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1. Introduction 

Partial least squares structural equation modeling (PLS-SEM) is a versatile and often applied 

technique in business and social sciences that allows researchers to assess inter-construct 

relationships as well as relationships among constructs and their respective indicators (see 

Henseler et al. (2016) for an excellent state-of-the art introduction and overview of PLS-

SEM). In its most basic form PLS-SEM assumes that the data stem from a single population, 

meaning that a single model represents all observations well (Sarstedt et al., 2011). Very 

often, researchers face a heterogeneity of observations, meaning that for different 

subpopulations, different parameters hold. In those cases, partial least squares multiple group 

analysis (PLS-MGA) is a useful approach to tackle this heterogeneity (Henseler et al., 2009). 

In general terms, a PLS-MGA involves estimating separate models for each subpopulation 

and subsequently assessing whether significant differences exist between the sets of parameter 

estimates. 

A special type of multigroup data occurs when the data are organized according to a so-

called factorial design. A factorial design is a statistical experimental design consisting of two 

or more factors (comparable to grouping variables in PLS-MGA), each with discrete possible 

values or levels. For each of the resulting combinations of these levels across all of the factors 

involved (i.e., treatments), data are collected. Due to its specific nature, a factorial design 

allows researchers to examine the effect of the factors in isolation (i.e., main effects) as well 

as in combination (i.e., interaction effects), thereby making factorial designs
1
 a useful and 

                                                             
1
 The use of factorial designs in high-quality studies in leading journals across different domains such as 

supply chain management (e.g., Singh and Kumar, 2012), information systems (e.g., Gan et al., 2012), software 

design (e.g., Mangalaraj et al., 2014), IT-enabled learning (e.g., Park et al., 2015), and marketing (e.g., Eggert et 

al., 2015) further illustrates the value of factorial designs. 
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efficient approach for business and management researchers (Neter et al., 1996; Montgomery, 

2012). 

Regular PLS-MGA analysis, which analyses the effect of a single grouping variable, may 

be used to assess the main effects but is incapable of assessing interaction effects that stem 

from the use of a factorial design. In this paper a new approach called partial least squares 

factorial structural equation modeling (PLS FAC-SEM) is introduced that enables researchers 

to assess the main and interaction effects resulting from an underlying factorial design on 

PLS-SEM parameter estimates. Compared to the existing arsenal of PLS-SEM analyses, the 

PLS FAC-SEM approach offers its users an additional and unique insight in their 

(experimental) data. 

As can be concluded from the opening paragraphs, the introduction of PLS FAC-SEM 

involves a methodological contribution to the PLS-SEM domain. However, a methodological 

contribution is only truly valuable if it advances researchers’ possibilities to gain novel 

insights from their data. Therefore, the best way to demonstrate the added value of PLS FAC-

SEM is to use an example showing a particular situation that is recognizable for managers and 

researchers alike. Moreover, to illustrate how PLS FAC-SEM relates to other existing 

approaches we explicate the relevant links where necessary throughout the example. 

A question of high practical relevance for a (marketing) manager of an airline concerns 

whether and how complaint handling perceptions depend on situational (e.g., attribution 

complexity; is it clear who’s to blame? Yes; low attribution complexity vs. No; high 

attribution complexity) and customer characteristics (e.g., type of customer; private vs. 

business). This question can be tackled by conducting a (scenario-based) factorial 

experimental design in which both design factors (i.e., attribution complexity and type of 

customer) are crossed, resulting in a factorial design of four independent cells or groups: low 

attribution complexity-business customer; low attribution complexity-private customer; high 
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attribution complexity-business customer and high attribution complexity-private customer. 

Regardless of the combination of design factor levels, each respondent is asked to fill out a 

survey containing items tapping their perceptions regarding constructs such as distributive 

justice (i.e., fairness of compensation), procedural justice (i.e., perceived fairness of complaint 

handling procedure), and satisfaction with complaint handling. These perceptions are 

generally assessed by means of Likert scales resulting in metric data. 

Typically, this kind of factorial data are analyzed using n-way ANOVA allowing the 

researcher to address questions such as: 

“Is satisfaction with complaint handling/distributive justice/procedural justice higher for 

situations in which there is high attribution complexity compared to situations in which there 

is low attribution quality?” [Main effect design factor “attribution complexity”] 

 

 “Is satisfaction with complaint handling/distributive justice/procedural justice higher for 

business customers than for private customers?” [Main effect design factor “type of 

customer”] 

 

 “Does the difference in satisfaction with complaint handling/distributive justice/procedural 

justice between business and private customers diminish when attribution complexity 

increases?” [Interaction effect attribution complexity*type of customer] 

 

Despite its undisputable value, an important shortcoming is that n-way ANOVA only 

focuses on the mean value of a single outcome (i.e., complaint handling 

satisfaction/distributive justice/procedural justice). That is, n-way ANOVA does not provide 

an answer to the question how model relationships vary as a function of the underlying 

factorial design. Put differently, n-way ANOVA is incapable of answering research questions 

such as: 

“Does procedural justice have a larger impact on complaint handling satisfaction in situations 

where attribution complexity is high?” [Main effect design factor “attribution complexity”] 
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“Does distributive justice have a larger impact on complaint handling satisfaction for private 

customers than for business customers?” [Main effect design factor “type of customer”] 

 

“Does the greater impact of distributive justice over procedural justice on complaint handling 

satisfaction for private customers diminish when attribution complexity increases?” 

[Interaction effect attribution complexity*type of customer] 

 

Indeed, PLS-MGA (see also Henseler et al. (2009)) can be used to address the effects of 

the design factors on the relationships in isolation (i.e., main effects), but this analysis would 

leave the question regarding of how the effect of one design factor on the inter-construct 

relationships depends on the other design factor (i.e., interaction effect) unanswered.  

To address the last research questions involving the combined impact of design factors 

(i.e., interaction effect) on relationships
2
, Iacobucci et al. (2003) proposed an approach called 

FAC-SEM (i.e., factorial structural equation models). That is, FAC-SEM combines the 

strengths of n-way ANOVA (i.e., ability to analyze interaction effects) and multiple group 

analysis (MGA) (i.e., focus on relationships) in a single approach. Although the FAC-SEM 

approach allows researchers to obtain a deeper and unique understanding of factorial data, it is 

hitherto only available in a covariance-based structural equation modeling (CB-SEM) context.  

The aim of the current study is to extent the FAC-SEM approach to a PLS-SEM context 

and to provide a step-by-step guideline that shows how to apply the PLS FAC-SEM approach 

in practice. The significance of introducing PLS FAC-SEM in addition to the originally 

developed CB FAC-SEM can be seen from two perspectives. First, given the general, 

manifold advantageous features of PLS-SEM over CB-SEM (see also Sarstedt et al., (2014); 

Hair et al., (2011)), the introduction of PLS FAC-SEM will make the FAC-SEM 

methodology applicable in a larger number of practical research situations. Second, given the 

differences in underpinnings of PLS-SEM and CB-SEM (see also Rigdon (2012; 2014)), an 

                                                             
2
 Note that the focus of this paper is on inter-construct or structural model relationships. Yet, the FAC-SEM 

approach can also be applied on measurement model relationships.  
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extension of the FAC-SEM approach in a PLS-SEM context offers possibilities to apply the 

approach to more prediction-oriented research contexts. 

The remainder of this paper is structured as follows. Section 2 provides a brief introduction 

of the key building blocks of the PLS FAC-SEM approach and discusses it added value. 

Section 3 is the core of the paper and contains a detailed illustrated step-by-step guideline of 

the PLS FAC-SEM approach. Finally section 4 summarizes the main conclusions. 

 

2. PLS FAC-SEM: Its Building blocks and introduction 

In order to fully appreciate the merits of PLS FAC-SEM, it is necessary to explain what is 

meant by factorial designs, main effects, and interaction effects. Furthermore, the 

characteristics of the two methodological approaches to which PLS FAC-SEM is closely 

linked, that is, n-way ANOVA and MGA, need to be understood. Finally, the merits of PLS 

FAC-SEM over CB FAC-SEM are underscored. 

 

2.1 Factorial designs 

A factorial design is a statistical experimental design used to assess the effects of two or more 

design factors
3
 simultaneously. Each design factor consist of a (not necessarily equal) number 

of levels. The treatment conditions in a factorial design are combinations of the factor levels. 

Figure 1 panel A provides a graphical overview of a factorial design consisting of two design 

factors (i.e., A and B ), each having two levels (i.e.,
1a ,

2a ,
1b , and 

2b ), resulting in four cells 

(i.e.,
11ba ,

21ba ,
12ba , and

22ba )
4
.  

                                                             
3
 It is important to explicitly note that the term factor in the context of a factorial design, and thus PLS 

FAC-SEM, has a different meaning than what is usually implied by this term in PLS-SEM (i.e., a 

construct as implied by the common factor model). In order to avoid unnecessary confusion, we 

therefore decide to refer to the factor in a factorial design as design factor. 
4
 Without loss of generalizability we focus on 2*2 factorial designs. Factorial designs with more than 

two factors are possible as well as factorial designs in which factors have more than two levels. 
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[INSERT FIGURE 1 ABOUT HERE PLEASE] 

2.2 Main and interaction effects 

The arrangement of a factorial design is such that information can be obtained about the 

influence of each of the design factors separately (i.e., main effects) and about how the design 

factors combine to influence relevant outcomes (i.e., interaction effects). Each design factor’s 

main effect involves the impact of that design factor on a particular outcome disregarding the 

impact of the other design factor. The interaction effect assesses how the impact of a design 

factor on an outcome depends on the level of the other design factor. Put differently, the 

presence of a significant interaction effect indicates that the impact of a design factor is not 

constant across levels of the other factor. For an extensive treatment of main and interaction 

effects the interested reader is referred to Keppel (1991) and Montgomery (2012). As can be 

seen in Figure 1 panel D factorial designs imply hypotheses for each separate main effect as 

well as their interaction effect. 

 

2.3 n-way ANOVA 

Typically, n-way ANOVA is used to assess how the mean value of an outcome variable 

differs as a result of the design factors making up the factorial design (see also Figure 1 panel 

B). Consistent with the distinct nature of factorial designs, a pivotal feature of n-way ANOVA 

is its ability to unravel the variance present in some metric outcome variable to determine 

whether the mean value of this outcome can be explained by the design factors separately 

(i.e., main effects) and/or the design factors in combination (i.e., interaction effects). For an 

overview of the statistical hypotheses underlying associated with n-way ANOVA, see Figure 

                                                                                                                                                                                              

Moreover, no restrictions apply to whether the number of levels per factor need to be equal. The 

proposed PLS FAC-SEM approach can also be applied to factorial designs that deviate from the 2*2 

format employed in this paper.  
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1 Panel D. For illustrative questions that can be addressed with n-way ANOVA, see also the 

first set of research questions mentioned in the introduction of this study. 

It should be noted that ANOVAs can also be conducted using standard PLS-SEM software 

as explained and illustrated by Streukens et al. (2010). 

 

2.3 Multi-group analysis (MGA) 

Despite n-way ANOVA’s key feature to assess both main effects and interaction effects, a 

notable shortcoming is its focus on an outcome’s mean value, rather than on relationships. As 

such, research questions involving the impact of design factors on parameters associated with 

the relationships among different constructs (see for examples the second set of question in 

the introduction) and/or relationships among constructs and their respective measures cannot 

be assessed using n-way ANOVA.  

Traditional MGA, regardless of whether it is applied in a PLS-SEM context or not, is only 

capable of assessing the impact of design factors on inter-construct relationships in isolation 

(i.e., main effects), thereby failing to take into account possible interaction effects that may 

exist between design factors. Failing to take into account possible interaction effects may lead 

to erroneous conclusions regarding the main effects as interaction effects per definition mean 

that the main effect of one design factor is not constant for different levels of the other design 

factor.  

 

 

2.4 FAC-SEM 
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Originally developed by Iacobucci et al. (2003), FAC-SEM is as special kind of MGA in 

which the different groups represent the different cells of a factorial design. The purpose of 

FAC-SEM is to statistically test whether and how model relationships vary significantly as a 

function of the underlying factorial design, both in terms of main and/or interaction effects. 

As also shown in Figure 1 panel C, FAC-SEM’s scope of investigation involves model 

parameters describing relationships rather than construct means.  

Figure 2 below illustrates the added value of FAC-SEM relative to n-way ANOVA and 

MGA. Basically, FAC-SEM combines the ability to assess the influence of both main and 

interaction effects of design factors (cf. n-way ANOVA) with a focus on relationships (cf. 

MGA). As a result FAC-SEM is capable of tackling research questions that are left 

unanswered by opting for n-way ANOVA or traditional MGA thereby allowing researchers to 

gain a new and unique insight in their factorial data. In terms of the example put forward in 

the introduction, the unique type of research question FAC-SEM can address involves how 

design factors in combination (i.e., interaction effect) have an impact on model relationships 

(see also the last research question put forward in the introduction). 

[INSERT FIGURE 2 ABOUT HERE PLEASE] 

2.5 PLS FAC-SEM 

Similar to the general distinction between PLS-SEM and CB-SEM (see also Henseler et al., 

2016, Sarstedt et al., 2014), extending the principles of the FAC-SEM approach as originally 

developed by Iacobucci et al. (2003) for CB-SEM to a PLS-SEM context opens up a plethora 

of new possibilities to apply the FAC-SEM approach. More specifically, the introduction of 

PLS FAC-SEM makes FAC-SEM analysis a realistic option for studies that involve more 

complex models, models that contain composites or a combination of composites and 

common factors, and situations which do not meet the stringent distributional assumptions 

D
ow

nl
oa

de
d 

by
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

 A
t 0

2:
34

 2
2 

Se
pt

em
be

r 
20

16
 (

PT
)



9 
 

and sample size requirements associated with CB-SEM. In a similar vein, PLS FAC-SEM is 

suitable for research contexts that focus on prediction rather than explanation (cf. Hair et al., 

2011). Finally, it needs to be stressed that PLS FAC-SEM can also be used in combination 

with consistent partial least squares (PLSc) estimation as developed by Dijkstra and Henseler 

(2015a, 2015b). PLSc introduces a correction for structural model estimates when PLS is 

applied to reflectively measured constructs (i.e., common factors) thereby avoiding inflation 

of the path coefficients and thus reducing the probability of type I errors. PLSc is applicable 

to models that contain both common factors and composites, yet PLSc only corrects those 

constructs that are reflective (see also Dijkstra and Henseler, 2015a, 2015b). 

 

3. The PLS FAC-SEM methodology: a step-by-step guide and illustration 

Performing a PLS FAC-SEM analysis requires a sequence of steps that is summarized below 

in Figure 3. Although not explicitly mentioned in Figure 3, it is important to emphasize that 

before conducting the actual PLS FAC-SEM analysis, data on the underlying factorial design 

(i.e., variables denoting of the factors (and the treatments)) need to be included in the dataset. 

Furthermore, similar to traditional PLS-MGA, the data collection procedures as well as the 

model need to be identical across the cells of the factorial design under study. 

[INSERT FIGURE 3 ABOUT HERE PLEASE] 

The remainder of this section provides a detailed explanation of these steps. In order to 

further clarify the steps involved in PLS FAC-SEM we start in paragraph 3.1 with the 

introduction of a real-life example that will be used throughout the remainder of this section. 
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3.1 PLS FAC-SEM data: the relative performance of different customer value methods
5
 

Perceived customer value is a key determinant of customer behavior. Research by Leroi-

Werelds et al. (2014) assessed the performance of the four alternative measurement methods 

that are most commonly used in empirical studies (i.e., the value measurement methods 

proposed respectively by Dodds et al. (1991); Gale (1994); Woodruff and Gardial (1996); 

Holbrook (1999)). Their performance was assessed in terms of their predictive ability of 

customer’s word of mouth intentions. Here, a customer value measurement method’s 

predictive ability of word of mouth intentions was measured by the 2R value of the latter 

construct with the particular customer value measurement method acting as a predictor.  

Closer inspection of Leroi-Werelds et al.’s (2014) results indicate that the differences in 

the predictive ability of customers’ word of mouth intentions between the four value 

measurement methods vary across settings (see for an overview of these results Table A1 in 

Appendix A). In this context, differences in predictive ability or relative performance reflect 

the differences in the amount of variance explained (i.e., 2R value) for the criterion construct 

(i.e., customer’s word of mouth intent) for two customer value measurement methods. For 

example, the relative predictive ability of Gale’s (1994) method compared to Holbrook’s 

(1999) method in terms of customer’s word of mouth thus involves assessing the difference in 

2R values for the latter construct obtained when Gale’s (1994) method was used as a predictor 

and when Holbrook’s (1999) method was used as a predictor. 

The aim of the current empirical study is to assess whether the relative performance of the 

four customer value measurement methods varies structurally as a function of product 

involvement and type of product. Besides the effect of level of product involvement and 

product type in isolation (i.e., main effects), we question whether the effect of product 

                                                             
5
 Details pertaining to the actual empirical study can be found in Appendix A as well as in Leroi-Werelds et al. 

(2014). This paragraph only pays attention to those details of the study related to the PLS FAC-SEM approach. 
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involvement on relative predictive ability is dependent on product type (i.e., interaction 

effect). 

To address the abovementioned research question, the data collection is structured as a 

factorial design composed of two design factors. The first design factor is the level of 

involvement and consists of two levels (i.e., low and high). The second design factor is the 

type of offering, which also consists of two levels (i.e., think and feel). Figure 4 provides a 

graphical presentation of this factorial design as well as the abbreviation used throughout the 

remainder of this paper. Furthermore, Figure 4 provides information about the study contexts 

used to operationalize the different cells of the factorial design. The relevant PLS FAC-SEM 

substantive hypotheses as well as the relevant theoretical background can be found in 

Appendix A. Appendix A also contains a detailed explanation of how the substantive 

hypotheses translate into relationship parameters which will be central to the PLS FAC-SEM 

approach.  

[INSERT FIGURE 4 ABOUT HERE PLEASE] 

The remainder of this section focuses on the relevant PLS FAC-SEM statistical hypotheses 

both in general terms as well as applied to the illustrative example. 

 

3.2 PLS FAC-SEM: an illustrated step-by-step guideline 

The results of the PLS FAC-SEM analysis accompanying this step-by-step guideline are 

summarized below in Table 1 and will be discussed in detail for each of the steps below. 

[INSERT TABLE 1 ABOUT HERE PLEASE] 
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In Table 1, the results mentioned under the heading “estimates per cell” are the average 

parameter values per cell. They can be used as descriptives to further unravel the nature of the 

main and/or interaction effects that take central stage in the PLS FAC-SEM analysis. 

 

PLS FAC-SEM Step 1: The omnibus test. The first step in PLS FAC-SEM is to assess 

whether the structural model parameters are indeed different across the cells of the factorial 

design. In general terms (as also employed in Figures 1 and 3), this involves testing the 

following null hypothesis: 

)()()()(: 221221110 babababaH iiii ββββ ===  

To test this null hypothesis Sarstedt et al.’s (2011) omnibus test of group differences is 

needed. Note that Sarstedt et al.’s (2011) omnibus test cannot be conducted using regular 

PLS-SEM software packages. In order to perform this test a SAS-code was written which can 

also be found in Appendix B. 

Rejection of the omnibus test’s null hypothesis indicates that the model relationships 

(denoted by iβ ) vary as a function of the underlying factorial design. Whether the differences 

are due to significant interaction effects and/or main effects needs to be assessed in the 

remaining PLS FAC-SEM steps. If the omnibus test’s null hypotheses cannot be rejected, the 

parameter under investigation is equal across all cells of the factorial design implying that the 

underlying factorial design does not have an impact on the parameter’s magnitude. In this 

case, the PLS FAC-SEM analysis stops. 
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In terms of the empirical illustration at hand, the first step of the PLS FAC-SEM approach 

involves testing three
6
 omnibus tests. That is, one omnibus test for each pair of customer 

value methods that we compare (i.e., comparison Woodruff and Gardial vs. Gale; Holbrook 

vs. Gale; Holbrook vs. Woodruff and Gardial). Specifically, this boils down to the three null 

hypotheses presented in Exhibit 1. 

Exhibit 1: Null hypotheses omnibus tests  

 

Omnibus test hypothesis for the comparison Woodruff & Gardial vs. Gale 

),(),(),(),(:0 ThHiThLoFeHiFeLoH GAWGGAWGGAWGGAWG −−−− ∆=∆=∆=∆  

 

Omnibus test hypothesis for the comparison Holbrook vs. Woodruff & Gardial 

),(),(),(),(:0 ThHiThLoFeHiFeLoH WGHBWGHBWGHBWGHB −−−− ∆=∆=∆=∆  

 

Omnibus test hypothesis for the comparison Holbrook vs. Gale 

),(),(),(),(:0 ThHiThLoFeHiFeLoH GAHBGAHBGAHBGAHB −−−− ∆=∆=∆=∆  

 

In Exhibit 1, ∆ refers to the difference in predictive ability or relative performance (i.e., 

difference in 2R  values for customer’s word of mouth intentions as predicted by the different 

value measurement methods) and the letters WG, GA, and HB respectively denote the 

customer value measurement methods of Woodruff and Gardial, Gale, and Holbrook. 

Furthermore, the cell of the factorial design is denoted by the abbreviations in parentheses. 

Similar as in Figure 4, Lo indicates low involvement and Hi indicates high involvement. 

Whereas Fe and Th respectively indicate feel and think offerings. 

As shown in Table 1, the results of the omnibus tests reveal that for each of the three 

customer value method-comparisons the null hypothesis can be rejected (all p < 0.001). This 

                                                             
6 As explained in Appendix A as well as in the work of Leroi-Werelds et al. (2014) the value measurement 

method put forward by Dodds et al. (1991) does not possess favorable psychometric properties and will therefore 

be excluded from the PLS FAC-SEM analysis. 
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indicates that the parameter estimates across the cells of the factorial design are not equal. In 

terms of the application at hand, the rejection of the omnibus null hypotheses implies that the 

relative performance of two value measurement methods differs as a function of the level of 

involvement, the type of offering, and/or their interaction. The subsequent steps are needed to 

further assess the nature of the across-cells parameter differences. 

 

PLS FAC-SEM Step 2: Assessing interaction effects Similar to n-way ANOVA, upon 

rejection of the omnibus test’s null hypothesis, the PLS FAC-SEM analysis continues with the 

assessment of the highest-order statistically significant interaction (cf. Keppel, 1991). The 

rationale for this lies in the fact that a significant n
th

-order interaction effect implies that the 

lower (n-1)
th

 effect is not constant and therefore can only be meaningfully interpreted when 

the higher order interaction effect is ignored. For example, in a 2*2*2 factorial design, a 

significant third-order the interaction effect implies that the magnitude and/or nature of a 

second-order interaction effect depends on the level of a third design factor. Ignoring the 

significant third-order interaction, would lead to the false conclusion that there is a particular 

second-order interaction effect that is the same for all levels of the third design factor, 

whereas in reality it might be that a second-order interaction exists for a particular level of the 

third design factor and there is no (or different) second-order interaction effect for another 

level of the third design factor. In turn, significant second-order interaction effects indicate 

that a factor’s main effect depends on the level of the other factor involved in the second-

order interaction effect. Again, ignoring the interaction effect may lead to erroneous 

conclusions about the magnitude and/or presence of the lower level effects. Empirical studies 

by Hui et al. (2004) and Van Dolen et al. (2008) provide examples of how significant higher-

order interaction effects influence the interpretation of lower order effects. 
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To examine whether an interaction effect exists, the bootstrap estimates obtained in the 

first step of Sarstedt et al. ‘s (2011) omnibus test are used to construct bias-corrected 

percentile confidence intervals to test the null hypothesis whether the difference in parameter 

estimate stemming from one design factor remains unaffected by the other design factor. For a 

detailed explanation of how to construct bias-corrected percentile bootstrap confidence 

intervals see Streukens et al. (2010) and Streukens and Leroi-Werelds (2016). For this study, 

all confidence intervals were constructed in Microsoft Excel using the relevant bootstrap 

output from smartPLS 3.0 (Ringle et al., 2015) as a starting point. 

In terms of the factorial design presented in Figure 1, the following general null 

hypothesis applies for the interaction effect: 

0)()()()(: 221221110 =−−− babababaH iiii ββββ  

Rejection of the interaction effect’s null hypothesis (i.e., the confidence interval contains the 

value zero), implies that a design’s factor effect on the structural relationships under study 

depends on the level of the other design factor.  

When a significant interaction effect is evidenced, the researcher is advised to create a so-

called interaction plot to gain further insight in the nature of the interaction effects. An 

interaction plot is a graph containing the mean parameter values for each cell of the factorial 

design. The x-axis of the interaction plot contains the different levels of one design factor. 

The interaction plot contains lines (equal to the number of levels of the other design factor) 

that connect the mean parameter values of the cells corresponding to a particular level of the 

other design factor (see Keppel (1991) Chapter 9 for a detailed overview of the construction 

of interaction plots). Note that the in-depth inspection of the interaction effect is strongly 

driven by theoretical considerations (i.e., what does the substantive literature hypothesize in 

terms of an interaction effect). That is, which design factor is used to represent the lines in an 
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interaction plot and which factor is placed on the x-axis, is a decision that should be in line 

with the underlying substantive theory. 

For the empirical study at hand, three (second-order) interaction effects are relevant (i.e., 

one for each of the three pair-wise customer value methods comparisons), leading to the three 

null hypotheses presented in Exhibit 2 (same notation applies as used in Exhibit 1). 

Exhibit 2: Null hypotheses interaction effects 

 

Interaction effect hypothesis for the comparison Woodruff & Gardial vs. Gale 

),(),(),(),(:0 ThHiFeHiThLoFeLoH GAWGGAWGGAWGGAWG −−−− ∆−∆=∆−∆  

 

Interaction effect hypothesis for the comparison Holbrook vs. Woodruff & Gardial 

),(),(),(),(:0 ThHiFeHiThLoFeLoH WGHBWGHBGWHBWGHB −−−− ∆−∆=∆−∆  

 

Interaction effect hypothesis for the comparison Holbrook vs. Gale 

),(),(),(),(:0 ThHiFeHiThLoFeLoH GAHBGAHBGAHBGAHB −−−− ∆−∆=∆−∆  

 

As can also be seen in Table 1, a significant interaction effect is present for two out of the 

three comparisons (Woodruff and Gardial vs. Gale: .14 CI.95 = [.02; .25]; Holbrook vs. Gale: 

.24 CI.95 = [.11; .38]). This implies that the difference in relative performance of the value 

measurement method of Woodruff and Gardial (Holbrook) compared to that of Gale between 

think and feel offerings depends on the level of involvement. 

For these significant interaction effects, the corresponding interaction plots were 

constructed to gain a better understanding of the interaction effect. These interaction plots are 

shown in Figure 5 below. Inspection of the interaction plots shows that the interactions are 

disordinal in nature as the lines of the plot cross each other. To fully understand the exact 
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nature of the interaction effects, an analysis of the relevant simple effects is needed (see also 

step 3A below).  

[INSERT FIGURE 5 ABOUT HERE PLEASE] 

It is important to note that the third and final step of the PLS FAC-SEM approach depends 

on the outcome of step 2. If there is a significant interaction effect, the researcher proceeds by 

assessing the relevant simple effects (step 3A). In case there is no significant interaction 

effect, the researcher continues by assessing the design factor’s main effects (step 3B). 

 

Step 3A PLS FAC-SEM: Simple effects The existence of a significant interaction effect (i.e., 

assessed in step 2), implies that the effect of one design factor depends on the level of the 

other design factor. Put differently, a significant interaction effect means that the main effect 

of a design factor is non-constant across the level of the other design factor. As such, it is 

generally not meaningful to refer to main effects, even if they are statistically significant, 

when a significant interaction effect is present (cf. Zar, 1999). Rather, the simple effects need 

to be assessed. 

Simple effects involve the analysis of the effects of one design factor at one level of the 

other design factor (Keppel, 1991). In general terms (and conform the design depicted in 

Figure 1), analysis of simple effects for design factor A involves testing: 

)()(: 12110 babaH ii ββ = and )()(: 22210 babaH ii ββ =  

Similarly, the general null hypotheses accompanying the analysis of the simple effects for 

design factor B are: 

)()(: 21110 babaH ii ββ = and )()(: 22120 babaH ii ββ =  

D
ow

nl
oa

de
d 

by
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

 A
t 0

2:
34

 2
2 

Se
pt

em
be

r 
20

16
 (

PT
)



18 
 

Bias-corrected percentile bootstrap confidence intervals need to be constructed to assess 

whether the simple effects are statistically significant. Similar as to the analysis of the 

interaction effect, the nature of the simple effects’ tests need to be guided by theoretical 

considerations. 

For the empirical study at hand, simple effects are assessed for the customer value method 

comparison Woodruff and Gardial vs. Gale and the customer value method comparison 

Holbrook vs. Gale. In doing so, the levels of the design factor “involvement” are kept 

constant, meaning that a simple effect needs to be assessed for each level of the design factor 

“involvement”. The null hypotheses that apply to the assessment of the simple effects are 

shown below in Exhibit 3A (again, the same notation applies as in the previous exhibits). 

Note that these hypotheses are only developed and tested for the significant interaction 

effects. 

Exhibit 3A: Null hypotheses simple effects 

 

Simple effect hypotheses for the comparison Woodruff & Gardial vs. Gale 

Low involvement ),(),(:0 ThLoFeLoH GAWGGAWG −− ∆=∆  

High involvement ),(),(:0 ThHiFeHiH GAWGGAWG −− ∆=∆  

 

Simple effect hypotheses for the comparison Holbrook vs. Gale 

Low involvement ),(),(:0 ThLoFeLoH GAHBGAHB −− ∆=∆  

High involvement ),(),(:0 ThHiFeHiH GAHBGAHB −− ∆=∆  

 

Our results (see also Table 1) reveal that for the comparison Woodruff and Gardial vs. 

Gale a significant simple effect for the type of offering exists for high involvement products 

(.12 CI.95 = [.04; .22]), but not for low involvement products (-.01 CI.95 = [-.09; .07]). A 

similar pattern is found for the comparison Holbrook vs. Gale (respectively, .17 CI.95 = [.07; 

.28] and -.07 CI.95 = [-.16; .01]). Thus, in terms of the substantive hypotheses, the relative 
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performance of Woodruff and Gardial’s method (Holbrook’s method) over Gale’s method in 

equal for low involvement think offerings and low involvement feel offerings. In contrast, 

relative performance of Woodruff and Gardial’s method (Holbrook’s method) over Gale’s 

method is different for high involvement think offerings and high involvement feel offerings.  

 

Step 3B PLS FAC-SEM: Main effects As stated above in paragraph 2.2 a design factor’s main 

effect refers to the design factor’s effect on an outcome collapsed over the levels of the other 

design factors. The number of main effects is equal to the number of design factors. 

As also can be concluded from the hypotheses in Figure 1-Panel D above, testing a factor’s 

main effect involves aggregating the data over other factor’s different levels (this is indicated 

by the dots in the subscript). In terms of Figure 1 panel C, to test for the main effect factor A 

the data over cells 
11ba and 21ba are merged into a single group 

•ba1
 (i.e., •=+ bababa 12111 ) 

and the data over cells 
12ba and 

22ba are merged into a single group •ba .2 (i.e., 

•=+ bababa 221212 ). The null hypothesis concerning the main effect of design factor A 

equals: 

)()(: 210 •• = babaH ii ββ   

In a similar vein, to test for the main effect of design factor B the data in the different cells 

are merged such that 11211 bababa •=+ and 22212 bababa •=+ . The accompanying null 

hypothesis for the main effect of design factor B is: 

)()(: 210 babaH ii •• =ββ  

In order to be able to test the main effects’ null hypotheses the data needs to be regrouped 

and for the resulting groups the model needs to be re-estimated. For the actual testing of the 

D
ow

nl
oa

de
d 

by
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

 A
t 0

2:
34

 2
2 

Se
pt

em
be

r 
20

16
 (

PT
)



20 
 

null hypotheses, bias-corrected percentile bootstrap confidence intervals need to be 

constructed.  

For the situation at hand, two main effects need to be assessed for the customer value 

method comparison Holbrook vs. Woodruff and Gardial (i.e., no significant interaction 

effect). That is, a main effect of level of involvement and a main effect for type of offering. 

Exhibit 3B summarizes the relevant null hypotheses. Again, the notation used in Exhibit 3B is 

equal to that used in the previous exhibits 

Exhibit 3B: Null hypotheses main effects  

 

Main effect hypothesis “Involvement” for the comparison Woodruff & Gardial vs. Holbrook 

),(),(:0 •∆=•∆ −− HiLoH WGHBWGHB  

 

Main effect hypothesis “Type offering” for the comparison Woodruff & Gardial vs. Holbrook 

),(),(:0 ThFeH WGHBWGHB •∆=•∆ −−  

. 

Having re-arranged the data as outlined above and re-estimated the models, bias-corrected 

bootstrap percentile intervals were construct to test the main effect null hypotheses. As can be 

concluded from Table 1, a significant main effect is found for the design factor involvement  

(-.19 CI.95 = [-.31; -.06]), but not for the design factor type of product (-.01 CI.95 = [-.13;.11]). 

This result means that the relative performance of Holbrook’s method compared to Woodruff 

and Gardial’s method varies as a function of the level of involvement, but not as a function of 

type of offering (i.e., feel-think). 
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4. Conclusion 

The aim of this paper was to provide and illustrate a step-by-step guideline of the PLS FAC-

SEM approach. The PLS FAC-SEM approach, which can be considered as a special kind of 

MGA, offers researchers the ability to obtain alternative and unique insights in their factorial 

data as it allows researchers to assess whether and how model relationships vary as a function 

of an underlying factorial design. More specifically, consistent with the logic underlying n-

way ANOVA, PLS FAC-SEM assesses whether differences in inter-construct relationships 

depend on the design factors both in isolation (i.e., main effects) and in combination (i.e., 

interaction effect).  

So far, the FAC-SEM approach, as originally developed by Iacobucci et al. (2003), was 

only available in a CB-SEM context. With the introduction of PLS FAC-SEM the virtues of 

the FAC-SEM approach now become applicable for a larger variety of research and modeling 

situations. We believe that the PLS FAC-SEM approach is a valuable addition to the PLS-

SEM analysis toolbox. 

As a final remark, it is important to note that the PLS FAC-SEM approach as discussed in 

this paper was limited to 2*2 factorial designs and inter-construct relationships. This choice 

was made for the ease of exposition of the PLS FAC-SEM approach. Following the principles 

of n-way ANOVA (see also Keppel (1991)), the PLS FAC-SEM approach can be extended to 

larger factorial designs without any problem. Likewise the PLS FAC-SEM approach can be 

used to assess the impact of the underlying factorial design on PLS-SEM parameters other 

than the structural model parameters. 
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APPENDIX A 

The aim of this appendix is to provide more detailed information about the empirical study 

used to illustrate the PLS FAC-SEM approach.  

Perceived customer value and predictive ability 

Perceived customer value has been of continuing interest to marketing researchers and 

practitioners alike. Moreover, it has been recognized as one of the most significant factors in 

the success of organizations (Slater, 1997). In line with Zeithaml's (1988, p. 4) definition that 

“perceived value is the consumer’s overall assessment of the utility of a product based on 

perceptions of what is received and what is given”, there has been a general consensus that 

customer value involves a trade-off between benefits and costs. Given the academic and 

practical relevance of customer value, there is a pressing need for further understanding of 

how this construct should be measured (e.g., Sánchez-Fernández et al., 2009). 

Over the years several customer value measurement methods have been put forward in the 

literature, all using Zeithaml’s definition as point of departure. In general, the customer value 

measurement methods of Dodds et al. (1991), Gale (1994), Woodruff and Gardial (1996), and 

Holbrook (1999) dominate the marketing literature. Although all of these methods have their 

merits, considerable differences among them exist. One key domain of difference involves the 

nature of the benefits and costs included in the model. Following Gutman's (1982) means-end 

chain model, customer perceived benefits and costs can be measured at the attribute and/or 

consequence level. Attributes are concrete characteristics or features of a product or service 

such as size, shape or on-time delivery. Consequences are more subjective experiences 

resulting from product use such as a reduction in lead time or a pleasant experience (Gutman, 

1982). 
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In a large-scale empirical study Leroi-Werelds et al. (2014) compared the predictive ability 

of these four commonly used customer value measurement methods (i.e., Dodds et al. (1991); 

Gale (1994); Woodruff and Gardial (1996); Holbrook (1999). The results of Leroi-Werelds et 

al. (2014) indicate that the relative predictive ability of the customer value measurement 

methods in terms of customers’ word of mouth intentions is not consistent across settings that 

differ in terms of involvement (high-low) and type of offering (feel-think). Table A1 below 

summarizes the relevant results reported in the study by Leroi-Werelds et al. (2014). 

 

Table A1: Predictive ability of different customer value methods Leroi-Werelds et al. (2014) 

 

Underlying factorial design 

The FCB grid classifies customers’ purchase decisions on two dimensions: involvement and 

type of offering. Involvement is defined as the attention of a customer to a product or a 

service because it is somehow important or relevant to him (Ratchford, 1987). Regarding the 

type of offering, the FCB grid discerns between think and feel offerings. Think offerings are 
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products or services bought to satisfy utilitarian needs, while feel offerings represent products 

and services bought to satisfy emotional wants.  

 

Hypothesis development 

Below we develop hypotheses reflecting the main effects of involvement (H1) and type of 

offering (H2) as well as the interaction effect between involvement and type of offering (H3). 

In terms of structural model parameters, the hypotheses focus on the structural relationships 

between on the one hand customer value and on the other hand word of mouth intention. 

More specifically, the parameters of interest reflect the predictive ability (i.e., R²) of customer 

value as measured by the different approaches in terms of customers’ positive word of mouth 

intentions.  

According to consumer research (e.g., Mulvey and Olson (1994), Claeys et al. (1995)) the 

level of involvement and the type of product (feel-think) influence customers’ means-end 

chains. Mulvey and Olson (1994) show that the higher the level of involvement, the more a 

person is aware of the consequences that stem from product use. Likewise, research by Claeys 

et al. (1995) reveals that, compared to think products, the means-end chains for feel products 

are characterized by a higher level of abstraction.  

A key dimension of difference among the four commonly used customer value 

measurement methods is the extent to which they assess customer value perceptions at the 

attribute or consequence level. On the one hand, the methods proposed by Holbrook (1999) 

and Woodruff and Gardial (1996) take into account the consequences customers experience 

from product use, whereas the other methods do not. On the basis of this theoretical 

foundation, it is conjectured that the relative performance of customer value measurement 

methods is influenced by the degree of correspondence between the level of abstraction of the 

D
ow

nl
oa

de
d 

by
 C

or
ne

ll 
U

ni
ve

rs
ity

 L
ib

ra
ry

 A
t 0

2:
34

 2
2 

Se
pt

em
be

r 
20

16
 (

PT
)



34 
 

benefits and sacrifices assessed by the customer value measurement method and the 

characteristics of the means-end chains that depend on the level of involvement and the type 

of product. This leads to the following hypotheses: 

 

H1: The difference in ability to predict word of mouth intent between customer value 

measurement methods that assess benefits and sacrifices at the consequence level (i.e., 

Woodruff & Gardial and Holbrook) and customer value measurement methods that do 

not assess benefits and sacrifices at the consequence level (i.e., Gale and Dodds et al.) 

is larger for high involvement offerings than for low involvement offerings. 

 

H2: The difference in ability to predict word of mouth intent between customer value 

measurement methods that assess benefits and sacrifices at the consequence level (i.e., 

Woodruff & Gardial and Holbrook) and customer value measurement methods that do 

not assess benefits and sacrifices at the consequence level (i.e., Gale and Dodds et al.) 

is larger for feel offerings than for think offerings. 

 

Furthermore, Claeys et al. (1995) infer that under a high level of involvement the 

difference between think and feel offerings may become more prominent, because under high 

involvement conditions, the cognitive structure is better organized at the product-knowledge 

levels (i.e., the attributes) and the self-knowledge levels (i.e., the consequences). Accordingly, 

the following hypothesis is proposed. 
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H3: The suggested superiority in word of mouth predictability of customer value 

measurement methods that assess benefits and sacrifices at the consequence level (i.e., 

Woodruff & Gardial and Holbrook) over customer value measurement methods that 

do not assess benefits and sacrifices at the consequence level (i.e., Gale and Dodds et 

al.) for feel offerings will be even more pronounced in case of a high level of 

involvement 

 

Settings and sampling 

In order to test the hypotheses outlined above, data were collected across four different 

settings reflecting the structure of the FCB grid. The products selected as research contexts 

(see also Figure 4) for our study were soft drinks (low involvement feel offering), toothpaste 

(low involvement think offering), day cream (high involvement feel offering), and DVD 

players (high involvement think offering). To enhance the external validity of our research, 

data were collected using one of the largest marketing research panels in Belgium. 

 

Questionnaire design 

We opted to construct 16 different questionnaires (i.e., collected from 16 different 

[sub]samples), so that each questionnaire assesses one customer value measurement method 

in one setting. All questionnaires were identical in terms of the measurement instrument for 

customer word of mouth intentions and the manipulation checks (i.e., measurement of 

involvement and type of offering). What differed across the questionnaires was the customer 

value measurement method employed which, furthermore, needed to be adapted to the 

particular setting. The content of the questionnaires as well as a detailed explanation of how 

the different customer value measurement methods were operationalized can be found in 
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Leroi-Werelds et al. (2014). Data collection continued until we obtained an effective sample 

size of 210 for each of the 16 questionnaires (i.e., setting-method combinations). 

 

Analytical approach 

Unless stated explicitly in the discussion of the results, all analyses were performed using 

SmartPLS 3 (Ringle et al., 2015). To assess the statistical significance of parameter estimates 

and differences in parameter estimates, we constructed bootstrap percentile confidence 

intervals based on J=5,000 bootstrap samples (cf. Preacher and Hayes, 2008). 

 

Measurement model structure and properties 

Following the work of Jarvis et al. (2003), the measurement model structures for the four 

customer value measurement methods used in this study are specified as follows. The scale 

suggested by Dodds et al. (1991) was modeled as a first-order factor model. A first-order 

composite model was used to operationalize Gale’s (1994) approach. Here, the constructed 

market-perceived price and market-perceived quality scores act as indicators. 

For the remaining two methods (i.e., Woodruff and Gardial (1996), Holbrook (1999)) we 

specified second-order measurement models. For the Woodruff and Gardial (1996) approach, 

overall customer value is a second-order construct formed by two first-order constructs (i.e., 

benefits and sacrifices). In turn, the benefit construct is modeled as a composite and the 

sacrifice construct is modeled along the lines of a factor model. Regarding Holbrook’s (1999) 

approach, overall customer value represents a second-order construct with the dimensions 

arising from his typology acting as first-order constructs that form overall customer value. 

The various first-order constructs are either a composite or a factor. For more details 
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regarding the exact measurement model specifications, which reflects the theoretical 

foundations of the respective customer value measurement approaches, the reader is referred 

to Leroi-Werelds et al. (2014). To model customer value as a second-order construct, the two-

stage approach suggested by Reinartz at al. (2004) was used. In the first stage, the latent 

variable scores were estimated without the second-order construct (i.e, customer value) 

present but with all of the first-order constructs (benefits and sacrifices for Woodruff and 

Gardial’s method and the various value types for Holbrook’s method) in the model. In the 

second stage, the latent variable scores of the first-order factors (i.e., benefits and sacrifices 

for Woodruff and Gardial’s method and the various value types for Holbrook’s method) were 

used as indicators of the second-order construct (i.e., customer value) in a separate higher-

order PLS model. 

We evaluated the psychometric properties of all first-order constructs used in our study. In 

terms of psychometric properties, it is crucial to distinguish between composites and factors 

(MacKenzie, Podsakoff & Jarvis 2005). Regarding the factor models, we assessed 

unidimensionality (procedure Sahmer et al. (2006) and cut-off criteria proposed by Karlis et 

al. (2003)), internal consistency reliability (procedure Jöreskog (1971)), item validity 

(procedure Hulland (1999)), within-method convergent validity and discriminant validity 

(procedures Fornell and Larcker (1981). Regarding the composites, the statistical significance 

of the items was assessed (cf. Diamantopoulos and Winklhofer, 2001)) discriminant validity 

was assessed by examining whether the latent variable correlations fall within two standard 

errors of an absolute value of 1 (MacKenzie et al., 2005). Detailed results regarding the 

constructs’ psychometric properties can be found in Leroi-Werelds et al. (2014). All 

constructs possess favorable properties with exception of the customer value measurement 

method proposed by Dodds et al. (1991). Consequently, the Dodds et al. (1991) measurement 

approach will be left out of the remaining analyses. 
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Manipulation checks 

To assess whether the chosen products indeed reflect the dimensions of the FCB matrix, 

manipulation checks were conducted. Following the procedure outlined by Streukens et al. 

(2010) it was assessed whether the average scores of the involvement items and the think/feel 

items included in the questionnaire differ for the relevant products. Regarding the level of 

involvement, we found significant differences between soft drink and day cream (mean SD = 

4.26, mean DC = 4.94, p < 0.001) as well as between tooth paste and DVD player (mean TP = 

4.14, mean DVD = 4.72, p < 0.001). With respect to the type of offering (think vs. feel), 

significant differences were found between soft drink and tooth paste (mean SD = 4.91, mean 

TP = 4.39, p < 0.001) as well as between day cream and DVD player (mean DC = 4.76, mean 

DVD = 3.99, p < 0.001). 

 

Comparing the predictive ability of different customer value methods 

A key challenge in the current situation is to make four substantially different customer value 

measurement methods comparable. This challenge is magnified further by the fact that the 

operationalization of each value measurement method also differs per setting. The answer to 

this challenge is to find a common structural model that is identical (and thus comparable) 

across methods and settings. 

To place all customer value measurement methods, across all settings, on an even footing 

we proceeded as follows.  

• Twelve (4 settings and 3 methods because Dodds et al. (1991) was not taken into 

account) structural models were estimated in which

)aluecustomer v perceived(fy = , in the current illustration y refers to the 

respondent’s intention to engage in positive word-of-mouth.  
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• For each of the twelve models, the estimation results were used to obtain the 

predicted values ( ŷ ) of the endogenous construct under study (i.e., positive word 

of mouth) 

• The predicted values ( ŷ ) were then regressed to the actual data (i.e., the latent 

variable scores) of the relevant construct ( y ). Thus, we estimated the following 

structural model: )ˆ( yfy = which is identical for all methods and across all 

settings. 

• Similar as in a bivariate regression context, the resulting path coefficient equals 

the coefficient of multiple correlation R and indicates the model’s predictive 

ability. As can be seen above, predictive ability plays a central role in our 

hypothesis testing. 

 

Appendix B: SAS-code omnibus test group differences 

This appendix presents the SAS-code written to conduct Sarstedt et al.’s (2011) omnibus test. 

The omnibus test plays a pivotal role in “PLS FAC-SEM Step 1: The omnibus test” as 

outlined in the paper. Following the work of Sarstedt et al.’s (2011), the omnibus test involves 

four stages which are briefly described  

Stage 1 Sarstedt et al. (2011): For each of the groups (i.e., cells) 000,5=B bootstrap samples 

are generated. For each of these samples the model is estimated. This is all done using 

smartPLS3 (Ringle et al., 2015). The bootstrap results for the relevant model parameter under 

study are saved in a separate data file (e.g., Excel) 

Stage 2-4 Sarstedt et al. (2011): for the remaining three stages a SAS-code was programmed 

based on Vickery’s (2015) work. The code, together with comments to clarify its contents, is 
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listed below in exhibit B1. The input data stem from the data file created in Stage 1 of the 

Sarstedt et al. (2011) procedure, which is also explained above.  

 

Note that Sarstedt’s et al. (2011) omnibus test can also be programmed in other software such 

as R or Gauss. 

Exhibit B1: SAS-code for omnibus test 

/* FAC-SEM USING PLS-SEM - SANDRA STREUKENS & SARA LEROI-WERELDS */  
/* SASCODE FOR THE OTG TEST */ 

 
/*Start with reading the data file containing the bootstrap estimates of the model parameter 
under study into SAS. The bootstrap results are generated using standard PLS-SEM software and 

are subsequently saved in a separate file */ 
 
 

/* START OF THE CODE */ 

 
proc iml; 

use Facsem;       /*Enter name of data file */ 
read all var {CELL01 CELL02 CELL03 CELL04} into xobs; /*Read data into matrix format */ 
close Facsem; 

 
/* USER-DEFINED MODULE NAMED FMOD(X) TO ENABLE SAS TO CALCULATE THE VARIANCE RATIO; SEE ALSO 
EQUATION (13) SARSTEDT ET AL. (2011) */ 

 
start fmod(x); 
 grandmean = x[:]; /*Grand mean scalar */ 
 n = nrow(x);  /*number of rows in data matrix (i.e, B in OTG test) */ 

 k = ncol(x);  /*number of columns in data matrix (i.e., G in OTG test */ 
 groupmean = x[:,]; /*Group mean; calculated for each of the G groups */ 
 

 SSB = (groupmean-grandmean)##2; /* Calculating SSB-The numerator of OTG test */ 
 SSB = SSB[+]; 

  

 SSW = (x-groupmean)##2;  /* Calculating SSW-The denominator of OTG test */ 
 SSW = SSW[+,]; 
 SSW = SSW[+];     

  
 
 MSSB = (k*n*(1/(k-1)))*SSB;  /* F-value (variance ratio) computation */ 

 MSSW = (1/(n-1))*SSW; 
 F=MSSB/MSSW; 
 return (F); 

 finish; 
 
/* USER-DEFINED MODULE NAMED PERMUTEWITHINROWS */ 

 
 start PermuteWithinRows(m);  /* For more details see Vickery (2015) */ 
  colIdx = ranperm(1:ncol(m), nrow(m)); 
  f = (row(m)-1)*ncol(m); 

  matIdx = f + colIdx; 
  return( shape(m[matIdx], nrow(m)) );  
  finish; 

 
/*CALCULATING THE F-VALUE FOR THE ORIGINAL DATA FILE */ 
 

fobs = fmod(xobs);   /* Applies FMOD to original data */ 
print fobs;   /* Shows you the output concerning the computed Fvalue */ 
call symputx('fobs',fobs); 
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/* GENERATING PERMUTATIONS AND CALCULATING THE ACCOMPANYING F-VALUES */ 
 

call randseed(12345); 
B = 5000;     /* Number of permutations */ 
fdist = j(B,1);    /* Creation of vector containing the F-value for */ 

do j = 1 to B;   /* each of the permutations. In a later step this is */ 
 x = PermuteWithinRows(xobs); /* also saved in a data file */ 
 F = fmod(x); 
 fdist[j,] = F; 

end; 
 
 

/* COMPUTATION P-VALUE*/ 
 
pval = sum(fdist > abs(fobs)) / B; /* Calculating the pvalue for the omnibus test */ 

print pval[label='P-value'];  /* Shows you the output concerning the computed Pvalue */ 
call symputx('p',pval); 
 

/*CREATION OF DATASET */ 

 
create facsemotg var {fdist}; /* Creation of data file containing the F-value for */ 

append;   /* each of the permutations. Allows you to perform */  
close facsemotg;   /*additional (visual) inspections */ 
 

quit; 
  
/* AND YOU'RE DONE! */ 
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Figure 2: FAC-SEM, n-way ANOVA and MGA 

 Parameter of interest Interaction effects
 

n-way ANOVA Means Yes 

MGA Structural/measurement model 

parameters (i.e., relationships) 

No 

FAC-SEM Structural/measurement model 

parameters (i.e., relationships) 

Yes 

Notes: 

Interaction effect in this context refers to the interaction effect as the joint influence of the design 

factors of the underlying factorial design, not the interaction effect between two constructs as in a 

moderator analysis. 

The statements made in Figure 2 hold regardless of whether the analyses are performed in a PLS-SEM 

context or not. 
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Figure 4: Factorial design empirical illustration PLS FAC-SEM 

 

 

Think (Th) Feel (Fe)
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Figure 5: Interaction plots 
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Table 1: Estimation results PLS FAC-SEM illustration 

 Value measurement method comparison 

 Woodruff & 

Gardial 

vs. 

Gale 

Holbrook 

vs. 

Woodruff & 

Gardial 

Holbrook 

vs. 

Gale 

    

Estimates per cell 

∆(Hi,Fe) .13 [.07;.20] -.09 [-.16;-.03] .04 [-.05;.12] 

∆(Hi,Th) .00 [-.05;.06] -.14 [-.14;-.09] -.14 [-.20;-.08] 

∆(Lo,Fe) .01 [-.05;.07] .03 [-.03;.09] .04 [-.02;.11] 

∆(Lo,Th) .02 [-.03;.08] .10 [.04;.15] .12 [.07;.16] 

Step 1: Omnibus test (See Exhibit 1 for H0) 
p-value omnibus test p < 0.001 p < 0.001 p < 0.001 

Conclusion H0 rejected H0 rejected H0 rejected 

Step 2: Interaction effect (See Exhibit 2 for H0) 

∆(Hi,Fe)- ∆(Hi,Th) -.01 [-.09;.07] .05 [-.02; .13] -.07 [-.16;.01] 

∆(Lo,Fe)- ∆(Lo,Th) .12 [.04;.22] -.06 [-.15;.01]  .17 [.07;.28] 

Difference .14 [.02;.25] .11 [-.01;.23] .24 [.11;.38] 

Conclusion H0 rejected Failed to reject H0 H0 rejected 

Step 3A: Simple effects (See Exhibit 3A for H0) 

Low involvement    

∆(Lo,Fe)- ∆(Lo,Th) .12 [.04;.22] ------ .17 [.07;.28] 

Conclusion H0 rejected ------ H0 rejected 

    

High involvement    

∆(Hi,Fe)- ∆(Hi,Th) -.01 [-.09;.07] ------ -.07 [-.16;.01] 

Conclusion Failed to reject H0 ------ Failed to reject H0 

Step 3B: Main effects (See Exhibit 3B for H0) 

Involvement    

∆(Hi,·) ------ -12 [-.21;-.03] ------ 

∆(Lo,·) ------ .07 [-.02;.15] ------ 

Difference ------ -.19 [-.31;-.06] ------ 

Conclusion ------ Failed to reject H0 ------ 

    

Type of offering    

∆(·,Th) ------ -.03 [-.11;.05] ------ 

∆(·,Fe) ------ -.03 [-.13;.06] ------ 

Difference ------ -.01 [-.11;.13] ------ 

Conclusion ------ Failed to reject H0 ------ 

Notes: Hi =High involvement; Lo = Low involvement; Fe = Feel offering; Th = Think offering. 

The term “Difference” refers to the difference between parameter estimates in the preceding rows. 

For the exact calculation of the ∆-parameter see Appendix A 

Dashed lines are printed at locations where a particular hypothesis test was not applicable 

The simple effects appear twice in this table (i.e., in Step 2 and Step 3A). This is a deliberate choice 
made for reasons of clarity. 
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