
Simplification of Moving 3D Scene Data on GPU

Rajesh Chenchu, Nick Michiels, Sammy Rogmans and Philippe Bekaert
Hasselt University - iMinds, Expertise Centre for Digital Media, Wetenschapspark 2, 3590, Diepenbeek, Belgium

Keywords: Billboard, Scene Simplification, GPU, Real-time Rendering.

Abstract: Real-time large scale continuous image and geometry based data visualization, with an uninterrupted content
delivery, quality and rendering, on home and mobile devices is difficult or even mostly impossible because of
the low processing capabilities of these hardware devices. However, a gracefully simplified version of the same
data can enable us to view the content without significant quality degradation. To do this in a graceful manner,
we extended a well-known concept - called ’billboard cloud’ - for animated scene data and implemented this
technique using the capabilities of the GPU to generate the simplified versions of large scale data sets.

1 INTRODUCTION

Scene data is a combination of both image and ge-
ometry. Visualizing the same scene data in real-time
on mobile devices is cumbersome because most de-
tailed scene data is complex and occupies huge stor-
age and high bandwidth on the network. Simplifi-
cation methods create a simpler version of the scene
data targeted for mobile platforms. The main goal of
scene simplification is to transform an input represen-
tation into an output representation that can be stored,
distributed and rendered more easily and precisely on
(light-weight) home and mobile platforms.

As each frame of the scene data is a combination
of both image and geometry, creating a simpler ver-
sion with an uninterrupted content delivery, quality
and rendering in real-time is a great challenge for the
coming years. Mesh decimation has dramatically pro-
gressed, and techniques such as edge collapse permit
efficient and accurate simplification, e.g., [(Garland
and Heckbert, 1997), (Puppo and Scopigno, 1997),
(Luebke, 2001)]. However, these methods work best
on finely tessellated smooth manifolds, and often re-
quire mesh connectivity. Moreover the quality of
the simplified model often becomes unacceptable and
doesn’t work for large sets of data combining differ-
ent disconnected objects, subjects and scenes. On the
other hand, image-based acceleration is very efficient
for distant scenery, as it can naturally fuse multiple
objects, but offers only limited parallax effects.

A billboard cloud (Décoret et al., 2003) method is
used for simplification in this paper. This method sim-
plifies 3D models into a set of planes with texture and
transparency maps and results in better output com-
pared to other techniques. This method was proposed

for static objects, we extended current method to sup-
port moving scenes by using the capabilities of the
GPU. Our method generates a simplified version of
each frame in the scene data and render on the target
device.

2 PROPOSED METHOD

There are different methods to implement billboard
cloud techniques. Hough transform, Stochastic
method (Lacewell et al., 2006) and K-means cluster-
ing algorithm (Huang, 2004) are well known methods
for identifying planes for billboard clouds. The orig-
inal method introduced by Décoret (Décoret et al.,
2003) uses Hough transform and greedy method.
The greedy method uses recursive sub-division ap-
proach for finding the best-plane. The existing Hough
transform method takes a lot of time for processing
even one million triangular meshes and a possibil-
ity to hit an infinite loop during recursion. The pro-
posed method eliminates the recursive sub-division
approach and uses Hough transform, mipmap tech-
niques and the capabilities of a compute shader unit
to generate billboard clouds for scene data. These re-
sults were realized in the context of the SCENE EU
FP7 project (SCENE, 2014).

2.1 Hough Transform

The Hough transform for planes is a voting procedure
where each feature (triangle) in a mesh votes for all
possible planes passing through that feature. All votes
are stored in the so called Hough space, which is three
dimensional for the Hough transform for planes. The

Chenchu, R., Michiels, N., Rogmans, S. and Bekaert, P.
Simplification of Moving 3D Scene Data on GPU.
DOI: 10.5220/0005962000950098
In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 5: SIGMAP, pages 95-98
ISBN: 978-989-758-196-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

95

size of the Hough space is determined by the size of
the mesh and the required accuracy for the parame-
terization of the planes. Scene frame triangles are
used as input and the output consists of parameter-
ized planes. Planes are commonly represented by a
signed distance d to the origin of the coordinate sys-
tem and the slopes mx and my in the direction of the
x- and y-axis, respectively:

z = mxx+myy+d (1)

To avoid problems due to infinite slopes when try-
ing to represent vertical planes, another usual defini-
tion of a plane is the Hesse normal form. A plane is
thereby given by a point p on the plane, the normal
vector n that is perpendicular to the plane and the dis-
tance d to the origin

p.n = pxnx + pyny + pznz = d (2)

Considering the angles between the normal vector and
the coordinate system, the coordinates of n are factor-
ized to

px.cosθ.sinφ+ py.cosφ+ pz.sinφ.sinθ = d (3)

Given a feature p in Cartesian coordinates, Our
method will find all possible planes that the feature
lies on, i.e., find all planes that satisfy Eq.(3). Mark-
ing each point in a triangle in the Hough space leads
to a 3D sinusoid curve and the intersection of three
curves in Hough space corresponds to the polar coor-
dinates defining the plane spanned by the three points.
Given a set P of features (point or triangle) in Carte-
sian coordinates, one transforms all features pi ∈ P
into Hough space. The more curves intersect h j ∈ (θ,
φ, d), the more features (point or triangle) lie on the
plane represented by h j and the higher is the proba-
bility that h j is actually extracted from P.

3 IMPLEMENTATION

A view-independent billboard cloud generation
method is implemented in three modules i.e., plane
generation, texture generation and renderer. Texture
generation method takes the input data from the plane
generation module and the renderer method takes the
input data from texture generation. These modules
are executed independently.

3.1 Plane Generation

Plane identification for billboard cloud using Hough
transform is implemented using compute shaders.
The input for the plane generation module is a nor-
malized scene data frame. Once the plane informa-
tion is generated for one frame in the scene data then it

Figure 1: Pseudocode for Plane Generation.

takes the next frame and continues for the entire scene
video. Each frame in the scene data needs to be nor-
malized and centered w.r.t (0, 0, 0) before processing
to avoid misalignments. Usually scene mesh data res-
olution is high during 3D-reconstruction, for example
more than one million triangles for each frame, so our
method generates different sets of plane information
for mobile and TV, based on the target device resolu-
tion. The pseudo code for the selection of planes for
a single frame is shown in Figure 1.

Dispatch CS1 and Dispatch CS2 code blocks
are executed on the GPU computer shader unit.
Dispatch CS1 block is implemented to update his-
togram table when adding or removing the faces
to/from the accumulator and the Dispatch CS2 block
is implemented with a mipmap technique to find
the highest density bin in the 3D plane space.
Dispatch CS1 shader can be invoked for all faces at
once, if the GPU is capable to process within the spec-
ified timeout. Otherwise mesh data needs to be split
into batches and submit to the GPU by invoking the
Dispatch CS1 shader every time. There are options to
change/disable the GPU timeout to process all faces at
once but this is not always recommended.

3.2 Validity

The plane-space grid uses a simple validity. The Eu-
clidean distance between a point and its simplification
should be less than a small threshold ε. This means
that a point is allowed to move only in a sphere of
radius epsilon, i.e., a plane p yields a valid repre-
sentation of a point v if there exists a point p on P
such that ||vp|| < ε . The validity domain of v as the
set of planes that can represent it, which is denoted
by validε(v). It is the set of planes that intersect the
sphere of radius ε centred on v. A plane is valid for
a polygon if it is valid for all its vertices. The valid-
ity domain validε(f) of a face f is the intersection
of the validity domain of its vertices. Geometrically,
this corresponds to the set of planes intersecting a set
of spheres. We will interchangeably say that a face

SIGMAP 2016 - International Conference on Signal Processing and Multimedia Applications

96

is valid for a plane, and that the plane is valid for the
face.

3.3 Cost Function

The cost function for updating the density value is 1
at the time of adding a face to the histogram and −1
for removing a face from the histogram. We can also
consider the traingle area as a cost function weight for
adding and removing the faces from the histogram.

3.4 Crack Reduction

A general solution to minimize cracks between adja-
cent billboards is to render the faces onto the textures
of all planes for which they are valid. This opera-
tion is easily performed by rendering the entire scene
in the texture, using extra clipping planes to restrict
imaging to the valid region around the plane.

3.5 Texture Generation

Billboard cloud textures are generated by finding the
minimum bounding rectangle of the projection of the
faces in a texture plane and shooting a texture by ren-
dering all valid faces using an orthographic projec-
tion. Texture resolution is automatically selected ac-
cording to the object-space size of the bounding rect-
angle. If the normal maps are computed together with
the textures, a billboard cloud can be relit in real-
time. Texture and normal map packing in a single
or multiple texture atlas improves the performance
during run-time. Our method uses a simple greedy
packing algorithm (Coffman et al., 1997) to store all
the textures of an entire billboard-cloud into a sin-
gle/multiple texture atlas which optimizes the mem-
ory usage and minimizes texture switching.

3.6 Renderer

For rendering textured billboards, our method will
find the correct mapping between the texture and
plane coordinates. For proper alpha-compositing and
mip-mapping, our method uses black background and
pre-composited alpha (Porter and Duff, 1984). The
rendering of a billboard cloud is penalized mainly by
the fill rate: when 100 interleaved billboards are ren-
dered, lots of pixels are drawn many times (the worst
case being parallel billboards viewed from the front).
Therefore, a billboard cloud is useful when its pro-
jected screen size is not too large. When an object is
far away, using a billboard cloud simplification gives
higher quality results than a geometrically simplified
approach.

Figure 2: Scene frame data: original(left) vs simpli-
fied(right).

Figure 3: Frames in the scene video file.

4 RESULTS

The result of the proposed technique is shown in Fig-
ure 2 for a single scene frame. The 3D-reconstructed
frame is shown on the left and the simplified version
of the billboard cloud is shown on the right. Our
method focuses on the visual quality of the results,
without optimizing for resource usage. The tech-
nique always converges and yields a billboard cloud
where all original faces have been collapsed on at
least one billboard, while enforcing the error bound.
A few frames of the scene video file are shown in
Figure 3. A billboard cloud is generated for each
frame and stored in the scene format. The renderer
module on the target device reads the billboard cloud
data from the scene format and renders each frame
continuously. Normal maps are used to relight the
scene if required. Usually the number of billboards
are less for simpler objects but complex irregular ob-
jects generate more billboards to retain all features in
the scene. Figure 4 shows the correlation between the
number of triangles in the scene frame and the gener-
ated billboards. More billboards were identified when
the scene frame contains more triangles. Normally

Simplification of Moving 3D Scene Data on GPU

97

Figure 4: Number of triangles in the scene frame data vs
generated billboards.

Figure 5: Number of billboards vs processing time.

a complex mesh will generate more billboards than
a simpler mesh to preserve the same visual quality.
Figure 5 shows the correlation between the generated
billboards and GPU processing time.

5 CONCLUSIONS

Our method generates a simpler version of the scene
data that can be stored, distributed and rendered more
easily and precisely on home and mobile platforms.
Our simplification approach of scene frame data us-
ing billboard clouds gives promosing results. The
extreme case of a single billboard would obviously
look flat, to retain the same visual quality with origi-
nal frame, the proposed method generates a sufficient
number of billboards for each frame and also shows
a significant performance improvement on high-end
GPUs. Our method is not recursive and completely
works with independent parallel threads on GPU, so
there is no chance to get into an infinite loop at any
stage, in contrast to existing methods. We also ren-
dered a few scene frames on mobile devices for test-
ing purposes and the presented results look good. A
few remaining performance bottlenecks will be ad-
dressed in the future work.

ACKNOWLEDGEMENTS

The authors acknowledge financial support from
iMinds and the SCENE EU STREP project (grant nr
287639).

REFERENCES

Coffman, Jr., E. G., Garey, M. R., and Johnson, D. S.
(1997). Approximation algorithms for np-hard prob-
lems. chapter Approximation Algorithms for Bin
Packing: A Survey, pages 46–93. PWS Publishing
Co., Boston, MA, USA.

Décoret, X., Durand, F., Sillion, F. X., and Dorsey, J.
(2003). Billboard clouds for extreme model simpli-
fication. In ACM SIGGRAPH 2003 Papers, SIG-
GRAPH ’03, pages 689–696, New York, NY, USA.
ACM.

Garland, M. and Heckbert, P. S. (1997). Surface simplifi-
cation using quadric error metrics. In Proceedings of
the 24th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’97, pages
209–216, New York, NY, USA. ACM Press/Addison-
Wesley Publishing Co.

Huang, I. (2004). Improved Billboard Clouds for Extreme
Model Simplification. Computer Science)–University
of Auckland.

Lacewell, J. D., Edwards, D., Shirley, P., and Thompson,
W. B. (2006). Stochastic billboard clouds for interac-
tive foliage rendering. J. Graphics Tools, 11(1):1–12.

Luebke, D. P. (2001). A developer’s survey of polygo-
nal simplification algorithms. IEEE Comput. Graph.
Appl., 21(3):24–35.

Porter, T. and Duff, T. (1984). Compositing digital images.
In Proceedings of the 11th Annual Conference on
Computer Graphics and Interactive Techniques, SIG-
GRAPH ’84, pages 253–259, New York, NY, USA.
ACM.

Puppo, E. and Scopigno, R. (1997). Simplification, lod and
multiresolution - principles and applications.

SCENE (2014). Scene. http://3d-scene.eu/. SCENE is co-
funded by the European Commission under the Sev-
enth Framework Programme FP7 ICT.

SIGMAP 2016 - International Conference on Signal Processing and Multimedia Applications

98

