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Abstract: This study quantifies and compares the costs of production for six alternative jet fuel 

pathways using consistent financial and technical assumptions. Uncertainty was propagated through 

the analysis using Monte Carlo simulations. The six processes assessed were HEFA, advanced 

fermentation, Fischer-Tropsch, aqueous phase processing, hydrothermal liquefaction, and fast 

pyrolysis. The results indicate that none of the six processes would be profitable in the absence of 

government incentives, with HEFA using yellow grease, HEFA using tallow, and FT revealing the 

lowest mean jet fuel prices at $0.91/liter ($0.66/liter-$1.24/liter), $1.06/liter ($0.79/liter-$1.42/liter), 

and $1.15/liter ($0.95/liter-$1.39/liter), respectively. This study also quantifies plant performance in 

the United States with a Renewable Fuel Standard policy analysis. Results indicate that some 

pathways could achieve positive NPV with relatively high likelihood under existing policy 

supports, with HEFA and FPH revealing the highest probability of positive NPV at 94.9% and 

99.7%, respectively, in the best-case scenario.  
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1. Introduction 

Aviation currently contributes 2% to anthropogenic GHG emissions (ICAO, 2010). 

The impact is expected to grow in the absence of mitigation measures, due in part to a 

projected annual industry growth (measured in revenue passenger kilometers) of 

approximately 5% out to 2034 (Boeing, 2015). The aviation industry’s CO2 emissions have 

grown by 3.6% per year since 1980, or approximately double the current world growth rate 

of CO2 emissions from energy consumption, prompting attention from numerous 

international and domestic regulatory authorities (Schäfer, 2014). The International Air 

Transport Association (IATA), for example, targets carbon-neutral growth from 2020 

onward and a 50% reduction in net emissions by 2050 compared to 2005 levels (IATA, 

2009). Alternative jet fuels produced from biomass have received considerable attention 

from policy-makers and academia as a potential means to significantly reduce greenhouse 

gas emissions attributable to aviation (ICAO, 2016). The United States Federal Aviation 

Administration (FAA), for example, sets an aspirational consumption target of 1 billion 

gallons of alternative jet fuel by 2018, and alternative jet fuel can qualify under the second 

iteration of the Environmental Protection Agency’s (EPA) Renewable Fuel Standard (FAA, 

2012). Emissions savings attributable to alternative jet fuels have been well-documented in 

several pathway- and feedstock-specific life cycle GHG emission analyses (Seber et al., 

2014; Staples et al., 2014; Suresh, 2016).  

One of the main challenges for aviation biofuels is the economic feasibility of 

converting biomass into liquid fuel that meets current jet fuel specifications. Five pathways 

have been approved by ASTM International as drop-in alternative jet fuels: Fischer-
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Tropsch Synthetic Paraffin Kerosene (FT-SPK), Fischer-Tropsch Synthetic Kerosene with 

Aromatics (FT-SKA), Hydroprocessed Esters and Fatty Acids (HEFA), Synthetic Iso-

Paraffins from fermented hydroprocessed sugar (SIP), and Alcohol-to-Jet SPK (ATJ-SPK). 

16 additional pathways are under review (CAAFI, 2016). ASTM certification associated 

with fuels produced from these pathways allows up to 50% blending by volume in current 

aircraft engines, and some of these pathways, as a result, have been implemented in first-of-

their-kind commercial scale production facilities (ICAO, 2016).  

This paper describes a techno-economic study that used harmonized assumptions 

for six different alternative jet fuel pathways and incorporated uncertainty throughout the 

analysis. Existing studies estimated costs of production for specific pathways or feedstocks 

through detailed techno-economic analyses (TEA) that evaluated pathway performance by 

calculating the breakeven price of fuel or the net present value of the plant over the 

modeled refinery’s lifetime (Bittner et al., 2015; Bond et al., 2014; Niziolek et al., 2015; 

Pearlson et al., 2013; Staples et al., 2014; Zhu et al., 2014). Although considerable 

uncertainty surrounds critical variables such as fuel prices, conversion yield, and capital 

expenditures, few studies to date have incorporated stochasticity in the modeled pathways 

or have examined the diesel and jet fuel industry specifically (de Jong et al., 2015). This 

paper incorporates both harmonized assumptions and stochasticity in critical inputs and 

accounts for different policy scenarios in a harmonized comparison of jet fuel production 

techniques.  
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2. Materials and Methods 

2.1. Alternative jet fuel pathway modeling 

This study compared 6 alternative jet fuel pathways for which data is available in peer-

reviewed studies: HEFA, fermentation and advanced fermentation (AF), aqueous phase 

processing (APP), conventional gasification and Fischer-Tropsch (FT), hydrothermal 

liquefaction (HTL), and fast pyrolysis and hydroprocessing (FPH). The source literature 

and information regarding the feedstocks and liquid fuel products for each pathway is 

found in Table 1. A technical survey of each pathway can be found in SOM 1 and the 

technical assumptions used in the original literature sources can be found in SOM2, Table 

S3. In every case, the products are chemically equivalent to conventional products of 

petroleum refining, with the middle distillate fraction composed of renewable or “green” 

diesel and kerosene-type jet fuel.  

Pathway Feedstock Fuel products Source 

HEFA Soybean oil, tallow, 
yellow grease 

LPG, naphtha, 
middle distillates 

Pearlson et al., 
2013; Seber et al. 

2014 

AF 
Corn grain, 
sugarcane, 

herbaceous biomass 

LPG, naphtha, 
middle distillates Staples et al., 2014 

APP Woody biomass LPG, naphtha, 
middle distillates Bond et al., 2014 

HTL Woody biomass Gasoline, heavy oil, 
middle distillates Zhu et al., 2014 

FT MSW Gasoline, middle 
distillates 

Niziolek et al., 
2015; Suresh et al., 

2016 

FPH Corn stover Gasoline, middle 
distillates 

Bittner et al., 2015; 
Brown et al., 2013 

Table 1. The six alternative jet fuel production pathways evaluated in this study. 
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The surveyed pathways are at various stages of technical maturity, and 

discrepancies in commercialization were accounted for with a nth plant analysis that 

assumes construction in 2015 and plant operation beginning in 2018. The design bases for 

the pathway models, however, varied with the availability of bench-, pilot- or commercial-

scale process data, so this study assumed equivalent fuel yields at scale in each case. This 

study compared each pathway using material and energy balances from the sources found 

in Table 1, but the original TEAs of the pathways relied on deterministic fuel yields and 

capital cost estimates as well as historical averages for input and output prices. Point values 

for these model components were then used in a Discounted Cash Flow Rate of Return 

(DCFROR) model that was used to determine either the net present value (NPV) of the 

plant assuming market fuel prices or the minimum middle distillate selling price (MSP) 

such that the NPV was positive. Assuming that prices for inputs and outputs were certain 

throughout a plant’s lifetime, however, failed to account for fluctuations in the costs of key 

inputs or the prices of fuel products. The original TEA studies associated with each 

pathway used DCFROR variables with deterministic values, but in reality these variables 

change stochastically such that sampling values from probabilistic models provided a better 

model for input value fluctuation over a plant’s lifetime.  

Blazy et al. used the example of diesel fuel price, which can be affected by a 

multitude of external forces such as supply shocks, changes in demand, or adjustments to 

domestic policy (Blazy et al., 2016). Using a single value for the price of diesel ignored 

these fluctuations. Instead, correlating the price of diesel to stochastic variations in the 

projected price of gasoline provided a more robust description of how this input changed 

over time. Instead of varying independently with time, other fuel products were also 
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correlated to the stochastically projected price of gasoline. This study implemented 

stochasticity using a Monte Carlo simulation that sampled values from probability 

distributions assigned to critical inputs. A MATLAB model sampled values from each 

probability distribution, computed either MSP and NPV over 10,000 iterations, and stored 

the results for each iteration such that each iteration was a discrete 20-year plant lifetime.  

 

2.2 Financial model 

 This study employed a MATLAB version of the DCFROR model from Pearlson et 

al. in order to quantify pathway performance in terms of MSP and NPV (Pearlson et al., 

2013). Financial assumptions were harmonized for each pathway assuming a 20-year plant 

lifetime with 20% equity financing and a 10-year loan with 10% interest. Each plant was 

assumed to operate for 8400 hours, or 350 days, per year. The income tax rate was assumed 

to be 16.9% based on the value for the average effective corporate tax rate from the United 

States Government Accountability Office (GAO, 2013). Other financial assumptions were 

drawn from Blazy et al.’s research on bio-process commercialization (Blazy et al., 2016). 

All costs and prices were expressed in 2015 USD.  

The critical inputs for the DCFROR model were assessed using the relevant studies 

associated with each pathway, and probability distributions were assigned to each input 

given the availability of relevant data. The complete table of parameters, their distributions, 

and the references associated with the data underlying each distribution was included in the 

SOM 2, Table S2. Probabilistic inputs that were common between pathways include capital 

expenditures, fixed operating costs, feedstock costs, and fuel prices. The parameter 

distributions were primarily dependent on the available data: uniform distributions were 
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used in cases where data values were equally likely and triangular or beta PERT 

distributions were used when minimum, maximum, and most likely values were known. In 

cases of statistical uncertainty arising from descriptive data sets, such as historical 

commodity prices or price projections, the probability distributions were developed from 

the samples themselves. The fit of these distributions was confirmed using the Anderson-

Darling test (Stephens, 1974).  

The feedstock input quantities and associated maximum fuel outputs can be found 

in SOM2, Table S4. Due to the price parity between diesel and jet fuel the model solved for 

the MSP of middle distillates (i.e. jet and diesel). The MSP for middle distillate fuels was 

calculated as the price for middle distillates such that the refinery has an NPV of zero. The 

MSP thus represents the price for middle distillates that a producer must demand in order to 

achieve a target rate of return. All other products, such as naphtha or LPG, were sold at the 

sampled market price and not at a correlated premium, a method used in previous TEA 

studies (Pearlson et al., 2013). The costs of transportation from the plant to the retail 

location were not considered, nor were additional fuel taxes, so the MSP and other product 

prices are the “gate price” of the fuel and not the at-pump price. The DCFROR model was 

also used to calculate the NPV of each pathway assuming market prices for all fuel 

products. A positive NPV implies that a producer can expect profits above the target rate of 

return, while a negative NPV implies net losses below a target rate of return. MSP and 

NPV calculations were chosen as metrics for plant performance due to literature precedent 

and due to ease of visual comparison.  
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2.3 Technical uncertainty 

2.3.1 Capital investment and fixed operating cost uncertainty 

 The capital cost estimates for each refinery model were obtained from the literature 

studies used to determine the mass and energy balances for the pathways examined in this 

study. The deterministic pathway capacity was fixed to 111.3 million liters/year (2000 

barrels/day)  a reference capacity used for many of the original case processes (Pearlson et 

al., 2013; Staples et al. 2014; Niziolek et al. 2015). This output capacity varied, however, 

with stochastic changes in fuel yield. Plant utility requirements, feedstock inputs, and 

product slates were normalized to a 111.3 million liters/year output capacity in cases where 

the reference pathways produced greater volumes of liquid fuels (Bond et al. 2015; Zhu et 

al. 2014; Bittner et al. 2015). This study assumed greenfield plants with onsite hydrogen 

production, and it is noted that capital and operating costs might be reduced with 

brownfield sites purchasing offsite hydrogen. The feedstock inputs and fuel outputs for 

each pathway are summarized in SOM 2, Table S4.  

Where data availability allowed, plant component cost estimates and fuel yields 

were harmonized between pathways. For example, the fatty acid hydroprocessing steps in 

the AF models employed by Staples et al. used the utility cost, capital cost, and conversion 

yield estimates calculated by Pearlson et al.’s HEFA study (Staples et al. 2014). Due to 

diverse simulation techniques (using Aspen Plus™, ChemCAD©, or mathematical models) 

and conversion data sources (bench tests, industry heuristics), this study assumed that the 

deterministic capital expense values accurately reflect the investment requirements for each 

process. Because this study further assumed that construction for each plant begins in 2015, 
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the capital costs were adjusted to 2015 USD using the Chemical Engineering Plant Cost 

Index (Chemical Engineering, 2016).   

In order to incorporate uncertainty into the capital cost figures, the error associated 

with deterministic cost estimates was assumed to be ±20% (Gary et al., 2007). A review of 

other biomass-to-jet fuel studies revealed that the capital costs for similar plant components 

fall within this range. Previous studies employed a triangular or beta PERT distribution 

given mode, minimum, and maximum values, and a beta PERT distribution was employed 

in this case (Bittner et al., 2015; Blazy et al., 2016; Zhao et al., 2015). Brown found that an 

asymmetric probability distribution with positive skewness best represented current capital 

expenditures, and a 5% mean cost overrun was assumed based on a survey of the literature 

for a variety of industrial plants and construction projects (Brown, 2015). As a result, a beta 

PERT distribution for fixed capital investment (FCI) that varies between 80% and 150% of 

the deterministic value was used in order to replicate these conditions. Following an 

assumption found in several preceding TEA studies for these pathways, working capital 

(WC) was assumed to be 5% of the FCI, and the sum of these two values was the total 

capital investment (TCI) (Peters et al., 2003; Pearlson et al., 2013; Staples et al. 2014; Bond 

et al., 2014).  

Fixed operating costs (FOC) was determined as a percentage of the capital costs, but 

each pathway cited widely varying deterministic values that correspond with differences in 

estimates of yearly expenses such as labor and maintenance. Insurance, local taxes, 

maintenance, and contingency costs for each pathway were estimated using guidance from 

the petroleum refining industry, and the literature FOC as a percentage of FCI was selected 
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as the mode for a positively-skewed beta PERT distribution with harmonized parameters 

(Gary et al., 2007). Each pathway’s FOC was varied by ±50% and values beyond the 

bounds of this distribution were investigated in the sensitivity analyses.  

 

2.3.2 Fuel yield uncertainty 

 The conversion efficiency of each pathway was described by assigning a probability 

distribution to fuel yield in terms of liters of gasoline equivalent (LGE) per metric ton of 

feedstock. The energy shares of each fuel product, expressed as the energy content of each 

fuel product (in MJ) divided by the total energy content of the product slate (in MJ), was 

assumed to remain constant for each pathway. In literature refinery models where diesel 

was the only middle distillate product, this study followed Bittner et al. and assumed that 

this stream was 50% jet fuel and 50% diesel by volume when calculating NPV (Bittner et 

al., 2015). Previous studies that incorporated fuel yield uncertainty employed a variety of 

probability distributions based on bench-scale data or simulation results including beta 

general distributions, beta PERT distributions, and triangular distributions (Zhao et al., 

2014; Petter and Tyner, 2014; Zhu et al., 2003). In this case, a lack of fuel yield data 

dictated the use of a beta PERT distribution with some minimum, maximum, and mode 

value using the method employed by Suresh and Petter and Tyner (Suresh, 2016; Petter and 

Tyner, 2014). Following Zhao et al., a negatively-skewed beta PERT distribution was 

assumed based on pathway-specific supporting data. In pathway cases with only one 

supporting study, such as HEFA, AF, and APP, the deterministic value was used as the 

maximum fuel yield value.  Because of the negative skewness, the distribution mean was 
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lower than the deterministic value. In order to illustrate the different fuel yield scenarios, 

the upper and lower bounds of this distribution were investigated in the sensitivity analyses 

with the original literature value used as the upper input. The distribution parameters and 

their references can be found in SOM 2, Table S2. 

 

2.4. Fuel and energy price uncertainty  

 In order to project the prices of natural gas, electricity, and gasoline from the 

analysis start point in 2018 through the plant’s 20-year lifetime, Geometric Brownian 

Motion (GBM) was applied according to the method described in Zhao et al. as shown in 

Equation 1:  

!" = !"$%	×	() + +  (1) 

where Pt is the price at time t, Pt-1 is the previous year’s price, r is the growth rate, and e is 

the yearly price variation (Zhao et al., 2014). The Energy Information Administration (EIA) 

Annual Energy Outlook (AEO) 2015 provides projected price data in the analysis start year 

(2018) as well as real price growth rates from 2018 to 2038, with low, reference, and high 

oil price scenarios describing the behavior of these prices over time (EIA, 2015). 

Uncertainty was incorporated in the gasoline growth rate and the 2018 start price by 

assigning a beta PERT distribution to both parameters using the oil price scenarios as low, 

mode, and high values. The starting prices and growth rates for natural gas and electricity 

were then correlated with the selected gasoline values (EIA, 2016a,e). The 2018 prices of 

gasoline, natural gas, and electricity from the AEO reference case projections are 

$0.58/liter, $5.02/GJ, and $0.07/kWh, respectively (2015 USD). The yearly price variation 
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term, e, was selected from a normal distribution of the year-to-year variations in prices 

from the past 15 years from 2001 to 2015. Although the MATLAB model was constructed 

to ensure that prices remain positive, values selected from the outer bounds of the variation 

distribution can result in prices far above or far below prices seen in historical or projected 

datasets. Prices were prevented from dropping below 75% of the lowest forecasted value or 

rising above 125% of the highest forecasted value in order to correct for this error.  

 The prices of other fuel products, such as LPG, jet, and diesel, were correlated with 

the gasoline price using historical price data from the EIA (EIA 2016b,c,d,f). Following 

Pearlson et al. and Staples et al., the propane spot price was used as a surrogate for both 

light ends and LPG and the gasoline price was used as a surrogate for naphtha (Pearlson et 

al., 2013; Staples et al., 2014). The correlation functions for these fuels were based on their 

historical regression relationship and can be found in SOM 2, Table S5.  

 

2.5 Policy uncertainty 

 In order to quantify uncertainty under various policy scenarios including the 

Renewable Fuel Standard (RFS2), this study modeled the price behavior of fuel credits 

called Renewable Identification Numbers (RINs) using probability distributions and 

incorporated various tax credit scenarios as sensitivity analyses. Under RFS2, blenders and 

refiners are required to incorporate a certain quantity of biofuels in their annual supply in 

order to meet their Renewable Volume Obligation (RVO). Renewable fuels generate RIN 

certificates, which can be bought and sold to help blenders and refiners achieve their RVO; 

as a result, RINs represent a source of additional revenue for biofuel producers (ICCT, 
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2014). The nationwide RVO increases every year up to 36 billion gallons in 2022. At the 

conclusion of 2022, the RVO could be extended, increased, or reduced with the passage of 

a new RFS, thus changing the RIN market substantially (Winchester, et al., 2013). 

Information regarding the implementation of RINs for each fuel product and the calculation 

of stochastic RIN prices can be found in SOM 4.  

 The Biodiesel Mixture Excise Tax Credit, which can be applied to both biodiesel 

and renewable diesel mixtures, is a $1.00/gallon ($0.26/liter) credit applied to conventional 

and alternative diesel blends (DOE, 2016). This credit is often instated retroactively, so the 

existence of the credit from year to year is the subject of considerable uncertainty. Blenders 

arrange sharing provisions with alternative fuel producers in order to compensate biofuel 

production (Irwin, 2015). Various sharing agreements between producers and blenders 

including 25%, 50%, 75%, and 100% of the $1.00/gallon ($0.26/liter) given to producers 

were explored. Blenders and producers were assumed to share the additional revenue from 

these credits according to such sharing contracts. A “producer’s credit,” or a credit given 

directly to producers instead of blenders, is the subject of current legislation in the U.S. 

Senate (Swoboda, 2016). If passed, this new credit would be paid to producers but would 

also likely be shared via market mechanisms. Thus, the $1.00/gallon ($0.26/liter) credit 

represents an optimistic, upper-limit value for a credit given to producers. Because the FT 

MSW feed composition contains unseparated biogenic and non-biogenic components, it 

was ineligible for the blender’s or producer’s credits. 

 Six different scenarios were examined in this study to reflect future legislative 

uncertainty: a “no policy” case in which the pathways were evaluated without the benefit of 

policy supports; a “pessimistic” case in which the blender’s credit was not renewed at the 
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conclusion of 2016 and the RVO falls to zero at the conclusion of 2022; and four different 

sharing arrangements with 25%, 50%, 75%, and 100% of a $1.00/gallon ($0.26/liter) excise 

tax credit given to producers along with a perpetual RIN market. Note that a zero RVO 

eliminates the demand for RINs, thereby removing the RIN revenue stream.  

 

3. Results and discussion 

3.1 MSP and NPV 

 The MSP and NPV were first calculated without the addition of policy supports or 

financial incentives. Box-and-whisker comparisons of each pathway’s MSP and NPV 

results are shown in Figures 1 and 2, with the limits of each pathway result representing the 

middle 95% of values. The lowest mean MSP was that of HEFA yellow grease with a value 

of $0.91/liter (95% range of $0.66/liter-$1.24/liter), followed by HEFA tallow with a mean 

MSP value of $1.06/liter ($0.79/liter-$1.42/liter), FT with $1.15/liter ($0.95/liter-

$1.39/liter), HEFA soybean oil with $1.19/liter ($0.87/liter-$1.60/liter), AF sugarcane at 

$1.47/liter ($1.10/liter-$1.96/liter), FPH with $1.52/liter ($1.02/liter-$2.10/liter), AF corn 

grain with $1.66/liter ($1.30/liter-$2.10/liter), APP with $2.07/liter ($1.73/liter-$2.48/liter), 

AF herbaceous biomass with $2.51/liter ($2.16/liter-$2.92/liter), and HTL with $2.78/liter 

($2.09/liter-$3.58/liter). None of the MSP results approached the 5-year average 

conventional jet fuel price of $0.64/L, even at the lower-bound values (EIA, 2016d). 
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Figure 1. Box-and-whisker plot of the MSP results for each pathway evaluated in this 
study. 

 
The mean future middle distillate prices were subject to considerable uncertainty 

over time, and the volatility of price behavior was accounted for with NPV calculations that 

incorporated projected prices of middle distillate fuels. None of the pathway simulations 

resulted in positive mean NPV values, although HEFA and FT exhibited positive NPV 

values at the upper bound of the results distribution. The highest mean NPV was that of 

HEFA yellow grease with a mean value (in $B) of -0.112 (95% range of -0.412-0.179), 

followed by HEFA tallow with -0.202 (-0.517-0.100), FT with -0.210 (-0.424-0.033), 

HEFA soybean oil with -0.281 (-0.625-0.049), AF sugarcane with -0.420 (-0.775- -0.099), 

AF corn grain with -0.552 (-0.905- -0.216), FPH with -0.344 (-0.583- -0.070), APP with -

0.716 (-1.005 - -0.408), HTL with -0.854 (-1.120- -0.560), and AF herbaceous biomass 

with -1.036 (-1.336- -0.716).  

0 0.5 1 1.5 2 2.5 3 3.5 4
$/liter middle distillate

FPH, Corn stover

FT, MSW

APP, Woody biomass

HTL, Woody biomass

AF, Herbacecous Biomass

AF, Sugarcane

AF, Corn grain

HEFA, Yellow grease

HEFA, Tallow

HEFA, Soybean oil
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Figure 2. Box-and-whisker plot of the NPV over the 20-year lifetime for each pathway 
evaluated in this study. 

 
The cumulative density functions of the NPV results are shown in Figure 3 and the 

baseline probabilities of positive NPV over each plant’s lifetime are shown in Figure 5 (in 

the “No Policy” case). HEFA demonstrated the highest probability of positive NPV with a 

27.7%, 14.8%, and 8.6% chance of positive NPV for yellow grease, tallow, and soybean 

oil, respectively. HEFA and FT exhibited the lowest mean MSP and the least negative NPV 

due to a combination of factors: in the HEFA case, low capital investment requirements and 

high fuel yields outweighed relatively high feedstock costs. In the case of FT, these results 

stemmed from high fuel yields, no-cost feedstock, and comparatively low capital 

investment.  
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Figure 3. The cumulative density function (CDF) for the NPV results for each pathway. 
 

An evaluation of the NPV contributors to variance revealed that yearly fuel price 

deviations primarily explained the variance in the NPV results for AF herbaceous biomass, 

APP, FT, HTL, and FPH, at 39%, 48%, 49%, 64%, and 56%. The primary contributor for 

HEFA, AF corn grain, and AF sugarcane was feedstock cost. The feedstock cost 

distribution was negatively skewed which explains the negative skewness of the NPV 

distributions for these pathways. More information regarding the skewness and kurtosis of 

distributions fit to the Monte Carlo results can be found in SOM3, Table S7. Note that the 

variance for each pathway was influenced by the availability of data for the underlying 

distributions. In some cases, feedstock prices were based off of industry heuristics rather 

than historical price behavior. The price for herbaceous or woody biomass, for example, 

relied on low, mode, and high values from relevant literature sources surveying similar 

cellulosic biofuel refineries. The price for soybean oil and slaughtering byproducts, 

meanwhile, was described by a lognormal distribution derived from historical commodity 

prices. A survey of the contributors to variance for each pathway can be found in SOM 3.  
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 The MSP and NPV results for each pathway were separated into their constituent 

cost and revenue streams as shown in Tables 2 and 3. Only the mean values were reported 

in this table, and the median and standard deviations for each component can be found in 

SOM 3. For NPV, the revenue stream components were separated into gasoline/naphtha, 

middle distillate fuels, other co-products, and scrap materials. Due to the sorting 

requirement during the MSW pre-processing stage, only the FT pathway collected revenue 

from scrap materials. The cost stream components were separated into capital costs, fixed 

operating expenditures, non-feedstock variable operating expenditures, feedstock 

expenditures, and income tax.  

 HEFA
-SO 

HEFA 
-T 

HEFA 
-YG 

AF -
CG AF -S AF -

HB HTL APP FT FPH 
Capital costs 0.20 0.20 0.20 0.56 0.64 1.26 2.41 1.38 0.93 1.21 
Fixed OPEX 0.07 0.07 0.07 0.12 0.14 0.27 0.44 0.15 0.26 0.19 

Non-Feedstock 
Variable OPEX 0.12 0.12 0.12 0.14 0.03 0.44 0.62 0.63 0.08 0.76 

Feedstock 0.85 0.73 0.58 1.02 0.69 0.46 0.70 0.38 0.00 0.15 
Income tax 0.02 0.02 0.02 0.07 0.07 0.14 0.29 0.16 0.11 0.65 

Revenue from 
gasoline -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -1.36 -0.26 -0.13 -1.31 

Revenue from other 
co-products -0.04 -0.04 -0.04 -0.30 -0.13 -0.04 -0.41 -0.40 0.00 -0.19 

Revenue from scrap 0 0 0 0 0 0 0 0 -0.10 0 
 

Table 2. Mean MSP ($/liter) results breakdown by cost and revenue contributions. 
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 HEFA
-SO 

HEFA 
-T 

HEFA 
-YG 

AF -
CG 

AF -S AF -
HB 

HTL  APP  FT FPH 

Capital costs -129 -129 -129 -369 -421 -803 -682 -798 -533 -410 

Fixed OPEX -48 -48 -48 -81 -92 -175 -119 -85 -149 -63 
Non-Feedstock 
Variable OPEX -80 -80 -80 -121 -23 -285 -372 -375 -49 -242 

Feedstock -552 -472 -375 -666 -446 -291 -196 -218 -- -218 

Income tax -5 -7 -13 -2 -7 -- -1 -5 -26 -8 
Revenue from middle 

distillate fuels 500 502 501 483 482 484 210 427 433 254 

Revenue from 
gasoline/naphtha 12 12 12 12 12 12 237 100 55 280 

Revenue from other 
co-products 21 21 21 191 75 23 70 239 2 64 

Revenue from scrap -- -- -- -- -- -- -- -- 57 -- 
 

Table 3. Mean NPV ($B) results breakdown by cost and revenue contributions. 
 

Although plant capacities were harmonized, the product distribution varied based on 

the literature material balances, with HEFA, AF, APP, and FT pathways optimized for 

middle distillate production and HTL and FPH optimized for total fuel production. In the 

cases of HEFA, AF, APP, and FT, middle distillate fuels comprised the largest portion of 

the revenue stream. Because HTL and FPH produce more gasoline then middle distillates, 

the largest contributor to the revenue stream for those pathways was gasoline. The revenue 

contributions to NPV for each pathway were larger in cases where pathways produce 

additional non-liquid-fuel products. This was true for AF corn grain, a byproduct of which 

is distiller’s dried grains with solubles (DDGS); AF sugarcane, a byproduct of which is 

sugarcane bagasse used to generate power; APP, a byproduct of which is 

hydroxymethylfurfural (HMF) and acetic acid; FT, a byproduct of which is scrap materials; 

and FPH, a byproduct of which is generated electricity from the heat of the pyrolysis 

reaction. The price of feedstock was the primary cost contributor to MSP and NPV for 
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HEFA, AF corn grain, and AF sugarcane, and capital investment was the largest cost 

contributor to MSP and NPV for AF herbaceous biomass, HTL, APP, FT, and FPH. Fixed 

operating expenditures, which include maintenance, labor, and other yearly cost 

requirements, contributed an average of 9% and at most 20% to the cost stream for each 

pathway. Non-feedstock variable operating expenses, such as wastewater treatment, 

catalyst costs, and other utilities, comprised an average of 15% and at most 27% of the cost 

stream for each pathway.  

The impact of different critical variables on MSP were examined with a sensitivity 

analysis for each pathway, quantifying the impact of adjustments to fixed operating costs, 

capital investment, fuel yield, income tax rate, feedstock costs, and the discount rate. The 

results are shown in Figure 4. The discount rate, which resulted from the rate of required 

return for equity and loan interest rate for debt, had the largest impact on MSP for every 

case except for the HEFA pathway, which required the lowest capital investment among all 

pathways and was therefore less sensitive to rate of return assumptions. The discount rate 

had a larger impact for pathways with a larger capital investment requirement because 

higher discount rates minimized the value of future cash flows, thus increasing the price of 

middle distillates required to set NPV equal to zero over the plant’s 20-year lifetime. The 

upper-bound discount rate test value of 22% was taken from Blazy et al., who suggested 

that the discount rate could be this high in order to offset the risks associated with 

investment in alternative fuel production technologies (Blazy et al., 2016). This can 

increase the MSP by up to 40%. The lower-bound discount rate value of 3.2% came from 

the social opportunity cost of capital based on long-term treasury bond rates from the U.S. 

Office of Management and Budget (U.S. OMB, 2015). Use of this value can decrease MSP 
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by up to 60%. The pathways with the lowest mean MSP under the social opportunity cost 

of capital were FT and FPH with a mean MSP of $0.58/L and $0.61/L, respectively. 

The fuel yield sensitivity analysis tested the outer bounds of the beta PERT distributions 

used for each pathway. Since the distributions were skewed negatively, the mode fuel yield 

value was close to the maximum so increases in fuel yield fail to lower mean MSP more 

than 20%. Similarly, varying fixed operating costs to extreme values changed the mean 

MSP only up to 14%. Although decreasing capital costs to 80% of the deterministic value 

improved mean MSP results, increasing those costs to 150% of the deterministic value 

increased mean MSP values by up to 50%, indicating that cost overruns inhibited the 

economic viability of a given pathway. In order to explore the impact of feedstock cost on 

the FT pathway, which owed its probability of positive NPV and low mean MSP in part to 

a zero feedstock cost, the cost was varied by $55/MT both positively and negatively to 

reflect average landfill tipping fees. Although this could be a source of revenue in the short 

run, this tipping fee could become a cost if MSW is increasingly used as a feedstock for 

fuel production. Both cases adjusted the mean MSP by 15% positively or negatively. The 

income tax rate was varied between 0% and 39% with the upper bound chosen to reflect the 

2015 U.S. combined corporate income tax rate (OECD, 2016). This value increased the 

mean MSP by up to 20%.   
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Figure 4. MSP sensitivity results for each pathway. All values expressed are mean values 
in units of $/liter. The variables and associated test inputs are listed on the left axis (low, 

baseline, high). 
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3.2 Policy scenario analysis 

 To quantify the impact of different policy environments on the economic viability 

of alternative fuel production techniques, the NPV for each pathway was calculated and the 

cumulative density distribution was used to find the probability of positive NPV. The 

results of this analysis are shown in Figure 5. The HEFA pathway showed the highest 

likelihood of positive NPV in a case with no policy supports for alternative fuels, with each 

of the three evaluated feedstocks outperforming the other pathways (27.7% for HEFA 

yellow grease, 14.8% for HEFA tallow, and 8.56% for HEFA soybean oil). Under the 

“pessimistic” policy case with no blender’s credit and a zero RVO, HEFA yellow grease, 

HEFA tallow, and FPH had the highest probability of positive NPV at 53.2%, 34.9%, and 

23.5%, respectively. FPH performed better under this scenario because the pathway used 

corn stover, a cellulosic feedstock, and therefore earned higher-value D3 and D7 RINs. 

HEFA, meanwhile, earned D4 and D5 RINs because it uses soybean oil and animal fats as 

feedstocks. Under the 50% credit-share and RIN market policy case, FPH, HEFA yellow 

grease, and HEFA tallow had the highest probability of positive NPV at 99.2%, 87.7%, and 

73.1%. This was due to the higher value of D3 and D7 RINs relative to D4 and D5 RINs. 

Although FT had a 7.87% probability of positive NPV under the “no policy” case, fuels 

produced from MSW only earned a D5 Advanced Biofuel RIN and were not subject to 

blender’s credits, so the maximum probability of positive NPV for FT was only 37.8%. 

Under the 100% credit-share case, five of the 10 feedstock-pathway combinations resulted 

in a 50% chance of positive NPV or higher: FPH, HEFA yellow grease, HEFA tallow, 

HEFA soybean oil, and APP have positive NPV probabilities of 99.7%, 94.9%, 86.6%, 

73.4%, and 57.6%, respectively.  
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Figure 5. The probability of positive NPV over each pathway’s 20-year plant lifetime 

under various policy scenarios. The “No Policy” case describes the results presented in 
section 3.1. 

 
 Other policy supports or corporate agreements, although not modeled in this study, 

could de-risk alternative jet fuel production investments and improve the economic 

viability of each pathway. The Department of Energy (DOE) loan guarantee program, for 

example, offers loans to biofuel ventures with no required payment in the event of 

bankruptcy (DOE, 2015). Offtake agreements, which can improve the borrowing terms 

associated with a project and further reduce costs, are contracts between fuel consumers 

and producers specifying the procurement of  specified fuel volumes for a period of time, 

and have recently been agreed upon with several airlines (CAAFI, 2016). Similarily, long-

term contracts for feedstock purchases could also reduce feedstock costs. Bittner et. al. 

models loan guarantees and offtake agreements as capital subsidies and reverse auctions: in 

each case, implementation of these scenarios decreases the risk of capital investment 
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through decreased probabilities of loss and increased internal rates of return (Bittner et al., 

2015). The impact of government policies and corporate agreements on the success of 

alternative jet fuel refineries could be evaluated further in the context of existing 

commercial ventures.  

 

4. Conclusions 

This study conducted a harmonized comparison of U.S. alternative jet fuel 

production that used stochasticity in key variables. The models also applied existing United 

States policy incentives to an evaluation of renewable jet fuels production pathways. The 

results suggest that no pathway is viable without policy supports, but regulations can 

improve the possibility of renewable diesel or jet fuel competition in the market. The MSP 

and NPV results for each pathway can be used by regulatory agencies to craft policies that 

favor alternative jet fuel production and can be leveraged by investors to target promising 

feedstock conversion technologies.  
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