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Abstract 22 

Solar-powered consumer electronics are a likely starting point for organic photovoltaic (OPV) 23 

market development. Therefore, a generic discrete choice experiments study can determine 24 

how Flemish consumers value solar-cell characteristics for solar-powered consumer 25 

electronics. Such characteristics include efficiency, lifetime, aesthetics, integratability, and 26 

price. We contribute to the literature by investigating preference heterogeneity in a solar-power 27 

niche market with an experimental design with a fixed reference alternative. The error 28 

components random parameter logit (ECRPL) with interactions provides a better fit than the 29 

latent class (LC) model for our choice data. The main effects had the expected signs. 30 

Consequently, aesthetics and integratability are OPV’s assets. Nevertheless, heterogeneity puts 31 

the results that are valid for the average consumer into perspective. Based on our findings, OPV 32 

commercialization efforts should target the experienced, impatient user who highly values 33 

design and functionality. 34 

 35 

KEYWORDS: Error Components Random Parameter Logit; Latent Class; Solar-powered 36 

Consumer Electronics; Heterogeneity; OPV 37 

 38 

Highlights: 39 

 We investigate heterogeneous preferences for solar-powered consumer electronics. 40 

 We present a generic DCE study with a fixed reference alternative 41 

 The ECRPL best explains our choice data. 42 

 Target the experienced, impatient user highly valuing design and functionality. 43 

  44 
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1. Introduction 45 

Several authors have identified solar-powered consumer electronics as a likely starting point 46 

for organic photovoltaic (OPV) solar-cells’ market development (Krebs et al., 2010b, Nielsen 47 

et al., 2010). OPVs are solar cells with an all-organic, solid-state active layer (Brabec et al., 48 

2010). Among all alternatives to crystalline silicon-based solar-cells, OPVs are considered a 49 

strong solution to the problem of high cost and low throughput (Krebs et al., 2010c). OPVs 50 

might also provide a better solution than crystalline silicon solar cells to global warming if 51 

consumers adopt this promising renewable energy technology (RET). Energy payback times 52 

(EPBTs) of only one day are predicted for OPVs under favorable circumstances, but taking 53 

lifetime issues into account. Crystalline silicon solar cells have EPBTs of one to two years 54 

(Espinosa et al., 2012).  55 

Nevertheless, consumers’ willingness to adopt a product depends on how they value it. 56 

Therefore, we performed a generic, discrete choice experiments (DCE) study to see how 57 

Flemish consumers value solar-cell characteristics for solar-powered consumer electronics. We 58 

assessed generic preferences for such solar cells by setting attribute levels to cover the range 59 

of possible levels different solar-cell types achieve. This allows for assessing the match with 60 

OPV’s (future) profile. We respond to OPV material scientists’ call for guidance on how to 61 

claim a significant market share of a predefined market (Krebs et al., 2010a). We contribute to 62 

existing literature by incorporating unobserved heterogeneity into our modeling efforts. To this 63 

end, we investigated preferences using the error component random parameter logit (ECRPL) 64 

and the latent class (LC) logit models.  65 

The remainder of this paper is divided into four sections. The methodology section reviews 66 

DCE use in RET literature, explains its intuition, and describes our approach. The results 67 

section provides the sample’s descriptive statistics, after which we interpret the results obtained 68 

from the different models. The conclusion summarizes our main findings. 69 

2. Methodology 70 

2.1. DCEs covering renewable energy: A literature review 71 

DCEs have frequently been applied to the topic of renewable energy, albeit from different 72 

angles. Table 1 presents the results of a literature review from 2006 to 2014. Contributions 73 

mainly examine the importance of the green electricity share in the electricity mix or the 74 

valuation of socioeconomic and environmental externalities of RETs. Solar power constitutes 75 

the exception to this rule. Photovoltaics and solar water heating have been investigated with an 76 
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eye on predicting the adoption time. Table 1 shows that solar-power niche markets have barely 77 

been investigated, with little attention toward heterogeneity. Nevertheless, Yoo and Ready 78 

(2014) showed that preferences for solar power are the most heterogeneous of all types of 79 

renewable technologies. 80 

 [Insert Table 1] 81 

2.2. DCEs modeling approach 82 

The discrete choice-based elicitation format closely resembles an actual purchasing decision 83 

(Ward et al., 2011). To formalize this decision process, DCE adopted the random utility theory 84 

(RUT), which Thurstone (1927) originally developed. McFadden (1974) translated RUT into 85 

the mathematical formulation of the conditional logit (CL) model.  86 

The assumption of independently, identically distributed (IID) error terms allows for the 87 

convenient closed form of the CL model. The simplicity of the closed form comes at a cost, 88 

given that the CL model translates the IID assumption into substitution patterns that are 89 

restricted by the independence of irrelevant alternatives (IIA). Fully relaxing the IIA 90 

assumption without adopting different distributions for the error terms or different structures 91 

in decision-making, forces the use of mixed logit type models. Moreover, these types of models 92 

allow for unveiling unobserved heterogeneity. Mixed logit models have unconditional 93 

probabilities 𝑃𝑖𝑗 equal to the integral of standard logit conditional probabilities 𝐿𝑖𝑗(𝛽) over a 94 

density of parameters 𝑓(𝛽) (see Equation 1). This density may be continuous or discrete (Train, 95 

2003).  96 

An error component random parameter logit (ECRPL) model assumes a continuous 97 

distribution of attribute parameters and allows for calculating preferences at the individual 98 

level. Error components are often normally distributed as N(0,σ²). The variance captures the 99 

magnitude of the correlation between the nested alternatives. Formulating the model in this 100 

way has been shown to provide the best fit when dealing with a reference alternative (Hess and 101 

Rose, 2009).  102 

A LC model assumes a discrete distribution of attribute parameters and assesses the average 103 

preferences for homogenous segments while using a class membership function (Train, 2003). 104 

 𝑃𝑖𝑗 = ∫ 𝐿𝑖𝑗 (𝛽) ∗ 𝑓(𝛽) ∗ 𝑑𝛽  (1) 105 

  106 
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2.3. Performing a DCE study 107 

2.3.1. Setting up DCEs 108 

Relevant attributes and levels were identified using focus-group discussions and expert 109 

interviews, given the lack of prior studies. A full description of the attribute development 110 

process, the motivations for the respective chosen levels, and the method for ensuring optimal 111 

understanding, can be found in Lizin et al. (2012). This process led to the conceptualization of 112 

five attributes, each consisting of four levels (see Table 2). In summary, the upper bounds for 113 

quantitative attribute levels and lower bounds for qualitative attribute levels are those for 114 

polycrystalline silicon cells. On the contrary, the lower bounds for quantitative attribute levels 115 

and upper bounds for qualitative attribute levels are values that OPV solar cells might attain. 116 

This allows for capturing all solar-cell technologies with levels between these bounds.  117 

Based on these attributes and levels, a generic, forced choice, main-effects design for a CL was 118 

created in SAS, with a relative D-efficiency of 80.14 using zero priors by means of the 119 

alternative swapping procedure (Kuhfeld, 2010). Such a design may be reused with limited 120 

efficiency loss for estimating a random parameter logit model (Bliemer and Rose, 2010). 121 

However, statistical efficiency should not dominate respondent efficiency (Ferrini and Scarpa, 122 

2007). Respondent efficiency is usually increased by limiting the number of attributes and 123 

levels, ensuring realism and credibility, and optimally conveying the meaning of attributes.  124 

We felt the need to go further for our case study. Focus-group discussions revealed that most 125 

people are knowledgeable of solar cells’ application in solar panels, which are generally made 126 

of polycrystalline silicon. However, most people are unaware of the different types of PV solar 127 

cells used in alternative applications. To deal with respondents’ limited experience 128 

polycrystalline silicon levels serve as a point of reference by means of a fixed reference 129 

alternative. In theory, such an alternative can represent an opt-out option (Kontoleon and Yabe, 130 

2003). In our case, as respondents were largely unaware of which type of solar cell they 131 

possessed, the constant alternative does not represent an opt-out nor even a perceived status 132 

quo (Domínguez-Torreiro and Soliño, 2011). Neither does it provide a reference alternative, as 133 

this would also require respondent awareness. The fixed alternative merely serves to provide a 134 

contextual reference (Schläpfer and Fischhoff, 2012). Respondents were consequently forced 135 

to choose between the provided alternatives. Hence, the results are meaningful for people 136 

having decided they want to buy a solar-powered consumer electronics device. This led to a 137 

design consisting of 16 choice sets, each presenting four alternatives. Given the large number 138 
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of choice sets, we decided to block the design over two surveys. To counter for order effects 139 

bias, the choice sets’ order was randomized 10 times for both survey versions.  140 

[Insert Table 2] 141 

2.3.2. Questionnaire development, conduct and processing 142 

We developed a questionnaire based on Bateman et al.’s (2002) guidelines. Accordingly, we 143 

divided it into four sections: The survey’s purpose; attitudinal questions and use of the device; 144 

the choice sets; and socio-demographic questions. Prior to the final roll-out, the questionnaire 145 

was pilot-tested on a group of 30 respondents to verify language understanding.  146 

After modifications, the actual survey was conducted on various intercity train travels 147 

throughout the entire Flemish region during the 2011 and 2012 summer holiday periods. This 148 

ensured the presence of many (about 53 percent) infrequent train users. However, there still 149 

may have been an eco-friendly bias because people unwilling to use the train were left out.  150 

This type of sampling can be classified as intercept sampling. Additionally, quota screening 151 

was used to closely resemble the 2010 gender distribution (49.35 percent male) obtained when 152 

using probability sampling. Motivated by solar cells’ technical nature and the intrinsic 153 

cognitive burden on respondents associated with DCEs, the target population was limited to 154 

anyone between the ages of 18 and 64 living in the Flemish region who understood the native 155 

language. We assumed that anybody in this age group at a given point in time would buy a 156 

solar-powered consumer electronics device. A simple pen-and-paper distribution method was 157 

used for taking the survey, with additional guidance from trained surveyors. The surveyors’ 158 

ability to help people through the process in a personalized way was crucial in making this 159 

decision (Arrow et al., 1993). Task familiarity was further augmented by providing a written, 160 

filled-in choice set example. In total, 450 fully filled-in questionnaires were collected.  161 

2.3.3. Econometric analysis 162 

The first step in the econometric analysis of the DCE data was to identify the most qualified 163 

expression for the indirect utility function, without and with interaction effects. This was done 164 

using the CL model. All tested attributes demonstrated at least one significantly different slope. 165 

The price attribute was coded linearly to allow straightforward calculations of willingness to 166 

pay. Dummy coding was used because of ease of interpretation, relative to effects coding. 167 

Qualitative attributes must be nonlinearly coded. The constant alternative’s levels were the 168 
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omitted base levels. Consequently, the direct utility 𝑉𝑖𝑗 was defined in Equation 2 with 169 

abbreviated subscripts for the respective estimated parameters (see Table 2).  170 

𝑉𝑖𝑗 =   𝛽𝑝𝑟𝑋𝑝𝑟 + 𝛽15𝑦𝑋15𝑦 + 𝛽10𝑦𝑋10𝑦 + 𝛽5𝑦𝑋5𝑦 + 𝛽15%𝑋15% + 𝛽10%𝑋10% + 𝛽5%𝑋5% +171 

𝛽𝑢𝑔𝑋𝑢𝑔 + 𝛽𝑛𝑖𝑋𝑛𝑖 + 𝛽𝑣𝑛𝑖𝑋𝑣𝑛𝑖 + 𝛽𝑝𝑖𝑛𝑡𝑋𝑝𝑖𝑛𝑡+ 𝛽𝑖𝑛𝑡𝑋𝑖𝑛𝑡 + 𝛽𝑣𝑖𝑛𝑡𝑋𝑣𝑖𝑛𝑡    (2) 172 

Socio-economic variables can only be included as interaction terms because they are constant 173 

across choice occasions for any individual (Hanley et al., 2001). In that case, 𝑉𝑖𝑗 takes the form 174 

shown in Equation 3, with (𝑆𝑧 ∗ 𝑋𝑞) as the interaction effects and 𝛽# as the interaction effects’ 175 

parameter weights. The identified interaction effects are: High energy awareness (Senergyaware); 176 

high environmental awareness (Senvaware); high impatience (Simpatient); and high experience with 177 

PV application (Sexperienced). Energy awareness was measured as an index consisting of 178 

questions measuring energy-saving behavior. Environmental awareness was measured as an 179 

index consisting of questions gauging pro-environmental behavior. Impatience was measured 180 

on a single Likert scale assessing how inconvenient respondents think it is to charge electrical 181 

devices. Those who considered charging very inconvenient were considered impatient users. 182 

The output of the final models is discussed in the results section. 183 

𝑉𝑖𝑗 = 𝛽𝑝𝑟𝑋𝑝𝑟 + 𝛽15𝑦𝑋15𝑦 + 𝛽10𝑦𝑋10𝑦 + 𝛽5𝑦𝑋5𝑦 + 𝛽15%𝑋15% + 𝛽10%𝑋10% + 𝛽5%𝑋5% +184 

𝛽𝑢𝑔𝑋𝑢𝑔 + 𝛽𝑛𝑖𝑋𝑛𝑖 + 𝛽𝑣𝑛𝑖𝑋𝑣𝑛𝑖 + 𝛽𝑝𝑖𝑛𝑡𝑋𝑝𝑖𝑛𝑡+ 𝛽𝑖𝑛𝑡𝑋𝑖𝑛𝑡 + 𝛽𝑣𝑖𝑛𝑡𝑋𝑣𝑖𝑛𝑡 + 𝛽1𝑋5%𝑆𝑒𝑛𝑒𝑟𝑔𝑦𝑎𝑤𝑎𝑟𝑒 +185 

𝛽2𝑋𝑢𝑔𝑆𝑒𝑛𝑣𝑎𝑤𝑎𝑟𝑒 + 𝛽3𝑋𝑛𝑖𝑆𝑒𝑛𝑣𝑎𝑤𝑎𝑟𝑒 +  𝛽4𝑋𝑣𝑛𝑖𝑆𝑒𝑛𝑣𝑎𝑤𝑎𝑟𝑒 +  𝛽5𝑋𝑛𝑖𝑆𝑖𝑚𝑝𝑎𝑡𝑖𝑒𝑛𝑡 +186 

𝛽6𝑋𝑣𝑛𝑖𝑆𝑖𝑚𝑝𝑎𝑡𝑖𝑒𝑛𝑡 +  𝛽7𝑋5𝑦𝑆𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑   (3) 187 

3. Results 188 

3.1. Descriptive statistics 189 

Table 3 shows the descriptive statistics. We were dealing with a younger, moderately 190 

environmentally aware, fairly energy-aware audience. Only 6.73 percent had not taken action 191 

to lower their energy bill, and 86.55 percent had used solar-powered consumer electronics, 192 

mainly solar-powered calculators in the past. This comes as no surprise, as calculators were the 193 

first solar-powered consumer product (Apostolou and Reinders, 2014).  194 

Furthermore, respondents were divided concerning the inconvenience of having to charge their 195 

electronic devices. Using a five-point Likert scale (ranging from -2 to 2), we found that 40 196 

percent found charging to be inconvenient, another 40 percent thought it not bothersome, and 197 

20 percent were neutral. The respondents were also asked to motivate their response. The first 198 

group’s most frequently found motivations were: They did not like having to monitor the 199 
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battery’s status, so often forgot to recharge; no outlet or charger compatible to the device was 200 

available; and the full freedom of operation was lost while charging. The second group’s most 201 

popular answers were: It is a habit; and it does not require much effort.  202 

Household size, family income, and educational level were three potential predictor variables 203 

for domestic energy use (Sardianou, 2007). Their respective means and distributions are also 204 

provided. For completeness, we also present the respondents’ geographic distribution (within 205 

Flanders).  206 

[Insert Table 3] 207 

3.2. Parameter estimates 208 

Table 4 presents the results of the final ECRPL with interactions. Models were run using 1,000 209 

Halton draws, assuming normal distributions for random parameters and accounting for 210 

correlation between random parameters. The suitability of this distributional assumption was 211 

verified using kernel density estimation (Hensher and Greene, 2003).  212 

All attributes were significant factors in determining consumers’ choice. Furthermore, all main 213 

effect coefficients showed the expected a priori signs for the average consumer. More 214 

specifically, the average respondent preferred a solar cell with the highest efficiency, the 215 

highest lifetime, the nicest aesthetics, and a decent integratability at the lowest price.  216 

Observed heterogeneity was captured by creating interaction effects with socio-demographic 217 

characteristics (SDCs). Their signs and values put the results, which were valid for the mean 218 

main effect coefficients, into perspective. On the one hand, the highly environmentally aware 219 

respondents had an aversion for better-looking products. Perhaps they associated better 220 

appearances with higher environmental burdens. Similarly, the experienced user did not show 221 

a strong dislike for five-year lifetimes. On the other hand, the highly energy-aware individuals 222 

showed a stronger than average dislike for low efficiencies, while the impatient user was also 223 

more sensitive to aesthetically pleasing products. In spite of the various significant interactions, 224 

all main effects showed significant unobserved heterogeneity in the ECRPL model. Most 225 

heterogeneity was found for the attribute levels that were most likely for OPVs; in other words. 226 

for cells with an efficiency of 5 percent and a lifetime of five years. Finally, a significant shared 227 

error component was found to be highly significant, confirming cross-correlation between the 228 

hypothetical alternatives.  229 

[Insert Table 4] 230 
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In the LC model, respondents were divided into homogenous segments based on SDCs and the 231 

highest class decision rule. Following Birol et al. (2006), we assumed that the respondent 232 

characteristics used to obtain significant interactions most affected segment membership. In 233 

order to choose the most suitable number of segments, information criteria were investigated 234 

while increasing the number of segments. The lower the value of the BIC and the Bozgodan 235 

AIC (AIC3) (Andrews and Currim, 2003), the better the model fit. In our case, both criteria 236 

pointed to the same conclusion. Consequently, a model with four segments was considered 237 

optimal. The results of the LC model are provided in Table 5.  238 

From the results, respondents belonging to classes 1 to 4 were best characterized by: (1) a high 239 

sensitivity toward nicer aesthetics; (2) high preference for good integratability; (3) high 240 

aversion for low efficiencies and high prices; and (4) great dislike for low lifetimes and 241 

efficiencies. Additionally, the fourth segment was not influenced in their choice by the price, 242 

and segments 2 and 3 seem to be heterogeneous in their preferences for lifetime levels. The 243 

second part of the table reports the segment membership coefficients relative to the normalized 244 

fourth segment. Only high environmental awareness and impatience dummies were significant 245 

segmenting variables for the first segment. 246 

[Insert Table 5] 247 

To compare the ECRPL and LC model fit, we used a test Ben-Akiva and Swait (1986) 248 

suggested, given that we are no longer working with nested models. The test confirms that the 249 

more parsimonious ECRPL is the best-fitting model. The information criteria point to a similar 250 

conclusion.  251 

3.3. WTP estimates 252 

Since ECRPL is the best-fitting model, we used it to compute the welfare measures. WTP 253 

estimates were calculated at the means, using the Delta method, while correcting for the 254 

interactions with SDCs. Table 6 shows the results of the estimations. WTP measures reveal 255 

how much people are willing to pay for a change from the base level to the displayed attribute 256 

level. The WTP measures are given as €/Wp. For instance, the WTP estimate for a lifetime of 257 

five years indicates that the average respondent should be compensated by 10.33 €/Wp for a 258 

loss in lifetime of 15 years. Additionally, kernel density plots showing WTP estimate 259 

distributions reconfirm that the widest WTP distributions were found for the attribute levels 260 

most likely for OPV, i.e. cells with an efficiency of 5 percent and a lifetime of five years. 261 

[Insert Table 6] 262 
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4. Conclusion and discussion 263 

Discrete choice experiments (DCEs) have been widely applied to assess the importance of the 264 

green electricity share in the electricity mix or the valuation of socioeconomic and 265 

environmental externalities. Solar-power niche markets have barely been investigated, or with 266 

little attention to heterogeneity. Nevertheless, Yoo and Ready (2014) showed that preferences 267 

for solar power are more heterogeneous than preferences for all other types of renewable 268 

technologies. Moreover, by investigating preferences for solar-powered consumer electronics, 269 

we answered OPV material scientists’ call for guidance on how to gain market share (Krebs et 270 

al., 2010a).  271 

To fill these gaps, we investigated Flemish consumer preferences for solar-powered consumer 272 

electronics by using generic DCEs with a fixed reference alternative representing a 273 

polycrystalline silicon solar cell. This alternative was included in the experimental design to 274 

provide the respondents with a reference frame. Focus-group discussions showed that 275 

respondents were largely unfamiliar with PV cell types and performances, but used solar panels 276 

(which are mostly of the polycrystalline silicon type) as a point of reference.  277 

We estimated preferences using the error component random parameter logit (ECRPL) model 278 

(which was well-suited to deal with fixed reference alternatives), and the latent class (LC) 279 

model. A test Ben-Akiva and Swait suggested, confirmed that the ECRPL model with 280 

interactions provided a better fit than the LC model for our choice data. Mean main effects 281 

exhibited the expected signs for the efficiency dummies (-), lifetime dummies (-), aesthetics 282 

dummies (+), integratability dummies (+), and price (-). Hence, aesthetics and integratability 283 

should be seen as OPV assets.  284 

However, the mean main effect coefficients should be interpreted with caution, as our analysis 285 

indicates that preferences are very heterogeneous. Respondents with specific characteristics 286 

had inverse preferences. In particular, respondents with high environmental awareness attached 287 

less importance to better-looking products. Furthermore, experienced users liked lifetimes of 288 

five years more than others. Alternatively, the main effects were reinforced for some type of 289 

respondents. Those with high energy awareness typically had a higher preference for low 290 

efficiencies than respondents with moderate or low levels of energy awareness. Impatient 291 

respondents, who strongly disliked waiting while their device charged, also had stronger 292 

preferences for good-looking products compared to more patient respondents. Therefore, we 293 
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concur with Apostolou and Reinders (2014) in stating that functionality depends on the user’s 294 

charging habits.  295 

Based on our findings, we would advise organic photovoltaic (OPV) commercialization efforts 296 

to aim for the experienced, impatient user who highly values a functional design. Moreover, 297 

the ECRPL also allowed us to grasp unobserved heterogeneity by estimating the standard 298 

deviations of the normally distributed parameters. All random parameters showed significant 299 

unobserved heterogeneity, in spite of the various significant interactions with socio-300 

demographic characteristics. Moreover, the magnitude shows that the most heterogeneity was 301 

present in the attribute levels likely for OPV in its early development stages; in other words, 302 

cells with an efficiency of 5 percent and a lifetime of five years. This may point to a segment 303 

of consumers that perceives lower requirements for consumer electronics to be satisfactory, 304 

signaling the viability of an OPV-powered consumer electronics niche market. We finish with 305 

a word of caution that these are exploratory results that should be reconfirmed by probabilistic 306 

sampling. 307 
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Tables 473 

 474 

Table 1: Discrete choice experiments eliciting consumers’ valuation of (the effects of) renewable energy 475 

RES Reference Topic 
Observed 

heterogeneity 

Unobserved 

heterogeneity 

Biomass Jensen et al. (2010) 
Valuation of E85 fuel originating from 

different biomass types 
X RPL 

Biomass Soliño (2010) 
Valuation of a forest biomass promotion 

program 
X / 

Biomass Susaeta et al. (2011) 
Valuation of woody biomass’ positive 

externalities 
X RPL 

Hydro Han et al. (2008) 
Valuation of environmental impacts of 

large dam construction 
X / 

Hydro Kataria (2009) 
Valuation of environmental improvements 

for hydropower regulated rivers 
X RPL 

Solar 
Islam and Meade 

(2013) 

Estimation of preferences for factors 

influencing solar panel adoption  
/ GMXL 

Solar (Islam, 2014) 
Estimation of preferences for factors 

influencing solar panel adoption 
/ LC 

Solar Lizin et al. (2012) 
Valuation of solar cell characteristics for 

powering consumer electronics 
X / 

Solar 
Yamaguchi et al. 

(2013) 

Estimation of preferences for factors 

influencing solar panel and solar hot water 

adoption 

/ / 

Tidal Lee and Yoo (2009) 
Valuation of environmental damage caused 

by the construction of a tidal power plant 
/ / 

Tidal 
Vazquez and Iglesias 

(2015) 

Valuation of environmental and socio-

economic externalities of a tidal power 

plant 

X / 

Wind 
Drechsler et al. 

(2011) 
Optimal spatial allocation of wind turbines / / 

Wind 
Ek and Persson 

(2014) 
Optimal establishment of wind farms X RPL&LC 

Wind 
Meyerhoff et al. 

(2010) 

Valuation of landscape externalities of 

onshore wind turbines 
X LC 

Wind Strazzera et al. (2012) Social acceptability of wind turbines X LC 

Mix Amador et al. (2013) 
The influence on WTP of the renewable 

energy share in the electricity mix 
  

Mix 
Bergmann et al. 

(2006) 

Preferences over environmental and 

employment impacts that may result from 

renewable energy projects 

X / 

Mix 
Bergmann et al. 

(2008) 

Valuation of environmental and 

employment impacts that may result from 

renewable energy projects 

X RPL 

Mix Borchers et al. (2007) 
The influence on WTP of the specific 

energy source of origin 
X NL 
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Mix Cicia et al. (2012) 
The influence on WTP of the specific 

energy source of origin 
X LC 

Mix Gracia et al. (2012) 
The influence on WTP of the specific 

energy source of origin 
X RPL 

Mix Kaenzig et al. (2013) 
The influence on WTP of the renewable 

energy share in the electricity mix 
/ HB 

Mix 
Kosenius and 

Ollikainen (2013) 

Valuation of environmental and societal 

trade-offs of renewable energy sources 
X NL 

Mix Ku and Yoo (2010) 

Valuation of environmental and 

employment impacts that may result from 

renewable energy projects 

/ MNP 

Mix Longo et al. (2008) 
Valuation of short-term security of energy 

supply resulting from RES 
X RPL 

Mix 
Scarpa and Willis 

(2010) 

Preferences for various micro-generation 

technologies 
/ RPL 

Mix Tabi et al. (2014) Preferences for green electricity / HB 

Mix Willis et al. (2011) 
In-sample heterogeneity for various micro-

generation technologies 
X RPL 

Mix 
Yoo and Ready 

(2014) 

Preference heterogeneity for renewable 

energy share in the electricity mix 
X RPL&LC&LCRPL 

Legend: RPL = random parameter logit model, LC = latent class model, LCRPL= latent class random parameter logit, NL = nested logit model, MNP = 

multinomial probit model, GMXL = generalized mixed logit; HB= hierarchical Bayes model / = type of heterogeneity remained untreated, X = observed 

heterogeneity was treated 
  476 
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Table 2: The meaning of attributes and their levels 477 

Attribute Meaning Levels 
Estimated 

parameters 
Base level 

Price 

The selling price of fully integrated solar cells is 

commonly expressed in terms of Euro/Watt peak 

(€/Wp). The Wp is an industry-wide agreed-upon unit 

of power, which is found by measuring the power 

output under standard testing conditions (El Chaar et 

al., 2011). 

3.5, 2.5, 1.5, and 0.5 

€/Wp 
𝛽𝑝𝑟 / 

Efficiency 

Fully integrated solar cells’ efficiency equals the 

percentage of sunlight reaching a solar cell that is 

converted to electricity under standard testing 

conditions (Brabec, 2004). 

20, 15, 10, and 5 

percent 

 

𝛽15%, 𝛽10%, 
𝛽5% 

𝛽20% 

Lifetime 

Fully integrated solar cells’ lifetime is defined as the 

period of time during which the cells maintain at least 

80 percent of their initial efficiency (Jørgensen et al., 

2008). 

20, 15, 10, and 5 

years 

𝛽15𝑦 , 𝛽10𝑦 ,  

𝛽5𝑦  
𝛽20𝑦  

Aesthetics 
Aesthetics is defined as a measure of how appealing 

a product is to the eye. 

very ugly, ugly, nice, 

and very nice 

 

𝛽𝑢𝑔, 𝛽𝑛𝑖 , 

𝛽𝑣𝑛𝑖 
𝛽𝑣𝑢𝑔 

Integratability 

Integratability is defined as how easily solar cells can 

be integrated into any consumer electronics product. 

It is an overarching attribute, taking into account 

weight, thickness and flexibility, and serves as a 

proxy for functionality.  

hardly integratable, 

poorly integratable, 

integratable, and very 

integratable 

𝛽𝑝𝑖𝑛𝑡, 𝛽𝑖𝑛𝑡, 

𝛽𝑣𝑖𝑛𝑡 
𝛽ℎ𝑖𝑛𝑡  

 478 

  479 



19 
 

Table 3: Descriptive statistics 480 

Statistic [min,max] Sample Mean, (SD) 

Total number of respondents (#) 450 

Age (years) [18,65] 37.43 (13.90) 

Energy saving measures installed (#) [0,6] 2.28 (1.24) 

Environmentally friendly behavior index [5,35]) 24.19 (3.80) 

Charging inconvenience., 5-point Likert [-2,2]) 0.0  (1.13) 

Experience with solar-powered devices. (#) [0,8] 1.72 (1.33) 

Male (%) 48.7 

Household size  

1 14.8% 

2 27.7% 

3 20.4% 

4 23.8% 

5 8.1% 

>5 5.2% 

Monthly net 

family income 

(€) 

0-1,000 2.8% 

1,001-2,000 26.6% 

2,001-3,000 23.5% 

3,001-4,000 25.1% 

4,001-5,000 14.7% 

5,001-6,000 3.7% 

>6,000 3.6% 

Education level  

Elementary 2.3% 

Secondary 40.1% 

College 31.3% 

University 21.2% 

Post-university 5.1% 

Geographic 

distribution  

Antwerp  22.7% 

East Flanders 15.5% 

Flemish Brabant 15.1% 

Limburg 33.9% 

West Flanders 12.8% 

 481 
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Table 4: ECRPL with interactions output 483 

 Mean Standard deviation 

Main and interaction 

effects 
Coef. s.e. Coef. s.e. 

𝛽15% -0.57*** 0.12 0.78*** 0.17 

𝛽10% -1.67*** 0.15 1.53*** 0.23 

𝛽5% -3.33*** 0.28 2.66*** 0.31 

𝛽15𝑦 0.10 0.13 1.07*** 0.15 

𝛽10𝑦 -0.71*** 0.15 1.35*** 0.17 

𝛽5𝑦  -2.93*** 0.26 2.40*** 0.25 

𝛽𝑢𝑔 1.24*** 0.22 1.00** 0.39 

𝛽𝑛𝑖  1.87*** 0.28 1.69*** 0.27 

𝛽𝑣𝑛𝑖 1.91*** 0.26 1.69*** 0.26 

𝛽𝑝𝑖𝑛𝑡 0.39*** 0.15 0.87*** 0.29 

𝛽𝑖𝑛𝑡 1.65*** 0.17 1.54*** 0.45 

𝛽𝑣𝑖𝑛𝑡 1.52*** 0.16 1.48*** 0.57 

𝛽𝑝𝑟 -0.25*** 0.03 / / 

𝛽1 -0.51* 0.30 / / 

𝛽2 -0.46* 0.26 / / 

𝛽3 -0.58** 0.29 / / 

𝛽4 -0.66** 0.28 / / 

𝛽5 0.59** 0.24 / / 

𝛽6 0.49** 0.23 / / 

𝛽7 0.63** 0.29 / / 

𝐸𝑟𝑟𝑜𝑟 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 0 (fixed) 2.23*** 0.24 

Log-Likelihood = -3421 

Pseudo R². (adj.) = 0.297 (0.291) 

AIC = 7037.5 
Note:* p<0.10; ** p<0.05; *** p<0.01; See Table 2 for more information about the main effects parameters 

𝛽1 =  𝑋5%𝑆𝑒𝑛𝑒𝑟𝑔𝑦𝑎𝑤𝑎𝑟𝑒;  𝛽2 =  𝑋𝑢𝑔𝑆𝑒𝑛𝑣𝑎𝑤𝑎𝑟𝑒;  𝛽3 =  𝑋𝑛𝑖𝑆𝑒𝑛𝑣𝑎𝑤𝑎𝑟𝑒;  𝛽4 =  𝑋𝑣𝑛𝑖𝑆𝑒𝑛𝑣𝑎𝑤𝑎𝑟𝑒;  𝛽5 = 𝑋𝑛𝑖𝑆𝑖𝑚𝑝𝑎𝑡𝑖𝑒𝑛𝑡; 

𝛽6 = 𝑋𝑣𝑛𝑖𝑆𝑖𝑚𝑝𝑎𝑡𝑖𝑒𝑛𝑡;  𝛽7 = 𝑋5𝑦𝑆𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑑 
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Table 5: Four segment LC model output 486 

Attributes 
Class 1 (0.224) Class 2 (0.32) Class 3 (0.256) Class 4 (0.199) 

Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. 

𝜷𝟏𝟓% -0.47** 0.20 -0.13 0.15 -0.32** 0.13 -1.02*** 0.19 

𝜷𝟏𝟎% -0.97*** 0.30 -0.37** 0.18 -1.74*** 0.22 -2.21*** 0.30 

𝜷𝟓% -1.88*** 0.37 -0.38** 0.18 -4.13*** 0.44 -3.18*** 0.48 

𝜷𝟏𝟓𝒚 -0.38 0.24 0.31** 0.14 0.91*** 0.21 -1.00*** 0.22 

𝜷𝟏𝟎𝒚 -0.17 0.19 -0.11- 0.17 -0.11 0.23 -2.15*** 0.29 

𝜷𝟓𝒚 -0.83*** 0.26 -0.49* 0.25 -2.46*** 0.28 -3.72*** 0.47 

𝜷𝒖𝒈 1.28*** 0.45 0.30** 0.15 1.23*** 0.27 0.33 0.32 

𝜷𝒏𝒊 3.87*** 0.46 0.50*** 0.18 1.64*** 0.24 0.63** 0.30 

𝜷𝒗𝒏𝒊 3.71*** 0.44 0.51*** 0.16 1.41*** 0.23 0.58* 0.31 

𝜷𝒑𝒊𝒏𝒕 0.19 0.20 0.49*** 0.18 -0.05 0.20 0.04 0.31 

𝜷𝒊𝒏𝒕 1.08*** 0.22 1.49*** 0.17 0.93*** 0.21 0.67** 0.33 

𝜷𝒗𝒊𝒏𝒕 1.21*** 0.24 1.49*** 0.18 0.76*** 0.20 0.58* 0.30 

𝜷𝒑𝒓 -0.23*** 0.08 -0.09** 0.05 -0.45*** 0.07 -0.12 0.11 

Segment function: respondents’ social and economic characteristics 

Constant -0.34 0.43 0.04 0.42 0.41 0.34 0 (fixed) 

Senergyaware 0.24 0.38 -0.54 0.39 0.12 0.35 0 (fixed) 

Senvaware -1.06** 0.42 0.03 0.42 -0.004 0.37 0 (fixed) 

Simpatient 1.25*** 0.42 0.37 0.37 0.31 0.35 0 (fixed) 

Sexperienced -0.12 0.40 0.37 0.40 -0.39 0.40 0 (fixed) 

Log likelihood = -3532.27 

Pseudo-R² (adj) = 0.274 (0.260) 

AIC = 7198.5 
Note:  p<0.10; * p<0.10; ** p<0.05; *** p<0.01 487 
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Table 6: WTP estimates using the Delta method 490 

 WTP (€/Wp) 95% CI 

𝑾𝑻𝑷𝟏𝟓% -2.25*** [-3.48;-1.02] 

𝑾𝑻𝑷𝟏𝟎% -6.58*** [-13.43;-7.23] 

𝑾𝑻𝑷𝟓% -14.02*** [-18.15;-9.89] 

𝑾𝑻𝑷𝟏𝟓𝒚 0.41 [-0.64;1.45] 

𝑾𝑻𝑷𝟏𝟎𝒚 -2.80*** [-4.09;-1.50] 

𝑾𝑻𝑷𝟓𝒚 -10.33*** [-13.43;-7.23] 

𝑾𝑻𝑷𝒖𝒈 4.10*** [2.34;5.87] 

𝑾𝑻𝑷𝒏𝒊 7.81*** [5.43;10.18] 

𝑾𝑻𝑷𝒗𝒏𝒊 7.57*** [5.18;9.96] 

𝑾𝑻𝑷𝒑𝒊𝒏𝒕 1.54** [0.32;2.75] 

𝑾𝑻𝑷𝒊𝒏𝒕 6.52*** [4.60;8.44] 

𝑾𝑻𝑷𝒗𝒊𝒏𝒕 6.01*** [3.93;8.09] 

Note:* p<0.10; ** p<0.05; *** p<0.01; 491 


