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Abstract—In a multilabel classification problem, each object
gets associated with multiple target labels. Graded multilabel
classification (GMLC) problems go a step further in that they
provide a degree of association between an object and each
possible label. The goal of a GMLC model is to learn this mapping
while minimizing a certain loss function. In this paper, we tackle
GMLC problems from a Granular Computing perspective for
the first time. The proposed schemes, termed as partitive granular
cognitive maps (PGCMs), lean on Fuzzy Cognitive Maps (FCMs)
whose input concepts represent cluster prototypes elicited via
Fuzzy C-Means whereas the output concepts denote the set of
existing labels. We consider three different linkages between
the FCM’s input and output concepts and learn the causal
connections (weight matrix) through a Particle Swarm Optimizer
(PSO). During the exploitation phase, the membership grades of
a test object to each fuzzy cluster prototype in the PGCM are
taken as the initial activation values of the recurrent network.
Empirical results on 16 synthetically generated datasets show that
the PGCM architecture is capable of accurately solving GMLC
instances.

I. INTRODUCTION

For quite some time, classification has been a primordial
task for the Machine Learning and Data Mining communities
[1] [2]. The development of a classification model is usually
oriented towards discovering the underlying mapping between
a set of input objects that are characterized by a multidimen-
sional feature space and the class label assigned to them.

More recently, multilabel classification [3] [4] has emerged
as an extension of traditional classification problems in which
each input object is associated with multiple labels; for in-
stance, a patient and his symptoms, a document and its topics
or a photograph and its themes.

Chen et. al. [5] went a step further and introduced graded
multilabel classification (GMLC), in which an object is as-
sociated with each possible label to a certain extent/degree.
The relevance of each label is no longer a binary but a
fuzzy membership, typically in the interval [0;1]. From this

perspective, GMLC can be interpreted as a set of ordinal
classifications given the ordering of the objects in the set
induced by their membership grades to a label.

On the other hand, granular computing (GrC) [6] [7] [8] is
a vibrant research discipline devoted to the design of high-
level information granules and their inference frameworks.
By adopting more symbolic constructs such as sets, intervals
or similarity classes to describe numerical data, GrC has
established a more human-centric manner of interacting with
and reasoning about the real world. The emergence of granular
classifiers [9] [10] [11] [12] [13] [14] is an important GrC
manifestation that helps coping with the volume and velocity
components of the V’s vector characterizing Big Data [15].

In this paper, we tackle GMLC problems from a GrC angle
for the first time, to the best of the authors’ knowledge. Our
contributions are as follows: (1) we proposed a granular system
termed granular partitive cognitive map (PGCM) that relies
upon Fuzzy Cognitive Maps (FCMs) whose input concepts
represent cluster prototypes elicited via a well-known partitive
clustering algorithm, viz Fuzzy C-Means (FC-MEANS) [16],
whereas output concepts denote the set of problem labels;
(2) we consider three FCM topologies determined by differ-
ent causal connections among the sets of input and output
concepts; (3) we learn the ensuing weight matrix through a
Particle Swarm Optimizer (PSO); (4) we generate 16 synthetic
GMLC datasets out of the UCI Machine Learning repository
and (5) we evaluate the three PGCM models in presence of
these datasets, with the empirical evidence confirming that the
proposed architecture is capable of accurately solving GMLC
instances.

The paper continues with Section II briefly reviewing rel-
evant concepts to this study. Section III dissects the PGCM
model while Section IV unveils the empirical analysis un-
dertaken to validate the three proposed granular systems.
Conclusions and future directions are found in Section V.



II. RELATED WORK

This section briefly goes over several topics of interest to
the study.

A. Graded multilabel classification

GMLC [5] was formalized as an extension of multilabel
classification problems [3] where one is interested in the
degree of association between a data point and a label. The
authors reduce their approach to both a set of ordinal classifi-
cation problems and a set of multilabel classification problems
so they can apply existing performance metrics therein.

Brinker et. al. [17] reformulated the original GMLC in
terms of preferences between the labels and their scales. They
solve this new scenario via pairwise comparisons using three
different variants of Calibrated Label Ranking.

Lastra et. al. [18] introduced a nondeterministic learner
based on a binary relevance strategy that returns a prediction
interval whenever the classification is uncertain for a label. The
authors claim that using narrow intervals for a label prediction
greatly improves the classification accuracy.

All of the above approaches treat GMLC membership
grades as pertaining to an ordinal scale (e.g., rate a movie
using 1-5 stars according to different categories). In this paper
we generalize these grades as belonging to a numerical scale.
We use the activation values in [0;1] generated by a FCM (see
Section III) as the output of our granular model for solving a
GMLC instance.

B. Fuzzy C-Means

Fuzzy C-Means (FC-MEANS) [16] is one of the most
popular partitive clustering techniques. Created by Bezdek
et. al., FC-MEANS is a generalization of the hard c-means
method in that it defines membership grades of a data point to
all c clusters, where c is a user-defined parameter. The original
dataset is thus represented as a collection of cluster prototypes
P = (P1, P2, . . . , Pc) and a fuzzy partition matrix U = [uji]
denoting the membership grade of the i-th data point to the j-
th cluster. The alternate optimization of the objective function
Q in Equation (1) capturing the sum of weighted Euclidean
distances between each data points Xi and cluster prototypes
Pj drives the entire algorithmic process. The fuzzy partition
matrix U is iteratively updated as displayed in Equation (2).

Q(U,P ) =

c∑
j=1

N∑
i=1

(uji)
mD(Xi, Pj)

2 (1)

uji =

(
c∑

q=1

D(Xi, Pj)

D(Xi, Pq)

)− 2
m−1

(2)

C. Fuzzy Cognitive Maps

Fuzzy Cognitive Maps (FCMs) are recurrent neural net-
works [19] whose neurons and weights respectively denote
the system concepts and the strength of the causal connection
(confined to [−1; 1]) for each pair of concepts [20]. The
activation value of a neuron could take values in either the

[0;1] or the [−1; 1] range. The higher the activation value of
a concept, the stronger its influence over the entire system.

The update of the activation value A
(t+1)
i of the i-th

FCM concept at time t + 1 is reflected in Equation (3),
where M is the number of FCM concepts, wji denotes the
weight of the edge from concept Cj to concept Ci and f(·)
is a monotonically non-decreasing, nonlinear function used
to transform the activation value of each concept, i.e., the
weighted combination of the activation levels. In this paper
we will focus on sigmoid functions as the choice for f(·)
since they exhibit superior prediction capabilities [21].

A
(t+1)
i = f

 M∑
j=1

wjiA
(t)
j + wiiA

(t)
i

 , i 6= j (3)

Equation (3) is iteratively repeated until either the map
converges or a maximum number of time steps T is reached.
Each time step t induces a new vector with the activation of all
concepts; it is expected that after multiple iterations, the map
will arrive at one of the following states: (i) fixed equilibrium
point, (ii) limited cycle or (iii) chaotic behavior [22]. The map
is said to have converged if it reaches a fixed-point attractor.
The FCM’s output to the initial activation vector is the final
vector of activation values after the stop criterion is reached.

D. Granular Cognitive Maps

FCMs have been augmented with different types of in-
formation granules, thus giving rise to high-level constructs
known as Granular Cognitive Maps (GCMs). Pedrycz [23]
mentions the allocation of information granularity as a pivotal
driving force behind the development of these types of gran-
ular structures and describes five protocols as its realization
mechanisms.

Pedrycz [24] and his collaborators [25] put forth a granular
representation of time series in which FCM nodes are gener-
ated after the cluster prototypes induced by FC-MEANS over
the space of amplitude and change of amplitude.

Homenda et. al. [26] adopted numeric intervals as the
granulation vehicle for their GCM weight matrix. That is,
each FCM weight is no longer a number but an interval. The
authors elaborate on three methodologies for building a GCM
from scratch by maintaining an adequate balance between
specificity and generality in the design of the interval-based
FCM weights and the ensuing map operations. They found the
resulting GCMs had a good degree of coverage without a loss
in precision.

Nápoles et. al. [12] [13] employed rough set theory [27]
as the underlying information granulation vehicle in their
GCMs. Their FCM input nodes are the positive, negative
and boundary regions induced by a similarity relation over a
subspace of the attribute set whereas the FCM output nodes are
the values taken by the decision attribute. The weight matrix
is learned through the Harmony Search [12] metaheuristic.
The resulting granular system was named Rough Cognitive
Network and successfully applied to intrusion detection in
computer networks [13].



Our PGCM model is closer to the works in [24] and [25];
however, we are not concerned with time series prediction but
with solving GMLC problems. The main differences between
our approach and the previous models are related to: (1) the
design of the network topology to solve GMLC problems; (2)
the use of standard FCMs instead of high-order FCMs and (3)
the inclusion of convergence features into the learning scheme.

III. PROPOSED METHODOLOGY

In this section we introduce a new granular fuzzy cognitive
map for addressing GMLC problems. In these problems, a data
point x ∈ X may be associated with a subset of labels Lx ∈ L,
where L denotes the set of all possible labels. On the other
hand, the data-point-to-label relation could be partial and thus
quantified in the [0;1] range. Therefore, each instance x ∈ X
belongs to a label Li ∈ L to a certain degree; this implies that
Lx comprises a fuzzy subset of L. Hence, the goal of a GMLC
solver is to learn a model M : X → [0; 1]|L| minimizing
the prediction loss. However, computing this model could be
challenging since this is equivalent to solving |L| regression
problems where labels could be correlated.

The proposed granular model comprises two steps, namely,
(1) the construction of the network topology and (2) the
estimation of causal weights among neurons. Next we explain
how to perform these steps from a training set.

A. Designing the Network Topology

The main goal of this step is to construct the topology
of the granular FCM by using information granules coming
from the well-known FC-MEANS partitive fuzzy clustering
algorithm [16] for numerical domains. This method determines
a structure of the data given a user-defined number of clusters
c and returns the membership degree uji of each data point
xi to each cluster cj , j = 1, . . . , c. Moreover, the algorithm
associates a prototype Pj to the j-th fuzzy cluster, which is
computed according to Equation (4). Such cluster prototypes
define a simplified representation of the input data and have
been adopted for solving challenging prediction problems
[23][24][25].

Pj =

N∑
i=1

um
jiXi

/ N∑
i=1

um
ji (4)

Figures 1 - 3 show the proposed GCMs where fuzzy cluster
prototypes are mapped as input neurons and the problem labels
constitute the set of output neurons. Each neural processing
entity leans on a sigmoid transformation function to keep its
activation value within the proper range. In the first topology
(GCM-1), input neurons are fully connected and there exist
causal connections between each input neuron (prototype) and
each label. The second topology (GCM-2) is quite similar to
the first one; however, output neurons are also fully connected
among themselves to capture inter-label correlations. The
last topology (GCM-3) extends the second model by adding
connections from output to input neurons, and therefore the
whole GCM becomes entirely connected.

Fig. 1. Topology of the first partitive granular FCM (GCM-1)

Fig. 2. Topology of the second partitive granular FCM (GCM-2)

Fig. 3. Topology of the third partitive granular FCM (GCM-3)

Let us assume that c is the number of cluster prototypes and
|L| the number of labels. All three granular architectures will
have exactly c input neurons and |L| output neurons; however,
the number of connections in each will differ. The GCM-1
model has c2 + c|L|+ |L| causal links. In the GCM-2 model,
the resultant network has c2+c|L|+|L|2 causal relations while
the last topology exhibits (c+ |L|)2 = c2 + 2c|L|+ |L| causal
connections. Clearly, the GCM-3 model is more complex since
it involves a higher number of edges.

It should be mentioned that the term “topology” refers
to the protocol for connecting input-type (prototypes) and



output-type (labels) neurons. To activate the FCM, we need
to compute the fuzzy membership grade on which the target
object belongs to each FC-MEANS-elicited cluster prototype.
Then the typical FCM reasoning process is carried out in order
to activate the set of output neurons. At the end, such sigmoid
neurons will comprise the activation degree of each label for
the object used to initially activate the network. The reader
may notice that such topologies do not include the causal
weights among neurons, and therefore the reasoning process
using FCM is not possible until we set the weight matrix
appropriately.

B. Adjusting the Causal Weights

We now propose a learning method for estimating the
causal weight matrix that defines the PGCM system. This
learning process is of supervised nature and therefore relies
on historical data. As the first step, each data point x ∈ X is
explicitly divided into a pair of vectors Yx and Zx that indicate
the values of the predictive attributes and the values of the
decision labels, respectively. For the sake of simplicity, in this
work we assume that Yx ∈ RN ; however, categorical attributes
could be considered as well. Allowing for symbolic-type
attributes only implies selecting a proper clustering method,
but the remaining steps of the methodology can be adopted
without further changes.

In order to estimate the causal relations from data we
design a learning method that minimizes the error function
in Equation (5), where K is the number of training objects,
|L| is the number of problem labels under consideration, T
denotes the number of discrete time steps adopted in the
FCM reasoning rule, ωt = t/T is the relative importance of
the output A(t)

ki during the recurrent reasoning stage and Zki

represents the expected activation degree for the i-th label and
the k-th training object.

minimize Θ(W ) =

K∑
k=1

|L|∑
i=1

T∑
t=1

2ωt(A
(t)
ki − Zki)

2

K|L|(T + 1)
(5)

The novelty of this learning scheme is given by the active
consideration of convergence issues into the optimization
phase. Most FCM learning algorithms only take into account
the activation value of the neurons at the last discrete time step
T , thus ignoring earlier activation values[28]. In Equation (5)
however, all values are considered. Moreover, the adoption of
the weight ωt allows controlling the relevance of each discrete
time step. In this paper we are focused on the prediction ability
of the proposed model in GMLC environments, and therefore
the convergence will not be analyzed. The reader can find
details about these issues in [29] [30] [31].

Equation (6) formalizes how to activate the granular FCM
for the k-th object. The initial activation value of the j-th
input neuron is given by the fuzzy membership grade of the
attribute vector Yk to the Pj cluster prototype, with m denoting
the fuzzifier parameter. The same activation strategy is used
whenever we want to exploit the network, i.e., predict the set
of labels associated with a new observation.

A
(0)
kj =

(
c∑

l=1

D(Yk, Pj)

D(Yk, Pl)

)− 2
m−1

(6)

The last aspect to be considered is how to optimize the error
function in Equation (5). In this study we utilize a Swarm
Intelligence approach to estimate the weights. Particle Swarm
Optimization (PSO) is an effective search method for solving
challenging continuous optimization problems [32]. The PSO
metaheuristic involves a set of particles, known as swarm,
which collaboratively explore the search space trying to locate
promising regions [33]. Particles are interpreted as candidate
solutions for the optimization problem and they are encoded
as points in an S-dimensional search space. The dimension
of this search space is subject to the number of parameters
to be optimized. In this case, S is the number of causal
connections of the target GCM architecture; hence, we have
c2 +c|L|+ |L| ≤ S ≤ (c+ |L|)2 as discussed in Section III-A.
During the search process, each particle navigates through the
search space using its own velocity, a local memory of the
best position it has obtained and the knowledge of the best
solution found so far within its topological neighborhood. For
more details on the PSO method, the reader may consult [32].

It should be mentioned that our learning methodology is
not tied to a specific optimization procedure. In fact, other
population-based search methods such as Genetic Algorithms
or Differential Evolution could be adopted as well. Even
gradient-based methods may be suitable depending on the
problem at hand. In general terms, the simplicity of the
granular networks becomes an important advantage when
adjusting the causal weights as opposed to other neural models
that comprise several layers and hidden neurons.

IV. EXPERIMENTAL ANALYSIS AND DISCUSSION

The empirical analysis conducted in this Section is rather
exploratory and focused on the prediction capabilities of the
three proposed granular models.

A. Dataset Generation

The lack of suitable GMLC datasets is the first hindrance
to be bypassed. Existing datasets for GMLC environments
such as BeLa-E [34] are oriented to the ordinal prediction
of labels instead of the exact degree of each label. The same
drawback is observed in existing algorithms and measures to
validate numerical results. The ordinal prediction of labels is
a particular case of GMLC situations and is inadequate to
explore the accuracy of our models.

For example, let us assume a GMLC problem having three
labels where the expected degree of each label for an object
x is given by Zx1 = 0.8, Zx2 = 0.6 and Zx3 = 0.4. The
ordinal prediction of such labels leads to a set of suitable
solutions given by Equation (7), where Ẑx1, Ẑx2, Ẑx3 denote
the predicted degree associated with the three respective labels.

Ωx = {Ẑx1, Ẑx2, Ẑx3 ∈ [0; 1] : Ẑx1 > Ẑx2 > Ẑx3} (7)



To overcome the lack of GMLC datasets, we generate new
problem instances1 from standard Machine Learning datasets2

in a two-step procedure. In the first step, each class label
(i.e., discrete value for the class attribute) is deemed a new
problem label. In the second step, the numerical degree of
each class label is estimated from a modelM : X → [0, 1]|L|.
This model could be constructed by using a standard classifier
like Random Forests [35]. More explicitly, after training the
standard classifier, each object is inferred and the value of
each label is taken as the probability distribution of the
nominal class attribute. In this paper we adopted the Random
Forests technique [35] due to its high accuracy and increasing
popularity in the Machine Learning community.

B. Performance Metric and Parameter Setting

The above scheme implies that our granular networks
must be capable of approximating the behavior of Random
Forests but from a GMLC viewpoint. Equation (8) shows
the performance metric adopted in this research to measure
the overall accuracy of a GMLC learner. The Normalized
Mean Squared Error (NMSE) calculates the squared difference
between the expected grade Zki and the predicted grade Ẑki

for each testing instance. It should be remarked that, from the
standpoint of the FCM’s recurrent reasoning rule, the predicted
grade Ẑki is the activation value of the i-th output unit (class
label) at time T using the k-th object to initially activate the
input-type (cluster prototype) neurons.

NMSE =
1

K|L|

K∑
k=1

|L|∑
i=1

(
Ẑki − Zki

)2
(8)

In the FC-MEANS clustering algorithm, the number of
clusters c ranges from 2 to 10, the fuzzifier m was set to
2.0 and the number of maximum iterations equals 50. For the
PSO-based learning algorithm, we adopted 40 particles as the
swarm size, 120 iterations as stop criterion, the acceleration
constants c1 = c2 = 2.5 and the constriction factor calculation
as suggested in [36]. As a final point, the number of discrete
time steps to run the FCM recurrent inference process was set
to T = 50, which is a reasonable value to reach convergence
in the proposed networks.

C. Experimental Results

Figures 4-19 summarize the NMSE metric for the follow-
ing datasets: Heart, Heart-noise, Iris variants, New thyroid
variants, Balance-noise, Ecoli variants, Appendicitis and Glass
variants.3. On the other hand, in such datasets the number of
attributes varies from 5 to 13 while the number of labels ranges
from 2 to 7. It should be noted that all predictive attributes
are numerical; other PGCM extensions for handling symbolic
and mixed-value attributes will be formulated as a sequel of
this work.

1Available at http://www.eecs.uottawa.ca/∼rfalc032/files/gmlc-arff.zip
2http://sci2s.ugr.es/keel/datasets.php, Accessed January 7, 2016
3The notation “name#”, e.g., Ecoli2, denotes that the original class distri-

bution has been altered

Fig. 4. NMSE as a function of the number of clusters c for the Heart dataset

Fig. 5. NMSE as a function of the number of clusters c for the Heart-Noise
dataset

Fig. 6. NMSE as a function of the number of clusters c for the Iris dataset

Fig. 7. NMSE as a function of the number of clusters c for the Iris0 dataset



Fig. 8. NMSE as a function of the number of clusters c for the New-Thyroid1
dataset

Fig. 9. NMSE as a function of the number of clusters c for the New-Thyroid2
dataset

Fig. 10. NMSE as a function of the number of clusters c for the Balance-
Noise dataset

Fig. 11. NMSE as a function of the number of clusters c for the Ecoli dataset

Fig. 12. NMSE as a function of the number of clusters c for the Ecoli1
dataset

Fig. 13. NMSE as a function of the number of clusters c for the Ecoli2
dataset

Fig. 14. NMSE as a function of the number of clusters c for the Ecoli3
dataset

Fig. 15. NMSE as a function of the number of clusters c for the Appendicitis
dataset



Fig. 16. NMSE as a function of the number of clusters c for the Glass dataset

Fig. 17. NMSE as a function of the number of clusters c for the Glass0
dataset

Fig. 18. NMSE as a function of the number of clusters c for the Glass2
dataset

Fig. 19. NMSE as a function of the number of clusters c for the Glass3
dataset

The simulations results illustrate the strength of the pro-
posed PGCM scheme to deal with GMLC instances. For
example, the reader may observe that the NMSE value always
falls below 0.1 for a specific number of clusters, barring the
Glass0 altered dataset wherein the best performing model
(GCM-2 with c = 6) reports an error slightly superior to
10%. This means that our three granular classifiers managed
to efficiently compute the degree of each label from a set of
numerical attributes. Given these numerical simulations, we
can enunciate some concluding remarks:
• The performance among all neural models is soundly

similar (the Friedman test [37] advocates the absence of
significant differences among them at the 95% level, p-
value = 0.59588). However, the second model achieved
the best performance in 13/16 datasets. This suggests that
including the inter-label correlation in the FCM topology
may be potentially useful even when the method used
for generating the synthetic datasets does not ensure the
existence of such correlation.

• The performance of each granular model changes with
the number of clusters. Increasing the granularity level
does not inexorably imply higher accuracy. This fact
leads us to believe that the ideal granularity level is
actually problem-specific. Despite this realization, further
measures for estimating this parameter could be adopted.

Another element to be discussed is the role of the clustering
method that induces the granular FCMs. During empirical
simulations we observed that the proposed model is occasion-
ally sensitive to the initialization of the cluster prototypes.
This is why the aforementioned results comprise the average
of 10 independent trials. It suggests that more consistent
initialization strategies must be adopted for boosting the
PGCM performance. Moreover, the stochastic nature of the
PSO algorithm may be responsible for the small variations
on the NMSE measure. Nevertheless, the averaged outcomes
illustrate the capability of the proposed granular systems for
coping with GMLC problems described by a set of numerical
features.

V. CONCLUSION

In this paper we have presented three implementations of
a granular neural network model to solve GMLC scenarios.
They inherit the capability of fuzzy clustering methods to
discover information granules from data and the semantics
of cognitive maps to infer new knowledge from concepts by
using a neural reasoning rule. In this kind of granular system,
fuzzy cluster prototypes are represented as sigmoid input-type
neurons whereas output-type neurons denote problem labels.
Furthermore, causal weights are automatically estimated from
historical data using a supervised learning scheme powered
by PSO as the underlying optimization engine. To activate the
model we use the membership grade of the target object to
each PGCM input neuron (cluster prototype).

Numerical experiments have confirmed the ability of these
granular FCMs to accurately estimate the degree of as-
sociation between an object and each label. The lack of



proper GMLC datasets in the literature led us to devise a
simple procedure that transforms standard Machine Learning
datasets into GMLC ones. However, the lack of pure GMLC
algorithms makes it difficult to perform a sound statistical
analysis between our method and those previously published.
More explicitly, existing GMLC algorithms are focused on
predicting the ordinal relation of labels instead of the exact
membership grade to each label. We could adapt our proposal
to the existing scenarios but the comparison then becomes
unfair. The empirical analysis also suggests that all three
granular models perform comparably; however this finding
may not hold in the presence of a wider GMLC testbed. A
more rigorous statistical analysis must be conducted to identify
the strengths of each granular model topology.

Future research will be geared towards assessing the effect
of the FCM convergence upon the predicted results, improving
the initialization of the fuzzy cluster prototypes and developing
PGCM extensions for handling datasets with nominal and
mixed-type attributes.
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[29] G. Nápoles, R. Bello, and K. Vanhoof, “Learning stability features on
sigmoid fuzzy cognitive maps through a swarm intelligence approach,”
in Progress in Pattern Recognition, Image Analysis, Computer Vision,
and Applications. Springer, 2013, pp. 270–277.

[30] ——, “How to improve the convergence on sigmoid fuzzy cognitive
maps?” Intelligent Data Analysis, vol. 18, no. 6S, pp. S77–S88, 2014.

[31] ——, “On the convergence of sigmoid Fuzzy Cognitive Maps,” Infor-
mation Sciences, submitted.

[32] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization - a
survey,” Swarm intelligence, vol. 1, no. 1, pp. 33–57, 2007.
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