section. More precisely, we are interested in the
influence the of the assumption of non-random dropout on the parameters of interest,
which will most often be the fixed-effect parameters, possibly supplemented with the
variance components. This can be done in a meaningful way by extending (4.7) as
follows:

logit[g(yij—1, ¥i5)] logit [pr(D; = jlyij—1, ¥is)] (4.12)
logit[g(yij—1,%i5)] = Yo+ Y1¥ii—1 + wivij- (4.13)

in which different subjects give different weights to the response at time d to predict
dropout at time d. If all w; equal zero, then the model reduces to a MAR model which
cannot influence the measurement model parameters. Therefore (4.13) can be seen
as an extension of the MAR model, which allows some individuals to drop out in a
“less random” way (Jw;| large) than others (Jw;| small). It has to be noted that, even
when w; is large, we still cannot conclude that the dropout model for these subjects
is non-random. Rather, it is a way of pointing to subjects which, due to their strong
influence, are able to distort the model parameters such that they can produce, for
example, a dropout mechanism which is seemingly non-random. In reality, many
different characteristics of such an individual’s profile might be responsible for this
effect. As mentioned earlier, such sensitivity has been alluded to by many authors,
such as Laird (1994), Little (1994), and Rubin (1994).

Studying the effect of extending an MAR model to the non-random case on the
parameters of interest (such as treatment effect, time evolution, variance components,
dropout parameters, ... ) can now be achieved by investigating the effect of pertur-
bing the w;’s around zero. This will be done using the local influence approach of
Cook (1986). Of course, not all possible forms of impact, resulting from sensitivity
to dropout model assumptions, will be found in this way. Therefore, the method
proposed here should be viewed as one component of a sensitivity analysis, but ought



Chapter 4 : Selection Models 37

ideally to be supplemented with other methods. Furthermore, it is clear that the
global influence method introduced earlier differs substantially from the local influence
approach. Indeed, a global counterpart of the local influence method would allow one
single subject at a time to drop out in a MNAR rather than a MAR way. Technically,
such a model would yield infinite parameter estimates and therefore the local influence
framework is the natural setting. The global influence method aimed at the effect of
deleting one subject while in de local influence settings we are interested in changing
the generating mechanism for one subject. Let us now study in full detail the local
influence method.

We denote the log-likelihood function corresponding to model (4.13) by

N

Uylw) = D ti(vlw),

i=1

in which ¢;(y|w) is the contribution of the 0 individual to the log-likelihood, and
where v = (60, ) is the s-dimensional vector, grouping the parameters of the measure-
ment model and the dropout model, not including the N x1 vector w = (wy,wa, ... ,wy)’
of weights defining the perturbation of the MAR model. This expression arises from
taking the logarithm of (3.5), the model components of which are described in Sec-
tion 4.1. It is assumed that w belongs to an open subset Q of IRY. For w equal
to wo = (0,0,...,0), {(v|wo) is the log-likelihood function which corresponds to a
MAR dropout model.

Let & be the maximum likelihood estimator for -+, obtained by maximizing ¢(-y|wo),
and let 7, denote the maximum likelihood estimator for v under #(«y|w). The local
influence approach now compares %, with 7. Similar estimates indicate that the
parameter estimates are robust with respect to perturbations of the MAR model in
the direction of informative dropout. Strongly different estimates suggest that the
estimation procedure is highly sensitive to such perturbations, which suggests that
the choice between an MAR model and an informative dropout model highly affects
the results of the analysis. Cook (1986) proposed to measure the distance between
%, and 4 by the so-called likelihood displacement, defined by

LD(w) = 2({(Flwo) — £(¥.|wo)) -

This takes into account the variability of 4. Indeed, LD(w) will be large if £(v) is
strongly curved at 4 (which means that v is estimated with high precision) and small
otherwise. Therefore, a graph of LD(w) versus w contains essential information on
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the influence of perturbations. It is useful to view this graph as the geometric surface
formed by the values of the N + 1 dimensional vector

as w varies throughout 2.

LD(w)

= .
_ _

Wi

wzo\
h I

Figure 4.1: Graphical representation of the likelihood surface in case of two subjects

illustrating the principle of local influence.

Since this so-called influence graph as shown in figure 4.1 can only be depicted
when N = 2, Cook (1986) proposed to look at local influence, i.e., at the normal
curvatures Cp, of &;(w) in wo, in the direction of some N dimensional vector h of
unit length. Let A; be the s dimensional vector defined by

_ 0%i(ylws)

(i 6@167 7:37’“%:0 3
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and define A as the (s x N) matrix with A; as its 0 column. Further, let L denote
the (s x s) matrix of second order derivatives of {(-y|wo) with respect to =y, also
evaluated at v = 4. Cook (1986) has then shown that C, can be easily calculated by

Cp =2 |hWALTAR|. (4.14)

There are several ways in which (4.14) can be used to study x;(w), each corres-
ponding to a specific choice of the unit vector h. One evident choice is the vector h;

containing 1 in the ith

position and 0 elsewhere, corresponding to the perturbation of
the ;b weight only. This reflects the influence of allowing the ith subject to drop out
informatively, while the others can only drop out at random. It immediately follows

from (4.14) that the corresponding local influence measure C; is given by
C; =2 | AL A, . (4.15)

Another important direction is the direction Ay, .y of maximal normal curvature Cax.
It shows how to perturb the MAR model to obtain the largest local changes in the
likelihood displacement. It is readily seen that Cp.x is the largest eigenvalue of
2 A [T A, and that hpayx is the corresponding eigenvector.

When a subset v, of v = (v,,7%)’ is of special interest, a similar approach can be
used, replacing the log-likelihood by the profile log-likelihood for =, , and the methods
discussed above for the full parameter vector directly carry over. Let L be partitioned
as

z‘./ — ?11 ?12 ,
L21 L22
according to the dimensions of v, and ,. Following Cook (1986), the local influence
Cp(7,) for 7, in the direction of the unit vector h is given by

PR P 0 0
Cply,) =2 |p A" [LT" - . Ah|. (4.16)
0 L'
It can be easily seen that Cp,(v,) < C}, meaning that the normal curvature for v,, in
any direction h, can never be larger than the normal curvature for the total vector +
in the same direction. Further, it immediately follows from (4.16) that, for L,, = 0,

Ch = Ch(71) + Ch(72),
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showing that, if 4, and ¥, are asymptotically independent, the normal curvature for
~ is the sum of the normal curvatures for each of its components, which is in general

not the case otherwise.

Finally, as for Cp, (), there are many possible choices for the vector h in C,(v,).
For example, C;(v,), corresponding to h = h;, defined above, expresses the local

influence of allowing the ith

Y1

subject to drop out informatively, on the estimation of

We will now in full detail derive the expressions for the local influence measure-
ments. Here fore we consider complete and incomplete sequences in turn. The log-

likelihood contribution for a complete sequence is
§=2

where the parameter dependencies are suppressed for notational ease. The density
f(y;) is multivariate normal, described by (4.5) and the distribution assumptions of

the random terms involved.

The mixed derivatives are particularly easy to calculate:

0%y,

960w,

04y, i
oo, Z hiyizg(hig, yig)[L — g(hig, yig)]-

=2

Evaluating those under w; = 0 merely results in replacing g(hij;,9:;) by g(hi;) =
9(Rij, Yij)|w;=0, which is the MAR version of the dropout model.

The contribution from incomplete sequences is more complicated. Its log-likelihood

contribution is

a—1
by = ln/f(yi) 1101 = g(hij, vi)]g(Ria, yia) dyia
=2
-1
= Inf(hyg)+ Z In[1 — g(hyj, yij)] + 111/f(yid|hid)g(hid,yid)dyid,
=2

of which the first component depends on @ only, the second one on 1) only, while the

third one contains both.



Chapter 4 : Selection Models 41

The mixed derivatives of the log-likelihood w.r.t. w; can be written as

/3f (ysalhia) Og( zd,yid)dy‘

'th l’ldl K2
/fydld(dyd Yid e, d

606@11 o 2
[ / f (yialhia)g(Pia, ’yid)d’yid:|
a z, i a I h'z
/ FWsalhsg) ——F——— d yd / fyd' ) (hid, Yia) dYia
- ,(4.17)
[/f yzd|hzd) ( zd,yzd)dyzd]
90y, "
Opdw; thyl]g( lJ’sz)[l - ( lJ’yij)]
/fyd|hd )g(h dyddyd/fyd|hdwd’y‘d
k2 (2 A k2 k2 k2 (1 6¢6 2
3
[/f (ysalhia)g(h id,yid)dyid]
6 h'l s Yi 6 h'l s Yi
/f(yid|hid)wdyid/f(yid|hid)wdyid
—~ Owi oY . (4.18)

[/ f(ialhia)g(hia, yid)dyid] 2

In order to evaluate these expressions under w; = 0, we set w; = 0 in the integrands
and calculate the resulting simplified integrals.

| Satohis v = [ flhaotiua)dva
- 9(hia),
/f yzd|h'zd ld’yld) ————dYia . = g(hiu)1 _g(hid)]/yidf(yid|hid)dyid
= g(ha)lL - g ).
/ of yzd|hzd (hig, via) duia / of( y,dlh,d v
w;=0

(4.19)
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= o(hia)lt -~ g(hia)) [ wia 2Lt g,

= g(hia)[1 - g(hid)]w’

of yzd|hzd Og(hia, yia) ,
/ awl dyld

w;=0

= g(hia)[1 — g(hig)]hia,

w;=0

/ F(Wia |hzd Zd’ Og(Rid, yia) —————=dy;q

/f (ysa|Pia) a(¢g’y1d)dyid

= g(hia)[1 — g(hia)][1 — 2g(hia)|RiaA(YialRia)-

w;=0
(4.20)
Combining (4.20) with (4.17)—(4.18) yields
%0y, OA(Yialhia)
— [1 — g(hyy) 22\l id) 4.21
900w, |,_, 95 (4.21)
824,
== hywig(hi) L — g(hi)] — hiaX(Yialhia)g(hia)[1 — g(hia)]
6’!,&6@71 w;=0 =
(4.22)
Let V; 11 be the predicted covariance matrix for the observed vector (y;1, ... ,¥,4-1),

Vi,22 is the predicted variance for the missing observation y;4, and V; 12 is the vector
of predicted covariances between the elements of the observed vector and the missing
observation. It then follows from the linear mixed model (4.5) that the conditional

expectation for the observation at dropout, given the history, equals

Awialhia) = A(wia) + Vi21Vi 71 [Ria — A(hia)]. (4.23)

The derivatives of (4.23) w.r.t. the measurement model parameters are

ON(yial hia) =z — ViV 11X,(d 1>

op
OAYia|hia 0Vi 21 _19Viar | o, —
<aa ) _ S = VimVisi—o | Vigilhia = Aha)) - (4.24)

where X; 4_1) indicates the first (d — 1) rows of the fixed-effect design for subject i,
and « indicates the subvector of covariance parameters within the vector 6.

The influence on the measurement model parameters only arises from those mea-
surement occasions at which dropout occurs. This implies first that complete se-
quences cannot be influential and secondly that incomplete sequences only contribute

at the actual dropout time. It is therefore interesting to compare two incomplete
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sequences, with equal history, which drop out at the same time point. They then
have the same contribution 1 — g(h;q) to (4.21). Hence different influences on @ can
be ascribed to differences for the second factor of (4.21). For the fixed effects, we have
that
OA(yialhia) — OA(yjalhja)
0B oB

Hence, if the estimated covariance matrix for the complete data is the same for both

= Zjg— ja— (Vi1 — Vj,21)Vi,_111Xi,(d—1)-

sequences, the above expression reduces to ;4 — «;4 indicating that differences with
respect to C;(0) can be entirely ascribed to differences in time-varying covariates for
the mean structure. For the variance components, we get

OXMyialhia)  OAyjalhsa)  [(OViar  OVi: 1 ‘
Oa a oo o dae e Vi,n(hzd—/\(hzd))

_10V; _
- (Vi1 — Vo) Vi 3;1 Vi11 (hia — A(Ria)),

which equals zero when the estimated covariance matrix is the same for both complete

sequences. Note that

Vier = Vi = (Zia — ng)DZél
and that
OViar OV oD,
2 _ TN (g~ 2.2 7
da da (Zi2 72) da 1

illustrating that
OA(yialhia)  ON(yjalhja)
da Oa ’

represents the difference in random-effects covariates.

4.2.3 Compound Symmetry

Upto this point the derivations are generally applicable and have lead to formal ex-
pressions. It is clear that depending on the chosen model structure these expressions
can be simplified. Throughout the examples later in this Chapter different variance
covariance structures are considered each using their own formulations. In this section
we will only derive the full expressions for one special but important enlightening case
being the random-intercept or compound symmetry model. In case other structures
are requested the derivations are straightforward.
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For the special case of compound symmetry, it arises from assuming that the only
random coefficient in model (4.1) is a random intercept, i.e., Z; = 1,,, a vector of
ones, and b; is scalar. Hence D reduces to 72. Assuming further that ¥; = aQIni the
covariance matrix becomes V; = 21, + 72.J,,,, where J,,, is an (n; X n;) matrix of

ones.

It follows immediately that (4.23) and (4.24) reduce to

AMyialhia) = AMyia) + Wil)ﬂld—l[hidk(hid)],
W = T2y (j— )2 o2 + (22— 1y Lalfia = Alhaa)],
a/\(zgghid) = 2y (; "Dty (22— 1)72 Li—1[hia — A(hia)]-

Instructive special cases arise by setting either % = 0 (no measurement error) or

72 = 0 (no within-individual correlation). In the first case, we obtain

1
Ayiglhia) = Mwya) + - lld—l[hid — A(hia)],
OA(y;qlh; 1
% = Xy — mld—lXi,(d—l),

while the other derivatives are equal to zero. In the uncorrelated case the second term
drops in each of both expressions, while in addition the derivative w.r.t. 72 is non-
zero. Exploring the derivative w.r.t. 3, it is seen that the case without measurement
error produces the within-series residual covariate at time d, while the uncorrelated
case produces the uncorrected covariate at time d.

Let us now derive an expression for C; as given by (4.15). Using (4.21), we obtain:

2 OA(YialPia) /L_l OA(Yialhia)
00 00 ’
The first factor is large for a small dropout probability at the time of dropout, in

Ci = 2[1 — g(hia)] (4.25)

other words for an unlikely event. This is intuitively appealing, since g;q then has
potential of being improved by including dependence on #;4. For such a subject,
“informativeness” would help.

The second factor of (4.25) involves L~' and is therefore harder to study. This is
obvious, since then all measurements y;; on a subject are equal, whence including ;4

into the dropout model only adds a redundant covariate.
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In the general compound symmetry setting, we can still make progress if we are
prepared to make some approximations. The off-diagonal block of observed informa-
tion matrix L pertaining to the mixed derivatives w.r.t. 3 and « is not equal to zero
and while the corresponding block of the expected information matrix is for a com-
plete data problem, it is not so for an incomplete data set, unless the missing data are
MCAR (Kenward and Molenberghs 1996). However, these authors also argue that in
many practical settings the difference might be small. Therefore, we will assume that
I is block-diagonal, and assume that C;(6) ~ C2P(8) + € (62, 72).

Let us consider C;(3) first. With some algebra we arrive at

ONwalhia) _ ¢ o (1~

op
with
o2
§ia = ST
o2+ (d-1)r
1
Pig = a%’d_lei(d—l)-

The matrix of second derivatives L=!(8) can generally be expressed as

N
L7YB) = Z Xi(d—l)Vz‘,_lllXi(d—l),
=1

and since for compound symmetry,

2

T
Jd—l
T2 ’

vi=1, _
&1l d1+02—|—(d—1)

some straightforward algebra results in the following approximation to C;(8):

O (B) = 20 - glhia)*(Eamia+ (1 - Eia)psa)’

N —1
xa® [Z (gidX;(d_l)Xi(d—l) + (- gid)Ri(d—l)Ri(d—l))]
i=1

X (&ia®ia + (1 — &ia) Pia), (4.26)
where Ri,d—l = X’i(d—l) — 1Xi(d—1)' Here, X’i(d—l) = éllXi(d—l)'

Expression (4.26) is the product of the factor which purely depends on the dropout
probability, and a factor which has the structure of a leverage. When &;4 = 1 for all
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individuals, we have a classical leverage where each measurement is an independent
contribution. When &;4 = 0, each subject presents a single independent contribution.
The general case is a weighted combination of the between- and within-individual
contribution. These arguments motivate to call the second factor of C? p(,@) a ge-
neralized leverage, not only for compound symmetry, but also for general covariance
structures.

Let us consider a similar approximation for the variance components (02, 72).

First note that

ONalha) e o TN

do?
OA(yialhi 1 -
% = ﬁfid(l R ECI

The (2 x 2) matrix of second derivatives L=!(¢%,72) can be derived, using standard

expressions for the inverse and the determinant of 62I;_q + 72.J;_1. This yields

CP(0%72) = 21 - g(haa) €41 — &) Thia — Nha)]
x (_1, %) L2, 7%) _11 , (4.27)
where
g [0+ (d— )72 - 12202 + (d— 1)7?] 1
. -1
L(o* ) =) o7 T (A1) 1

i=1

d—1)

It is important to note that, even though L~1(02,72) has a somewhat complicated
form, it occurs in (4.27) only through a scalar. Thus, C2P(62,72) can in practice be
decomposed into three interpretable components:

o The first factor is shared with C? P (B) and has the same interpretation.

e The second factor disappears when either the measurement error variance or
the variance of the random intercept is reduced to zero. It is maximal when
there is “balance” between both components of variability (£;4 = 0.5).

o The third factor is large when the squared average residual of the history at the
time of dropout is large.
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For the dropout model parameters, there are no approximations involved. We

derive in a similar fashion:
’ -1

4 d
Ci(v) =2 Z hijyiiVij Z Z Vishijhi Z hijyis Vii
=2

i=1j=2 j=2 (4.28)

It is understood that d = n; for a complete case and that, for dropout, ;4 has to be

replaced with

AYialPia) = Ayia) + (1 — &) [Rig — A(Riq)].

Expression (4.28) bears some resemblance with the hat-matrix diagonal, used for
diagnostic purposes in logistic regression. One of the differences is that the contribu-
tions from a single individual are summed in the first and third factor of (4.28), even
though they contribute independent pieces of information to the logistic regression.
This is because each individual is given a single weight w;. An even greater resem-
blance would be obtained by using an alternative weighting scheme which places a
different weight on each measurement: w;;. This scheme does not imply any dif-
ferences in the influence contributions for the measurement model However, for the
dropout parameters, we obtain:

-1

Cii() = 2(Vz‘jyzg Vighi; ZZVz‘jh;jhzj hi 7, (4.29)

i=1 j=2

where the factor in curly braces equals the hat-matrix diagonal. In the case of dropout,
the same replacement for y;4 has to be made. When the length of a measurement
sequence is restricted to 2, then (4.29) and (4.28) coincide. Later in this Chapter it
will be shown that this type of expressions are easily interpretable and can be helpful

in understanding the problems with the dropout mechanism.

4.2.4 Alternative Perturbation Schemes

As mentioned before, the perturbation scheme used has several elegant properties.
The perturbation is around the MAR mechanism, which is often deemed a sensible
starting point. Extra calculations are limited and free of numerical integration. In-
fluence decomposes in a measurement and dropout part, the first of which is zero in
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the case of a complete observation. Finally, if the special case of compound symme-
try is assumed, the measurement part can approximately be written in interpretable
components for the fixed effect and variance component parts.

However, other schemes are worthwhile considering as well. Most of the develop-
ments presented here can be adapted to such alternatives, although not all schemes
will preserve the remarkable computational convenience. Also, interpretation of the

influence expressions in an alternative scheme will require additional work.

Apart from MAR, often MCAR also is considered a useful model. It is then
natural to consider departures from the MCAR model, rather than from the MAR
model. This would change (4.7) to

logit(g(hij, ¥i;)) = logit [pr(D; = j|D; > j,y;)]
= hyY +winls -1 + Wl (4.30)

with obvious change in the definition of h;;. This way, the perturbation parameter
becomes a two-component vector w; = (wj1,w;2). As aresult, the ¢th subject produces
a pair (i1, hi2), which is a normalized vector and hence main interest lies in its
direction. Also, Cy, = C; is the local influence on 4 of allowing the ith subject to drop
out randomly or non randomly. Figure 4.2 shows the result of this procedure, applied
to the mastitis data. Pairs (h;1, hi2) are plotted. The main diagonal corresponds to
the size direction, whereas the diagonal represents the purely incremental direction.
The circles are used to indicate the minimal and maximal distances to the origin.
Finally, squares rather than bullets are used for cows #4, #5, and #66.

Most cows lie in the size direction, but it is noticeable that #4, #5, and #66 tend
toward the nonrandom direction. Further, no extremely large C; are seen in this case.

Another extension would result from the observation that the choice of the incre-
mental analysis may, although motivated by substantive insight, seem rather arbi-
trary. Hence, it would be desirable to have a more automatic, data-driven selection
of a direction. One way of doing this is by considering

logit(g(hij, yi;)) = logit [pr(D; = j|D; > j,y;)]
= hij’l,b + wi(sin Gyi,j_l + cos ey”) (4.31)
Now, it is possible to apply (4.31) for a selected number of angles 6, to range through
a fine grid covering the entire circle, or to consider 6 as another influence parameter.

In the latter case, § becomes subject-specific and the pair (w;, 6;) is essentially a
reparameterization of the pair w; = (wi1, wi2) in (4.31).
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Figure 4.2: Mastitis dataset, plot of the linear combination approach with influential

subjects indicated.

A completely different local influence approach would modify the general form
(3.7) as follows:

f ym"'zw ¢’wz)
/f (Y5, vi"1 Xi, Zi, 0) f (rily?, yi", X, o) dyy”. (4.32)
Now, if w; = 0, then the missing data process is considered ignorable and only the

measurement, process is considered. If w; = 1, the posited, potentially nonrandom,

model is considered. Other values of w; correspond to partial case weighting.

4.3 Application of Influence Tools

In this section we will use the mastitis dataset en de rats dataset as introduced in
Chapter 2 to illustrate the methodology of local influence. For an application of the

global influence methodology we refer to Chapter 6 where we will discuss the milk
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prote i n trial with respect to a full sensitivity analysis also including a pattern-mixture
approach which has to be introduced in the next Chapter.

4.3.1 Mastitis in Dairy Cattle

Informal approach

Diggle and Kenwad (1994) and Kenward (1998) performed several analyzes of these
data and we will discuss these results first before considering the results of our sensi-
tivity analysis. In Diggle and Kenward (1994), a separate mean for each group defined
by the year of first lactation and a common time effect was considered, together with
an unstructured 2 x 2 covariance matrix. The dropout model included both Y;; and
Y2 and was reparameterized in terms of the size variable (Y;1 + Y;2)/2 and the incre-
ment Yo — Y;1. It turned out that the increment was important, in contrast with a
relatively small contribution of the size. If this model were assumed plausible, MAR,
would be rejected on the basis of a likelihood ratio test statistic of G> = 5.11 on 1
degree of freedom.

Kenward (1998) carried out what we could term a data driven sensitivity analysis.
Let us describe his results in some detail in this section. He started from the original
model in Diggle and Kenward (1994), albeit with a common intercept, since there was
no evidence for a dependence on first lactation year. The fits are represented in Table
4.1. Using the likelihoods to compare the fit of the two models, we get a difference
G? =5.11 (p = 0.02). Kenward (1998) found that the corresponding Wald test yields
p = 0.002 and concluded that this discrepancy might suggest that the asymptotic
approximations on which these are based are not very accurate. Nevertheless there
is a suggestion from the change in likelihood that 15 is making a real contribution
to the fit of the model. The dropout model parameters, estimated from the MNAR
setting can be found in Table 4.1. Some insight into this fitted model can be obtained
by re-writing it in terms of the milk yield totals (Y1 + Y2) and increments (Yo — ¥7):

logit[P (mastitis)] = 0.37 — 0.145(y1 + y2) — 2.395(y2 — v1). (4.33)

The probability of mastitis (i.e., dropout) increases with larger negative incre-
ments, that is, those animals who showed (or would have shown) a greater decrease
in yield over the two years have a higher probability of getting mastitis. The other
differences in parameter estimates between the two models are consistent with this:
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Table 4.1: Mastitis dataset, mazimum likelihood estimates (standard errors) of ran-

dom and non-random dropout models fitted under several deletion schemes.

RANDOM DROPOUT

Effect Parameter all (53,54,66,69) (4,5) (66) (4,5,66)
Measurement model:
Intercept Bo 5.77(0.09) 5.69(0.09) 5.81(0.08) 5.75(0.09) 5.80(0.09)
Time effect Ba 0.72(0.11) 0.70(0.11) 0.64(0.09) 0.68(0.10) 0.60(0.08)
First variance a? 0.87(0.12) 0.76(0.11) 0.77(0.11) 0.86(0.12) 0.76(0.11)
Second variance o2 1.30(0.20) 1.08(0.17) 1.30(0.20) 1.10(0.17) 1.09(0.17)
Correlation p 0.58(0.07) 0.45(0.08) 0.72(0.05) 0.57(0.07) 0.73(0.05)
Dropout model:
Intercept Po o -2.65(1.45) -3.69(1.63) -2.34(1.51) -2.77(1.47) -2.48(1.54)
First measurement Y1 0.27(0.25) 0.46(0.28) 0.22(0.25) 0.29(0.24) 0.24(0.26)
Second measurement w = 2 0 0 0 0 0
-2 loglikelihood 280.02 246.64 237.94 264.73 220.23
NON-RANDOM DROPOUT
Effect Parameter all (53,54,66,69) (4,5) (66) (4,5,66)
Measurement model:
Intercept Bo 5.77(0.09) 5.69(0.09) 5.81(0.08) 5.75(0.09) 5.80(0.09)
Time effect B 0.33(0.14)  0.35(0.14) 0.40(0.18) 0.34(0.14) 0.63(0.29)
First variance a? 0.87(0.12) 0.76(0.11) 0.77(0.11) 0.86(0.12) 0.76(0.11)
Second variance a2 1.61(0.29) 1.29(0.25) 1.39(0.25) 1.34(0.25) 1.10(0.20)
Correlation P 0.48(0.09) 0.42(0.10) 0.67(0.06) 0.48(0.09) 0.73(0.05)
Dropout model:
Intercept o 0.37(2.33)  -0.37(2.65) -0.77(2.04) 0.45(2.35) -2.77(3.52)
First measurement Y1 2.25(0.77) 2.11(0.76) 1.61(1.13) 2.06(0.76) 0.07(1.82)
Second measurement w =12 -2.54(0.83) -2.22(0.86) -1.66(1.29) -2.33(0.86) 0.20(2.09)
-2loglikelihood 274.91 243.21 237.86 261.15 220.23
G? for NRD 5.11 3.43 0.08 3.57 0.005

the MNAR dropout model predicts a smaller average increment in yield 34 with larger

second year variance and smaller correlation caused by greater negative imputed dif-

ferences between yields.

To gain some additional insight into these two fitted models we now take a closer
look at the raw data and the predictive behavior of the Gaussian MNAR model.
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Under an MNAR model the predicted, or imputed, value of a missing observation is
given by the ratio of expectations:
By v, [Ymis P (" | Yobs: Ymis)]
" Ey v, [P(r | Yobs Ymis)]
Recall that the fitted dropout model (4.33) implies that the probability of mastitis
increases with decreasing values of the increment Y2 — Y. We therefore plot the 27

(4.34)

imputed values of this quantity together with the 80 observed increments against the
first year yield Y. This is presented in Figure 4.3, in which the imputed values are
indicated with triangles and the observed values with crosses. Note how the imputed
values are almost linear in Y7: this is a well-known property of the ratio (4.34) within
this range of observations. The imputed values are all negative, in contrast to the
observed increments which are nearly all positive. With animals of this age, one
would normally expect an increase in yield between the two years. The dropout
model is imposing very atypical behavior on these animals and this corresponds to
the statistical significance of the MNAR component of the model (i) but of course

necessitates further scrutiny.

Another feature of this plot is the pair of outlying observed points circled in the
top left hand corner. These two animals have the lowest and third lowest yields in the
first year, but moderately large yields in the second, leading to the largest positive
increments. It is likely that there is some anomaly, possibly illness, leading to their
relatively low yields in the first year. One can conjecture that these two animals
are the cause of the structure identified by the Gaussian MNAR model. Under the
joint Gaussian assumption the MNAR model essentially “fills in” the missing data to
produce a complete Gaussian distribution. To counterbalance the effect of these two
extreme positive increments, the dropout model predicts negative increments for the
mastitic cows, leading to the results observed. As a check on this conjecture these two
animals were omitted from the data set and the MAR and MNAR Gaussian models
were refitted. The resulting estimates are presented in the (4,5) column of Table
4.1. This procedure is similar to a global influence analysis by means of deleting two
observations. It is clear that the influence on the measurement model parameters is
small in the random dropout case, although the gap on the time effect 3; between the
random and non-random dropout models is reduced when #4 and #5 are removed.
The deviance is minimal and the MNAR model now shows no improvement in fit
over MAR. The estimates of the dropout parameters, while still moderately large in
an absolute sense, are of the same size as their standard errors. In the absence of
the two anomalous animals the structure identified earlier in terms of the MNAR
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00
x Observed A———— Imputed (MNAR, all data)
o L Imputed (MAR, outliers omitted)
— - o— Imputed (MNAR, outliers omitted)

Figure 4.3: Mastitis dataset, plot of observed and imputed year 2 - year 1 yield dif-
ferences against year 1 yield. Two outlying points are circled.

dropout model no longer exists. The increments imputed by the fitted model are also
plotted in Figure 4.3, indicated by circles. While still lying among the lower region
of the observed increments, these are now all positive and lie close to the increments
imputed by the MAR model (diamonds). Thus, we have a plausible representation of
the data in terms of joint Gaussian milk yields, two pairs of outlying yields and no
requirement for an MNAR dropout process.

The two key assumptions underlying the MNAR model are, first, the form chosen
for the relationship between dropout probability and response and, second, the distri-
bution of the response or, more precisely, the conditional distribution of the possibly
unobserved response given the observed response. In the current setting for the first
assumption, if there is dependence of mastitis occurrence on yield, experience with
logistic regression tells us that the exact form of the link function in this relationship
is unlikely to be critical. In terms of sensitivity Kenward (1998) therefore considered

the second assumption, the distribution of the response.
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All the data from the first year are available, and a normal probability plot of
these showed no great departures from the Gaussian assumption. Leaving this dis-
tribution unchanged, Kenward (1998) examine the effect of changing the conditional
distribution of Y5 given Y;. One simple and obvious choice is to consider a heavy
tailed t,,, distribution. For the degrees of freedom the following choices were made:
m = 2,10,25. Not surprisingly, his finding was that the heavier the tails of the ¢
distribution, the better the outliers were accommodated. As a result, the difference
between the MAR and MNAR models vanished (e.g., G = 1.08 for a t distribution).
In addition, Kenward (1998) found that the estimated yearly increment in milk yield
Bq from the MNAR model, increases to the value estimated under the MAR model.

The results observed here are consistent with those from the deletion analysis.
The two outlying pairs of measurements identified earlier are not inconsistent with
the heavy tailed ¢ distribution so would require no “filling in” and hence no evidence
for non-randomness in the dropout process under the second model.

It should be clear that interpreting a single non-random model, fitted to an incom-
plete set of data, should be avoided. Rather, a careful sensitivity assessment should
supplement fitting of such models.

Local Influence Approach

While in the previous section we reported on the work done by Diggle and Kenward
(1994) and Kenward (1998) we will now come to the applications of our methodology
to the mastitis data. We performed a local influence analysis of these data.

Using the local influence methodology we are able to calculate influence measures
C; which are represented in Figure 4.4 in several ways and spit per subvector of the
parameter vector «. Considering this figure one notices that there are four influential
subjects: #53, #54, #66 and #69, while #4 and #5 are not recovered. It is interes-
ting to consider an analysis with these four cows removed. Unlike removing #4 and
#5, the influence on the likelihood ratio test is rather small: G? = 3.43 instead of
the original 5.11. The influence on the measurement model parameters under both

random and non-random dropout is small.

It is very important to realize that one should not expect agreement between
deletion and our local influence analysis. The latter focuses on the sensitivity of the
results with respect to the assumed dropout model, more specifically how the results
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Figure 4.4: Mastitis dataset, index plots of C;, C;(0), C;(vp) and of the components
of the direction hpyax of maximal curvature, when the dropout model is parameterized

in function of Y1 and Y.

change when the MAR model is extended into the direction of non-random dropout.
In particular, all subjects singled out so far are complete and hence C;(6) = 0, placing
all influence on C;(v) and Rmax,;. This is confirmed from the C;(3) and C;(a) panels
where, certainly when the scale is compared to the one of C;(#)), little or no influence
is detected. Of course, a legitimate concern is precisely where one should place a cut-
off between subjects that are influential and those that are not. Clearly, additional
work studying the stochastic behavior of the influence measures would be helpful. In
addition, informal guidelines can be used, such as studying 5% of the relatively most

influential subjects.

More insight can also be obtained from studying (4.29). The contribution for
subject 7 is made up of three factors. The first factor, V;, is small for extreme dropout
probabilities. The subjects having a very high probability to either remain in the study
or disappear will be less influential. Cows #4 and #5 have dropout probabilities
equal to 0.13 and 0.17 respectively. The 107 cows in the study span the dropout
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probability interval [0.13,0.37]. Thus, this component rather deflates the influence
of subjects #4 and #5. Secondly, (4.29) contains a leverage factor in curly braces.
Thirdly, a subject is relatively more influential when both milk yields are high. We
now need to question whether this is plausible or relevant. Since both measurements
are positively correlated, measurements with both milk yields high or low will not be
unusual. Kenward (1998) observed that cows #4 and #5 are unusual on the basis
of their increment. This is in line with several other applications of similar dropout
models (Diggle and Kenward 1994, Molenberghs, Kenward and Lesaffre 1997) where
it was found that a strong incremental component apparently yields a non-random
dropout model. From our analysis, it is clear that such a conclusion may indeed only
be apparent, since removing #4 and #5 leads to disappearance of the non-random
component. In contrast, the size variable can often be replaced by just the history,
and hence the corresponding model is very close to random dropout.

Even though a dropout model in the outcomes themselves, termed direct variables
model, is equivalent to a model in the first variable Y;; and the increment Yj» — Y1,
termed incremental variable representation, we will show that they lead to different
perturbation schemes of the form (4.13). At first, this feature can be seen as both
an advantage and a disadvantage. The fact that reparameterizations of the linear
predictor of the dropout model leads to different perturbation schemes requires careful
reflection based on substantive knowledge in order to guide the analysis, such as the

considerations on the incremental variable made earlier.

We will present the results of the incremental analysis and then offer further
comments on the rationale behind this particular transformation. From the diagnostic
plots in Figure 4.5 it is obvious that we recover three influential subjects: #4, #B5,
and #66. While Kenward (1998) did not consider #66 to be influential, it appears
to be somewhat distant from the bulk of the data. The main difference between both
types is that the first two were likely sick during year 1, while this is not necessarily
so for #66. An additional feature is that in all cases both C;(1) as well as hpax
show the same influential animals. In addition, Amax suggests that the influence for
#66 is different than for the others. It could be conjectured that the latter one pulls
the coefficient w in a different direction than the other two. The other values are
all relatively small. This could indicate that for the remaining 104 subjects, MAR is
plausible, while a deviation in the direction of the incremental variable, with differing
signs, appears to be necessary for the other three subjects. At this point, a comparison
between hmax for the direct variable and incremental analyzes is useful. Since the
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Figure 4.5: Mastitis dataset, index plots of C;, C;(0), C;(vp) and of the components
of the direction R,y of maximal curvature, when the dropout model is parameterized
in function of Y;1 and Yo — Y.

contributions h; sum to one, these two plots are directly comparable. There is no
pronounced influence indication in the direct variables case and perhaps only random
noise is seen. A more formal way to distinguish between signal and noise in such plots

is the subject of ongoing research.

In Figure 4.6, we have decomposed (4.29) in its three components: the variance
of the dropout probability V;, the incremental variable Y2 — Y;q, which is replaced by
its predicted value for a dropout, and the hat-matrix diagonal. In agreement with the
preceding discussion, the influence clearly stems from an unusually large increment,
which survives the fact that V; actually downplays the influence because Yy; and Ys;
are comparatively small and dropout increases with the milk yield in the first year.
Further, the sign difference of hmax 4 and Ay 5 Versus hmax 66 can be interpreted
better.

We noted already that cows #4 and #5 have relatively small dropout probabili-
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Figure 4.6: Mastitis dataset, index plots of the three components of C;(1p) when the

dropout model is parameterized in function of Y1 and Yz — Yi1.

ties. In contrast, the dropout probability of #66 is large within the observed range
[0.13;0.37]. Since for those subjects the increment is large, changing its “parameter”
w; can have a large impact on the other dropout parameters 1y and 1. In order to
avoid that the effects of the change for #4 and #5 will cancel with the effect for #66,
the corresponding signs need to be opposite. Such a change implies either that all
three dropout probabilities move towards the center of the range or are pulled away
from it. (Note that —Rpax is another normalized eigenvector corresponding to the

largest eigenvalue.)

Kenward (1998) considers extra analyzes with #4 and #5 removed. The resulting
likelihood ratio statistic reduces to G? = 0.08. When only #66 is removed, the
likelihood ratio for non-random dropout is G2 = 3.57, very similar to the one when
#53, #54, #66 and #69 were removed. Removing all three (#4, #5 and #66) results
in G2 = 0.005, i.e., complete disappearance of all evidence for non-random dropout.

Details are given in Table 1.

We now provide insight into why the transformation of direct outcomes to incre-
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ments is useful. We noted already that the associated perturbation schemes (4.13)
are different. An important device in this respect is the equality

Yo +P1Yi1 + aYie = o + (Y1 + ¢2)Yir + Y2 (Yio — Yir). (4.35)

showing that the direct variables model checks the influence on the random dropout
parameter 11, whereas the random dropout parameter in the incremental model is
11 + 2. Not only is this a different parameter, it is estimated with more precision.
One often observes that 1[11 and 1[12 exhibit a similar variance and negative correlation,
in which case the linear combination with smallest variance is approximately in the
direction of the sum 1 +12. When the correlation is negative the difference direction
1)1 —1p2 is obtained instead. Let us assess this in case all 107 observations are included.

The estimated covariance matrix is

0.59 -0.54
0.70

with correlation —0.84. The variance of 1[11 + 1212 on the other hand is estimated to
be 0.21. In this case, the direction of minimal variance is along (0.74;0.67) which is
indeed close to the sum direction. When all three influential subjects are removed,

the estimated covariance matrix becomes

3.31 -3.77
4.37

with correlation —0.9897. Removing only #4 and #5 yields an intermediate situation
of which the results are not shown. The variance of the sum is 0.15 which is a further
reduction and still close to the direction of minimal variance. These considerations
reinforce the claim that an incremental analysis is highly recommended. It might
therefore be interesting to routinely construct a plot such as in Figure 1, even with
longer measurement sequences. On the other hand, transforming the dropout model
to a size variable (Y1 +Y;2)/2 will worsen the problem since an insensitive parameter

for Y;; will result.

Finally, observe that a transformation of the dropout model to a size and incre-
mental variable at the same time for the model with all three influential subjects
removed gives a variance of the size and increment variables of 0.15 and 15.22 respec-
tively. In other words, there is no evidence for an incremental effect, confirming that
random dropout is plausible.
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Further insight into why the incremental analysis is useful can be found from
a representation of the profile likelihood function in 4o (Figure 4.7). The (non-
convex) profile likelihood function is supplemented with a representation of the time
effect B4 and 1)1, as functions of ¥5. In agreement with the considerations above, we
observe once again that 1y is almost exactly linear in ¥y. More precisely, the size
direction is constant, implying that its magnitude is nearly invariant to the missing

data assumptions.

Although local and global influence are strictly speaking not equivalent, it is in-
sightful to see how the global influence on @ can be linked to the behavior of C;(1p).
We observed earlier that all locally influential subjects are completers and hence
C;(0) = 0. Yet, removing #4, #5 and #66 shows some effect on the discrepancy
between the random dropout and non-random dropout estimates of the time effect
Bq. In particular, random and non-random estimates with all three subjects removed
are virtually identical (0.60 and 0.63). Since these subjects are influential in C;(3f),
the model could be improved by including incremental terms for these three subjects.
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Such a model would still imply random dropout. In contrast, allowing a dependence
on the increment in all subjects will influence E(Y;2|y;1, dropout) for all incomplete
observations an hence the measurement model parameters under the informative as-
sumption will change. In conclusion, this provides a way to assess the indirect in-
fluence of the dropout mechanism on the measurement model parameters through
local influence methods. In the milk data set, this influence is likely due to the fact
that an exceptional increment which is caused by a different mechanism, perhaps a
diseased animal during the first year, is nevertheless treated on equal footing with the
other observations within the dropout model. Such an analysis not possible with the
case-deletion method because it is not possible to disentangle the various sources of

influence.

4.3.2 Rats Data

Verbeke and Lesaffre (1999) already investigated the effect of dropout on the efficiency
of the study, and derived methods for designing efficient longitudinal experiments,
when dropout is to be expected. In this Section however, we will apply the local
influence method in order to investigate how sensitive our inferences are with respect
to modeling assumptions for the dropout process. The response of interest in this
study is one of the parameters which can be used to characterize the height of the
skull and the profiles are already shown in Figure 2.2. Notice that these profiles can
be linearized by using the logarithmic transformation ¢ = In(1 + (Age — 45)/10)) for
the time scale and this is also the scale we will use in all statistical analyzes from
now on. Note that the transformation was chosen such that ¢ = 0 corresponds to
the start of the treatment. A simple statistical model which can be used to describe
these data (Verbeke and Lesaffre 1999) then assumes that y;; satisfies a model of the
form (4.1) with common average intercept o for all three groups, with average slopes
B1, B2 and B3 for the three treatment groups respectively, and assuming compound
symmetry covariance structure, with variance 02 4+ 72 and covariance 72. These
models are estimated under MCAR, MAR, and MNAR processes and the estimates
are displayed in Table 4.2.

Figure 4.8 displays overall C;, as well as influences for each of the relevant pa-
rameter subvectors. In addition, the direction hy.x corresponding to maximal local
influence is given. As is clear from, e.g., (4.28), the absolute magnitude of C;(.)
depends upon the scale on which the measurements are expressed, and hence each
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Table 4.2: Rats dataset, mazimum likelihood estimates (standard errors) of completely
random, random and non-random dropout models, with and without modification.

Original Data

Effect Parameter MCAR MAR MNAR
Measurement model:

Intercept Bo 68.61 68.61 68.61
Slope control B1 7.51 7.51 7.50
Slope low dose B2 6.87 6.87 6.86
Slope high dose B3 7.31 7.31 7.30
Compound symmetry T2 3.44 344 3.44
Compound symmetry o? 143 1.43 1.43
Dropout model:

Intercept Yo -1.98 -848 -8.05
Prev. measurement P1 0.084 0.096
Curr. measurement w =12 -0.017
-2 loglikelihood 1777.3 1774.5 1774.5

Modified Data

Effect Parameter MCAR MAR MNAR
Measurement model:

Intercept Bo 70.20 70.20 70.26
Slope control B1 7.52 7.52 7.39
Slope low dose B2 6.97 697 6.88
Slope high dose B3 7.21 7.21 6.98
Compound symmetry T2 40.38 40.38  40.83
Compound symmetry o? 142 1.42 1.46
Dropout model:

Intercept Yo -2.20 -0.79 3.23
Prev. measurement P1 -0.015 0.32
Curr. measurement w =12 -0.38
-2 loglikelihood 1906.6 1894.6 1890.2

influence graph should be interpreted in a relative fashion.

The largest C; are observed for rats #10, #16, #35, and #41, and virtually the
same picture holds for C;(1f). They are highlighted in Figure 4.9. All four belong to
the low dose group. Arguably, their relatively large influence is caused by an interplay
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Figure 4.8: Rats dataset, index plots of C;, Ci(0), Ci(8), Ci(a), C;(), and of the
components of the direction hy,., of maximal curvature, without modification.

of three facts. First, the profiles are relatively high, and hence y;; and h;; in (4.28) are
large. Secondly, since all four profiles are complete, the first factor in (4.28) contains a
maximal number of large terms. Thirdly, the computed v;; are relatively large, which
is implied by the MAR dropout model parameter estimates in Table 4.2. Indeed, for
these measurements the logit of the dropout probability is closest to 0 and hence v
is fairly close to its maximal value of 0.25.

Turning attention to C;(a) reveals peaks for rats #5 and #23. Both belong to the
control group and drop out after a single measurement occasion. They are highlighted
in the first panel of Figure 4.9. To explain this, observe that the relative magnitude
of C;(a), approximately given by (4.27), is determined by 1— g(h;q) and h;q — A(hiq).
The first term is large when the probability of dropout is small. Now, when dropout
occurs early in the sequence, the measurements are still relatively low, implying that
the dropout probability is rather small (cf. Table 4.2). This feature is built into
the model by writing the dropout probability in terms of the raw measurements with
time-independent coefficients rather than, for example, in terms of residuals. Further,
the residual h;g — A(hsq) is large since these two rats are somewhat distant from the
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Figure 4.9: Rats dataset, individual profiles with influential subjects highlighted, with-

out modification.

group by time mean.

All deviations discussed are fairly moderate. This conclusion is supported by the
observation that the components of the normalized vector hyax do not deviate much
from 1/v/N, and it is consistent with the observation that likelihood ratio statistics
for MAR versus MCAR, as well as for MNAR versus MAR, do not reject the null
hypothesis.

To further explore the properties of the influence diagnostics, we consider a second
analysis where all responses for rats #10, #16, #35, and #41 have been increased
with 20 units. A graphical display is given in Figure 4.10. Table 4.2 contains the
parameter estimates for all three models. The peaks observed earlier have become
much clearer, in line with the observation that the test statistics for MAR versus
MCAR, and for MNAR, versus MAR, have become significant.

Graphical representations such as Figure 4.10 are sometimes judged misleading
since the apparent magnitude of a subject is influenced by its neighbors. On the
other hand, it preserves the order across all 6 index plots. One way to overcome
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Figure 4.10: Rats dataset, index plots of C;, C;(0), C;(8), Ci(a), C;(¢), and of the
components of the direction hy. of mazimal curvature, when 4 profiles have been
shifted upward.

this problem is by ordering one plot (e.g., according to C;), and keeping this order
across all six panels. This is done in Figure 4.12. Alternatively, scatter plots of
(1) the measurement versus dropout components and (2) fixed-effects versus variance
component elements can be used. An example of the latter is presented in Figure
4.13.

4.4 Concluding Remarks

We have applied local influence tools (Cook 1986, Lesaffre and Verbeke 1998) to the
selection model for continuous data subject to non-random dropout, as presented in
Diggle and Kenward (1994). In particular, it is shown how the impact of small per-
turbations around the null model of missing at random will affect the measurement
model and dropout model parameters. In order to calculate the influence diagnos-
tics it is not necessary to fit a non-random dropout model. All calculations have
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Figure 4.11: Rats dataset, individual profiles with influential subjects highlighted, when

4 profiles have been shifted upward.

been carried out in GAUSS and the programs are available but not yet very user
friendly. In the special case of a compound-symmetry model, the influence measures

are approximately decomposable into interpretable components.

First the method was applied to the mastitis data set, studied in Diggle and Ken-
ward (1994) and Kenward (1998). We have illustrated that an informal sensitivity
analysis based on substantive considerations, and a formal approach such as a local
influence analysis, can usefully supplement each other. Kenward (1998) found that
both removing subjects #4 and #b5, as well as replacing the conditional distribution of
the second milk yield given the first one, indicated a strong sensitivity of the conclu-
sions about the incremental effect from year 1 to year 2 and the nature of the dropout
process. For example, both these actions removed the evidence for MNAR. For the
local influence analysis, it was deduced that an incremental variable representation of
the dropout mechanism is beneficial over a direct variable representation. Contras-
ting our local influence approach with a case-deletion scheme as applied in Kenward
(1998), we find the same two subjects, with in addition cow #66 being influential.
One advantage of local influence is its ability to focus on direct and indirect influ-
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Figure 4.12: Rats dataset, index plots of C;, C;(0), C;(8), Ci(a), C;(¢), and of the
components of the direction hy. of mazimal curvature, when 4 profiles have been

shifted upward and the components have been ordered in decreasing order of C;.

ence on the dropout and measurement model parameters, stemming from perturbing
the random dropout model in the direction of non-random dropout. In contrast, a
case-deletion scheme combines all sources of influence, whether stemming from the

dropout mechanism or not.

Second, the analysis of the rats data set (Verdonck et al. 1997) supports the claim
that the influence measures are easy to interpret. In addition, studying the conditions
under which the diagnostics are large can aid in judging when a model is appropriate.
For example, reparameterizing the dropout model in terms of residuals rather than
raw measurements will change the conditions under which such terms as g;;, vij;, or
C;() are large. Thus, study of these conditions can help judging the appropriateness
of the selection model chosen.

While all of these parameterizations lead to perturbation schemes that are mem-
bers of the family (4.13), it is clear that other schemes are worthwhile considering
as well. However, not all schemes will lead to expressions that are both fairly easy
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versus C;(ar), when 4 profiles have been shifted upward.

to interpret and to calculate, at least in special cases such as compound symmetry.
Further research in this area is needed. Finally, the ideas outlined in this Chapter are
not confined to the selection model of Diggle and Kenward (1994). Currently, work
is done to explore this route for categorical responses, and for missingness models of
the pattern-mixture type (Little 1993, 1994).

We have studied one single but interesting case, with its specific aspects but also
with its limitations. The perturbation scheme chosen here has several elegant pro-
perties. The perturbation is around the often considered MAR mechanism. Extra
calculations are limited and free of numerical integration. Influence decomposes in
a measurement and dropout part, the first of which is zero in the case of a com-
plete observation. Finally, if the special case of compound symmetry is assumed, the
measurement part can approximately be written in interpretable components for the
fixed effect and variance component parts. More general we can state that in diffe-
rent situations, local influence may be able to reveal different aspects of influence.
For example, rather than detecting one or a few cases, a cluster of influential subjects
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could be revealed. This is likely to happen in situations with more structure, such as
hierarchical studies (multi-center trials, stratified samples, etc.). Limited simulations
set up to explore such capabilities have been done and are reported in Verbeke et al
(2001). The results are encouraging in the sense that, when sufficiently different in

key aspects, an entire group of subjects can be revealed with the proposed method.

Of course, the local influence parameterizations presented here are not the only
ones possible or even desirable. It is clear that other schemes are worthwhile con-
sidering as well. Should other perturbation schemes be deemed more interesting
for a particular application, then the methods outlined in this Chapter adapt in a
straightforward fashion. A possible extension in that sense might be the inclusion of
covariates into the dropout mechanism. This has not been possible here given the
relatively simple data structure. However, GAUSS code has been developed which
allows for this possibility. Further more we have been considering a perturbation
scheme using two different weights for dependence on the previous and the current
measurement in the dropout probability. This idea has only been studied briefly and
the results are not discussed here but may be topic of further research in this area.
Another idea which needs further investigation is the need for more formal rules to
decide whether a subject is clearly influential, clearly not influential, or borderline,
additional research is required. Presently, such rules of thumb as exploring the, say,
5% most influential subjects in more detail can be used.

Finally, we have tried to convey our conviction that sensitivity assessment for
MNAR models is imperative. Both the formal and informal sensitivity analyzes have
illustrated that mechanical discrimination between MAR and MNAR, based on hy-
pothesis testing, is a dead end street, since MNAR models are very sensitive to such
aspects as modeling assumptions, outlying and otherwise influential observations, etc.
Insight into whether MAR or rather MNAR is to be preferred should therefore be the
subject of an integrated sensitivity analysis.






Chapter 5

Pattern Mixture Models

The high sensitivity of selection modeling results to the correct specification of the
measurement model as well as the dropout model, about which little is often known,
has been extensively documented as already indicated in Chapter 4. This has lead to
growing interest in pattern-mixture modeling, based on the factorization (3.3) (Little
1993, Glynn, Laird and Rubin 1986, Hogan and Laird 1997). After initial mention
of pattern-mixture models (Glynn, Laird, and Rubin 1986, Little and Rubin 1987),
they are receiving more attention lately (Little 1993, 1994a, 1995, Hogan and Laird
1997, Ekholm and Skinner 1998, Molenberghs, Michiels, Kenward, and Diggle 1998,
Molenberghs, Michiels, and Kenward 1998). Concerning the results introduced in
this chapter we refer also to Michiels et al (2001), Thijs et el (2002) and Kenward,
Molenberghs and Thijs (2002).

We will first illustrate the idea of pattern-mixture modeling using a simple set-
ting. Let us adopt pattern-mixture decomposition (3.3) and suppress dependence on

covariates:

f(yi,"'i|0,¢) = f(yz|7'z,0)f(7'z,'¢),

with notation as laid out in Chapter 3. Restricting attention to dropout (Section
3.2.1), we obtain,

f(Y;,dil0,) = f(y;lds, 0)f(dil). (5.1)

Consider a continuous response at three times of measurement which will be mo-
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deled using a trivariate Gaussian distribution. Assume that there may be dropout at
time 2 or 3, and let the dropout indicator T; take the values 1 and 2 to indicate that
the last observation occurred at these times and 3 to indicate no dropout. Then, in
the first instance, the model implies a different distribution for each time of dropout.

We can write

y;lti ~ N(pt),S(t)), (5.2)
where
pa(t) o11(t) o2(t) o31()
pt) = pa(t) and X(t) = | on(t) o2a(t) o) |
p3(t) o31(t) o032(t) o33(t)

for t = 1,2,3. Recall that ¢ indicates length of sequences, rather than time points of
measurements actually taken. Let P(t) = m; = f(t;|1), then the marginal distribution

of the response is a mixture of normals with, for example, mean

3
po= Z et (t).

Its variance can be derived by application of the delta method (see Section 5.4.2).

However, although the 7; can be simply estimated from the observed proportions
in each dropout group, only 16 of the 27 response parameters can be identified from
the data without making further assumptions. These 16 comprise all the parameters
from the completers plus those from the following two submodels. For ¢ = 2

N[ M@ [ @ en®)
p2(2) 021(2) 022(2)

and fort =1
N (p1(1);011(1))

This is a saturated pattern-mixture model and the representation makes it very
clear what information each dropout group provides and, consequently, the assump-
tions that need to be made if we are to predict the behavior of the unobserved res-
ponses, and so obtain marginal models for the response. If the three sets of parameters
p(t) are simply equated, with the same holding for the corresponding variance com-
ponents, then this implies that dropout is completely random. Progress can be made
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with less stringent restrictions however. Little (1993) introduces so-called complete
case missing value (CCMV) restrictions. These can be defined in terms of conditional
distributions. Let y = (y1,¥2,-.. ,¥r). Then the CCMV restrictions imply that for
any T =t<j

fily,-y-1,T=%t) = flyily,.-.9-1,T =n).

Little (1993) shows how these constraints can be used to identify all the parameters
in the model and so obtain estimates for these and the marginal probabilities. The
CCMYV restrictions essentially equate conditional distributions beyond time ¢ (i.e.,
those unidentifiable from this dropout group), with the same conditional distribu-
tions from the completers. Another restriction is to identify the former conditional
distributions and all conditional distributions from those who drop out after . This
has been called the available case missing value (ACMV) restrictions and it has been
shown (Molenberghs, Michiels, Kenward, and Diggle 1998) that for dropout, these
conditions are equivalent to MAR in the selection model framework. Again, such
constraints can be used to develop methods of estimation or to set up schemes for
sensitivity analysis. A detailed account is given further in this chapter.

In practice, choice of restrictions will need to be guided by the context. In addition,
the form of the data will typically be more complex, requiring, for example, a more
structured model for the response with the incorporation of covariates. Hence, models
for f(t;]) can be constructed in many ways. Most authors assume the dropout
process is fully observed and that T; satisfies a parametric model (Wu and Bailey
1988, 1989, Little 1993, DeGruttola and Tu 1994). Hogan and Laird (1997) extend
this to cases where the dropout time is allowed to be right censored and no parametric
restrictions are put on the dropout times. Their conditional model for y},¢ given T; is
a linear mixed model with dropout time as one of the covariates in the mean structure.
Due to the right censoring, the estimation method must handle incomplete covariates.
Hogan and Laird (1997) use the EM algorithm (Dempster, Laird, and Rubin 1977)
for ML estimation.

At this point, a distinction between so-called outcome-based and random-coefficient-
based models is useful. In the context of the former, Little (1995) and Little and Wang
(1996) consider the restrictions implied by a selection dropout model in the pattern-
mixture framework. For example, with two time points and a Gaussian response,

Little proposes a general form of dropout model:

P(dropout | y) = g(y1 + Ay2), (5.3)
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with the function g(-) left unspecified. In a selection modeling context, (5.3) is often
assumed to have a logistic form as in (4.6). This relationship implies that the condi-
tional distribution of Y7 given Y7 4+ AY5 is the same for those who drop out and those
who do not. With this restriction and given A, the parameters of the full distribu-
tion of the dropouts is identified. The “weight” A can then be used as a sensitivity
parameter, its size determining dependence of dropout on the past and present, as in
the selection models. Such a procedure can be extended to more general problems
(Little 1995, Little and Wang 1996). It is instructive in this very simple setting to
compare the sources of identifiability in the pattern-mixture and selection models. In
the former, the information comes from the assumption that the dropout probability
is some function of a linear combination of the two observations with known coeffi-
cients. In the latter, it comes from the shape of the assumed conditional distribution
of Y given Y7 (typically Gaussian), together with the functional form of the dropout
probability. The difference is highlighted if we consider a sensitivity analysis for the
selection model that varies A in the same way as with the pattern-mixture model.
Such sensitivity analysis is much less convincing because the data can, through the
likelihood, distinguish between the fit associated with different values of A.

Therefore, identifiability problems in the selection context tend to be masked.
Indeed, there are always unidentified parameters, although a related “problem” seems
absent in the selection model. This apparent paradox has been observed by Glynn,
Laird, and Rubin (1986). Let us discuss this paradox in some detail.

Assume we have two measurements where Y7 is always observed and Y5 is either
observed (¢t = 2) or missing (¢t = 1). Let us further simplify the notation by suppres-
sing dependence on parameters and additionally adopting the following definitions:

gtlyr,y2) = f(tly,v2),
p(t) = f(),
fe(yr,ye) = flyr,y2[t).

Equating the selection model and pattern-mixture model factorizations yields
flyny2)9(d =2ly1,92) = falyr,32)p(t =2),
Fyny2)g(d =1y1,32) = fi(yr,y)p(t = 1).

Since we have only two patterns, this obviously simplifies further to

fly,v2)9(y,92) = fa(yr, v2)p,
Flyn vl — gy y2)] = fily,v2)[1 - pl,
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of which the ratio yields

_ 1-g(y) p
fl(yl’yQ) - g(yl,yQ) 1 _pr(yl’yQ)'

All selection model factors are identified, as are the pattern-mixture quantities on
the right-hand side. However, the left-hand side is not entirely identifiable. We can

further separate the identifiable from the nonidentifiable quantities:

1-g(yy2) p foly)
gy1,y2) 1-pfily)

filyely) = fo(y2ly1) (5.4)

In other words, the conditional distribution of the second measurement given the
first one, in the incomplete first pattern, about which there is no information in
the data, is identified by equating it to its counterpart from the complete pattern,
modulated via the ratio of the “prior” and “posterior” odds for dropout [p/(1 — p)
and g(y1,y2)/(1 — g(y1,y2)), respectively] and via the ratio of the densities for the

first measurement.

Thus, although an identified selection model is seemingly less arbitrary than a
pattern-mixture model, it incorporates implicit restrictions. Indeed, precisely these
are used in (5.4) to identify the component for which there is no information and
again this clearly illustrates the need for sensitivity analysis.

In Section 5.1, we will describe a general strategy for fitting pattern-mixture mo-
dels. The remainder of this chapter is devoted to a formal juxtaposition of several

strategies for pattern-mixture modeling.

5.1 Pattern-Mixture Models

As indicated before, this family is based on factorization (3.3). The conditional den-
sity of the measurements given the dropout pattern is combined with the marginal
density describing the dropout mechanism. Note that the second factor can depend
on covariates, but not on outcomes. It is, of course, possible to have different covari-
ate dependencies in both components of the factorization. For example, dropout can
vary with treatment arm and age of the respondent, whereas the measurement model

can depend on treatment arm, sex, and measurement time.

The measurement model has to reflect dependence on dropout. Thus, the pa-
rameters in (4.5) become pattern-dependent: B3(d;) and X(d;). The dependence of
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parameters on dropout can be done in several ways, as will be outlined in Section 5.2.
In its most general form, this implies that (4.1) is replaced by

Y; = X;8(d;) + Z:b; + &

b; ~ N(0, D(d;)),

E; ~ N(O, Ei(di)),

Thus, the fixed effects as well as the covariance parameters are allowed to change
with dropout pattern and a priori no restrictions are placed on the structure of this

change.

The dropout process simplifies to f(d;|W;, 1) which is a, possibly covariate-cor-
rected, model for the probability to belong to a particular pattern. Its components,
g(hij), containing only covariates now, describe the dropout rate at each occasion.
Thus, the fixed effects as well as the covariance parameters are allowed to change
with dropout pattern and a priori no restrictions are placed on the structure of this
change.

It immediately follows from (3.3) that the likelihood contribution of the ith sub-

ject, based on the observed data (y,},t:), is proportional to

f(yObS’ tz) = f(tz)f(yobs|tz)’

which only requires specifying a marginal model for the dropout process and a condi-
tional model for the observed outcomes, given the dropout pattern as in (5.5). Fur-
ther, as for ignorable selection models, both models can be fitted separately, provided
separability of their parameters.

Model family (5.5) contains underidentified members since it describes the full set
of measurements in pattern ¢;, even though there are no measurements after occasion
t;, as was pointed out using the paradox for the simple case of two measurements. At
first sight, this leaves them open to the same criticism as selection models but Little
(1993) claims that the pattern-mixture approach is more honest, because parameters
for which the data provide information are clearly distinguished from parameters for
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which there is no information at all. Several routes can be taken to solve this problem.
They are described in detail in Section 5.2 but let us briefly sketch them. Focusing
on fitting Pattern-mixture models we will describe several strategies. A first strategy
is based on Little (1993, 1994a), who advocated the use of identifying restrictions
which works well in relatively simple settings. Molenberghs, Michiels, Kenward, and
Diggle (1998) proposed a particular set of restrictions for the monotone case which
correspond to MAR and in Thijs, Molenberghs, Verbeke, Michiels, and Curran (2001)
we introduce a formal way how to deal with these kind of restrictions. Alternatively,
as a second strategy, several types of simplified (identified) models can be considered.
The advantage is that the number of parameters decreases, which is generally an issue
with pattern-mixture models. Hogan and Laird (1997) noted that in order to estimate
the large number of parameters in general pattern-mixture models, one has to make
the awkward requirement that each dropout pattern is sufficiently “filled”; in other
words, one has to require large numbers of dropouts. This problem is less prominent
in simplified models. Note however that simplified models, qualified as “assumption
rich” by Sheiner, Beal, and Dunne (1997), are also making untestable assumptions
and therefore illustrate that even pattern-mixture models do not provide a free lunch.
A main advantage however is that the need of assumptions and their implications are
more obvious. For example, it is not possible to assume an unstructured time trend in
incomplete patterns, except if one restricts attention to the time range from onset until
dropout. In contrast, assuming a linear time trend allows estimation in all patterns
containing at least two measurements. In general, we distinguish between two types
of simplification to identify pattern-mixture models. First, functional model forms
can be restricted to those which are supported by the information available within a
pattern. For example, a linear time trend with a fixed treatment effect, together with a
compound symmetry covariance structure, is identifiable as soon as there are two time
points. Second, one can let the parameters vary across patterns in a parametric way.
Thus, rather than estimating a separate time trend in each pattern, one could assume
that the time evolution is unstructured within a pattern, but parallel across patterns.
The available data can be used to assess whether such simplifications are supported
within the range of the observed data. Using the so-obtained profiles past the time of
dropout still requires extrapolation or, in other words, a leap of faith. Both strategies
are discussed in detail in Section 5.2 and will be applied to the vorozole dataset in
Section 5.4.1. On the other hand we will indicate a first tool to study sensitivity of
the model assumptions by comparing selection models and pattern-mixture models.
In the literature one can consult Michiels, Molenberghs, Bijnens, Vangeneugden and
Thijs (2001) for an overview on the results and also in Section 5.4.1 we will discuss
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the results related to the Vorozole data.

While in a missing data context, the choice of modeling framework needs careful
consideration, the simplicity of the classical MCAR, MAR, and MNAR taxonomy
is no longer a feature particular to the selection modeling approach, since, in the
case of monotone missing data, the same taxonomy can be developed for pattern-
mixture models. For the latter, the interpretation is equally instructive as MAR. The
intermediate case corresponds to an explicit and reasonably natural set of restrictions
on the unidentifiable components of the full data distribution. Since we are able to
fully identify the missing information we now can further distinguish between dropout
mechanisms that are depending on future, possibly unobserved measurements. Again
this can be done in the selection and the pattern-mixture framework were we define
MNF (Missing Non-Future dependent) and NFMV (Non-Future dependent Missing

Values) restrictions respectively. Section 5.5 describes both approaches in full detail.

5.2 Fitting Pattern-mixture models and Sensitivity

Analysis

Sensitivity analysis for pattern-mixture models can be conceived in many different
ways. Crucial aspects are whether pattern-mixture and selection modeling are to be
contrasted with one another or rather the pattern-mixture modeling is the central

focus of interest.

In the latter case, it is natural to conduct sensitivity analysis within the pattern-
mixture family. The key area where sensitivity analysis should be focused is on the
unidentified components of the model and the way(s) in which this is handled. We
will explicitly consider three strategies to deal with under-identification.

e Strategy 1. Little (1993, 1994) advocated the use of identifying restrictions
and presented a number of examples. We will outline a general framework for
identifying restrictions in Section 5.3, with CCMV (introduced by Little 1993),
ACMV, and neighboring case missing value restrictions (NCMV) as important
special cases. Recall that ACMYV is the natural counterpart of MAR in the
Pattern-mixture modeling framework. This provides a way to compare igno-
rable selection models with their counterpart in the pattern-mixture setting.
Molenberghs, Michiels, and Lipsitz (1999) and Michiels, Molenberghs, Lipsitz
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(1999) took up this idea in the context of binary outcomes, with a marginal
global odds ratio model to describe the measurement process (Molenberghs and
Lesaffre 1994).

e Strategy 2. As opposed to identifying restrictions, model simplification can
be done in order to identify the parameters. The advantage is that the number
of parameters decreases, which is desirable since the length of the parameter
vector is a general issue with pattern-mixture models. Indeed, Hogan and Laird
(1997) noted that in order to estimate the large number of parameters in general
pattern-mixture models, one has to make the awkward requirement that each
dropout pattern occurs sufficiently often. Broadly, we distinguish between two

types of simplifications.

— Strategy 2a. Trends can be restricted to functional forms supported
by the information available within a pattern. For example, a linear or
quadratic time trend is easily extrapolated beyond the last obtained mea-
surement. One only needs to provide an ad hoc solution for the first or the
first few patterns. In order to fit such models, one simply has to carry out
a model building exercise within each of the patterns separately.

— Strategy 2b. Next, one can let the parameters vary across patterns in a
controlled parametric way. Thus, rather than estimating a separate time
trend within each pattern, one could for example assume that the time
evolution within a pattern is unstructured, but parallel across patterns.
This is effectuated by treating pattern as a covariate. The available data
can be used to assess whether such simplifications are supported within
the time ranges for which there is information.

While the second strategy is computationally simple, it is important to note that
there is a price to pay. Indeed, simplified models, qualified as “assumption rich” by
Sheiner, Beal and Dunne (1997), are also making untestable assumptions, just as in
the selection model case. Indeed, using the fitted profiles to predict the evolution,
within a pattern, past the time of dropout is based on extrapolation. Still, the need of
assumptions and their implications are more obvious. It is, for example, not possible
to assume an unstructured time trend in incomplete patterns, except if one restricts
attention to the time range from onset until dropout. In contrast, assuming a linear
time trend allows estimation in all patterns containing at least two measurements.
However, it is less obvious what the precise nature of the dropout mechanism is.
An obvious modeling approach, in particular for normally distributed outcomes, is
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to specify the dropout mechanism as a polytomous regression. In the identifying
restrictions setting on the other hand, the assumptions are clear from the start.

A final observation, applying to both strategies, is that pattern-mixture models do
not always automatically provide estimates and standard errors of marginal quantities
of interest, such as overall treatment effect or overall time trend. Hogan and Laird
(1997) provided a way to derive selection model quantities from the pattern-mixture
model. Several authors have followed this idea to formally compare the conclusions
from a selection model with the selection model parameters in a pattern-mixture
model (Verbeke, Lesaffre, and Spiessens 1998, Curran, Pignatti, and Molenberghs
1998, Michiels et al 1999).

5.3 Identifying Restriction Strategies

In line with the results obtained by Molenberghs et ol (1998), we restrict attention to
monotone patterns. In general, let us assume we have t = 1,...,T dropout patterns
where the dropout indicator is d = £ + 1. For pattern ¢, the complete data density is
given by

fe(yrs - syr) = filyr, - ) Fr(Werts - yrlyn, -, ) (5.6)

The first factor is clearly identified from the observed data, while the second factor is
not. It is assumed that the first factor is known or, more realistically, modeled using
the observed data. Then, identifying restrictions are applied in order to identify the

second component.

While, in principle, completely arbitrary restrictions can be used by means of
any valid density function over the appropriate support, strategies which relate back
to the observed data deserve privileged interest. One can base identification on all
patterns for which a given component, ys say, is identified. A general expression for

this is

T
Fe(yslyts---ys—1) = Zwsjfj(ys|y1,...ys_1), s=t+1,...,T. (5.7

j=s

We will use w; as shorthand for the set of ws;’s used. Every w, which sums to one



Chapter 5 : Pattern Mixture Models 81

provides a valid identification scheme. Let us incorporate (5.7) into (5.6):

T—t—1 |' T '|
ft(yl""’yT) :ft(yl""’yt) H Z wT—s,jfj(yT—s|y1’""yT—s—l)
o2, | oo

Expression (5.8) clearly shows which information is used to complement the observed

data density in pattern ¢ in order to establish the complete data density.

Let us consider three special but important cases. Little (1993) proposes CCMV
which uses the following identification:

Filuslv, - - ys—1) = fr(yslya, .- - ys—1), s=t+1,...,T.

In other words, information which is unavailable is always borrowed from the com-
pleters. This strategy can be defended in cases where the bulk of the subjects are
complete and only small proportions are assigned to the various dropout patterns.
Also, extension of this approach to non-monotone patterns is particularly easy.

Alternatively, the nearest identified pattern can be used:

Fe(yslyts - - ys—1) = Fs(Uslyt, - - - Ys—1), s=t+1,...,T.
We will refer to these restrictions as neighboring case missing values or NCMV.
The third special case of (5.7) will be ACMV. Thus, ACMV is reserved for the

counterpart of MAR in the Pattern-mixture context. Let us derive the corresponding

w vectors. Expression (5.7) can be restated as

fe(uslyr, -+ ys—1) = f(ZS) (Ysly1s - - Ys—1), (5.9)

for s =t+1,...,T. Here, f>5(.|) = f(.|.,d > s), with d an indicator for time of
dropout, which is one more than the length of the observed sequence. Now, we can

transform (5.9) as follows:

feo)Wslyt, - - ys—1)
Y i 0 Fi (W)
S0 fi s Ysm1)
T
ST P 10
Next, comparing (5.10) to (5.7) yields:

Je(wslyt, - - ys—1)

wej = ajfj(yl’“"ys—l) (511)

T .
Zl:s alfl(yl’ ceey ys—l)
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We have now derived two equivalent explicit expressions of the MAR case. Ex-
pression (5.10) is the conditional density of a mixture, whereas (5.7) with (5.11) is a
mixture of conditional densities. Clearly, w defined by (5.11) consists of components
which are nonnegative and sum to one. In other words, a valid density function is
defined.

Finally we can incorporate the restrictions (5.7), with the CCMV, NCMV, and
ACMYV forms as special cases in a comprehensive strategy to fit Pattern-mixture
models.

5.3.1 Strategy Outline

We will briefly sketch the strategy. Several points which require further specifica-
tion will be discussed in subsequent sections using a simple example with only three

measurements.

1. Fit a model to the pattern-specific identifiable densities: f:(y1,...,¥:). This

results in a parameter estimate, ,.
2. Select an identification method of choice.

3. Using this identification method, determine the conditional distributions of the
unobserved outcomes, given the observed ones:

fe(Uett, - yrlyn, - 9e). (5.12)

4. Using standard multiple imputation methodology (Rubin 1987, Schafer 1997,
Verbeke and Molenberghs 2000), draw multiple imputations for the unobserved
components, given the observed outcomes and the correct pattern-specific den-
sity (5.12).

5. Analyze the multiply-imputed sets of data using the method of choice. This
can be another pattern-mixture model, but also a selection model or any other
desired model.

6. Inferences can be conducted in the standard multiple imputation way (Rubin
1987, Schafer 1997, Verbeke and Molenberghs 2000).
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5.3.2 Special Case: 3 Measurements

In this case, there are only three patterns and identification (5.8) takes the following

form:
f3(yi,92,u3) = f3(y1,92,93), (5.13)
fo(yr,y2,u3) = folyr, v2) f3(yslyL, v2), (5.14)
filyi,ye,y3) = fily) lwha(yelyr) + (1 — w) f3(y2(y1)]
x f3(ysly1, y2)- (5.15)

Since fs5(y1, Y2, y3) is completely identifiable from the data, and for fa(y1,v2, ys) there
is only one possible identification, given (5.7), the only place where a choice has to be
made in pattern 1. Setting w = 1 corresponds to NCMYV, while w = 0 implies CCMV.
Using (5.11) in this particular case, ACMV corresponds to

B a2 fa(y1)
v azfa(yr) + asfs(y1)” (5.16)

The conditional density fi(y2|y1) in (5.14) can be rewritten as

aafo(y, y2) + asfs(yi v2)
asfo(yr) + asfs(yr)

fi(yelyr) =

5.3.3 Drawing from the Conditional Densities

In the previous section, we have seen how general identifying restrictions (5.7), with
CCMV, NCMV, and ACMV as special cases, lead to the conditional densities for
the unobserved components, given the observed ones. This came down to deriving
expressions for w, such as in (5.11) for ACMV. This endeavor corresponds to items 2
and 3 of the strategy outline (5.3.1). In order to carry out item 4, we need to draw

imputations from these conditional densities.

Let us proceed by studying the special case of three measurements first. To this
end, we consider identification scheme (5.13)—(5.15) and we start off by avoiding the
specification of a parametric form for these densities. The following steps are required:

1. Estimate the parameters of the identifiable densities: f3(y1,¥y2,¥s), fo(y1, ¥2),
and fi(y1). Then, for each of the m imputations, we have to execute the fol-

lowing steps.
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2. To properly account for the uncertainty with which the parameters are esti-
mated, we need to draw from them as is customarily done in multiple imputa-
tion. More precisely we will draw a parameter vector of its distribution and it
will be assumed that in all densities from which we draw, this drawn parameter

vector is used.

3. For pattern 2. Given an observation in this pattern, with observed values

(y1,y2), calculate the conditional density f3(ys|y1,y2) and draw from it.
4. For pattern 1. We now have to distinguish three substeps.

(a) The proportions w need to be chosen or determined. Every w in the unit
interval is valid. Specific cases are:

e For NCMV, w =1.
e For CCMV, w =0.

e For ACMV, w is calculated from (5.16). Note that, given y1, this is a
constant, depending on @y and as.

In order to pick one of the two components f> or f3, we need to generate a
random uniform variate, U say, except in the boundary NCMV and CCMV
cases. Then continue with (b) and (c).

(b) If U < w, calculate fa(yz|y1) and draw from it. Otherwise, do the same
based on fa(yay1)-

(¢) Given the observed y; and given ys which has just been drawn, calculate
the conditional density fs(ys|y1,y2) and draw from it.

All steps but the first one have to be repeated M times, to obtain the same number of
imputed datasets. Inference then proceeds as outlined Rubin (1987), Schafer (1997)
and Verbeke and Molenberghs (2000).

Let us expand on steps 1 and 2 and assume that the observed densities are esti-
mated using linear mixed models. Then, f3(y1,¥2,¥s), f2(y1,¥2), and f1(y1) produce
fixed-effect and variance parameters. Let us group all of them in v and assume a
draw is made from their distribution, 4* say. To this end, their precision estimates
need to be computed. These are easily obtained in most standard software packages,
such as SAS, rendering this step a very straightforward one.

Let us illustrate this procedure for (5.14). Let us assume that the ¢th subject
has only two measurements, and hence belongs to the second pattern. Let its design
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matrices be X; and Z; for the fixed effects and random effects, respectively. Its mean
and variance for the third pattern are:

Bi(3) = XB°(3), (5.17)
Z,D*(3)Z, + 4(3), (5.18)

=
—
[I)
Nt
Il

where (3) indicates that the parameters are specific to the third pattern.

Now based on (5.17)—(5.18), and the observed values y; = (¥i1, ¥i2)’, the parame-
ters for the conditional density follow immediately:

Hion(3) = py0(3)+ Vi21(3)[Vi,11(3)] My, — 1;2(3)),
Vion(3) = Vi22(3) — V;21(3)[Vi11(3)] 7' Vi,12(3),

where a subscript 1 indicates the first two components and a subscript 2 refers to the
third component. Draws from every other conditional density is entirely similar.

In several cases, the conditional density is a mixture of normal densities. Then,
drawing from (5.7) consists of two steps:

e Draw a random uniform variate U to determine which of the n—s+1 components
one is going to draw from. Specifically, the kth component is chosen if

E—1 k
S < U< w,
j=s j=s
where k = s,...,n. Note that, if k£ = 1, the left hand sum is set equal to zero.

e Draw from the Ath component.

A few comments are in place. Except for in cases with only a few time points,
the number of w parameters proliferates quite rapidly. There are several ways to deal
with it. First, special but important restrictions such as NCMV, CCMV, and ACMV
do not suffer from this problem since each of the w’s involved is then determined by
the choice of restriction. Second, one might envisage partial but important sensitivity
analysis by letting all w’s be equal to a fixed quantity, which is chosen as, for example,
a member of a grid filling the unit interval. Third, one could put prior distributions
on the w’s, perhaps governed by simple hyperpriors. The first solution is followed in
this Chapter. The other ones require further exploration.
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In addition, determining the conditional distribution of the unobserved outcomes,
given the observed ones, is easy in the Gaussian case. For categorical outcomes this is
easy as well since it comes down to determining conditional multinomial probabilities
which are again multinomial. However, for other distributional forms, this can be
quite burdensome. In that case, the conditional distributions will have to be replaced
by the corresponding ratio of marginal distributions. While this will change the
algebra a bit, the methodology will not undergo fundamental changes.

5.4 The Vorozole Study

We now have arrived at the point where we can apply our own methods to a real life
example being the vorozole study. In this section we will discuss our findings with
respect to this dataset and the results can mainly be split into two parts. In a first
part the main emphasis is put on the comparison of selection models with pattern-
mixture models in order to study the sensitivity of the results while a second part
focuses on pattern mixture models and more precisely the different strategies to deal

with the pattern-mixture framework.

5.4.1 Selection Models versus Pattern-mixture Models

We advocate the use of pattern-mixture models as a tool to assess sensitivity of a
selection model to the modeling assumptions, or vice versa. Explicitly, it will be ar-
gued that extra confidence in the conclusion can be gained if two analyzes, one within
each framework, coincide in key aspects, such as covariate dependencies, strength of
association between outcomes, etc. We will outline ways to fit both selection and
pattern-mixture models, based on linear mixed models for the measurement process.

Virtually all models will be fitted using standard statistical software.

Exploratory Analysis

Most books on longitudinal data discuss exploratory analysis. See, for example, Dig-
gle, Liang, and Zeger (1994). However, most effort is spent to model building and
formal aspects of inference. In this section, we present a selected set of plots to under-
pin the model building. We distinguish between two modes of display: (1) averaged
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over (sub)populations and (2) individual profiles. Both ways are used to present three
fundamental aspects of the longitudinal structure: (1) the average evolution; (2) the
variance function, (3) the correlation structure. Each of those will be discussed in

turn. In addition, the variogram will be discussed.

The Average Evolution

The average evolution describes how the profile for a number of relevant subpopula-
tions (or the population as a whole), evolves over time. The results of this exploration
will be useful in order to choose a fixed-effects structure for the linear mixed model.

The individual profiles are displayed in Figure 5.1, while the mean profiles per
treatment arm, as well as their 95% confidence intervals, are plotted in Figure 5.2.
The average profiles indicate an increase over time which is slightly stronger for the
vorozole group until month 14, and afterwards, the megestrol acetate group shows
a slightly higher FLIC score. As can be seen from the confidence intervals, these

differences are clearly not significant.

The individual profiles augment the averaged plot with a suggestion of the vari-
ability seen within the data. The thinning of the data towards the later study times
suggests that trends at later times should be treated with caution. Therefore, we
decided to restrict attention to the first 2 years only. This leads to a maximum of 13
observations per subject (month 1, 2, 4, 6, ..., 24). While these plots also give us
some indications about the variability at given times and even about the correlation
between measurements of the same individual, it is easier to base such considerations

on residual profiles and standardized residual profiles.

The Variance Structure

In addition to the average evolution, the evolution of the variance is important to build
an appropriate longitudinal model. Clearly, one has to correct the measurements for
the fixed-effects structure and hence detrended values have to be used. These de-
trended values are merely the outcome values (change in FLIC-score), subtracted by
the mean change, calculated at each time point separately. Again, two plots are of in-
terest. The first one pictures the average evolution of the variance as function of time,
the second one merely produces the individual residual plots. The detrended profiles
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Figure 5.3: Vorozole study, treatment difference

are displayed in Figure 5.1, while the corresponding variance function is plotted in
Figure 5.4.

The variance function seems to be relatively stable, except for a sharp decline near
the end (at which point there are large dropout rates), and hence a constant variance
model is a plausible starting point. The individual detrended profiles show subjects’
tendency, most clearly in the vorozole group, to decrease immediately before leaving
the study. In addition, the detrended profiles also suggest that the variance decreases

over time.

The Correlation Structure

The correlation structure describes how measurements within a subject correlate.
The correlation function depends on a pair of times and only under the assumption
of stationarity does this pair of times simplify to the time lag only. This is important
since many exploratory and modeling tools are based on this assumption. A plot
of standardized residuals is useful in this respect (Figure 5.1). The picture is not
radically different from the previous individual plots, which can be explained by the

relative flatness of both mean profile and variance functions. If one or both struc-
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tures is varying with time, the standardized residuals will contribute useful additional

information.

A different way of displaying the variance structure is using a scatterplot matrix,
such as in Figure 5.5. The off-diagonal elements picture scatterplots of standardized
residuals obtained from pairs of measurement occasions. The decay of correlation with
time is studied by considering the evolution of the scatters with increasing distance
to the main diagonal. Stationarity on the other hand implies that the scatterplots
remain similar within diagonal bands if measurement occasions are approximately
equally spaced. In addition to the scatterplots, we place histograms on the diagonal,
capturing the variance structure including such features as skewness. If the axes are
given the same scales, it is very easy to capture the attrition rate as well.

The Variogram

Model (4.1) distinguishes between three components of variability. The first one
groups traditional random effects (as in a random-effects ANOVA model) and ran-
dom coefficients (Longford 1993). It stems from inter-individual variability, i.e., he-
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Figure 5.5: Vorozole study, scatterplot matrix

terogeneity between individual profiles. The second component, serial association,
is present when residuals close to each other in time are more similar than residu-
als further apart. This notion is well-known from the time-series literature (Ripley
1981, Diggle 1983, Cressie 1991). Finally, on top of the other two components, there
is potentially also measurement error. This results from the fact that for delicate
measurements (e.g., laboratory essays), even immediate replication will not be able
to avoid considerable variation. In longitudinal data, these three components of vari-
ability can be distinguished by virtue of both replication as well as a clear distance

concept (time).

Diggle (1991) and Diggle, Liang and Zeger (1994) promote the so-called semi-
variogram to picture the variance components. It is easily estimated even with ir-
regular observation times (but might require some amount of smoothing). Given a
stationary mean-zero stochastic process Y (¢) with constant variance, the variogram
is defined as
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Viw) = %E [y -y -wl}.

Specializing (4.1) to random intercept only, D simplifies to a scalar, 62 say, and it
is shown by Diggle (1990) that the variogram equals

V() = o® +7%(1 - p(u)),

where u = ¢;; — t; is the time lag between both measurements and p(u) is the
serial correlation between two measurements with the specified lag, calculated for
example from (4.3) or (4.4). Note that V(0) = 02 and V(cc) = 02 + 72. Plotting the

process Variance,

Var(Y;;) = 6% + o + 72,

as a horizontal line and the variogram as a curve, the three components of vari-
ability are easy to retrieve. The measurement error is V(0), the random intercept
variance is the difference between the process variance and V' (oc0), and the variance
of the serial process is seen as the band, occupied by the variogram, which increases
from V(0) to V(co). With irregularly spaced data, it is usually necessary to smooth
the variogram. The shape of the variogram conveys information about the structure
of the serial correlation function.

The variogram for this study is given in Figure 5.6. The dots correspond to
the observed variogram. The fitted variogram, where V(u)/Var(Y;;) is plotted with
respect to u, will be explored further later on.

Selection Models for the Vorozole Study

For the measurement model, we start by ignoring the dropout mechanism. This choice
will turn out to be justified at the end of this section. Since we are modeling change
versus baseline, all models are forced to pass through the origin. This is done by
allowing the main covariate effects, but only through their interactions with time.
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The following covariates were considered for the measurement model: baseline value,
treatment, dominant site, and time in months (up to a cubic time trend). Second
order interactions were considered as well. Then, a backwards selection procedure
was performed. For design reasons, treatment was kept in the model in spite of its
non-gignificance. An F test for treatment effect produces a p value of 0.5822. Apart
from baseline, no other time-stationary covariates were kept. A quadratic time effect
provided an adequate description of the time trend. Based on the variogram, we
confined the random-effects structure to random intercepts, and supplemented this
with a spatial Gaussian process and measurement error. The final model is presented
in Table 5.1. The fitted variance structure is represented by means of the fitted vari-
ogram, which is given in Figure 5.6. The total correlation between two measurements,
one month apart, equals 0.696. The residual correlation, which remains after accoun-
ting for the random effects, is still equal to 0.491. The serial correlation, obtained by
further ignoring the measurement error, equals p = exp(—1/7.22%) = 0.981.

Fitted profiles are displayed in Figure 5.7 and Figure 5.8. In Figure 5.8, empirical
Bayes estimates of the random effects are included whereas in Figure 5.7 the purely
marginal mean is used. For each treatment group, we obtain three sets of profiles. The
fitted complete profile is the average curve that would be obtained, had all individuals
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Table 5.1: Vorozole study, estimates of the selection model

Effect Estimate (s.e.)
Figed-Effect Parameters:

time 7.78 (1.05)
timexbaseline -0.065 (0.009)
timextreatment 0.086 (0.157)
time? -0.30 (0.06)
timeZ+baseline 0.0024 (0.0005)

Variance Parameters:

random intercept (6%)  105.42 (21.304)
serial variance (72) 77.96 (18.537)
serial association (¢) 7.22 (1.319)
measurement error (¢2)  77.83 (4.067)

been completely observed. If we use only those predicted values that correspond to
occasions at which an observation was made, then the fitted incomplete profiles are
obtained. The latter are somewhat above the former when the random effects are
included, and somewhat below when they are not, suggesting that individuals with
lower measurements are more likely to disappear from the study. In addition, while
the fitted complete curves are very close (the treatment effect was not significant),
the fitted incomplete curves are not, suggesting that there is more dropout in the
standard arm than in the treatment arm. This is in agreement with the dropout rate,
displayed in Figure 5.10, and should not be seen as evidence of a bad fit. Finally,
the observed curves, based on the measurements available at each time point, are
displayed. These are higher than the fitted ones, but this should be viewed with the
standard errors of the observed means in mind (see Figure 5.2).

Next, we will study factors which influence dropout. A logistic regression model,
described by (4.7) and (4.8) is used. To start, we restrict attention to MAR processes,
whence 13 = 0. The first model includes treatment, dominant site, baseline value,
and the previous measurement but only the last two are significant, producing

logit[g(h;;)] = 0.080(0.341) — 0.014(0.003)base;
—0.033(0.004)y; 1. (5.19)

Diggle and Kenward (1994) and Molenberghs, Kenward, and Lesaffre (1997) con-
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sidered non-random versions of this model by including the current, possible unobh-
served measurement, such as in (4.7). This requires more elaborate fitting algorithms,
since the missing data process is then non-ignorable. Diggle and Kenward (1994)
used the simplex algorithm (Nelder and Mead 1965), while Molenberghs, Kenward,
and Lesaffre (1997) fitted their models with the EM algorithm (Dempster, Laird
and Rubin 1977). The algorithm of Diggle and Kenward is implemented in Oswald
(Smith, Robertson and Diggle 1996). With larger datasets such as this one, conver-
gence can be painstakingly difficult and one has to worry about apparent convergence.
Therefore, we first proceed in an alternative way. Both Diggle and Kenward (1994)
and Molenberghs, Kenward, and Lesaffre (1997) observed that in informative models,
dropout tends to depend on the increment, i.e., the difference between the current
and previous measurements y;; — y; j—1. Clearly, a very similar quantity is obtained
as ¥ij—1 — Yi,j—2, but a major advantage of such a model is that it fits within the
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Figure 5.10: Vorozole study, observed dropout per treatment arm

MAR framework. In our case, we obtain

logit[g(h;;)] = 0.033(0.401) — 0.013(0.003)base;
40.012(0.006)y; j_2 — 0.035(0.005)y; ;1
= 0.033(0.401) — 0.013(0.003)base;

—0.023(0.005) W

—0.047(0.010) W (5.20)

indicating that both size and increment are significant predictors for dropout. We
conclude that dropout increases with a decrease in baseline, in overall level of the

outcome variable, as well as with a decreasing evolution in the outcome.

Using Oswald, both dropout models (5.19) and (5.20) can be compared with their
non-random counterparts, where y;; is added to the linear predictor. The first one

becomes

logit[g(hi;,vi;)] = 0.53 —0.015base; — 0.076y; j_1 + 0.057y;;  (5.21)
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while the second one becomes

logit[g(hij, yi)] = 1.38 —0.021base;
—0.0027’!,/1‘33'_2 — 0.064yi,j_1 + 0-035yij- (5.22)

Formal testing of dropout models (5.21) versus (5.19) and for (5.22) versus (5.20)
are possible in principle, but will not be carried out for two reasons. First, the like-
lihood function tends to be very flat for non-random dropout models and therefore
the determination of the likelihood ratio is often computationally non-trivial. More
fundamentally, Rubin (1994), Little (1994), Laird (1994), and Molenberghs, Kenward
and Lesaffre (1997) point out that formal testing for non-random dropout faces philo-
sophical objections. Indeed, non-random dropout models are identified only due to
strong but unverifiable assumptions. Hogan and Laird (1997) suggest pattern-mixture

models as a viable alternative.

Pattern-mixture models for the Vorozole Study

In analogy with the exploration in the selection model context, it is natural to explore
the data from a pattern-mixture point of view. To this end, plots per dropout pattern
can be constructed. Figures 5.11 and 5.12 display the individual and averaged profiles
per pattern.

Figure 5.12 clearly shows that pattern-specific profiles are of a quadratic nature
with in most cases a sharp decline prior to dropout. Note that this is in line with
the fitted dropout mechanism (5.20). Therefore, this feature needs to be reflected
in the pattern-mixture model. In analogy with our selection model, the profiles are
forced to pass through the origin. This is done by allowing only time main effect and
interactions of other covariates with time in the model.

The most complex pattern-mixture model we consider includes a different parame-
ter vector for each of the observed patterns. This is done by including the interaction
of all effects in the model with pattern, a factor variable calculated as 2+ the number
of ohservations after baseline. We then proceed by backward selection in order to
simplify the model. First, we found that the covariance structure is common to all
patterns, encompassing random intercept, a serial exponential process, and measure-

ment error.

For the fixed effects we proceeded as follows. A backward selection procedure,
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Figure 5.11: Vorozole study, individual profiles, per dropout pattern
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Figure 5.12: Vorozole study, mean profiles, per dropout pattern

starting from a model that includes a main effect of time and time?, as well as in-
teractions of time with baseline value, treatment effect, dominant site and pattern,

and the interaction of pattern with time?

. This procedure revealed main effects of
time and time?, as well as interactions of time with baseline value, treatment effect,
and pattern, and the interaction of pattern with time?. This reduced model can be
found in Table 5.2. As was the case with the selection model in Table 5.1, treatment
effect is non-significant. Indeed, a single degree of freedom F' test yields a p value of
0.6868. Note that such a test is possible since treatment effect does not interact with
pattern, in contrast to the model which we will describe later. The fitted profiles are
displayed in Figure 5.13. We observe that the profiles for both arms are very simi-
lar. This is due to the fact that treatment effect is not significant but perhaps also
because we did not allow a more complex treatment effect. For example, we might
consider an interaction of treatment with the square of time and, more importantly,
an treatment effect which is pattern-specific. Some evidence for such an interaction
is seen in Figure 5.12.

Our second, expanded model, allowed for up to cubic time effects, the interaction
of time with dropout pattern, dominant site, baseline value and treatment, as well
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Table 5.2: Vorozole study, estimates of the first pattern-mizture model

Figed-Effect Parameters (Estimate (s.e.)):

Pattern

Time TimexBaseline

Time? TimexGroup (0)

15

4.671 (0.844)
-8.856 (2.739)
-0.796 (2.958)
-1.959 (1.794)
1.600 (1.441)
0.292 (1.295)
1.366 (1.035)
1.430 (1.045)
1.176 (1.025)
0.735 (0.934)
0.797 (1.078)
0.274 (0.989)
0.544 (1.087)

-0.031 (0.004)

-0.034 (0.029)

-1.918 (1.269)
-0.145 (0.365)
-0.541 (0.197)
-0.107 (0.133)
-0.181 (0.080)
-0.132 (0.071)
-0.118 (0.061)
-0.083 (0.049)
-0.078 (0.055)
-0.023 (0.046)
-0.026 (0.049)

-0.067 (0.166)

Variance Parameters:

Random intercept (§2)

Serial variance (72)

Serial association (¢)

Measurement error (o2)

78.45
95.38

8.85
73.77
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Table 5.3: Vorozole study, estimates of the second pattern-mizture model

Figed-Effect Parameters (Estimate (s.e.)):

Pattern

Time

Time*xBaseline

Time?

Time?*Baseline

main 5.468 (5.089)
3 7.616 (21.908)
4 44.007 (17.489)
5 22.471 (10.907)
6 10.578 (9.833)
7 14.691 (8.424)
8 7.527 (6.401)
9

-12.631 (7.367)

10 14.827 (6.467)
11 5.667 (6.050)
12 12.418 (6.473)
13 1.934 (6.551)
14 6.303 (6.426)
15

-0.034 (0.040)
-0.119 (0.175)
-0.440 (0.148)
-0.218 (0.089)
-0.055 (0.079)
-0.123 (0.069)
-0.061 (0.052)
0.086 (0.058)
-0.126 (0.053)
-0.049 (0.049)
-0.093 (0.051)
-0.022 (0.053)
-0.052 (0.050)

-0.271 (0.206)

-18.632 (7.491)
-5.871 (2.143)
-1.429 (1.276)
-1.571 (0.814)
-0.827 (0.431)
0.653 (0.454)
-0.697 (0.343)
-0.315 (0.288)
-0.273 (0.296)
-0.049 (0.289)
-0.182 (0.259)

0.002 (0.002)

0.1458 (0.0644)
0.0484 (0.0178)
0.0080 (0.0107)
0.0127 (0.0069)
0.0058 (0.0036)
-0.0065 (0.0038)
0.0052 (0.0029)
0.0021 (0.0023)
0.0016 (0.0024)
0.0003 (0.0024)
0.0015 (0.0021)

Pattern TimexGroup (0)

Time+Domsite (1)

Time*Domsite (2)

TimexDomsite (3)

main

3 0.445 (5.095)
4 0.867 (1.552)
5 -1.312 (0.808)
6 -0.249 (0.686)
7 -0.184 (0.678)
8 0.527 (0.448)
9 0.782 (0.502)

10 -0.809 (0.464)
11 -0.080 (0.443)
12 0.331 (0.579)
13 -0.679 (0.492)
14 0.433 (0.688)
15 -1.323 (0.706)

-0.873 (1.073)
-5.822 (17.401)
2.024 (3.847)
2.937 (2.596)
-1.378 (2.699)
-0.547 (1.917)
1.302 (1.130)
3.881 (1.485)
2.359 (1.241)
1.138 (1.128)

0.317 (1.152)

0.941 (0.845)
-9.320 (9.429)
4.393 (2.690)
0.940 (1.697)
-4.366 (2.367)
-1.099 (1.456)
-0.914 (0.811)
1.733 (1.226)
-0.436 (0.843)
-0.326 (0.753)
-3.595 (0.996)
0.182 (0.825)
-1.694 (0.972)

0.023 (0.576)
1.431 (9.878)
5.681 (2.642)
1.414 (1.633)
-3.237 (2.289)
-1.015 (1.344)

4548 (1.218)

Variance Parameters:
Random intercept (§2)
Serial variance (72)
Serial association (¢)

Measurement error (o2)

98.93
38.86

6.10
73.65
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Figure 5.13: Vorozole study, fitted selection model and first pattern-mizture model

as their two- and three-way interactions. After a backward selection procedure, the
effects included are time and time?, the two-way interaction of time and dropout
pattern, as well as three factor interactions of time and dropout pattern with (1)
baseline, (2) group, and (3) dominant site. Finally, time? interacts with dropout
pattern and with the interaction of baseline and dropout pattern. No cubic time
effects were necessary, which is in agreement with the observed profiles in Figure
5.12. The parameter estimates of this model are displayed in Table 5.3. The model
is graphically represented in Figure 5.14.

Because a pattern-specific parameter has been included, we have several options
for the assessment of treatment. Since there are 13 patterns (remember we cut off
the patterns at 2 years), one can test the global hypothesis, based on 13 degrees
of freedom, of no treatment effect. We obtain F = 1.25, producing p = 0.2403,
indicating that there is no overall treatment effect. Each of the treatment effects
separately is at a non-significant level. Alternatively, the marginal effect of treatment
can be calculated, which is the weighted average of the pattern-specific treatment
effects, with weights given by the probability of occurrence of the various patterns.
Its standard error is calculated using a straightforward application of the delta method
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Figure 5.14: Vorozole study, fitted selection model and second pattern-mixture model

(see Section 5.4.2). This effect is equal to —0.286(0.288) producing a p value of 0.3206,

which is still non-significant.

In summary, we obtain a non-significant treatment effect from all our different

models, which gives more weight to this conclusion.

Concluding Remarks

In this paper we have concentrated on total FLIC (i.e., change of the score ver-
sus baseline), a quality of life score measured in a multi-centric two arm study in
postmenopausal women suffering from metastatic breast cancer. Since virtually all
patients were followed up until disease progression or death, the amount of dropout

is large. A very large group of patients drops out after just a couple of months.

While classically only selection models are fitted, pattern-mixture models can be
seen as a viable alternative. We analyzed the data using both, leading to a sensitivity
analysis. More confidence in the results can be gained if both models lead to similar

conclusions.
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The average profile in the selection model depends on the baseline value, as well
as on time. The latter effect is mildly quadratic. There is no evidence for a treatment
difference. However, it should be noted that the average profile found is the one that
would have been observed, had no subjects dropped out, and under the additional as-
sumption that the MAR assumption is correct. Fitting non-random dropout models,
in the sense of Diggle and Kenward (1994) is possible, but computationally difficult
for a fairly large trial like this one. A separate study of the dropout mechanism re-
vealed that dropout increases with three elements: (1) an unfavorable baseline score,
(2) an unfavorable value at the previous month, as well as (3) an unfavorable change
in value from the penultimate to the last obtained value.

A pattern-mixture model is fitted by allowing at first a completely separate pa-
rameter vector for each observed dropout pattern, which is then simplified by using
standard model selection procedures, by considering whether effects are common to
all patterns. A first pattern-mixture model features a common treatment effect, of
which the assessment is then straightforward. A second model includes a separate
treatment effect for each dropout pattern. This leads to two distinct test. The first
one tests for equality of the whole treatment vector to be zero. The second one first
calculates the marginal treatment effect from the vector of effects, by composing a
weighted sum, where the weights are the multinomially estimated probabilities of the
various patterns. In all cases, there is no treatment effect. However, a graphical
display of the fitted profiles per pattern is enlightening, since it clearly confirms the
trend detected in the selection models, that patients tend to drop out when their
quality of life score is declining. Since this feature is usually coupled to an imminent
progression or death, it should not come as a surprise. An important advantage of
pattern-mixture models is that fitting them is more straightforward than non-random
selection models. The additional calculations needed for the marginal treatment effect
and its associated precision can be done straightforwardly using the delta method.

5.4.2 Pattern-Mixture Models using New Methodology

While previous discussion considered a comparison between selection models and
pattern-mixture models we will now apply the methodology introduced earlier in this
chapter to the vorozole data. In order to study the impact of the modeling choices,
we will first focus on an analysis, restricted to those subjects with 1, 2, and 3 follow
up measurements, respectively. Thereafter, we will conduct a sensitivity analysis on



106 Chapter 5 : Pattern Mixture Models

the entire set of patients and follow up times. For the first analysis, 190 subjects are
included, with subsample sizes 35, 86, and 69, respectively. The pattern probabilities

are
7 = (0.184,0.453,0.363)’, (5.23)
and asymptotic covariance matrixes

0.000791 —0.000439 —0.000352
Var(®) = | —0.000439  0.001304 —0.000865 | - (5.24)
~0.000352 —0.000865  0.001217

These figures, apart from giving a feel for the relative importance of the various
patterns, will be needed to calculate the marginal treatment effect and to test for its
importance, which was the primary goal of the analysis.

It is of interest to study the treatment arm specific pattern probabilities as well.
For the vorozole arm, the subsample sizes are 18, 48, and 36, producing probabilities
7, = (0.177,0.471,0.354)" with asymptotic covariance matrix

0.001425 —0.000814 —0.000611
Var(7,) = | —0.000814  0.002442 —0.001628
—0.000611 —0.001628  0.002239

For the megestrol acetate arm, the subsample sizes are 17, 38, and 33, giving proba-
bilities 7, = (0.193,0.432,0.375)" and asymptotic covariance matrix

0.001771 —0.000948 —0.000823
Var(Zm) = | —0.000948  0.002788 —0.001840
—0.000823 —0.001840  0.002663

The treatment arm specific probabilities are not significantly different from each
other. A classical x? test produces p = 0.864. Hence, we will work with expressions
(5.23) and (5.24).

We will apply each of the three strategies, show how a model can be fitted and we
will indicate how the appropriate hypotheses can be tested.
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Table 5.4: Vorozole study, multiple imputation estimates and standard errors for
CCMV, NCMV, and ACMYV restrictions (strategy 1), pattern 1.

Effect initial CCMV NCMV ACMV

Time 3.40(13.94) 13.21(15.91)  7.56(16.45) 4.43(18.78)
Timexbase -0.11(0.13)  -0.16(0.16)  -0.14(0.16) -0.11(0.17)
Timextreat 0.33(3.91)  -2.09(2.19)  -1.20(1.93) -0.41(2.52)
Time? -0.84(4.21)  -2.12(4.24) -0.70(4.22)
Time? *base 0.01(0.04) 0.03(0.04) 0.02(0.04)
11 131.09(31.34) 151.91(42.34) 134.54(32.85) 137.33(34.18)
a1z 59.84(40.46) 119.76(40.38)  97.86(38.65)
Tan 201.54(65.38) 257.07(86.05) 201.87(80.02)
a13 55.12(58.03) 49.88(44.16)  61.87(43.22)
T23 84.99(48.54)  99.97(57.47) 110.42(87.95)
a33 245.06(75.56) 241.99(79.79) 286.16(117.90)

Effect initial CCMV NCMV ACMV

Time 53.85(14.12)  20.78(10.43) 33.74(11.11) 28.69(11.37)
Timexbase -0.46(0.12) -0.29(0.09)  -0.33(0.10) -0.29(0.10)
Timestreat  -0.95(1.86)  -168(1.21) -1.56(2.47)  -2.12(1.36)
Time? -18.91(6.36)  -4.45(2.87)  -T.00(3.80)  -4.22(4.20)
Time? *base 0.15(0.05) 0.04(0.02) 0.07(0.03) 0.05(0.04)

o1 170.77(26.14)  175.59(27.53) 176.49(27.65) 177.86(28.19)
012 151.84(29.19)  147.14(29.39) 149.05(29.77) 146.98(29.63)
022 202.32(44.61) 297.38(46.04) 299.40(47.22) 297.39(46.04)
o13 57.22(37.96) 89.10(34.07) 99.18(35.07)
023 71.58(36.73) 107.62(47.59) 166.64(66.45)
o33 212.68(101.31) 264.57(76.73) 300.78(77.97)

Table 5.5: Vorozole study, multiple imputation estimates and standard errors for
CCMV, NCMV, and ACMYV restrictions (strategy 1), pattern 2.

Fitting a Model

The patients in this study drop out mainly because they relapse or die. This in itself
poses specific challenges that can be addressed within the pattern-mixture framework
much easier than in the selection model framework. Indeed, if one is prepared to make



108 Chapter 5 : Pattern Mixture Models

Table 5.6: Vorozole study, multiple imputation estimates and standard errors for
CCMV, NCMV, and ACMYV restrictions (strategy 1), pattern 3.

Effect initial CCMV NCMV ACMV

Time 29.91(9.08)  29.91(9.08)  29.91(9.08)  29.91(9.08)
Timexbase -0.26(0.08) -0.26(0.08)  -0.26(0.08) -0.26(0.08)
Timextreat 0.82(0.95) 0.82(0.95) 0.82(0.95) 0.82(0.95)
Time? 6.42(2.23)  -6.42(2.23)  -6.42(2.23)  -6.42(2.23)
Time? *base 0.05(0.02) 0.05(0.02) 0.05(0.02) 0.05(0.02)
o11 206.73(35.86) 206.73(35.86) 206.73(35.86) 206.73(35.86)
012 96.97(26.57) 96.97(26.57) 96.97(26.57) 96.97(26.57)
022 174.12(31.10) 174.12(31.10) 174.12(31.10) 174.12(31.10)
o13 87.38(30.66) 87.38(30.66) 87.38(30.66) 87.38(30.66)
023 91.66(28.86) 91.66(28.86) 91.66(28.86) 91.66(28.86)
o33 262.16(44.70) 262.16(44.70) 262.16(44.70) 262.16(44.70)

the assumption that a patient who dies is representative of a slice of the population
with the same characteristics, and with a certain probability to die, then identifying
restrictions (i.e., extrapolation beyond the time of death) is meaningful. In case
one does not want to extrapolate beyond the moment of death, one can restrict
modeling to the observed data only. The former viewpoint refers to Strategy 1,
while the latter refers to Strategy 2. An intermediate approach would be to allow
for extrapolation beyond relapse and not beyond death. (For the current dataset,
the information needed in order to do so is unavailable.) Note that, while this may
seem a disadvantage of pattern-mixture models, we believe it is an asset, because this
framework not only forces one to think about such issues, it also provides a modeling
solution, no matter which point of view is adopted. This contrasts with selection
models where extrapolation is always done, be it explicitly by modeling the profile,
averaged over all patterns. Precisely on this issue we will spend some extra attention
in Section 5.5.

For Strategy 1, we start with fitting a model to the observed data, including time
and time? effects, as well as their interactions with baseline value. Further, time by
treatment interaction is included, for consistency with the original analysis plan. All
effects interact with time, in order to force profiles to pass through the origin, since
we are studying change versus baseline. An unstructured 3 x 3 covariance matrix is
assumed for each pattern. Parameter estimates are presented in Tables 5.4-5.6, in
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Figure 5.15: Vorozole study, extrapolation based on model fitted to observed data
(Strategy 2a), for three levels of baseline value (minimum, average, mazimum), plots
of mean profiles over time are presented, the bold portion of the curves runs from
baseline until the last obtained measurement, while the extrapolated piece is shown in
thin line type, the dashed line refers to megestrol acetate, the solid line is the vorozole

arm.

the “initial” column. Obviously, not all effects are estimable in this initial model.

Let us present this model graphically. Since there is one binary (treatment arm)
and one continuous covariate (baseline level of FLIC score), insight can be obtained by
plotting the models for selected values of baseline. Precisely, we chose the minimum,
average, and maximum values (Figure 5.15). Note that the extrapolation can have
surprising effects, even with these relatively simple models. Thus, while this form of
extrapolation is simple, its plausibility can be called into question.

This initial model provides a basis, and its graphical representation extra moti-
vation, to consider identifying restriction models. The methodology of Section 5.3 is
then applied, and results are presented in Tables 5.4-5.6, for CCMV, NCMV, ACMV
respectively. In all Figures 5.16-5.18, the same mean response scale as in Figure 5.15
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Figure 5.16: Vorozole study, complete case missing value restrictions analysis, for
three levels of baseline value (minimum, average, mazximuwm), plots of mean profiles
over time are presented, the bold portion of the curves runs from baseline until the
last obtained measurement, while the extrapolated piece is shown in thin line type, the
dashed line refers to megestrol acetate, the solid line is the vorozole arm.

was retained, illustrating that the identifying restriction strategies extrapolate much
closer to the observed data mean responses. There are some differences among the
identifying restriction methods. Roughly speaking, CCMV extrapolates rather to-
wards a rise whereas NCMV seems to predict more of a decline, at least for baseline
value 53. Further, ACMYV indicates rather a steady state. For the other baseline levels,
a status quo or a mild increase is predicted. This conclusion needs to be considered
carefully. Since these patients drop out mainly because they relapse or die, it seems
unlikely to expect a rise in quality of life. Hence, it is well possible that the dropout
mechanism is not CCMV, since this strategy always refers to the “best” group, i.e.,
the one with the best prognosis. ACMYV, which compromises between all strategies
may be more realistic, but here NCMV is likely to be better since information is
borrowed from the nearest pattern.
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Figure 5.17: Vorozole study, neighboring case missing value restrictions analysis, for
three levels of baseline value (minimum, average, mazximuwm), plots of mean profiles
over time are presented, the bold portion of the curves runs from baseline until the
last obtained measurement, while the extrapolated piece is shown in thin line type, the
dashed line refers to megestrol acetate, the solid line is the vorozole arm.

Nevertheless, the NCMV prediction looks more plausible since the worst baseline
value shows declining profiles, whereas the best one leaves room for improvement.
Should one want to explore the effect of assumptions beyond the range of expression
(5.7), one can allow w, to include components outside of the unit interval. In that
situation, one has to ensure that the resulting density is still non-negative over its

entire support.

A possible option concerning strategy 2a is presented in Table 5.7 where we specify
solely a different coefficient for the quadratic time trend.

In Strategy 2b, pattern is included as a covariate. An initial model is considered
with the following effects: time, the interaction between time and treatment, baseline
value, pattern, treatmentxbaseline, treatmentxpattern, and baselinexpattern. Fur-
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Figure 5.18: Vorozole study, available case missing value restrictions analysis, for
three levels of baseline value (minimum, average, mazximuwm), plots of mean profiles
over time are presented, the bold portion of the curves runs from baseline until the
last obtained measurement, while the extrapolated piece is shown in thin line type, the
dashed line refers to megestrol acetate, the solid line is the vorozole arm.

ther, time? is included, as well as its interaction with baseline, treatment, and pat-
tern. No interactions beyond the third order are included, and unstructured covari-
ance matrix is common to all three patterns. This implies that the current model is
not equivalent to a Strategy 1 model, where all parameters are pattern-specific. The
estimated model parameters are presented in Table vor strategy2b and the graphical
representation is given in Figure 5.19. Early dropouts decline immediately, whereas
those who stay longer in the study first show a rise and then decline thereafter.
However, this is less pronounced for higher baseline values. On the other hand, the
extrapolation based on the fitted model is very unrealistic, rendering this deceptively

simple approach a bad choice.

These findings suggest, again, that a more careful reflection on the extrapolation
method is required. This is very well possible in a pattern-mixture context, but then
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Table 5.7: Vorozole study, estimates (and standard errors) of a reduced simple model

(strategy 2a).

Effect Pattern Estimate (s.e.)
Time 33.06( 6.67)
Timex*treat 0.40( 0.84)
Timexbase -0.29( 0.06)
Time? 1 -16.71( 3.46)
Time? 2 -8.56( 1.90)
Time? 3 -7.09( 1.78)
Time? *base 0.06( 0.01)
o011 178.02(18.46)
012 121.75(18.30)
022 238.31(26.98)
013 88.75(24.94)
o3 121.10(34.70)
o33 274.58(48.32)

the first strategy, rather than the second strategy, has to be used.

Hypothesis Testing

Focusing on treatment effect, a by-product of the pattern-mixture strategy is that a
separate treatment effect will likely be estimated for each pattern. This is the case for
all five models in Tables 5.4-5.6 and Table 5.8. Let us note in passing that this does
not need to be the case. Since the main scientific interest is placed on the estimation
of the marginal treatment effect, we can combine the pattern-specific effects into a

pattern-averaged effect, as follows.

Let 3,4 represent the treatment-effect parameter estimates £ = 1,..., g (assuming
there are g groups) in pattern d = 1,...,T and let w4 be the proportion of subjects
in pattern d. Then, the estimates of the marginal treatment effects 3, are:

T
Be= Bura, L=1,...,g. (5.25)
d=1

The variance is obtained using the delta method. Precisely, it assumes the form

Var(f1,...,8,) = AVA, (5.26)
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Table 5.8: Vorozole study, estimates (and standard errors) of a model with pattern as
a covariate (strategy 2b).

Effect Pattern Estimate (s.e.)
Time 1 7.29(15.69)
Time 2 37.05(7.67)
Time 3 39.40(9.97)
Timextreat 1 5.25(6.41)
Timextreat 2 3.48(5.46)
Timesxtreat 3 3.44(6.04)
Timexbase 1 -0.21(0.15)
Timexbase 2 -0.34(0.06)
Timexbase 3 -0.36(0.08)
Timextreat+base -0.06(0.04)
Time? 1 -9.18(2.47)
Time? 2 -9.18(2.47)
Time? 3 -7.70(2.29)
Time? treat 1.10(0.74)
Time? *base 0.07(0.02)
o11 173.63(18.01)
o012 117.88(17.80)
022 233.86(26.61)
013 89.59(24.56)
023 116.12(34.27)
033 273.98(48.15)
where
Vo Var(feq) ‘ 0
0 ‘ Var(rg)

W OB, ..., B,)

6(611""’6Tg,771""’7TT)'

The estimate of the variance-covariance matrix of the B(d is obtained from statisti-
cal software. The multinomial quantities are easy to obtain from the pattern-specific
sample sizes. In the case of the vorozole data, these quantities are presented in (5.23)
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Figure 5.19: Vorozole study, models with pattern used as a covariate (Strategy 2b), for
three levels of baseline value (minimum, average, mazximuwm), plots of mean profiles
over time are presented, the bold portion of the curves runs from baseline until the
last obtained measurement, while the extrapolated piece is shown in thin line type, the

dashed line refers to megestrol acetate, the solid line is the vorozole arm.

and (5.24). A Wald test statistic for the null hypothesis Hy : 81 = --- = 8, = 0 is
then given by
BLAV A By, (5.27)
where
,50 = (51, cee ’69)/'

We now apply this approach to the models in Tables 5.4-5.6 and Table 5.8. All
three pattern-mixture strategies will be considered. Since the identifying restriction
strategies are slightly more complicated than the others, we will consider the other

strategies first.

For Strategy 2a, recall that the parameters are presented in Tables 5.4-5.6 as the
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initial model. The treatment effect vector is 3 = (0.33, —0.95,0.82)" with, since the

patterns are analyzed separately, diagonal covariance matrix:

15.28

0.90

This leads to the test statistic 3V "3 = 1.02 on 3 degrees of freedom, producing
p = 0.796. In order to calculate the marginal treatment effect, we apply (5.26)—
(5.27). The marginal effect is estimated as Bo = —0.07 (s.e. 1.16). The corresponding
asymptotic p value is p = 0.95. Both approaches agree on the non-significance of the

treatment effect.

For Strategy 2b, the parameters are presented in Table 5.8. The treatment effect
vector is 3 = (5.25, 348, 3.44)" with non-diagonal covariance matrix:

41.12 23.59 25.48
V=1 2359 2949 30.17
25.48 30.17 36.43

The correlation between them is quite substantial. The reason is that some para-
meters, in particular the other treatment effects (three-way interaction with baseline
and time, interaction with time?), are common to all three patterns, hence inducing
dependence across patterns. This leads to the test statistic 3'V~'8 = 0.70 on 3
degrees of freedom, producing p = 0.874.

Calculating the marginalized treatment effect, we obtain ﬁo = 3.79 (s.e. 5.44). The
corresponding asymptotic p value is p = 0.49. The different numerical value of the
treatment effects, as compared to those obtained with the other strategies, is entirely
due to the presence of a quadratic treatment effect which, for ease of exposition, is
left out of the picture in testing here. It is straightforward to add this parameter to

the contrast(s) being considered, should one want to do so.

For Strategy 1, we will consider several approximate ways of inference. The CCMV

case will be discussed in detail. The two other restriction types are entirely similar.

There are three treatment effects, one for each pattern. Hence, multiple impu-
tation produces a vector of treatment effects and the within, between, and total

covariance matrices:

Boo = (—2.00, ~1.68,0.82), (5.28)
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1.67 0.00 0.00
Wee=1 000 059 0.00 |,
0.00 0.00 0.90

2.62 0.85 0.00
Boe=| 085 0.72 0.00 |, (5.29)
0.00 0.00 0.00

and

480 1.02 0.00
Tece=1 102 146 0.00
0.00 0.00 0.90

In a stratified analysis, we want to test the hypothesis Hy : 3 = 0. Using (5.28)—
(5.29), we can apply multiple imputation methodology.

Note that, even though the analysis is done per pattern, the between and total
matrices have non-zero off-diagonal elements. This is because the imputation is based
on information from other patterns, hence introducing inter-pattern dependence. Re-
sults are presented in Table 5.9. All p values are highly non-significant, in line with

earlier evidence from Strategies 2a and 2b, although a bit more extreme.

For the marginal parameter, the situation is more complicated here than with
Strategies 2a and 2b. Indeed, classical theory often assumes inference is geared to-
wards the original vector, or linear contrasts thereof. Formula (5.25) represents a
non-linear transformation of the parameter vector and therefore needs further de-
velopment. First, consider 7 to be part of the parameter vector. Since there is no
missingness involved in this part, it contributes to the within matrix, but not to the
between matrix. Then, using (5.26), the approximate within matrix for the marginal

treatment effect is
Wo = #'Wa + 3'Var(w)3,
with, for the between matrix, simply
By = n'Bm.

The results are presented in the second panel of Table 5.9. All three p values
are in between those obtained for Strategies 2a and 2b. Of course, all five agree on
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Table 5.9: Vorozole study, tests of treatment effect for CCMV, NCMV, and ACMV
restrictions.

Parameter CCMV NCMV ACMV
Stratified analysis:

k 3 3 3
T 12 12 12
denominator d.f. w 28.41 17.28 28.06
r 1.12 2.89 1.14
F statistic 0.044 0.022 0.030
p value 0.988 0.995 0.993

Marginal Analysis:
Marginal effect (s.e.) -0.85(0.77) -0.63(1.22) -0.74(0.85)

k 1 1 1
T 4 4 4
denominator d.f. w 4 4 4
r 1.49 4.57 1.53
F' statistic 0.072 0.018 0.054
p value 0.801 0.900 0.828

the non-significance of the treatment effect. The reason for the differences is to be
found in the way the treatment effect is extrapolated beyond the period of observation.
Indeed, the highest p value is obtained for Strategy 2a and, from Figure 5.15, we learn
that virtually no separation between both treatment arms is projected. On the other
hand, wider separations are seen in Figure 5.19. Finally, we note that all conclusions
are conditional upon the unverifiable assumption that the posited restrictions (and
hence, dropout mechanisms) are correct. Therefore, they should preferably be used

in conjunction, within a sensitivity analysis.

Analysis of All Patterns

From our initial analysis it is clear that the apparently simpler Strategy 2 should
be avoided. In the current analysis, aimed to use all data, we therefore restrict our-
selves to the more involved but also more satisfactory identifying-restrictions Strategy
1. The distribution of subjects over patterns is described in Table 5.10. Based on

this information, we chose to remove the three subjects in the last patterns, due to



Chapter 5 : Pattern Mixture Models

119

Table 5.10: Vorozole study, distribution of the subjects over the patterns.

Number Number
Pattern of measurements of subjects Proportion Percentage
3 1 35 0.087281796 8.7281796
4 2 86 0.214463840 21.4463840
5 3 69 0.172069830 17.2069830
6 4 45 0.112219450 11.2219450
7 5 29 0.072319202 7.2319202
8 6 33 0.082294264 8.2294264
9 7 22 0.054862843 5.4862843
10 8 17 0.042394015 4.2394015
11 9 19 0.047381546 4.7381546
12 10 9 0.022443890 2.2443890
13 11 10 0.024937656 2.4937656
14 12 6 0.014962594 1.4962594
15 13 8 0.019950125 1.9950125
16 14 3 0.007481297 0.7481297
17 15 4 0.009975062 0.9975062
18 16 3 0.007481297 0.7481297
20 18 1 0.002493766 0.2493766
21 19 1 0.002493766 0.2493766
25 23 1 0.002493766 0.2493766

sparseness. Covariates kept in the models are time, time interactions with baseline

and treatment group, time? and the interaction between time? and baseline. The

three identifying restrictions are chosen, and the assessment of the marginal treat-
ment effect is: p = 0.9407 for NCMV, p = 0.7570 for CCMV, and p = 0.0487 for
ACMYV. Clearly, the impact of the identifying restrictions on the main conclusion is
dramatic. The MAR-based ACMYV restrictions yield a significant effect, albeit bor-

derline, whereas the others are far from significance. A graphical representation is

given in Figure 5.20.
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Figure 5.20: Vorozole study, models using all patterns (strategy 1), for the average
level of baseline value and for both treatment arms, plots of mean profiles over time
are presented, the solid portion of the curves runs from baseline until the last obtained
measurement, while the extrapolated piece is shown in dashed type.

5.4.3 Concluding Remarks

We now have illustrated three distinct strategies to fit pattern-mixture models. In
this way, we have brought together several existing practices. Little (1993, 1994) has
proposed identifying restrictions, which we here formalized using the connection with
MAR and multiple imputation. Strategy 2 refers to fitting a model per pattern and
using pattern as a covariate.

By contrasting these strategies on a single set of data, one obtains a range of
conclusions rather than a single one, which provides insight into the sensitivity to
the assumptions made. Especially with the identifying restrictions, one has to be
very explicit about the assumptions and moreover this approach offers the possibility
to consider several forms of restrictions. Special attention should go to the ACMV
restrictions, since they are the MAR, counterpart within the pattern-mixture context.
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In addition, a comparison between the selection and pattern-mixture modeling
approaches is useful to obtain additional insight into the data and/or to assess sensi-

tivity.

The identifying restrictions strategy provides further opportunity for sensitivity
analysis. Indeed, since CCMV and NCMYV are extremes for the w, vector in (5.7), it
is very natural to consider the idea of ranges in the allowable space of w,. Clearly,
any w, which consists of non-negative elements that sum to one is allowable, but also
the idea of extrapolation could be useful, where negative components are allowed,
given they provide valid conditional densities.

As is clear from previous Chapters, the modeling of incomplete data from longi-
tudinal studies has been approached by many authors through the pattern-mixture
modeling framework. An important issue is whether a model for a given dropout
pattern ought to be extended and, if the answer is affirmative, how this should be
approached. A possible solution is ordinary extrapolation, based on sufficiently sim-
plified models while secondly also identifying restrictions can be used. Unfortunately,
the implications for the nature of the dropout mechanism are not always understood
nor studied. In the subsequent sections we will describe necessary and sufficient con-

ditions ensuring that dropout does not depend on future, unobserved observations.

We already indicated that extrapolation beyond the time of dropout can be very
easy by means of simple models considering simple polynomial time trends within
patterns (Hogan and Laird 1997) or when pattern is used as a covariate. In the
latter case, rather than estimating a separate time trend within each pattern, one
could assume that the time evolution within a pattern is unstructured, but parallel
across patterns. While these strategies are computationally simple, there is a non-
trivial price to pay: simplified models also make untestable assumptions, just as
in the selection model case. To overcome this problem we deemed the identification-
restrictions strategy to be the more promising one and therefore we provided a general
framework with complete case missing value restrictions (CCMV, Little 1993), where
information is borrowed from the completers, available case missing values (ACMYV),
equivalent to MAR (Molenberghs et al. 1998), where information is borrowed from
all patterns for which the unobserved measurement in the pattern under study is
observed, and neighboring case missing value restrictions (NCMV), where information
is borrowed from the closest available pattern, as important special cases. ACMV
provides a way to compare MAR under both the selection model and the PMM
frameworks. Even though the use of such restrictions leads the modeler to careful
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reflections on the choices made, not all implications of such a choice are obvious. In
the light of this, it is useful to know MAR and ACMYV are equivalent, implying that,
under ACMYV, missingness does not depend on unobserved measurements.

We consider it to be of interest to further characterize which mechanisms are more
general than ACMV (MAR) but still prevent missingness to depend on future, pos-
sibly unobserved outcomes. Therefore in the next section we will provide a general
characterization of such restrictions, term them “non-future dependent” (NFD) and
illustrate, in a realistic setting, how these restrictions might be exploited in practice.
The formulation of this characterization does not imply prejudice against those PMM
strategies that do allow for dependence on future outcomes. Rather, it should be
viewed as a step in refining the missingness mechanism taxonomy. Indeed, the classi-
fication based on MCAR, MAR (ACMYV), and MNAR is expanded by further splitting
MNAR in non-future dependent and future-dependent mechanisms. Important ex-
amples exist of mechanisms that do not satisfy NFD, such as the models proposed
by Wu and Bailey (1989). Also, Little (1995) allows for PMM where the missing-
ness mechanism depends on unknown random coefficients, implying a dependence on
future, possibly unobserved outcomes. Thus, our characterization enables one to se-
lect an appropriate missingness mechanism. If a dependence on an underlying latent
variable is deemed plausible, a shared-parameter model can be chosen, whereas if
missingness is believed to depend on current and past measurements, the proposed

family is appropriate.

5.5 Future Dependence

Within the selection model context as an analogue to the terminology before we
can define the NFD condition as “Missing Non Future dependent” (MNF) and the

formulation is as follows.

f(r :t|y1’ ’yT) = f(’f' :t|y1’ ’yt+1)’

or, alternatively, as

f(D=dly,---,yr) = f(D=dlys,- - ,ya)-

Taking into account the standard terminology as introduced by Little and Rubin
(1987) it can be helpful to note that MAR is a special case of MNF and that MNF is
a subclass of MNAR.
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In the PMM framework, we can now define the NFD condition as a new type of
identification restrictions termed “Non Future dependent Missing Value restrictions”
(NFMV) and here the formulation is as follows:

VtZ 2’v] <t-—1: f(yt|y1’ ,yt—lﬂ":j) = f(yt|y1’ sYe—1,T Z t— 1)
(5.30)

NFMYV is not a single set of restrictions, but rather leaves one conditional distri-
bution per incomplete pattern unidentified:

Flyelyn, -y, r =t — 1), (5.31)

In other words, the distribution (5.31) of the current outcome, given the previous
ones is unconstrained. A possible choice for this distribution is the one in agreement
with (5.30), in which case ACMV is obtained as a special case. On the other hand,
if (5.31) is chosen in line with either NCMV or CCMYV, then the combination of
this choice with (5.30) does not yield NCMV or CCMV overall, showing that these
restrictions are not consistent with MNF, as is clear from the following theorem.

Theorem 1 For longitudinal data with dropouts, MNF <— NFMYV.

The proof of this theorem is similar to the proof of Theorem 1 in Molenberghs,
Michiels, Kenward and Diggle (1998): The MNF assumption states

f(r :t|y1"" ’yT) = f(r = t|y1"" ’yt+1)
and the NFMV assumption reads
vt Z 2’v] <t-—1: f(yt|y1’ s Ye—1,T :]) = f(yt|y1’ sYe—1,T Z t— 1)

First, a lemma will be established.

Lemma 1 In a longitudinal setting with dropout, NFMV «<— Vt > 2,Vj <t —1:
f(yt|y1, s Y—1,T = ]) = f(yt|y1’ e ’yt—l)-

Note that this lemma assumes strictly one less identification than the corresponding
lemma in Molenberghs et al. (1998). Let us prove the lemma first.
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Take t > 2,7 < t—1, then NFMV leads to:
fyelyr, -+ ye—1)

t—2
= Zf(yt|y1’ sYt—1,T = ’L)f(’f' = Z) +f(yt|y1’ sYt—1,T Z t— 1)f(7' Z t— 1)
i=1

t—2
= Zf(yt|y1’ sYt—1,T :])f(’f' = Z) +f(yt|y1’ s Y—1,T :])f(’f' >t— 1)
i=1

t—2

= f(yt|y1""’yt—1’r:j) Zf(rzl)+f(7'2t—1)

i=1
= f(yt|y1’ ’yt—l’r:j)'

Conversely, again take ¢t > 2,7 <t — 1:

Fyelyrs - sy, r 2t =1 f(r >t —1)
t—2

= F@elynsvee) = > F@elyn, - s ye1,m = 0 f(r = 1)

T
N =

= @y, m-1) = D F@elyn, - ge-1)f(r =)

1=

= f(yt|y1"" ’yt—l) ll_ if(rzl)]

—

= f(yt|y1"" ,’yt—l,'f':j) ll_if(rzl)]

i=1

= f(yt|y1""’yt—l’r:j)f(rzt_l)-

This completes the proof of the lemma. We are now able to prove Theorem 1.

MNF = NFMV

Consider the ratio @ of the complete data density to the density involving only the
previous and current measurements. This gives, under the MNF assumption:

Fys, - yr)f(r =dlyr, -, Yig1)
Q: . :fyz 2""’yT|y1""’yi 1)
f(yl"" ’yi+1)f(r :Z|y1"" ’yi+1) ( * * )

(5.32)
Further, one can always write:

0 = FWite, - yrly, s yr =) (1, - vl = ) f(r =4)
f(yl"' "yi+1|r = ’L)f(’f' = Z)
= f(yit2, - y7ly1, - Y1, 7 =1). (5.33)
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Equating (5.32) and (5.33):
F@ivos 5 urlyss - s Y1, 7 = 1) = f(Wagas - yrlyn, - Yig1)-
(5.34)

Now, to show that (5.34) implies the NFMV conditions (5.30), we will proceed by
induction on . In case ¢t = 2, NFMV imposes no restrictions and the result trivially
holds.

Suppose by induction NFMV holds V¢t < i. We will now prove the hypothesis for
t = ¢+ 1. Choose j < 1, arbitrary but fixed. Then from the induction hypothesis and
Lemma 1, it follows that

indué:tion £

Vi<t—1<id—1:f(yelys, -, y-1,7 =J) Yely, - 1,7 >t —1)

lemma 1
= Flyelys, - 5 ye—1)-

Taking the product over ¢t = j + 2,--- , ¢ then gives

f(yj+2"" ’yi|y1"" s Yj+1,T :]) = f(yj+2"" ’yi|y1"" ’yj-‘rl)'
(5.35)

After integration over y;42,- -, yr, equation (5.34) leads to

f(yj+2" o ’yi+1|y1’ o ’yj—i-l’r = ]) = f(yj+2" o ’yi+1|y1" o ’yj-i-l)'
(5.36)

Dividing (5.36) by (5.35) and equating the left and right hand sides, we find that

firalys, - yor =4) = iy, w0)-
This holds Vj < ¢ — 1, and Lemma 1 shows this is equivalent with NFMV.

NFMV = MNF

Starting from the NFMV assumption and Lemma 1, we have

VE> 2,V <t—1:fyely,-  ve—1,r =3) = Fwelyn, -+ s ye—1).
(5.37)

We now factorize the full data density as
fly, - yr,r =1 = fly, - Y1, " = O F Wigo, - YT YL, - 5 Yig1,7 = 1)

T
= fly v =19 [ f@lyn - g1 =19).
t=i42
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Using (5.37), it follows that

fy, - syr,r =1) (5.38)
= flyn s ginlr =9 f(r =) ﬁ fyelyr, -+ ye-1)
= flyn s pinlr=9f(r= z);;; YTy, Y1)
= f(ylf(yz’i“'r;j)j(r =9 fln, ) F@irs syl gie)
_ fn f(y?ai+1|7' ;j)j(r =9ty )
= flr=ily,-- . yi)f (W1, 97) (5.39)

An alternative factorization of f(y,r) gives

f(yl" LY, T = Z) = f(’f' = i|y1’ o ’yT)f(yl" o ’yT)' (540)
It follows from (5.38) and (5.40) that
f(T=i|y1,"' ’yT) :f(T=Z|y1, ’yi—i-l)’

completing the proof of Theorem 1.

5.6 NFMYV Identifying Restrictions

For pattern ¢, the complete data density is given by

Ffeyrs o yr) = fe(ys - oue) Fe(yogts - ylyn, -5 0e)-

As before, the first factor is clearly identified from the observed data, while the
second factor is not. It is assumed that the first factor is known or, more realistically,
modeled using the observed data. Then, identifying restrictions are applied in order
to identify the second component. Let us outline how NFMYV restrictions can be

implemented:

e From the data, identify fi(y1,---,ye)-

e The user has full freedom to choose fi(ye41ly1,---,y:). Substantive conside-
rations can be used to identify this density. Or a family of densities can be

considered by way of sensitivity analysis.
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o Using (5.30), the densities fi(y;ly1, - ,¥;-1), (j > t+ 2) are identified. This
identification involves not only the patterns for which y; is observed, but also
the pattern for which y; is the current, the first unobserved measurement.

From the first and the second item, it follows that fi(y1,---,yet1) is identified
from modeling and choice. Next, NFMV states that

ft(ys|y1, e ’ys—l) = f(ZS—l)(ys|y1’ ey ys—l)’ (541)

for s=t+2,...,7T. Now, we can transform (5.41) as follows:

ft(ys|y1, e ’ys—l)
= f(Zs—l)(y8|y1""’y8—1)
Y ims 1 @ f5(U1,- - Ys)

T
Zj=s—1 ajfj(yl’ .. "ys—l)
T

- ¥ o fi(y1, .-, Ys—1)
- T
j=s—1 Zj=5_1 a;fi(yt, - Ys—1)

fj(y8|y1’ e ’ys—l)-

Thus, a general expression is:
T
Filusly, - - ys—1) = Z wsifiWslyt, - ys—1), s=t+2,...,T,
7=t (5.42)
with
Weq = ajfj(yl’ '--’ys—l)
s] T .
Zl=s—1 alfl(yl’ ""ys—l)

Choosing w,; different from the ones specified above yields missing data mecha-
nisms that do depend on future observations. In an integrated sensitivity analysis,
it can be envisaged that the impact of such departures on substantive conclusions
might be explored. NFMYV is promising for sensitivity analysis. Indeed, in the ge-
neral MNAR case, the conditional distribution of the unobserved measurements given
the observed ones needs to be determined by means of assumptions. Under NFMV,
only the conditional distribution of the first (“current”) unobserved outcome given
the observed ones needs to be identified by assumption. Thus, when MNF is deemed
plausible, one combines the flexibility of a broad class of models with a sensitivity
space that is reasonably easy to manage. In the special case of MAR, the condi-
tional distributions of the unobserved outcomes are completely identified by means of
ACMYV and there is no further room for sensitivity analysis.
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As an illustration, let us again consider the special case of three measurements
and three patterns. As we have seen before general identifying restrictions take the

following form:

fs(y,92,93) = f3(y1,92,93), (5.43)
Foyi,y2,93) = fa(yr,y2) f3(usly, v2), (5.44)
flynyz,ys) = filyy) [wha(yely) + (1 - w) fs(y2y)]

x f3(ys|y1, y2)- (5.45)

and we can completely identify f3(y1,y2,%3) from the data while fo(y1,v2,y3) can
be identified by one possible restriction only. Therefore, only the identification of
f1(y1,y2,y3) leaves room for choice. Setting w = 1 corresponds to NCMV, while
w = 0 implies CCMV. ACMYV corresponds to

_ s fa(y1)
asfe(yr) +asfs(yr)

(5.46)
For NFMV, we obtain:

f3(y1’y2’y3) = f3(y1’y2’y3)’
F2(y1, 42, 93) Fo(y1, y2)92 (yslyL, v2),
fi1(y1, y2,43) Fi(y1)gi(yalyr) [wge (yslyr, y2) + (1 — w) fa(yslyr, y2)], (5.47)

where the notation ga(ys|y1,y2) and g1(yz2|y1) is used to indicate a free choice by the
modeler. In contrast to 5.44), the mixture, weighted by w, is on the distribution of

F1(yslys, ¥2) = F>2)(ysly, y2)-

Explicitly,

_ a2 f2(y1, y2)
az fo(y1,y2) + asfa(yi, y2)
and hence, the full conditional can be written as:

o2 f2(Y1,¥2,¥3) + @3 f3(y1, ¥2,¥s)

a2 fo(y1,92) + asfa(yr, v2)
In case we opt for ACMYV for the two distributions that can be chosen freely, i.e.,
92(ysly1, y2) = Fs(ys|y1,y2) and g1(y2|y1) as in (5.44) with w as given by (5.46), it
is clear that (5.47)—(5.47) coincide with (5.43)—(5.45). Obviously, choosing the free
distributions to be either NCMV or CCMYV, does not imply that (5.47)—(5.47) as a
whole follow NCMV or CCMYV. In other words, this illustrates that in general NCMV
and CCMYV do not satisty the MNF definition.

f(22)(y3|y1, Y2) =
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5.7 The Behave Dataset

A linear mixed model (Verbeke and Molenberghs 2000) is fitted to the outcomes.
Effects considered in the model were, apart from treatment effect: age, time, inves-
tigator, and country, as well as 2- and 3-way interactions. From an initial model
selection, only main effects of age, time, time? and treatment group were retained.
The variance structure is modeled using a random subject effect, an exponential serial

correlation process, and measurement error.

We first consider the selection model approach. As in Diggle and Kenward (1994),
we combine the measurement model with a logistic regression for dropout with either
only an intercept (MCAR), also an effect for previous outcome (MAR), or even an
effect of the current possibly unobserved measurement (MNAR). The fitted average
profiles are plotted in Figure 5.21. The treatment effect is not significant, with p =
0.245 under MCAR. and MAR, and p = 0.262 under MNAR. Comparing the MAR,
and MNAR models, the likelihood ratio statistic is 5.4 on 2 degrees of freedom. While
this might be taken as some evidence for non-random dropout, such a conclusion is
strongly model dependent (Verbeke and Molenberghs 2000, Ch. 19). More reasonably
it can be taken as some evidence against this particular MAR model.

Next, we turn attention to the pattern-mixture strategies. The SAS procedure
MIXED was used for fitting these pattern-specific models.

Three families of identification strategies are considered:

e ACMV, which is equivalent to MAR and therefore also MNF.

o CCMV and NCMV are considered, as was done in Thijs et al. (2000) for a
different set of data. These mechanisms are incompatible with MNF.

o Two MNF mechanisms are considered. The first one, FD1, considers CCMV for
the conditional distribution of the current measurement, given the past. The
second one, FD2, considers NCMYV instead.

Focusing first on the overall, marginal treatment effect, we obtain the following
set of p values:
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Figure 5.21: Behave dataset, fitted average profiles using selection models.

ACMV : p = 0.0407
CCMV : p=0.0002 MNF1 : p=0.0413
NCMV : p=0.0024 MNF2 : p = 0.0245.

All p values are significant, in contrast to the selection model setting. Of course,
here we are considering the treatment effect, corrected for dropout pattern. Further,
even though all p values are significant, there is substantial difference between the
strategies. Mechanisms such as CCMV and NCMV, may be overly optimistic. The
three MNF mechanisms (ACMV, MNF1, MNF2) provide reasonably similar evidence.

Figures 5.22-5.24 graphically summarize the fit of these models. Clearly, the
identifying restrictions chosen have a strong impact, especially for the patterns with
earlier dropout. Of course, from Table 5.11 it is clear that the earlier patterns are
rather sparsely filled. It is striking to see that the MNF patterns are not all grouped
together.
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Table 5.11: Vorozole study, sample size per treatment arm and dropout pattern.

Pattern 123456 7
Treatment 1 4 5 16 3 9 6 71
Treatment 2 4 9 7 6 3 5 81
Treatment 3 12 4 15 9 5 3 67

5.8 Concluding Remarks

In conclusion we now have argued, in accordance with Thijs et al. (2000), that PMM,
with in addition identifying restrictions to specify the conditional distribution of the
unobserved measurements, given the observed ones in a given pattern, is a potentially
useful way to model incomplete longitudinal data. In particular, such restrictions
allow one to reflect carefully on the nature of the assumptions made. For example,
a particular set of restrictions, termed ACMYV, corresponds to MAR. Here, we esta-
blished a family of MNAR models, termed MNF (non-future dependent), which avoid
dependence of dropout on future, unobserved outcomes. Not only does this family
embed, again, MAR, it provides a sensibly yet wide space within which sensitivity

analysis can be conducted.

We believe that our approach can play a useful role, as a member of a collection
of sensitivity tools. Of course, a sensitivity analysis can be conducted within different
frameworks, and there are times where the setting will determine which framework is
the more appropriate one (for example Bayesian or frequentist), in conjunction with
technical and computational considerations. Draper (1995) has considered ways of
dealing with uncertainty in the very natural Bayesian framework and developments
in the missing value setting are ongoing. A thorough comparison between the various

frameworks will be interesting and worth undertaking in the future.

The SAS and GAUSS macros which have been used to carry out the multiple
imputation related tasks are available on the internet and therefore it has become
relatively simple with respect to computations to apply a similar type of analyzes to
any other dataset.
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Figure 5.22: Behave dataset, pattern-mizture models, fitted average profiles for each of
the five identification strategies are presented, the solid portion of the curves runs from
baseline until the last obtained measurement, while the extrapolated piece is shown in
the dashed line, treatment arm 1.
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Figure 5.23: Behave dataset, pattern-mizture models, fitted average profiles for each of
the five identification strategies are presented, the solid portion of the curves runs from
baseline until the last obtained measurement, while the extrapolated piece is shown in
the dashed line, treatment arm 2.
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Figure 5.24: Behave dataset, pattern-mizture models, fitted average profiles for each of
the five identification strategies are presented, the solid portion of the curves runs from
baseline until the last obtained measurement, while the extrapolated piece is shown in
the dashed line, treatment arm 3.



Chapter 6

Case Study

In this chapter we will discuss the Milk protein trial as introduced in Chapter 2 in
full detail. We will start by briefly reconsider the analyses done by Diggle and Ken-
ward (1994) and Kenward (1998) where a first attempt was made towards sensitivity
analysis. Thereafter we will apply our own methodology of local and global influence
and we will compare the results of both analyses in order to give an as complete as

possible overview of the sensitivity of the results to the model assumptions made.

6.1 Previous Work

Diggle and Kenward (1994) considered a measurement model similar to model 4.1
including separate intercepts for the barley (i), mixed (u2) and lupins (p3) groups,
and a common time effect () which is linear during the first three weeks and con-
stant thereafter. The covariance structure is described by a random intercept, an
exponential serial process, and measurement error. For example, for the barley diet

group:
Y = p + b + Bty I(ts; < 3) + wiy + 45,

where b; ~ N(0,d), the w;; have variance 72 and serial correlation p, and &;; ~
N(0,0?). The dropout model includes dependence on the previous and current, pos-
sibly unobserved, measurements. Since dropout only happens from week 15 onwards,
Diggle and Kenward (1994) chose to set the dropout probability for earlier occasions
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equal to zero. Thereafter, they allowed separate intercepts per time point, but com-
mon dependencies on previous and current measurements. Precisely, their model can

be expressed as follows. Equation (4.6) specializes to:

logit[g(ys,j—1, ¥i5)] = Yo + V1%i,5-1 + ¥2vis, (§ = 15,16,17,19).

To acknowledge the fact that dropout starts from week 15 onwards, the product in

(4.8) is over j = 15,...,n; instead of over j = 2,...,n;.

Diggle and Kenward (1994) found that the dropout model is non-random. In
view of the comments by Cullis (1994) and the sensitivity of conclusions to model
assumptions, great care is needed. Curran, Pignatti, and Molenberghs (1998) assessed
sensitivity of this conclusion by means of two alternative modeling strategies. First,
they acknowledged the possibility of ragged entry and a fixed termination data, rather
than more conventional dropout. To this end, the individual profiles were reversed
and right aligned. The conclusions thus obtained do not contradict those from Diggle
and Kenward (1994). Second, they considered dropout occasion as an (imperfect)
surrogate for paddock to which diet was assigned. This leads naturally to a stratified
analysis based on dropout occasion (weeks 15, 16, 17, or 19). In other words, a
pattern-mizture analysis (Little 1993, 1994) was conducted. One then obtains dropout
pattern specific diet effects, which can be combined to yield the marginal diet effects.
Again, these results were in good agreement with those from Diggle and Kenward
(1994). However, it is still possible that a set of observations is responsible for, e.g.,
conclusions about the dropout mechanism, in all analyses performed thus far. This

provides additional motivation for an influence analysis.

6.2 Sensitivity Analysis

We will now introduce two models which use the same measurement model as Diggle
and Kenward (1994) but different dropout models. This will allow us to illustrate
how the choice of dropout model can have an important impact on the substantial

conclusion.

A first dropout model is closely related to the one of Diggle and Kenward (1994)
who defined occasion-specific intercepts ; (j = 15,16,17,19), assumed common
slopes and set the dropout probability equal to zero at other occasions. We also
model dropout from week 15 onwards but we will keep the intercepts constant for
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occasions 15 to 19. Precisely, our first model contains three parameters (intercept
19, dependence on the previous measurement 41, and dependence on the current
measurement ), which produces the following version of (4.6):

logit[g(yi,j—1, ¥i5)] = Yo + Y1¥ij—1 + Yayi;. (6.1)

As in the Diggle and Kenward (1994) model, the product in (4.8) is over j = 15,...,n;
instead of over j = 2,...,n,.

Parameter estimates for this model under both MAR and MNAR, are listed in
Tables 6.1 — 6.4. A number of additional analyses, also presented in these tables,
will be discussed in section 6.2.4. The fitted model is qualitatively equivalent to the
model used by Diggle and Kenward (1994), who concluded overwhelming evidence
for non-random dropout (likelihood ratio statistic 13.9). In line with these results we

also could decide in favor of a non-random process (likelihood ratio statistic 14.59).

In our second dropout model we allow dropout to start from the second week. More
precisely, model (6.1) is retained, while the product in (4.8) is over j = 2,...,n;, in
agreement with the original definition. Careful reflection on the status of this model is
needed. While on the one hand it may seem a natural choice, given also the availability
of this model in standard software packages such as Oswald (Smith, Robertson, and
Diggle 1996), it may raise doubts since no dropout was observed during the first
14 weeks. Therefore, it is interesting to study this model and its impact on model

parameters as well as on the conclusions from an influence analysis.

The fitted model is listed in Table 6.5. A striking difference with the previous
analysis is that the MAR assumption is borderline not rejected (likelihood ratio sta-
tistic 3.63). Apparently, the onset of dropout is a major source of sensitivity, to be
explored further. As results from theory, the measurement model parameters do not
change under the MAR model, compared to those displayed in Tables 6.1 — 6.4. The
measurement model obtained under MNAR has changed only slightly.

Which of the two analyses is to be preferred is debatable and depends on sub-
stantive considerations also, rather than on statistical ones only. Recall that the first
analysis accounts for the post hoc observation that no dropout occurred prior to week
15. However, there is a, perhaps small, chance for the experiment to terminate in a
field prior to week 15, and our second model acknowledges this possibility. Neverthe-
less, should dropout occur prior to week 15 (e.g., when the experiment is repeated), it
is likely to occur at a lower rate than later in the sequence. The second model is not

able to acknowledge this, since it assumes a constant dropout rate, and hence may
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Table 6.1: Milk protein trial, maxzimum likelihood estimates (standard errors) of the
random dropout model, dropout starts from week 15 onwards, the entire set of data
is contrasted with several deletion schemes, (1) removal of #51, #59, and #68; (2)

removal of #1, #7, #38, #43, #51, #59, #65, #68, and #74.

RANDOM DROPOUT

Effect Par. all set 1 set 2
Measurement model:

Barley p1 4.147(0.053) 4.134(0.052) 4.132(0.053)
Mixed p2  4.046(0.052) 4.020(0.052) 4.042(0.053)
Lupins ps  3.935(0.052) 3.950(0.052) 3.957(0.053)
Time effect B -0.226(0.015) -0.221(0.015) -0.226(0.015)
Rand. int. var. d -0.001(0.010) -0.007(0.011) -0.005(0.010)
Meas. err. var. a2 0.024(0.002) 0.024(0.002) 0.023(0.002)
Ser. var. 72 0.073(0.012) 0.074(0.013) 0.069(0.012)
Ser. corr. p  0.152(0.037) 0.145(0.037) 0.152(0.039)
Dropout model:

Intercept Yo 17.87(3.15)  28.69(4.97)

Prev. meas. Y1 -6.02(1.00)  -9.39(1.58)

-2 loglikelihood 51.844 14.575 -43.894
Wald (diet) (2 d.f) 17.27 14.42 12.25
p value 0.0002 0.0007 0.0022

fail to provide an adequate description. The first model on the other hand, makes
the reasonable assumption that dropout is absent during the first period, and occurs
at an approximately constant rate thereafter. Therefore, this model should deserve
our preference. In any case, it is clear that there is an enormous sensitivity of the
results due to this model choice and hence substantial reflection on the structure of

the dropout process is necessary.

6.2.1 Global Influence

Global influence results are shown in Figures 6.1-6.4. They are based on fitting a
MNAR model for each cow deleted. The Cook’s distances for the first and the second
model are shown in Figures 6.2 and 6.4 respectively. The individual curves with

influential subjects highlighted are plotted in Figure 6.1 where subject #38 pertains
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Table 6.2: Milk protein trial, maximum likelihood estimates (standard errors) of the
random dropout model, dropout starts from week 15 onwards, the entire set of data
is contrasted with several deletion schemes, (b,m); barley and mized diets only; (b,1):
barley and lupins diets only; (m,l): mized and lupins diets only.

RANDOM DROPOUT

Effect Par. (b,m) (b,1) (m,1)
Measurement model:

Barley p1 4.163(0.059) 4.104(0.061) -
Mixed g2 4.062(0.058) - 4.071(0.058)
Lupins s - 3.803(0.060) 3.959(0.058)
Time effect B -0.232(0.018) -0.210(0.018) -0.235(0.018)
Rand. int. var. d  0.001(0.011) -0.003(0.018) -0.005(0.011)
Meas. err. var. a?  0.023(0.003) 0.023(0.003) 0.025(0.003)
Ser. var. 72 0.067(0.013) 0.081(0.021) 0.073(0.014)
Ser. corr. p  0.159(0.045) 0.128(0.046) 0.166(0.045)
Dropout model:

Intercept Yo 17.87(3.15)  28.69(4.97)  33.41(6.15)
Prev. meas. Y1 -6.02(1.00)  -9.39(1.58) -10.84(1.95)
-2 loglikelihood -14.365 29.516 76.801

Wald (diet) (2 d.f.) - - _

p value - - -

to the first model only.

There is very little difference in some of the Cook’s distance plots, when Figures
6.2 and 6.4 are compared. Precisely, CDy;, CDg;(7y), CD3;(8) are virtually identical.
The three others are similar in the sense that there is some overlap in the subjects
indicated as peaks, but with varying magnitudes. Subject #38 is influential on the
dropout measures CDo 33(v,w), CDs33(¢), and CDy3s(w). This is not surprising
since #38 is rather low in the middle portion of the measurement sequence, while it is
very high from week 15 onwards. Therefore, this sequence is picked up in the second
analysis only. By studying plots with the evolution of the parameters separately
during the deletion process (not shown here) we can conclude that subject #38 has
some impact on the serial correlation parameter while #65 is rather influential for
the measurement error. In view of the fairly smooth deviation from a straight line of
the former and the abrupt peaks in the latter, this is not a surprise.



140 Chapter 6 : Case Study

Table 6.3: Milk protein trial, maximum likelihood estimates (standard errors) of the
non-random dropout model, dropout starts from week 15 onwards, the entire set of
data is contrasted with several deletion schemes, (1) removal of #51, #59, and #68;
(2) removal of #1, #7, #38, #43, #51, #59, #65, #68, and #74.

NON-RANDOM DROPOUT
Effect Par. all set 1 set 2

Measurement model:

Barley i 4.152(0.053) 4.138(0.052) 4.136(0.053)
Mixed p2  4.050(0.052) 4.022(0.051) 4.046(0.053)
Lupins ua 3.941(0.052) 3.954(0.052) 3.961(0.053)
Time effect B -0.224(0.015) -0.219(0.015) -0.225(0.015)
Rand. int. var. d 0.002(0.009) -0.004(0.010) -0.002(0.010)
Meas. err. var. a? 0.025(0.002) 0.025(0.002) 0.024(0.002)
Ser. var. 72 0.067(0.011) 0.070(0.012) 0.064(0.011)
Ser. corr. P 0.163(0.039) 0.151(0.039) 0.162(0.042)
Dropout model:

Intercept Yo 15.64(3.564)  25.30(5.06)  30.87(6.63)
Prev. meas. Y1 -10.72(2.02) -11.99(2.26) -15.06(3.31)
Curr. meas. w =12 5.18(1.49) 3.56(1.60) 4.84(2.12)
-2 loglikelihood 37.257 9.620 -50.210
Wald (diet) (2 d.f) 17.31 14.55 12.27
p value 0.0002 0.0007 0.0022
G? for MNAR (1 d.f) 14.59 4.96 6.32
p value 0.0001 0.0260 0.0120

Figure 6.3 considers the C'Dy; measures for the diet group contrasts. While Figure
6.2 revealed some influence on the measurement model parameters, it is clear this is
not affecting the diet contrasts. Of course, there is virtually no influence coming from
the cows in the diet group which does not contribute to the corresponding contrast.

Based on our second model all forms of CDsy;(.), whether based on the entire
parameter vector =, the dropout parameters (19, 1,w), or subsets of the latter,
indicate that subjects #51, #59, and #68 are influential. In contrast, C'Dq; which
is based directly on the likelihood, does not reveal these subjects, but rather subject
#65 jumps out. Thus, while the former three subjects have a substantial impact on
the parameter estimates, they do not change the likelihood in a noticeable way. From
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Table 6.4: Milk protein trial, maxzimum likelihood estimates (standard errors) of the
non-random dropout model, dropout starts from week 15 onwards, the entire set of
data is contrasted with several deletion schemes, (b,m); barley and mized diets only;
(b,1): barley and lupins diets only; (m,l): mized and lupins diets only.

NON-RANDOM DROPOUT

Effect Par. (b,m) (b,1) (m,1)
Measurement model:

Barley i 4.166(0.059) 4.112(0.061) -
Mixed g2 4.064(0.058) - 4.075(0.058)
Lupins ua - 3.901(0.060) 3.965(0.058)
Time effect B -0.230(0.018) -0.208(0.018) -0.232(0.018)
Rand. int. var. d 0.002(0.010) 0.004(0.016) 0.001(0.010)
Meas. err. var. a? 0.024(0.003) 0.024(0.003) 0.026(0.003)
Ser. var. 72 0.064(0.012) 0.072(0.017) 0.065(0.012)
Ser. corr. P 0.163(0.046) 0.143(0.051) 0.183(0.049)
Dropout model:

Intercept Yo 23.11(5.45)  12.70(4.15)  15.25(4.45)
Prev. meas. Y1 -10.74(2.34) -11.02(2.65) -11.20(2.64)
Curr. meas. w =12 3.10(1.75) 6.31(2.14) 5.68(1.84)
-2 loglikelihood -17.459 17.196 64.805
Wald (diet) (2 d.f) - - -

p value - - -

G? for MNAR (1 d.f) 3.00 1232 12.00
p value 0.0786 0.0004 0.0005

a plot of the dropout parameter estimates for each deleted case (not shown here) it
is very clear that upward peaks in QZO(_i) for subjects #51 and #59 are compensated
with downward peaks in &(_;. An explanation for this phenomenon can be found in
the variance-covariance matrix of the dropout parameters (correlations shown in the

lower triangle):

8.22 043 —2.85
(0.14) 114 —1.18
(-0.71) (—0.79)  1.94

From a principal components analysis it follows that more than 90% of the variation
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Table 6.5: Milk protein trial, mazimum likelihood estimates (standard errors) of ran-
dom and non-random dropout models.

Effect Parameter MAR MNAR

Measurement model:

Barley 5t 4.147 (0.053) 4.152 (0.053)
Mixed iz 4.046 (0.052) 4.050 (0.052)
Lupins u3 3.935 (0.052) 3.941 (0.052)
Time effect 8 -0.226 (0.015) -0.224 (0.015)
Random intercept variance d -0.001 (0.010) 0.002 (0.009)
Measurement error variance a? 0.024 (0.002) 0.025 (0.002)
Serial variance T2 0.073 (0.012) 0.067 (0.011)
Serial correlation P 0.152 (0.037) 0.163 (0.040)
Dropout model:

Intercept Yo 10.483 (2.010) 6.477 (2.867)
Previous measurement P1 -4.326 (0.651) -5.917 (1.069)
Current measurement w = P2 2.732 (1.396)
-2 loglikelihood 194.316 190.691

is captured by the linear combination 0.93%y — 0.37w. Hence, there is mass transfer
between these two parameters, of course with sign reversal, with little impact on the
likelihood value, and little effect on the MAR, parameter 1.

Let us now turn to the subjects which are globally influential. A first and common
reason for those subjects to show up is the fact that they all have a rather strange
profile. Remember the overall trend to be sloping downwards during the first three
weeks and constant thereafter. Subject #65 appears with large C'Dgs 1 and large
CD5(8). The reason for this can be found in the fact that its profile shows extremely
low and high peaks. Subjects #51, #59 and #68 on the other hand only show large
values for C Dy (1,w), C Dy (), C Da(w). This means that these subjects are influential
for the dropout parameters. For subject #51 this can be explained by the fact that it
drops out in spite of the rather high profile. Subjects #59 and #68 on the contrary,
stay in the experiment though they both have rather low profiles.
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Figure 6.1: Milk protein trial, individual profiles, with globally influential subjects
highlighted, dropout modeled from week 15.

6.2.2 Local Influence

Local influence plots and individual profiles, with the influential subjects highlighted,
for the first model, respectively, are depicted in Figures 6.5-6.8. Corresponding graphs
for our second model are shown in Figures 6.9-6.12. It is slightly easier to discuss
results of the second model up front and then compare them to the first model. Two
versions are considered, based on two equivalent forms of the dropout model linear

predictor
Yo + V1Y j—1 + Yavys; = Ao+ M¥ii—1 + A2 (Yij — Y j—1)- (6.2)

The standard analysis, corresponding to the left hand side, is termed raw analysis,
while the right hand side refers to an incremental parameterization.

Observe that the plots for C; and C;() are virtually identical in Figure 6.5. This
is due to the relative magnitudes of the 1 and 6 components. Profiles #51, #59,
and #66—+#68 are highlighted in Figure 6.10. An explanation for the influence in
is found by studying (4.28) in more detail. Let us therefore simplify this expression
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Figure 6.2: Milk protein trial, index plots of CDy;, CDs;(7y), CDy;(6), CDa;(¢p,w),
CDy;(v), CDsy;(w), dropout modeled from week 15.

to
F(y) =y’9(1—g), (6.3)

which is based on the assumption that previous and current measurements are ap-
proximately equal. Given estimates for 1 it is easy to determine numerically when
this function is maximal. Apparently, for 1, and 1, as in Table 6.5, the maximum
is obtained for y = 2.51, exactly as seen in the influential profiles, which are all in
the lupins group (Figure 6.10). Further note that there is some agreement between
the locally and globally influential subjects though there is no compelling need for
the two approaches to be identical (#51 appears in different influential components
in the two approaches). Indeed, while global influence lumps together all sources of
influence, our local influence approach is designed to detect subjects which, due to
several causes, tend to have a strong impact on w and therefore on the conclusion
about the nature of the dropout mechanism.

Observe that one factor in (6.3) is the square of the response. This is a direct
consequence of our raw parameterization of the dropout process, the logit of which is
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Figure 6.3: Milk protein trial, index plots of CDa; (11— p2), C D2 (11 —ps), CDa;(p2—
1), dropout modeled from week 15.

in terms of the previous and current outcomes, to which no transformation is applied.
Molenberghs et al (1999) argued that, since two subsequent measurements are usually
positively correlated, it is not unusual for both of them to be high, and suggested to
reparameterize the dropout model (6.1) in terms of the increment, i.e., y;; is replaced
by 45 — yi,j—1. This is related to the approach of Diggle and Kenward (1994) who
reparameterized their dropout model in term of the increment just introduced and
the size (the average of both measurements). Even though the raw and incremental
parameterization in (6.2) are equivalent for model fitting purposes, Molenberghs et
al (1999) showed that they lead to different perturbation schemes of the form (6.1).
Thus, local influence is now focusing on a different set of parameters and one should
not expect it to give the same answer. Therefore, it is crucial to guide the parame-
terization by careful substantive knowledge. In a sense, dependence on the increment
is most dramatic since at the time of dropout there is no information about the in-
crement, whereas size can be assessed reasonably well from Y ;_1, especially if the
correlation is sufficiently high. The results of this analysis are presented in Figure
6.11 and the most influential profiles are highlighted in Figure 6.12. A slightly dif-
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Figure 6.4: Milk protein trial, index plots
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of CDy;, CDaj(7y), CD2;(8), CDoi(v,w),

CDy;(v), CDsy;(w), dropout modeled from week 2.

ferent but overlapping set of profiles is responsible for the influence now. The most
important feature is that the influence is very minor. The components of the direction

of maximal curvature h,,, shows virtually no peaks.

Finally, we will compare both models. The direct-variable results found in Figure
6.5 agree fairly well with those in Figure 6.9, the differences being the absence of #66
and #67 and the appearance of #43. The latter profile is extremely low at the end
of the period, where dropout is modeled, and therefore yields a large value for (6.3).
For #66 and #67, there is a logical explanation for their disappearance. Indeed,
these profiles are very low during the first part of the experimental period, in spite of
which they do not drop out. However, during the latter part, their profile is still low
and they drop out, which is totally plausible behavior and hence their influence was
marked in the second but not in this analysis.

For the incremental analysis, there is a larger discrepancy between both models as
one can notice from comparing Figures 6.7 and 6.11. While the direction of maximal
curvature still shows no unusual subjects, C; shows somewhat different subjects to be
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Figure 6.5: Milk protein trial, index plots of C;, C;(0), Ci(8), Ci(a), Ci(vh), and
of the components of the direction Ry . of mazimal curvature, dropout modeled from
week 15.

influential. Precisely, subjects #7, #51, and #74 are highly influential for the first
model whereas subjects #51 (again), #66, #67 and #73 are the ones detected with
the second model. It is noteworthy that #51 appears as the subject with largest C;
and C;(8) for the first model, indicating that the measurement model influence C;(6)
is of the same order of magnitude as the dropout model influence C;(3), which is in
contrast to the other analysis. Both #7 and #74 are on average not particularly low
profiles, but they are among the lowest ones during the last month of the experiment
and, while there are some others with the same feature, these two have a low overall

level, but a high increment, which is very unusual.

6.2.3 Overview

Table 6.6 summarizes the subjects which are found to be influential in the analyses
performed. While it can be argued that the various influence analyses serve different

purposes, it is of some importance to distinguish between those subjects who are



148 Chapter 6 : Case Study

Milk dataset, Raw data, Barley Milk dataset, Raw data, Mixture
Dropout from week 15 Dropout from week 15
4.8 4.8
4.47 4.4
4.0 4.0

Response
w
&2
Response
w
[0

3.2 3.2
2.8 2.8
24717 3 5 7 9 N 1B B 7 19 4717 3 5 7 9 1 B 1B W 19
Time Time
Milk dataset, Raw data, Lupins
Dropout from week 15
4.8

Response

Figure 6.6: Milk protein trial, individual profiles, with locally influential subjects high-
lighted, dropout modeled from week 15.

influential overall and others which turn up in one or a few analyses. Cow #51 is
highlighted in all six analyses and cows #59 and #68 show up 4 times, all others
being seen three times or less. Clearly, #51 shows up unambiguously in the global
influence plots and it yields the highest C;(8), C;(8) and C;(«) values in the local
influence analysis, even though one might argue that in some local influence plots
it is closely followed by slightly lower peaks. Inspecting its profile more closely, we
conclude that it deviates from the typical profile in a number of ways. First, it is
among the highest profiles during the period of initial drop, whereafter it is fairly low
during the first half of the period, followed by a period of almost linear increase until
the end of the study. The other two, #59 and #68, are on average the lowest profiles,

not only within their group, but overall.

Whereas global influence, as stated before, starts from deleting one subject com-
pletely, local influence only changes the dropout process for one subject from random
dropout to non random dropout. Because of the completely different approach there is
no need for both methods to yield similar results. Though by looking at the influential
subjects for all cases studied above we notice some overlap.



Chapter 6 : Case Study 149
Ci Ci®
0.0020 0.0018 #51
#
7 #51 #74
0.0015 0.0012
0.0010 0.0008
0.0005 0.0004
0.0000 10 20 30 40 50 60 70 go 0.0000 g 10 20 30 40 50 60 70 80
Cigl Cila)
0.00024 #51 0.0018
#51
0.00018 D.0012
0.00012 0.0008
0.00006 0.0004
0.00000 g 10 20 30 40 50 60 70 go 0.0000 g 10 20 30 40 50 60 70 80
City) Nmax,i
0.0020 e
0.0015 #7 #74 0s
0.0010 00 M‘MAAVAAQVQA’Q
0.0005 -05
0.0000 10 20 30 40 50 60 70 80 109 10 20 30 40 50 50 70 80

Figure 6.7: Milk protein trial, index plots of C;, C;(0), Ci(B), Ci(a), Ci(vh), and
of the components of the direction Ry . of mazimal curvature, dropout modeled from

week 15, incremental analysis.

Table 6.6: Milk protein trial, summary of influential subjects.

Drop From Week 15

Drop From Week 2

Subject Global Loc.(Raw) Loc.(Inc) Global Loc.(Raw) Loc.(Inc)
1 * *
7 *
38 *
43 *
51 * * * * * *
59 * * * *
65 * *
66 * *
67 * *
68 * * * *
73 *
*

74
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Figure 6.8: Milk protein trial ,individual profiles, with locally influential subjects high-
lighted, dropout modeled from week 15, incremental analysis.

6.2.4 Deleting Selected Subgroups

Focusing on the analyses where dropout is starting from week 15 onwards, we can
explore the impact of a group of influential subjects further by removing such a group
from the data. We define two sets to be removed. The first one consists of #51,
#59, and #68, i.e., those subjects that are found to be influential at least twice (see
Table 6.6). The second set consists of all subjects found to be influential: #1, #7,
#38, #43, #51, #59, #65, #68, and #74. Results are given in Tables 6.1 — 6.4.
Clearly, the impact on the parameter estimates and their standard errors is relatively
small for the measurement model parameters, but is much larger for the dropout
model parameters. This is reflected in the likelihood ratio test for MNAR. Indeed,
while this test is significant in all cases, removing the three most influential subjects
seriously reduces the evidence for non-random dropout. Thus, the strong evidence for
MNAR, stemming from the original analyses, may well have been an overstatement.

Let us study the impact on the measurement model parameters further. An im-
portant research question is directed towards differences in diet. To this effect, a two
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Figure 6.9: Milk protein trial, index plots of C;, C;(0), Ci(B), Ci(a), Ci(vh), and
of the components of the direction Ry . of mazimal curvature, dropout modeled from
week 2.

degree of freedom Wald test is computed. We observe little or no difference between
the two analyses (MAR and MNAR) for a given deletion scheme, although there is
somewhat of a reduction of the evidence when removing sets of subjects. However,
these differences do not change the magnitude of the evidence.

Further, we can study the impact of an entire diet group by confining the analyses
to two out of three groups. This is done in Tables 6.2 and 6.4. The impact of the
lupins group on the dropout mechanism is clear in this respect. Indeed, in the analysis
where lupins is removed, the evidence for non-random dropout is non-significant. It
is reassuring that this group contains two of the most influential subjects: #59 and
#68 (#51 belongs to the mixed group).
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Figure 6.10: Milk protein trial, individual profiles, with locally influential subjects
highlighted, dropout modeled from week 2.

6.3 Concluding Remarks

Since the model of Diggle and Kenward (1994) in general, and its application to the
milk protein trial in particular, has received considerable criticism, we have argued it
is useful to perform a sensitivity analysis. To this end, we used the complementary
methods of local (Verbeke et ol 1998) and global influence (Chatterjee and Hadi
1988). We argue that influential subjects can have a large impact on the substantive
conclusions, especially in the context of selection models for incomplete data, due to
the well known sensitivity to model assumptions, and therefore formal tools for their

detection are to be welcomed.

We introduced two different models both based on the one used by Diggle and
Kenward. The first one models dropout from week 15 onwards. A second one allows
dropout starting from week 2. When dropout is based on the last 5 weeks, the model
fitting results are, as expected, very close to those of Diggle and Kenward (1994), with
a highly significant indication for non-random dropout. When the dropout model is
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week 2, incremental analysis.

based on the entire period, there is little evidence for non-random dropout. More-
over, influential subjects in the two approaches are entirely different. Both analyses
concentrate on behavior in the period during which dropout is modeled. The latter
indicates that the choice of period to which dropout applies is crucial.

Finally, we compared the direct variable analysis with an incremental one where
dropout depends on the difference between the current and previous measurement.
Again, each analysis leads to different subjects to be influential indicating that one
should carefully discuss which analysis is preferable. While both model formulations
in (6.2) are equivalent, they lead to a different influence analysis, simply because
the parameters at which the influence is targeted are different. Which one is chosen
may depend on substantive considerations as well as on the observation made by
Molenberghs et al (1999) that the parameter of Y; ;_1 is the most efficiently calculated
in the incremental model, provided 1[11 and 1212 are negatively correlated. The latter
condition is satisfied in many longitudinal applications, as was already noted by Diggle
and Kenward (1994).
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Figure 6.12: Milk protein trial, individual profiles, with locally influential subjects

highlighted, dropout modeled from week 2, incremental analysis.

Clearly, the influence analyses performed here are not the only ones possible. For
example, in local influence one may study different perturbation schemes. However,
the ones considered here focus in a clear way on the impact of the informative dropout
parameter and lead to computationally very tractible expressions hereby avoiding the

need for cumbersome integration.

In order to have more formal rules to decide whether a subject is clearly influential,
clearly not influential, or borderline, additional research is required. Presently, such
rules of thumb as exploring the, say, 5% most influential subjects in more detail can

be used.



Chapter 7

Drawing Conclusions Beyond

Dropout

In the previous chapters we have discussed several ways to consider dropout in the
modeling process as well as to the major concern about the fact that models are often
based on strong assumptions concerning the exact process of dropout. Precisely be-
cause of this latter reason, there has been a growing awareness of the need for methods
that investigate the sensitivity of the results with respect to the model assumptions
(Little 1994, Rubin 1994, Laird 1994, Fitzmaurice, Molenberghs and Lipsitz 1995, and
Molenberghs, Goetghebeur and Lipsitz 1998) and several proposals have been made
to deal with missing data using selection models, Pattern-mixture models and shared
parameter models. A general concensus has emerged that, where all three modeling
strategies need very strong and untestable assumptions, in the pattern-mixture frame-
work it is clearer what assumptions are to be made and therefore the pattern-mixture
models are quoted as “more obvious models” (Glynn, Laird and Rubin 1986, Little
1993, 1994, Hogan and Laird 1997). Next to this discussion concerning sensitivity
there is another potentially important issue in all modeling frameworks, one impli-
citly (selection modeling, shared parameter modeling) or explicitly (pattern-mixture
modeling) imputes data and draws conclusions beyond the time of dropout. However,
in dealing with quality of life data, it is thought to be useless to take into account time
points beyond dropout time when dropout might be due to death. In this chapter we

will tackle this problem and we propose some new approaches which will be applied
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to the vorozole dataset.

7.1 Time Reversal

Since several studies are specifically interested in what happens just prior to dropout
it might be a simple but effective solution to reverse the time period of each patient in
a sense that time of dropout is considered as a fixed point in time and the investigator
is able to have a general idea about findings prior to dropout.

To illustrate this idea we will consider the vorozole dataset. In the original time
scale patients are measured 1 month after they entered the study and then starting
from month 2 bi-monthly until month 44. Since all patients were followed until death
only few patients are observed at the last time points and therefore we will consider
only data prior to month 30. In reversing the time scale we must take into account
the fact that the time interval between the first and the second measurement is only
one month while elsewhere this is two months. Therefore the reversed timescale will
have a time interval of one month between the last and the previous measurement
prior to dropout where dropout here is the actual starting point of the patient.

We will now first analyze the vorozole data using a selection model. For the
linear mixed model we use fixed effects time, time?, treatment group and baseline
value and an autoregressive correlation structure. The dropout model will be fitted
assuming MAR and MNAR and both can be compared. The results are given in
Table 7.1. Using the likelihood-ratio test one might conclude the dropout mechanism
to be MNAR. Taking into account the fact that this is actually the starting point of
the patient which should be random this conclusion is strange. On the other hand,
ongoing simulations studies are showing that the real distribution of this likelihood
ratio statistic based on unobserved measurements is not to be interpreted as a true

likelihood ratio statistic and therefore need to be treated with care.
Secondly we fit a pattern mixture model using the three types of identification

restrictions (CCMV, NCMV and ACMV) as described in Thijs et ol (2001). The
main idea is to combine information available to impute the missing observations.

The method can be described as follows

(1) We fit a linear mixed model per pattern and use the same model as in de

selection framework.
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Table 7.1: Mazimum likelihood estimates (standard errors) of random and non-

random dropout models, fitted to the Vorozole data.

Effect Par.

MAR

MNAR

Measurement model:

Intercept Bo
Time 81
Treatment B2
baseline value B3
Time? effect Ba
Meas. err. o?
Autoregressive AR(1)

Dropout model:

Intercept o
Prev. meas. 1
Curr. meas. P1

35.5077 (3.6769)
1.5586( 0.2207)
-1.3747( 1.1761)
-0.3552( 0.0301)
-0.0481( 0.0091)
241.4754(11.2979)
0.6962( 0.0161)

-1.2328( 0.0572)
-0.0077( 0.0035)

34.8704( 4.0145)
2.8706( 0.2344)
-0.5853( 2.6441)
-0.3816( 0.0308)
-0.0719( 0.0090)
269.6956(13.4729)
0.6656( 0.0180)

-2.4507( 0.2117)
-0.1008( 0.0103)
0.1351( 0.0138)

-2 loglikelihood

8224.9339

8189.0928

(2) Based on these model-parameters and the choice of identification restrictions

we create 5 new completed datasets.

(3) These new datasets are then analyzed again per pattern.

(4) The results per pattern and per imputed dataset can finally be combined using

multiple imputation methodology from Schafer (1997) as introduced in Section

5.4.2.

Following this strategy we can draw conclusions concerning the overall treatment

effect for all three types of identification restrictions. An overview is given in Table 7.2

and there we can see that in all three cases there is no significant treatment effect. The

mean profiles per pattern and per restriction are shown in Figures 7.1-7.3 and also

here one notices rather small difference between the three identification restrictions

and between the two treatment groups.
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Figure 7.1: Vorozole dataset, plots of mean profiles over reversed time are presented
using the CCMYV restrictions, the solid portion of the curves runs from the last 0b-
tained measurement until the baseline measurement, while the extrapolated piece is
shown in dashed type.

7.2 Accelerated Failure Time Models

A second approach is based on the idea that in medical research one could consider
every patient to have some internal time axis. In order to stretch this life-time of
every patient to a common time axis we can make use of accelerated failure time

models and we can write such a model as follows.
log(T) = ap + a*A(U, V) +¢

with continuous and categorical covariate vectors U and V and error term ¢ ~
logF(2a,2b) (Log — F Accelerated Failure Time model). Using the right choice of de-
grees of freedom for the F-distribution also well known error distributions as Weibull,
generalized gamma, log-normal, log-logistic,... are included. The combination of this
model with a general location model to describe a survival process is described in Cho
and Schenker (1999). Similar ideas to describe the time of dropout can be used in



Chapter 7: Drawing Conclusions Beyond Dropout 159

Megestrol Vorozole

600
600

400
400

200
200

—200
-200

o — o -
g L L L L L L L g L L L L L L L
o 4 8 1”2 1. 20 24 28 32 T a 4 a 12 15} 20 24 28 32

Figure 7.2: Vorozole dataset, plots of mean profiles over reversed time are presented
using the NCMYV restrictions, the solid portion of the curves runs from the last 0b-
tained measurement until the baseline measurement, while the extrapolated piece is
shown in dashed type.

combination with a linear mixed model to describe the measurement process.

A possibility is to rescale this life-time to a 0 — 1 interval using a acceleration

factor. The model mentioned above can now be rewritten as follows.

log(T;) = ao+o1X;+er,
ti;
Y, = 60+61Xi+62%+6Y-

In doing so we still have to be careful because we make an underlying assumption that
all patients drop out of the study due to death and this may not be the case. When
other reasons are present or some profiles are censored we still miss some relevant
information and possible solutions to deal with this problem are topic of further
research. Finally we can think of another approach by combining both the principle
of the accelerated failure time and time reversal. Again the latter idea is a topic of
further research.
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Figure 7.3: Vorozole dataset, plots of mean profiles over reversed time are presented

using the ACMYV restrictions, the solid portion of the curves runs from the last 0b-

tained measurement until the baseline measurement, while the extrapolated piece is

shown in dashed type.

Finally we think that also shared parameter models as introduced in Section 3.2.2

can yield some extra insight in this problem and we would like to consider this ap-

proach in the future. In conclusion we believe that the methods described above can

give new perspectives to handling missing data without having to impute data in a

senseless way. The results listed here are already indicating that these methods can

be performed successful and we hope that future research will be as promissing.
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Table 7.2: Vorozole dataset, overview of pattern mizture methodology.

Treatment effect per pattern

CCMV NCMV ACMV
Pattern = 1 13.500 1.360 4.386
2 13.331  0.835 7.645
3 12.725  0.455 6.922
4 11.133  0.368 6.638
5 9.166 -0.312 4.341
6 8.973 0.827 1.969
7 8.047 2119 7.244
8 11.166  2.630 8.323
9 4429 -1.155 4.780
10 6.169 -1.379 5.110
11 10.453  5.290 10.525
12 2.315 -2.230 -1.120
13 9.927 9.068 10.978
14 -5.645 -8.268 -6.335
15 0.000  0.000 0.000
16 9.495 8.934 9.828
F-statistic for treatment  1.552  0.783 1.703
P-value for treatment 0.102 0.706 0.048







Chapter 8

General Conclusion

In this final chapter we will briefly reflect on the methodology introduced in the
previous chapters and we will mainly discuss possible extensions as well as topics of
ongoing and future research. It is clear that we believe our methods to be a first step

in the direction of a more formal sensitivity analysis.

As already stated in Chapters 4 and 6, local and global influence tools are very
useful and easy to apply but on the other hand they incorporate a wide range of
possible extensions which we will briefly summarize here. From the results of the
Milk Protein Trial we have seen that the overlap of influential subjects revealed by
local and by both techniques although not expected, is rather large. For this reason
we may believe that both techniques are valuable because they confirm each other
therefore both local and global influence are considered as complementary tools within
the scope of a full sensitivity analysis. Taking this into account it can be a broad
topic of further research how we might combine general sensitivity tools within the

selection modeling framework.

Within the influence tools and more specific local influence, we also indicated some
possible extensions. While we have applied local influence tools (Cook 1986, Lesaffre
and Verbeke 1997) to a rather specific selection model for continuous data as pre-
sented in Diggle and Kenward (1994) one could aim to develop similar tools for other
model families. Currently also categorical data are being considered using different
model families as the one introduced by Baker, Rosenberger and Dersimonian (1992),
or the Dale model described in Molenberghs and Lesaffre (1994) and Molenberghs,

163



164 Chapter 8 : General Conclusion

Kenward and Lesaffre (1997). In particular, we have shown how the impact of small
perturbations around the null model of missing at random will affect the model pa-
rameters and how these specific influence measurements can be interpreted. Again
we found some interesting routes for further exploration. First, we can discuss the
perturbation scheme chosen here because it is not the only one possible. We already
noticed that a direct variable or an incremental variable notation can yield important
differences and although we did not report on this we also have looked at a possibility
with a double omega notation leading to nice interpretable results. It therefore is
clear that this field is not fully explored. Secondly once we have calculated these in-
fluence measurements we still did a rather ad hoc selection of the so called influential
subjects. One might want to investigate the influence measurements closer in order to
determine some distributional characteristics or specify a formal test to spot influen-
tial subjects. Finally we only concentrated on the influence on the model parameters
but one might be interested in the influence on specific test statistics. Depending on
which statistic is of interest this can be reached by reformulating the model (Wald

Statistics) or it can be necessary to develop a new variation of influence tools.

All previous extensions still pop up within influence analysis for selection models
but can be easily expanded to other frameworks as pattern-mixture models. Fur-
thermore the comparison between selection models and pattern-mixture models can
also be fruitful in performing a sensitivity analysis. A valuable tool in this compari-
son according to us might be the random effects model where specific choices of the
random effect also incorporate selection models and pattern-mixture models in one
single framework as extremes. This actually is just a wild thought and further re-
search might explain whether this is a possible approach or not and if so a general
influence methodology can be developed.

Finally concerning the pattern-mixture models we have considered several strate-
gies and again by contrasting these strategies one obtains a range of conclusions rather
than a single one, which provides insight into the sensitivity to the assumptions made.
Especially with the identifying restrictions, one has to be very explicit about the as-
sumptions and moreover this approach offers the possibility to consider several forms
of restrictions. Special attention should go to the ACMYV restrictions, since they
are the MAR counterpart within the pattern-mixture context. The identifying re-
strictions strategy provides further opportunity for sensitivity analysis. Indeed, since
CCMYV and NCMYV are extremes for the w vector, it is very natural to consider the

idea of ranges in the allowable space of w. Clearly, any w which consists of non-
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negative elements that sum to one is allowable, but also the idea of extrapolation
could be useful, where negative components are allowed, given they provide valid
conditional densities. This idea of ranges can also be explored in future research.
Furthermore identifying restrictions is a potentially useful way to model incomplete
longitudinal data and such restrictions allow one to reflect carefully on the nature of
the assumptions made. While a particular set of restrictions corresponds to MAR
we now established a family of MNAR models which avoid dependence of dropout
on future, unobserved outcomes. Not only does this family embed, again, MAR, it
provides a sensibly yet wide space within which sensitivity analysis can be conducted.
If a dependence on an underlying latent variable is deemed plausible, afore mentioned
shared-parameter models can be chosen but then again further research is required.

The SAS and GAUSS macros which have been implemented to carry out the sen-
sitivity analysis based on local and global influence as well as the multiple imputation
related tasks are available from the internet but are written on a rather ad hoc basis.
Here it might be an interesting option the contact computer scientists dealing with
the development of similar macros within these software packages.
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Samenvatting

In een longitudinale (klinische of epidemiologische) studie of experiment wordt een
individu herhaald gemeten in de tijd. Het is niet ongebruikelijk dat sommige meet-
reeksen vroegtijdig afgebroken worden om redenen buiten de controle van de onder-
zoeker (de patiént verhuist, weigert verdere medewerking omdat hij/zij vindt dat het
middel niet werkt of te veel nevenwerkingen heeft, enz.). In deze situatie spreekt
men van dropout. In de praktijk wordt jammer genoeg nog steeds op een zeer ad
hoc manier gepoogd het probleem van onvolledige gegevens op te lossen, zoals het
zich beperken tot de volledige meetreeksen (complete case analysis) of, erger nog,
het invullen van de ontbrekende gegevens (imputation). De gevaren hiervan worden
onderstreept in Molenberghs, Bijnens en Shaw (1997).

Om hieraan tegemoet te komen is het noodzakelijk van dropout expliciet in het
statistisch model op te nemen en er is dan ook recent veel werk verricht m.b.t. mo-
delbouw voor onvolledige gegevens (Kenward, Lesaffre, en Molenberghs 1994; Michiels
en Molenberghs 1995, 1997; Molenberghs, Michiels, Kenward en Diggle 1998; Goet-
ghebeur en Molenberghs 1996a, 1996b; Molenberghs en Goetghebeur 1997). Menig
auteur doet suggesties voor de analyse van non-random nonrespons (Nordheim 1984;
Baker en Laird 1988; Baker 1995; Park en Brown 1994; Diggle en Kenward 1994;
Molenberghs, Kenward en Lesaffre 1997). Men blijft geinteresseerd aan de volledige
gegevens, maar heeft een model met onbekende parameters nodig om geobserveerde
en niet-geobserveerde gegevens “aan elkaar te lijmen”. Hoewel deze complexere mo-
dellen ontbrekende gegevens selectief toelaten en dus meer kans maken om de primaire
parameters onvertekend te schatten blijft er wel de noodzaak om impliciet of expliciet
onderstellingen te maken betreffende het droupt mechanisme. Rubin (1976) en Little
en Rubin (1987, Ch. 6) maken onderscheid tussen verscheidene nonrespons of dropout
processen. Een dropout proces wordt completely random (volledig random, MCAR)
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genoemd als het onafhankelijk is van geobserveerde en niet geobserveerde waarne-
mingen en random (MAR) als het, gegeven de geobserveerde data, onafhankelijk is
van de niet geobserveerde data. In alle andere gevallen spreekt men van informatieve
dropout. Voor een random dropout proces kan een geldige analyse verkregen worden
via maximum likelihood, zonder het dropout proces te modelleren, indien de parame-
ters die het meetproces beschrijven functioneel onathankelijk zijn van de parameters
die het dropout proces beschrijven. Men spreekt dan van ignorable dropout (Rubin
1976) en de analyse vereenvoudigt in belangrijke mate. Vaak zijn de redenen voor
dropout echter veelvuldig en is de MAR, veronderstelling moeilijk vol te houden. Het
is dan mogelijk om, op basis van de geobserveerde gegevens, een model voor infor-
matieve dropout te fitten. Het is echter moeilijk om de gekozen modelvorm helemaal
te verantwoorden en de data bevatten soms weinig informatie voor de dropout model
parameters. In zulke gevallen is sensitiviteitsanalyse aangewezen. Diggle en Ken-
ward (1994) stelden zo’n model voor in de context van continue herhaalde metingen.
Andere modellen werden voorgesteld door Schluchter (1988), Laird, Lange en Stram
(1987), Wu en Bailey (1988, 1989), en Wu en Carroll (1988). Deze laatsten gebruik-
ten random effecten om het nonrespons proces te beschrijven. Verder hebben wij
ons voornamelijk toegelegd op continue longitudinale gegevens maar ook categorische
gegevens kregen heel wat aandacht. Baker en Laird (1988) breiden het werk van Fay
(1986) uit en geven een duidelijk overzicht van modellen voor onvolledige kruista-
bellen. Stasny (1986), Baker, Rosenberger, en Dersimonian (1992), Conaway (1992,
1993), Park en Brown (1994) en Molenberghs, Kenward en Lesaffre (1997) beschouwen
informatieve modellen voor herhaalde categorische metingen. Met dit groeiend vo-
lume aan literatuur voor non-random nonrespons, is ook de bezorgdheid toegenomen
over het feit dat modellen vaak steunen op sterke onderstellingen waar betrekkelijk
weinig informatie voor bestaat in de data zelf. Dit werd reeds opgemerkt door Glynn,
Laird en Rubin (1986) die aangaven dat dit probleem zeer typisch is voor zogenaamde
selectiemodellen, waar de gemeenschappelijke verdeling van meetproces en dropout
proces gefactoriseerd wordt als de marginale verdeling van het meetproces en de con-
ditionele verdeling van het dropout proces, gegeven de metingen, terwijl dit minder
sterk speelt bij pattern-mizture modellen waar de andere factorisatie wordt gebruikt
(Little 1993, 1994). Molenberghs, Michiels, Kenward en Diggle (1998) bestuderen
formele connecties tussen beide paradigma’s.

Tenslotte tonen Molenberghs, Goetghebeur, Lipsitz en Kenward(1999) de nood
voor sensitiviteitsanalyse aan door een overzicht te geven van de problemen die zich

voordien bij modellen voor informatieve dropout:
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1. Modellen met gelijke of vergelijkbare fit op het niveau van de geobserveerde
onvolledige gegevens, kunnen sterk verschillen in termen van predictie en inter-
pretatie van de (hypothetische) volledige gegevens. Afhankelijk van de gestelde
onderzoeksvraag, kan dit tweede aspect van een model een belangrijke rol spe-
len bij de wetenschappelijke besluitvorming. Het is dan uiteraard van belang te
weten in hoeverre de conclusies van het gekozen model afhangen.

2. Wanneer informatieve modellen gefit worden, is een oplossing in het inwendige
van de parameterruimte niet gegarandeerd. Dit geldt zelfs voor op het eerste
gezicht “reguliere” gegevens, bijv. kruistabellen waar alle aantallen strikt groter
zijn dan nul. Men stelt vast dat sommige modellen aanleiding geven tot rand-
oplossingen, bijv. onder de vorm van voorspelde aantallen gelijk aan nul, of
parameters op de rand van de parameterruimte (wat in bepaalde gevallen oo
kan impliceren). In zulke gevallen is klassieke asymptotische theorie niet meer
gegarandeerd. Een ernstig probleem is ook wanneer negatieve aantallen voor-

speld worden. Het blijkt dat men dit te weinig controleert.

3. Sommige modellen zijn overgespecifieerd in de zin dat de bijhorende likelihood
geen unieke oplossing heeft, doch tot een hele familie oplossingen leidt. Het
detecteren van overspecificatie is niet steeds eenvoudig, en heeft recent wat
aandacht gekregen (Catchpole en Morgan 1997). Ook hier stellen we vast dat
elk lid van de familie dezelfde fit induceert op het niveau van de onvolledige
gegevens, maar tot een andere fit kan leiden op het niveau van de (hypothetische)

volledige gegevens.

Ondanks het feit dat een algemeen besef is ontstaan van de nood aan sensitiviteits-
analyse zijn slechts enkele voorstellen gedaan die telkens ad hoc zijn. Vandaar dat
wij hier ook proberen wiskundige instrumenten uit te bouwen om Sensitiviteit op
een meer formele basis te kunnen meten. Zoals reeds eerder vermeld zullen we
ons beperken tot het geval waar we continue longitudinale gegevens verzamelen en
Hoofdstuk 2 beschrijft vijf typische gegevensverzamelingen waarvoor de door ons ont-
wikkelde methodologie nuttig is en waarop ze ook zal worden toegepast. Een algemeen
kader voor het modelleren van onvolledige gegevens, voornamelijk gebaseerd op Ru-
bin (1976) en Little en Rubin (1987), wordt geschetst in Hoofdstuk 3. Dit raamwerk
zal de discussie in de daaropvolgende hoofdstukken vergemakkelijken. In Hoofdstuk 4
beschrijven we een eerste familie van modellen die zullen gebruikt worden met name de
selectiemodellen. Ook gaan we hier meer specifiek kijken naar het selectie model van
Diggle en Kenward (1994) omdat dit model reeds uitgebreid besproken is geworden
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door diverse auteurs. vertrekkende van dit model kunnen we dan ook een eerste tool
realiseren om sensitiviteitsanalyses uit te voeren door de invloed van kleine pertur-
baties in het vooropgestelde model te onderzoeken. Hiertoe is local influence (Cook
1986) uitermate geschikt en deze methode zal dan ook uitgebreid bestudeerd wor-
den. Aan de hand van diverse perturbatieschema’s zijn we in staat de invloed van
het nonrespons mechanisme op modelparameters te karakteriseren. Vergelijkbaar met
deze methode beschrijven we ook globale invloedsmaten en beide methodes worden
toegepast op typisch longitudinale gegevens zoals ingevoerd in Hoofdstuk 2. Een
tweede familie zal worden besproken in Hoofdstuk 5 en binnen deze familie is het
onze bedoeling om aan te geven welke de mogelijke strategieén zijn en hoe deze met
elkaar kunnen vergeleken worden. Meer bepaald bespreken we hoe binnen deze nieuwe
familie op een eenvoudige manier hetzelfde raamwerk betreffende random versus non-
random dropout (Rubin 1976 en Little en Rubin 1987) kan worden toegepast en we
beschrijven uitvoerig welke vorm van identificatierestricties (Little 1993, 1994, 1995)
hiermee gepaard gaan om Pattern-mixture modellen te beschouwen. Als speciale vorm
bekijken we non future dependent missing value restricties waarbij het mechanisme
van dropout enkel kan afhangen van de huidige mogelijks niet geobserveerde meting
maar niet meer van de in de toekomst geplande metingen. Ter illustratie beschouwen
we in Hoofdstuk 6 de Milk protein trial en hierop passen we de methoden van lokale
en globale invloed toe alsook de verschillende strategieén binnen het pattern-mixture
framework. In dit hoofdstuk merken we op dat de verschillende methoden tot nogtoe
ontwikkeld wat betreft de resultaten behoorlijk goed met elkaar vergelijkbaar zijn wat
erop wijst dat het betrouwbare tools zijn. Hoofdstuk 7 beschouwt enkele problemen
die kunnen optreden wanneer we zonder meer gebruik maken van selectiemodellen of
pattern-mixture modellen en meer bepaald wanneer er conclusies worden getrokken
na het tijdstip van dropout wanneer dropout mogelijk wordt veroorzaakt door sterfte
en tenslotte zal in Hoofdstuk 8 een algemene conclusie worden geformuleerd en tevens

zullen we daar aangeven welke problemen nog eventueel verder onderzoek vereisen.

Nieuwe statistische technieken, hoe bruikbaar ook, worden slechts écht gebruikt
indien ze breed toegankelijk zijn voor de gemeenschap van potentiéle gebruikers (zoals
bijv. de officiéle en farmaceutische statistici). Deze toegankelijkheid impliceert bruik-
bare software. Zo zijn het lineair gemengd model (voor continue herhaalde gegevens)
en generalized estimating equations (Liang en Zeger 1986) (voor discrete gegevens)
pas echt breed verspreid geraakt met de respectieve implementaties in de SAS proce-
dures MIXED en GENMOD. Hieraan is een periode van semi-professionele software

vooraf gegaan met een waaier van macro’s.
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Het kan uiteraard geen realistische ambitie zijn om de door ons voorgestelde tech-
nieken meteen in commerciéle software om te zetten. We menen echter wel te mogen
zeggen dat we een belangrijke bijdrage hebben geleverd door de voorgestelde me-
thoden te implementeren in macro’s in breed verspreide paketten. Voor de door ons
beoogde doelgroep van biostatistici in industrie en overheid zouden verdere imple-
mentaties in SAS (als macro of in de interactieve matrix taal IML), SPlus en GAUSS
dan ook expliciete voordelen kunnen opleveren.
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