
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Omnidirectional Free Viewpoint Video using Panoramic Light Fields

Peer-reviewed author version

MAESEN, Steven; GOORTS, Patrik & BEKAERT, Philippe (2016) Omnidirectional

Free Viewpoint Video using Panoramic Light Fields. In: 3DTV-Conference: The True

Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), 2016, IEEE,.

DOI: 10.1109/3DTV.2016.7548960

Handle: http://hdl.handle.net/1942/22928

OMNIDIRECTIONAL FREE VIEWPOINT VIDEO
USING PANORAMIC LIGHT FIELDS

Steven Maesen, Patrik Goorts, Philippe Bekaert

Hasselt University - tUL - iMinds
Expertise Centre for Digital Media

Wetenschapspark 2
3590 Diepenbeek, Belgium

ABSTRACT

In this paper, we describe a system to create an omnidirectional
free viewpoint experience using only a small number of input
cameras. The input cameras are placed on a circle and we create
a large number of novel virtual viewpoints on that circle. Next,
we choose a position within that circle and compute the omnidi-
rectional image that is visible from that position by considering
the collection of virtual images as a light field. The corresponding
pixels in the virtual images are selected by tracing rays from the
desired viewing position. Changing your position inside the cir-
cle, results in an adapted view-dependent rendering. This creates
a free viewpoint 3D VR experience. We demonstrate our method
using the game engine Unity combined with the Oculus Rift.

Index Terms — Omnidirectional, Free Viewpoint Interpola-
tion, Unity, Oculus, VR, Light Field, View-dependent Rendering

1. INTRODUCTION

In this paper, we will combine the active topics of omnidirectional
rendering and view-dependent rendering. We created a system
where it is possible to move and look around in a scene where the
image you see adapts to your viewpoint. To accomplish this, a
small number of input cameras, placed on a circle, is used. We
chose for a small number to keep the system practical. Next, we
extend the amount of cameras to render the images of virtual cam-
eras placed on the same circle. This way, we effectively create a
circular light field.

A light field is a function that describes the flow of light in
a point, from a direction. This means that a light field is a 5D
function per color. When the complete function is defined, it is
possible to create a viewpoint from the scene from any point look-
ing in any direction. However, the complete light field is seldom
known. For example, when the geometry and texturing of a scene
is known, a complete light field can be defined. Nevertheless, cre-
ating a correct and dense geometry of a real scene is still an open
problem.

Another approach is sampling the light field using cameras
and then defining a dense light field from this information. A cam-
era is essentially a light field sampler, because the incident light in
the camera center in a number of directions is known. However,
the postion is limited to the camera center and no other positions
in the light field are known. Therefore, we extend the light field to
multiple locations.

In this paper, we will place a small number of cameras in a
circle. This defines a sparse light field sample. Then, we render
the images of a large number of virtual cameras on that circle C.

All these virtual cameras define a dense, circular light field. We
can then use this light field to create a new viewpoint inside the
circle of virtual cameras. We will focus on cylindrical panoramic
images. By tracing a view ray from the desired camera center
Mv , we will intersect the center of a virtual camera and, as a con-
sequence, it’s image plane. The color recorded on the image plane
(that is part of the light field) is the same as the color of the ray
arriving in the desired point Mv (assuming the space in the circle
is empty). By tracing rays in all directions, we can create a virtual
cylindrical panorama image.

To demonstrate the effectiveness of our approach, we built
a prototype using the game engine Unity [1] combined with the
Oculus Rift [2], an immersive head mounted display. To provide
high resolution at high framerates, we demonstrate both preren-
dering a dense set of these cylindrical panoramic images by vary-
ing MV , and rendering the needed panoramic viewpoint in real-
time using fast RAM memory.

Typically, this problem is addressed by using omnidirectional
cameras. Kralla et al. [3] use multiple positions of an omnidirec-
tional camera to generate disparity maps, but no free viewpoint
application is proposed. Birklbauer et al. [4] use focal stacks for
reconstructing a light field. Kawauchi et al. [5] use an array of
omnidirectional cameras on a robot to generate a dense light field.
By sampling this light field, free viewpoint navigation is possible.

Creating circular (i.e. omnidirectional or 360◦) light fields can
alternatively be done with specialized hardware. Examples are the
Neo system of Jaunt [6], the Immerge system of Lytro [7], or the
system of Ergunay et al. [8]. Chiba et al. [9] describe a system
using a moving DSLR. They use a dense capturing method and do
not generate intermediate views; only the real captured images are
used for resampling. As a consequence, no moving scenes can be
captured. Debevec et al. [10] use a similar method.

Our system does not require an omnidirectional system or a
cumbersome and sometimes expensive setup. We only require
multiple conventional rectilinear or equidistant (fisheye) cameras;
the creation of the light field is moved to processing. Furthermore,
we can increase the free viewpoint area by moving the cameras;
the area is not limited by the hardware design.

2. VIEW INTERPOLATION

The first step is creating the dense light field. To generate all the
virtual viewpoints onC, we use our previously described 2-staged
plane sweep method [11]. First, we create a depth map for every
real camera using a consensus-based plane sweep. We divide the
space before the camera image in planes, parallel to the image
plane. Next, we project all available input images to each plane.
The projected images will overlap. Each pixel on the plane corre-

Camera-ready version, final publication at IEEE: http://ieeexplore.ieee.org/document/7548960/

Figure 1. Part of the generated circular light field. The black camera
outlays are generated using free viewpoint rendering. The input images
are represented using red camera outlays.

sponds to a pixel on the image plane on the camera for which we
are calculating the depth map. We can calculate an error metric
per pixel by checking the difference between the projected, over-
lapping colors. By repeating this for every considered depth layer,
we can obtain a minimum cost per pixel on the image plane. We
save the depth corresponding with the lowest cost, thus obtaining
a depth map. Next, we clean up the depth map with a bilateral
(edge-aware smoothing) filter, where the edges in the color image
of the considered camera are used.

Using these depth maps, we can create novel viewpoints. We
repeat the previous plane sweep approach, but this time for a vir-
tual, novel camera position. This time, we consider also the pre-
viously created depth values. When projecting the color values,
we also project the depth values and compare them to the distance
of that pixel to the corresponding camera. If the distance is too
large, the cost is set to infinity. Using these depth maps allows us
to handle possible occlusions and improve our cost function. This
will increase the quality compared to other methods [11].

We will render a large number of virtual camera positions on
the circle C, as can be seen in Figure 1. The more cameras are
available, the better the final result (up to a certain point). This will
create a dense circular or panoramic light field. In our approach,
we will use a uniform distribution of virtual cameras, but this is
not a requirement.

3. RENDERING OMNIDIRECTIONAL IMAGES

In the previous step, we created a dense circular light field, which
we can resample to create novel omnidirectional cylidrical im-
ages from a viewpoint inside the circle C. We define the desired
position of the virtual panoramic image as Mv with coordinates
(xv, yv). The panoramic image visible from this point can be de-
fined by a cylinder V with centerMv . We opted for a cylinder and
not a sphere to allow fast view-dependent rendering.

The concept of the rendering is shown in Figure 2. We define a
ray RV starting from the center of the desired cylinder. Every ray
is defined by an angle av . We can now calculate the intersection
(xi, yi) between the circle of the rendered input viewpointsC and
the ray RV for the angle av . This intersection determines which
virtual input camera to use. We normalize the circle to have a
radius of 1 to reduce the complexity of the calculations, without
loss of generality.

Figure 2. Overview of the rendering of the panoramic image. The virtual
viewpoints are created on circle C with center MC . In this image, we will
render cylinder V with center MV . We trace rays Rv from MV to C,
calculate the intersection to determine the camera I on C and calculate
the angle ai to determine which column of pixels to select from the image
of I . By varying aV , we can render V completely, based on the cameras
rendered on C.

x′v = xv + cos(av) (1)

y′v = yv + sin(av) (2)

dr =
√

(xv − x′v)2 + (yv − y′v)2 (3)

D = xvy
′
v − x′vyv (4)

∆ =
√
r2d2r −D2 (5)

x1 =
(y′v − yv)D + (x′v − xv)∆

d2r
(6)

x2 =
(y′v − yv)D − (x′v − xv)∆

d2r
(7)

y1 =
−(x′v − xv)D + |y′v − yv|∆

d2r
(8)

y2 =
−(x′v − xv)D − |y′v − yv|∆

d2r
(9)

This will yield 4 possible points (xi, yi). The correct point is
determined by using the sine and cosine of the angle. Using the
coordinates (xi, yi), ac can easily be extracted. The same goes
for ai = av − ac.

Using ac and ai, we select the corresponding image from our
set of prerendered virtual cameras on the circle C, and the pixel
column.

index =
ac ×#(I)

2π
(10)

column =
(ai + F)W

2F
(11)

where W is the width of the input image and #(I) the num-
ber of images on C. We select the column of pixels in the selected
rendered input image and place it in the final panoramic image cor-
responding with MV in the column corresponding with av . This
way, a full panoramic image is created.

Figure 3. The position of the center of the cylinder is defined by the field-
of-view F of the virtual cameras, shown by the red (inner) circle P . Within
this circle, view-dependent rendering is possible.

Figure 4. The scene in unity. The scene consists of a cylinder and a camera
in the middle. The rotation of the camera is determined by the Oculus
tracker and the image on the cylinder is adapted to the position of the
Oculus.

The set of viewpoints we can effectively render is dependent
on the field-of-view F of the virtual cameras, and are located in
the circle P with radius sin(F/2). If the angle ai is larger than
F/2, no color information is available and the rendered panoramic
image V is incomplete. This is shown in Figure 3. The range of
possible virtual panoramic viewpoints must be restricted. Alter-
natively, the field-of-view of the virtual cameras on C must be in-
creased, if possible. This is defined by the input setup; the number
and field-of-view of the real cameras define the maximum field-
of-view of the virtual cameras.

4. FREE VIEWPOINT NAVIGATION

To create a free viewpoint VR experience, we display the images
in a virtual reality device, more specifically the Oculus Rift [2].
We created a virtual cylindrical projection screen in the Unity
Game Engine [1] and track the position of the head to determine
the correct viewpoint to display. A virtual scene is required to
alleviate the large field-of-view of the Oculus Rift, such that the
space is immersive and the borders of the cylinder are not visible.
Being able to look around and move your head, enhances the VR
experience and creates a 3D effect.

As dense light fields have large storage needs while at the
same time requiring fast random access, 2 different approaches
were considered using commodity hardware. First, current day
solid-state drives have large storage capacities and high data trans-

Figure 5. Camera setup and some of the input images. This setup is used
to create the final result in our prototype. Top: Circular setup of cameras
with fisheye lenses. Middle: conversion to 3 rectilinear images per camera.
Bottom: Input fisheye inages.

fer speeds that suit our needs. However true random access is
still not as fast as needed to render high resolution panoramic im-
ages in real-time. Instead a large number of panoramic images at
different positions inside P are prerendered. Accessing the cor-
rect nearby viewpoint is fast enough to provide a good experi-
ence. However, storage is not sufficient for our application. On
500GiB, only 16500 viewpoints can be stored, which is not suf-
ficient for a smooth experience.

Alternatively, we used RAM to represent the circular light
field. While more costly and limited in storage capacity, RAM
allows for true random access needed to render a novel viewpoint
in real-time. The memory throughput requirements for our dataset
are 1080 × 9216 × 3 = 30MiB per frame, and a storage re-
quirement of 7GiB. Our tests show that a view-dependent image
could be generated using our Unity plugin at a rate of 120 Hz,
or 3.6GiB/s, with low latency. This gives a very smooth and
responsive VR experience while allowing the rendering of omni-
directional stereo images for an enhanced 3D effect.

5. RESULTS

In our prototype we used 10 rendered input views from a scene
captured with fisheye lenses with a field of view of 160◦, such

Figure 6. Results from 3 different viewpoints. The parallax effect is clearly visible.

that each point in space is covered by at least 3 camera images.
The radius of the circle is 2 meters. This is shown in Figure 5. We
opted for rendered input data to better evaluate the results. Each
fisheye camera is transformed to 3 rectilinear images (Figure 5,
middle) [12], each pointing in a different direction. This way,
view interpolation of Section 2 can be applied.

These set of input images were used to generate 9216 virtual
images with a horizontal field-of-view of 75◦. This constructed
circular light field is stored in an efficient way to allow the gener-
ation of view dependent omnidirectional images. These generated
images have a resolution of 9216 covering the full 360 degrees,
while keeping the height of both the input and output image con-
stant at 1080. This allows us present crisp high resolution images
to the user wearing a head mounted display at a required high
frame rate. Due to the method for creating the panoramic images,
rendering is fast, but only horizontal movement of the viewer is
possible.

Some rendered viewpoints are shown in Figure 6. As can be
seen, the results look good and clearly show the resulting parallax.

6. CONCLUSION

We presented a system for view-dependent rendering of omni-
directional images. Our input consists of a sparse images set
from conventional cameras. By using view interpolation, we con-
struct a dense circular light field, which we use to create the view-
dependent omnidirectional images inside the circle. We demon-
strated the speed and immersiveness of our system using the Unity
Game Engine combined with the Oculus Rift.

Acknowledgement
This research was funded by the EU FP7 project DreamSpace.
http://www.dreamspaceproject.eu/

7. REFERENCES

[1] Unity, “Unity game engine,” 2016, https://unity3d.com/.
[2] Oculus, “Oculus rift vr engine,” https://www.oculus.com/

en-us/rift/, 2016.
[3] Bernd Krolla, Maximilian Diebold, Bastian Goldlucke, and

Didier Stricker, “Spherical light fields,” in Proceedings of
the British Machine Vision Conference, 2014.

[4] Clemens Birklbauer and Oliver Bimber, “Panorama light-
field imaging,” in ACM SIGGRAPH 2012 Posters, New
York, NY, USA, 2012, SIGGRAPH ’12, pp. 61:1–61:1,
ACM.

[5] Kensaku Kawauchi and Jun Rekimoto, “Quantized real-
ity: Automatic fine-grained spherical images acquisition for
space re-construction,” in Proceedings of the 13th ACM SIG-
GRAPH International Conference on Virtual-Reality Con-
tinuum and Its Applications in Industry, New York, NY,
USA, 2014, VRCAI ’14, pp. 235–238, ACM.

[6] Jaunt, “First look at neo,” 2016, https://www.jauntvr.com/
neo-first-look/.

[7] Lytro, “Built for the next generation of immersive story-
telling,” 2016, https://www.lytro.com/immerge.

[8] Selman Ergünay, Vladan Popovic, Kerem Seyid, and Yusuf
Leblebici, “A novel hybrid architecture for real-time om-
nidirectional image reconstruction,” in Proceedings of the
9th International Conference on Distributed Smart Cam-
eras, New York, NY, USA, 2015, ICDSC ’15, pp. 152–157,
ACM.

[9] Naoki Chiba and Terence T. Huang, “Capturing spheri-
cal light fields of a real scene,” in ACM SIGGRAPH 2004
Posters, New York, NY, USA, 2004, SIGGRAPH ’04, pp.
49–, ACM.

[10] Paul Debevec, Greg Downing, Mark Bolas, Hsuen-Yueh
Peng, and Jules Urbach, “Spherical light field environ-
ment capture for virtual reality using a motorized pan/tilt
head and offset camera,” in ACM SIGGRAPH 2015 Posters,
New York, NY, USA, 2015, SIGGRAPH ’15, pp. 30:1–30:1,
ACM.

[11] Lode Jorissen, Patrik Goorts, Sammy Rogmans, Gauthier
Lafruit, and Philippe Bekaert, “Multi-camera epipolar plane
image feature detection for robust view synthesis,” in 3DTV-
Conference: The True Vision-Capture, Transmission and
Display of 3D Video (3DTV-CON), 2015. IEEE, 2015, pp.
1–4.

[12] F Bettonvil, “Fisheye lenses,” WGN, Journal of the Interna-
tional Meteor Organization, vol. 33, pp. 9–14, 2005.

