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Abstract. Let A be a Koszul Artin—Schelter regular algebra and o an algebra homomor-
phism from A to M3 (A). We compute the Nakayama automorphisms of a trimmed dou-
ble Ore extension Ap[yy, y2; o] [introduced in Zhang and Zhang (J Pure Appl Algebra
212:2668-2690, 2008)]. Using a similar method, we also obtain the Nakayama automor-
phism of a skew polynomial extension A[#; 6], where 0 is a graded algebra automorphism of
A. These lead to a characterization of the Calabi—Yau property of A p[y1, y2; o], the skew
Laurent extension A[%!; 6] and A[y?:l, y;ﬂ; o] with o a diagonal type.

Introduction

Nakayama automorphisms play an important role in noncommutative algebraic
geometry especially in noncommutative invariant theory [4,14,19]. Let A be a
Koszul Artin—Schelter regular algebra with Nakayama automorphism v in the
sense of [2]. The Nakayama automorphism and Calabi—Yau property of Ore exten-
sions and of skew polynomial extensions were studied in [1,8-10,12,19]. In this
paper, we compute the Nakayama automorphisms of certain double Ore extension
Apl[y1, y2; o] of A;the general notion of a double Ore extension was introduced by
Zhang and Zhang [24]. Then we study the Calabi—Yau property of Ap[y1, y2; 0], a
skew Laurent extension A[r*1; ], where 6 € GrAut(A), and A[ylil, yétl; o] with
o a diagonal type.

It is well-known that a graded Ore extension of a Koszul algebra is also Koszul
(see [17, Corollary 1.3] for example). For a Koszul Artin—Schelter regular algebra,
Van den Bergh proposed an effective method to compute the Nakayama automor-
phism through the Yoneda Ext algebra (see Proposition 1.4 or [21, Theorem 9.2]).
Inspired by these two facts, we first show the following:

Theorem 1. (Theorem 2.1) Let A be a Koszul algebra and B = Ap[y1, y2; 0] be
a trimmed double Ore extension of A. Then, B is a Koszul algebra.
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By describing the Yoneda Ext algebra, we are able to compute the Nakayama
automorphism of a trimmed double Ore extension of a Koszul Artin—Schelter reg-
ular algebra.

Theorem 2. (Proposition 3.11 and Theorem 3.12) Let A be a Koszul Artin—
Schelter regular algebra with Nakayama automorphism v, and B = Ap[y1, y2; 0]
a trimmed double Ore extension of A. Then,

(1) The restriction of the Nakayama automorphism vg of B to A equals (det, o)~ 'v,

and
Y1 -1 ()1
= (hdeto)P ,
° (yz> (hdeto) (yz)

where det, o is an algebra automorphism induced by o, hdeto € M>(k) is
determined by o, and P € M3 (k) is determined by the data P (see Egs. 1.6, 1.8
and Definition 2.5 for their definitions);

(2) B is Calabi-Yau if and only if det, 0 = v and hdeto = P.

In a similar way, one can obtain the analogous results on the Nakayama auto-
morphism and the Calabi—Yau property of the skew polynomial extension of a
Koszul Artin—Schelter regular algebra (see Proposition 3.15 and Theorem 3.16).

Farinati [5, Theorem 6] showed that the Calabi—Yau property is preserved by
noncommutative localizations. Here, we characterize the Calabi—Yau property of
the localization of both the skew polynomial extension with respect to the Ore set
{t',i € N} (called the skew Laurent extension) and the iterated skew polynomial
extension. The third main result reads as follows:

Theorem 3. (Theorems 4.2 and 4.5) Let A be a Koszul Artin—Schelter regular
algebra with Nakayama automorphism v.

(1) The skew Laurent extension A[tT"; 0] of A is Calabi—Yau if and only if there
exists an integer n such that 6" = v and the homological determinant hdet(6)
of 0 equals 1.

(2) Given two automorphisms t© and & of A, let, Q = A[yfﬂl, yzﬂ; o], where
o = diag(t, &) isamap from A to Myx>(A). Then, Q is Calabi—Yau if and only
if there exists two integers m, n such that T &" = v andhdet(t) = hdet(¢§) = 1.

In fact, Part (2) of Theorem 3 is a special case of what is proved in Theorem 4.5. The
aforementioned results and their proofs indicate that there exists a strong relation
between the Nakayama automorphisms of those extensions and the homological
determinants of the automorphisms which determine those extensions (see Theo-
rems 2 and 3). The Nakayama automorphisms of the right coideal subalgebras of the
quantized enveloping algebras were explicitly computed [16]. In fact, those coideal
subalgebras are special iterated Ore extensions. The general case of iterated Ore
extensions and their relation with double Ore extensions were discussed in [3]. So
it would be interesting to study the Nakayama automorphism and the Calabi—Yau
property of double Ore extensions and those of the localizations of iterated skew
polynomial extensions in general.
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The paper is organised as follows. In Sect. 1, we recall the definitions and the
properties, including the relation between the Nakayama automorphism of a Koszul
Artin—Schelter regular algebra and its Yoneda Ext algebra. Section 2 prepares nec-
essary means for computing the Nakayama automorphisms of trimmed double Ore
extensions of Koszul algebras.

In Sect. 3, we mainly compute the Nakayama automorphism and study the
Calabi—Yau property of trimmed double Ore extensions of Koszul Artin—Schelter
regular algebras. In Sect. 4, apart from what we mentioned in Theorem 3, the
Calabi—Yau property of the skew Laurent extensions and the Calabi—Yau property
of a localization of iterated Ore extensions are studied. Necessary and sufficient
conditions for those algebras to be Calabi—Yau are determined, see Theorem 4.6.

Throughout, k is a field and all algebras are k-algebras; unadorned ® means
®xK and * always denotes the dual over k.

1. Preliminaries

An N-graded algebra A = @90 A; is called connected if Ag = k. By a graded
algebra we mean a locally finite graded algebra generated in degree 1. Let A® =
A ® A°P denotes the enveloping algebra of A. A module means a left (graded)
module. The shifting of a graded module is denoted (). For a module M over A,
# M stands for a twisted module by an algebra automorphism ¢, where the action
is defined by a - m := @(a)m. Similarly, M¥ and ' M¥ denote the twisted right
module and the twisted bimodule respectively.

Let V be a finite-dimensional vector space, and 7 (V) be the tensor algebra
with the usual grading. A connected graded algebra A = Ty (V)/( R) is called a
quadratic algebra if R is a subspace of V®2. The homogeneous dual of A is then
defined as A' = Ty (V*)/( Rt ), where

R ={LeV*®V*|A(r)=0, forall re R}.
Here, we identify (V ® V)* with V* ® V* by
@@ P)(x®y) =alx)B(y) (1.1)
for o, B € V*and x, y € V. For more detail, see [20].

Definition 1.1. A quadratic algebra A is called Koszul if the trivial A-module 4k
admits a projective resolution

cir—>P,—P,_ |—> -+ —> Pl—> Py)—> 2 k—0
such that P, is generated in degree n for all n > 0.

For more detail about Koszul algebras and the Koszul duality, we refer the
reader to [18, Ch.2]. Now, we recall the definitions of an Artin—Schelter regular
algebra, a Nakayama automorphism and a Calabi—Yau algebra.

Definition 1.2. A connected graded algebra A is called Artin—Schelter (AS, for
short) Gorenstein of dimension d with parameter / for some integers d and /, if
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(i) inj.dim(4 A) = inj.dim(A4) = d; and

N - 0, i#d
i ~ i ~ ’ ’
(i) Ext) (I, A) = Extly, (I, A) = 40 7

If, in addition, A has a finite global dimension, then A is called AS-regular.

Definition 1.3. [2,6] A graded algebra A is called twisted Calabi—Yau of dimension
d if
(i) A is homologically smooth, i.e., A, as an A°-module, has a finitely generated
projective resolution of finite length.
.. i 0 i#d .
i ey ~ ’ e_
(ii) Ext)y. (A, A®) = A(). i =d as A°-modules for some automorphism v of
A and some integers d, [.

The automorphism v is called the Nakayama automorphism of A. If, in addition,
A" is isomorphic to A as A°-modules, or equivalently, v is inner, then A is called
Calabi-Yau of dimension d. Ungraded Calabi—Yau algebras are defined similarly
but without degree shift.

Let E be a Frobenius algebra. By definition, there is an isomorphism ¢ : E —
E* of right E-modules. This is equivalent to the existence of a nondegenerate
bilinear form, often called Frobenius pair, (—, —) : E x E — ksuch that (ab, ¢) =
(a, bc) foralla, b, c € E (where the bilinear form is defined by (a, b) := ¢(b)(a)).
By the nondegeneracy of the bilinear form, there exists an automorphism w, unique
up to an inner automorphism, such that

(a,b) = (u(b),a) (1.2)

forall a, b € E. Thus, ¢ becomes an isomorphism of E-bimodules *E = E*. The
automorphism p is usually called the Nakayama automorphism of E. For more
detail, see [20].

Now, there are two notions of Nakayama automorphisms: one for twisted
Calabi-Yau algebras and one for Frobenius algebras. We use v for the former
and | for the latter if there is no confusion. In fact, the notion of a Nakayama
automorphism in [2] can be defined for algebras with finite injective dimension,
and it coincides with the classical Nakayama automorphism of a Frobenius algebra.
But in this paper, we focus ourselves on twisted Calabi—Yau algebras (or equiv-
alently, AS-regular algebras in the connected graded case [19, Lemma 1.2]). It
is well known that a connected graded algebra A is AS-regular if and only if its
Yoneda Ext algebra is Frobenius [13, Corollary D]. In this case, the two notions
of Nakayama automorphisms will coincide in the sense of the Koszul duality, see
Proposition 1.4. To get there, we need the following preparation.

Let A = Ty (V)/{ R ) be aKoszul algebra. Then its Yoneda Extalgebra E(A) :=
Dicn Ext%(lk, k) is isomorphic to A' = Ty (V*)/( R ), see [20]. For a graded
automorphism 6 of A, we define amap 6* : V* — V* by 0*(f)(x) = f(6(x)) for
each f € V*and x € V.Itis easy to see that * induces a graded automorphism of
A' because 6 is assumed to preserve the relation space R. We still use the notation *
for this algebra automorphism. Suppose that {e, ¢2, ..., ¢,} is a k-linear basis of
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V and {e], €3, ..., e;} is the corresponding dual basis of V*. 1f 0(e;) = > cije;
forc;; € k(1 <i, j < n), then we have:
0*(ef) = D _cjie’. (1.3)
J
Moreover, for each i, j = 1,2, ..., n, we have:
0% (ef)(ej) = e; (B(e))). (1.4)

Proposition 1.4. [21, Theorem 9.2] Let A be a Koszul AS-regular algebra of dimen-
sion d. Then, the Nakayama automorphism v of A is equal to ¥ j1*, where . is the
Nakayama automorphism of the Frobenius algebra A' and € is the automorphism
of A defined by a — (—1)%2%q, for each homogeneous element a € A. O

Next, we recall the definition and some basic properties of a double Ore exten-
sion.

Definition 1.5. [24,25] Let A be a subalgebra of a k-algebra B.

(1) B is called a right double Ore extension of A if
(i) B is generated by A together with two variables y; and y»;
(1) y1 and y; satisfy the relation:

y2y1 = py1y2 + 61)’12 +Tnyi+ 0y + 10

for some p,q € kand 71, 10, 79 € A;
(iii) B is a free left A-module with basis {y!y3;i, j > 0};
(iv) y1A + y2A C Ay + Ay, + A.
(2) B is called a left double Ore extension of A if:
(i) B is generated by A and two new variables y; and y»;
(i) y1 and y; satisfy the relation

y1v2 = p'yvayt +4'vi + it + y21) + 1

for some p’, ¢’ € kand 7], 73, 7 € A;
(iii) B is a free right A-module with basis {y}y{; i, j > 0};
(iv) Ayr + Ays S yiA+ nA + A.
(3) B is called a double Ore extension of A if it is a left and a right double Ore
extension of A with the same generating set {y;, y2}.

Note that Condition (1).(iv) in the Definition 1.5 is equivalent to the existence
of two maps:

o= ("” "‘2) tA > Myo(A)  and 5= (g;) A = Maxi(A)

021 022
V1 _ V1
(yz) a=o(a) (yz) + 6(a) (1.5)

subject to
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for all a € A, where 0;;,8; € Endx(A). In case B is a right double Ore exten-
sion of A, we will write B = Apl[y1, y;0,8,1], where P = (p,q) € k2,
T = (19,71, T2) € A3, and 0,8 as above. Along with the datum P, we define
a matrix P in M; (k) as follows:

P= ( P O) (1.6)
- 1y, 1 :
—(+ g 5

Like in an Ore extension, here o is a homomorphism of algebras and § is a o-
derivation, that is, § is k-linear and satisfies §(ab) = o (a)§(b) + §(a)b, for all
a, b € A. The double Ore extensions that we shall consider mainly in this work are
the so-called trimmed double Ore extensions.

Definition 1.6. A double Ore extension A p[y1, y2; 0, 8, T]is called a trimmed dou-
ble Ore extension, if § is the zero map and T = {0, 0, 0}. In this case, we use the
short notation A p[y1, y2; o] for a trimmed double Ore extension.

Condition (2).(iv) in Definition 1.6 is equivalent to the existence of two maps

= (ﬁii ﬁg) A= Maxa(A) and 8= (8] 8) 1 A — Mixa(A)
satisfying
a(yi y2) = (1 y2) @) + 8 (1.7)

for all @ € A. For a double Ore extension, the connection between o and ¢ in
Egs. (1.5) and (1.7) can be seen in the following definition and lemma.

Definition 1.7. [24] Let o : A — M>42(A) be an algebra homomorphism. We say

that o is invertible if there is an algebra homomorphism ¢ = (Z” le) A —
21 $22

M> > (A) satisfies the following conditions:

r,

2 . . 2 . .

) ) - r, L=] ) ) - 1=]

1§¢,k<o,k(r>> = [0’ i 2 and gmq(ml(r)) - {O’ P2
for all r € A. The map ¢ is called the inverse of o.

The following lemma gives the relation of the condition that o is invertible and
the condition a right double Ore extension being a double Ore extension.

Lemma 1.8. [24, Lemma 1.9 and its proof, Proposition 2.1] Let B=Ap[y1, y2; 0,
8, ] be a right double Ore extension of A.

(1) If B is a double Ore extension, then o is invertible with the inverse ¢ such that
the Eq. (1.7) holds for some §'.

(2) Suppose that both A and B are connected graded algebras. If p # 0 and o is
invertible, then B is a double Ore extension. O
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Next, we list the identities induced by commuting the equation y,y; = py1y2+
qyl2 with element r € A. Explicitly, since y2y17 = (py1y2 + qy12)r foreachr € A,
so we get the relations R3.1-R3.3 in [24, p. 2674] (as we only consider the trimmed
double Ore extension here). Dually, we have the following

(R'3.1) ¢11(d12(1) +q¢11(922(r)) = pP12(h11(r)) +q¢11(P11 () + pgd12(¢21
(r) + q*¢11 (21 (r))

(R'3.2) ¢21($12(r) + pd11(¢22(r)) = pd2a(11(r) +qd21(d11(r) + p*12(21
(r) + pqd11(d21(r))

(R'3.3) ¢21(¢22(r)) = pd2a(d21(r)) + q21(21(r))

In order to study the regularity of double Ore extensions, Zhang and Zhang
introduced an invariant of ¢, called the (right) determinant of o, which is similar
to the quantum determinant of the 2 x 2-matrix. As we will see, this invariant will
play an important role in the description of the Nakayama automorphism of the
trimmed double Ore extension.

Let B = Ap[y1, y2; 0, 8, T] be a right double Ore extension of A. The right
determinant of o is defined to be the map:

det,o: A — A, ar> —qoi2(011(a)) + 02(o11(a)) — pora(ozi(a))  (1.8)

for a € A. If o is invertible with the inverse ¢, then the left determinant of ¢ is
defined by:

det; ¢ := —qo11 0 P21 + P11 0 P22 — pP12 © P21.

We remark that when ¢ = 0 the above expression of det; ¢ coincides with the
one in [24] after E2.1.6. The following properties of the determinant of o were
given in [24].

Proposition 1.9. [24, proof of Proposition 2.1] Let B = Ap[y1, y2;0,8, 1] be a
double Ore extension of A such that o is invertible with inverse ¢. Then,

(1) det, o is an algebra endomorphism of A;
@) if p #0, then
q
det, 0 = =011 0012 + 011 0022 — —021 0012,
p p

1
detj ¢ = %0521 o1+ ¢ odr — ;¢21 o ¢12;

(3) det, o is invertible with inverse det; ¢.

Remark that the equation det; ¢ = %@1 o1+ P od — %¢21 o ¢, follows
from the relation R’3.2. Here, we use the notions of det, and det; in order to differ
the morphisms determined by o and ¢. Note that there is a print typos in the formula
of [24, line-11, p. 2677], where the minus sign of the first term should be dropped.
In fact, that can be verified by using [24, R3.2, p. 2674].
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Double Ore extensions are used to construct higher dimensional AS-regular
algebras from lower dimensional ones because of the following result which will
be used later.

Lemma 1.10. [24, Theorem 0.2] Let A be an AS-regular algebra. If B is a connected
graded and a double Ore extension of A, then B is AS-regular and gldim B =
gldim A 4 2. ]

2. Koszul algebra and homological determinant

In this section, we make necessary preparation for computing the Nakayama auto-
morphism of a trimmed double Ore extension. To this aim, we first prove that
the Koszul property is preserved by making a trimmed double Ore extension.
We then introduce the homological determinant of an algebra homomorphism
o A — M>.2(A) for a Koszul algebra A and study its properties.

Theorem 2.1. Let A be a Koszul algebra and B = Aplyi1, y2; 0] be a trimmed
double Ore extension of A. Then, B is a Koszul algebra.

Proof. Suppose that M is a B-A-bimodule and ¢ is an automorphism of A. Recall
that ' M? is the twisted bimodule on the k-space M with

b-m-a=>bmgp(a)

forallm € M,b € B and a € A. On the space M @& M, there is another right
A-module structure defined by using o as follows:

o11(a) o12(a)
o21(a) ox(a)

(m,n)oa = (m,n) ( ) = (moi1(a) +nozi(a), moia(a) +noxn(a))

2.1
forallm,n € M and a € A. Since o is an algebra homomorphism, M @& M is a
B-A-bimodule. Denote by (M & M)? this B-A-bimodule. By [24, Theorem 2.2],

there is an exact sequence of B-A-bimodules

0— B % BaB)” L BS A0, 2.2)

where, f maps (s, ) to sy; + ty2, g sends r to (r(gy1 — y2), rpy1) and the last
term A is identified with B/(y1, y2). Moreover, (2.2) is a linear resolution of g A
in case both y; and y; are of degree 1.

Now, by assumption, 4k admits a projective resolution:

cii—>P,—P,_1—> - —> PI— Py—> 21 k—0 (2.3)

with P, generated in degree n for each n > 0. We consider the third quadrant
bicomplex:
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> B P — B Pl ———B® Php———=0

—>(B@®B) QR P, —>(BBB) QP —=>(BBB) Q4 Pp—0

..H_Bdetr(f ®A Pz%Bdetr(f ®A Pl %_Bdetra ®A POHO

0 0 0

It follows that det, o is an automorphism of A and that B is a right free A-
module, B 7 is projective as a right A-module. Now, for the right A-module
(B @ B)?, we are going to show it is also projective as a right A-module. Since we
have the following general result: if M, P, Q are projective in the exact sequence

0O->M-—>N-—>P—>Q—0,

then so is N. For this end, we take K to be the kernel of P — Q and we get two
short exact sequence

O—-M—N-—>K—0, 0—-K—P—> Q0—0.

Since P and Q are projective, the second sequence is split and K is projective.
Therefore, the first sequence is split and N is projective. Hence, each term in
the sequence (2.2) is projective as a right A-module. Further, all the rows of the
bicomplex are exact except at the (—1)-st column. Thus, the homology along the
rows yields a single nonzero column, that is,

i >0—> B, k—>(B®B)’ @4 k—>B®4k — 0. (2.4)

Moreover, the sequence (2.2) is a split exact sequence. Therefore, the homology of
(2.4)is pA ®4 k =p k. Namely, the total complex of the bicomplex is a projective
resolution of the B-module gk. Finally, both sequence (2.2) and (2.3) are linear
resolutions, so is the total complex of the bicomplex. The proof is completed. O

Remark 2.2. (1) Theorem 2.1 generalizes the well-known result that a graded Ore
extension of a Koszul algebra is again Koszul (see [17, Corollary 1.3]).

(2) It was proved in [25, Theorem 0.1(b)] that a graded double Ore extension of an
AS-regular algebra of dimension 2 is Koszul. Since an AS-regular algebra of
dimension 2 is always Koszul, Theorem 2.1 generalizes [25, Theorem 0.1(b)]
in the trimmed case.
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For an AS-Gorenstein algebra A, Jgrgensen and Zhang proposed the notion of
the homological determinant of a graded automorphism in [11] in order to study
the noncommutative invariant theory. Roughly speaking, for an AS-Gorenstein
algebra A, the homological determinant, denoted hdet, is a homomorphism from
the graded automorphism group GrAut(A) of A to the multiplicative group k\ {0}
generalizing the usual determinant of a matrix. For the precise definition and its
application, we refer to [11,19]. Here, we just need the following characterization
of the homological determinant of an automorphism of a Koszul algebra.

Proposition 2.3. [22, Proposition 1.11] Let A be a Koszul AS-regular algebra of
global dimension d. Suppose that 6 is a graded automorphism of A and 0* is its
corresponding dual graded automorphism of the dual algebra A'. Then, we have
0*(u) = (hdetO)u for any u € Extﬁ(ﬂ{, k). O

Suppose that A = Ty (V)/(R) is a Koszul algebra. Let 0 : A — M42(A) be
an algebra homomorphism. Then,

* *

o o2

( v 1*2) 1 VE = Moo (V)
031 922

defines a k-linear map, denoted by o*, where 0% is the dual of o;; on the space
V* (see the paragraph before Proposition 1.4) for each pair (i, j) with i, j €
{1, 2}. Extend o* to an algebra homomorphism ¢ * : T (V*) — My (T (V*))
by letting:

0" (xy) = 0" (x)a"(y)

for each x, y € V*. In particular, for e, e”lf e V*

o*(e;"e}'f) = (‘71*1 (e}) ‘71*2(27)) (01*1 (6?) ‘71*2(67))

o5 (ef) o35(ef) ) \o5; (ej) 0'2*2(67)
_ (oni(€)ori(€)) + a3 (€e)oy (€)) o7y (¢)ay(€)) + o1y (e7)os; (€5)
031 (e))afy(€}) + 03, (e)03 (€7) 03 (ef)a5(€]) + 03, (ef)03y(€7)

For any e, e € V,

(71 (€))ofi(e) + oty (€)o3) (€)) (exer)

YLD ok (eh) en) oty (€ (e + oy €D e ) @)

PLY et (011 (en)et (o1 (@) + ¢} (12(en)e’ (021 (en)

by(1.1)
= ejej(ori(ex)arie) + o1z(ex)o2(er))

= ¢/¢}((on1011 + 012021) (exer)).

Then, o};(r') € Rt for any ' € R*. For this end, assuming that r’ =
Zi,j cije;ke;‘. € R, then for any r = Zk,l dijere; € R it follows from the above
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computation that

o () () =D cij(ofi(€))afy(€) + oty (ehoz (eD) | D duerer
i,j k.l

= > cijeiel [ (onon +onon) | D duere
ij k.l

=r'(o11(r)).

Since o711 is an algebra endomorphism of A = Ty (V) /(R), we obtain that o (r) €
R. Hence, o}, (r")(r) = r'(o11(r)) = 0. It is shown that o}, (') € Rt for any
r’ € Rt. That is, oy, induces an algebra endomorphism of A" = Ti (V¥ /(RY).
Similarly, the same claims for 01*2, 02*1 and 02*2 hold by computation. Furthermore,
o* induces an algebra homomorphism from Alto M2X2(A!). We still use the same
notation o * for this algebra homomorphism if no confusion occurs. The following
property is easy to check.

Lemma 2.4. Let A be a Koszul algebra and o : A — Mj«»(A) an algebra homo-
morphism. Then o is invertible ( in the sense of Definition 1.7) with inverse ¢ if
and only if o* is invertible with inverse ¢*. Here both o* and ¢* are algebra
homomorphisms from Al 10 My (AY.

Let xo be a base element of the highest nonzero component Ai], which is 1-
dimensional k-space, of A'. We assume that:

o* (x0) = (W"O X’“)), 6" (x0) = (W/’“) X/XO) 25)

Yxo Zxo Y'xo Z'xo

forsome W, X, Y, Z, W X',Y' Z ek
Inspired by Proposition 2.3, we may introduce the following:

Definition 2.5. Let A be a Koszul AS-regular algebra. Suppose that o is an algebra
homomorphism from A to My, (A) and o * is its dual algebra homomorphism from
Alto M2X2(A!). The homological determinant of o, denoted hdet o, is defined by

W X
hdeto = (Y Z)’

where W, X, Y and Z are determined by (2.5).

The following property follows directly from Lemma 2.4.
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Lemma 2.6. Let A be a Koszul AS-regular algebra. Suppose that o and ¢ are two
algebra homomorphism from A to M2 (A) such that they are inverse of each other
in the sense of Definition 1.7. Then

hdet o (hdet ¢)' = I,

WX\ (WY
y z2)\x z) ="

where M' is the transpose of a matrix M and I, is the 2 x 2 identity matrix. O

or equivalently,

Example 2.7. Let A be a Koszul AS-regular algebra and B = Ap[y1, y2; 0] be

(T) (S)) Then, both t and & are
automorphisms of A and & = &1 (see Proposition 4.4 for its proof). Moreover, B
is an iterated Ore extension of A by [3, Theorem 2.2]. It is easy to see that

a trimmed double Ore extension of A with o0 = (

hdeto — (hdetr 0 )

0 hdet

3. Nakayama automorphisms

In this section, we study the Yoneda Ext algebra of a trimmed double Ore extension
of a Koszul AS-regular algebra, and compute the Nakayama automorphism of the
trimmed double Ore extension. This leads to the characterization of the Calabi—Yau
property of a trimmed double Ore extension. As consequences, we recover several
known results on the Calabi—Yau property of a skew polynomial extension.
Throughout this section, A = Ty (V)/( R ) is a Koszul AS-regular algebra of
global dimension d with Nakayama automorphism v, and B = Ap[y1, y2; 0] is a
011 012

is an algebra morphism
021 022

trimmed double Ore extension of A, where o = (

subject to (1.5). Let ¢ = (ZIZU zlz) be the inverse of o in the sense of (1.7),
21 P22

4 I
hdeto = (?// )Z() , and hdet ¢ = (‘;/, )Z(’) throughout this section. We choose a
basis {ey, ..., e,} of V,and let {e], ..., e} be the corresponding dual basis of V*.

For the the Frobenius algebra A!, we fix a base element xo of the 1-dimensional
k-space A!d. By [20, Lemma 3.2], A' possesses a nondegenerate bilinear form given
by

(a, by = cqp (3.1

where ¢, 1s the coefficient of x( in the product of ab. We can pick a k-linear basis
ni,n2,...,nn} of Aii_l such that efn; = §;;x0. Then nie}’f = A;jxo for some
Aij € k. Or equivalently,

(ef,nj) =38ij, (i, ej) = hij
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fori, j = 1,2, ..., n. Then,itfollows from (1.2) that the Nakayama automorphism
My of A'is given by:

py(ed) = Zx,-,-ejf. (3.2)
J
- _ (P11 912 .
Now we assume that the algebra homomorphism ¢ = b1 b ) A — May2(A)
is given by
dijlen) = > piker (3.3)
k

for each [, where ¢ff € k. Then, we have
ol (e) =D ¢llef. (34)
k

Now B is a Koszul algebra and it can be presented by generators and relations as
B =Ti(V & ky; & ky>)/( Rp), where Rp consists of three types of relations:

(R1) the relations defining A;

(R2) yay1 — py1y2 — qvi;

(R3) {yjei —oji(ei)y1 —ojale)y2; j=1,2,i=1,...,n}

Note that from Definition 1.5 and Definition 1.7 it follows that the relation (R3) is
equivalent to

(R3") feiy; —yi91j(ei) — vagajle); j=1,2,i =1,....n}.

Let C := k({y1, y2)/{(yay1 — py1y2 — qylz)(p # 0). We need the following well-
known property of the algebra C.

Proposition 3.1. The algebra C is Koszul AS-regular of dimension 2. Its Yoneda
Ext algebra C' is k(y}, y3)/{(y))> + qy3 5, {5 + pysyis 057

Proof. The algebra is known as the Jordan plane (¢ # 0) or quantum plane (g = 0)

which are both Koszul AS-regular of dimension 2. Its Yoneda Ext algebra E(C) :=

@D, Extl- (k, k) is isomorphic to C* = Ty (V*)/( Rt ), see [20, Theorem 5.9].
O

Next, we can describe the algebra B' in terms of generators and relations. It is
obvious that {e], 3, ..., e}, ¥, y5} forms a k-linear basis of Bi.

Lemma 3.2. The algebra B'is generated by elements (e}, e5, ..., ex, y{, y;} with
the relations:

(L1) the relations for Al;

(L2) the relations for C L

(L3) {yjef + &7 (e)yi + diy(ef)ysij = 1,2,0 = 1,....n}, where ¢ is the
inverse of o.
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Proof. Since B is Koszul, we have B' = Ty (V* kyf@kys)/( (Rp)™1). According
to the defining relations of B, it is easy to see that relations (1) and (_L2) belong
to (Rp)*. Now we show that (1.3) also belongs to (Rp)". It suffices to verify that
for every i, j, we have:

(Vief + 71 yf + d5a(e)y3)(r) =0

for each r € Rp by the definition of (R )+ for each i, j. But this is trivial since
the generating relations of B are given by (R1), (R2) and (R3).

On the other hand, each element in (V*)®2 has the form f + g + h, where
f=2kiefyl +liefys +miyjef +n;iyjel, g = Zcije;‘e’; and h = a(y]“)2 +
by yy +cy3yi + d(yi")z. Assume that f + g+ h € (Rp)™. Then, it is easy to see
g isin the span of (L1) and % is in the span of (L2). For the rest, we need to show
that every element f = >, kiey| + liefy3 +m;yje +n;yjef € (Rp)* can be
written as

£ =D aiief + ¢11(eyi + dha(e)ys) + bi(vief + b3, (e))y + ¢3r(e))y3).
for a;, b; € k. Firstly, we have

ki =D mje(pii(e)) +njei(da(er)
J

and

li =" mje;(pralen) +njel(¢nler)
J

for any i. Further,
Z ei(pri(e))e; = ¢y (e})
i
by the definition of ¢7;. Hence, we have
f= 2 mehi )y} +ng3 ey
J
+ > midlEDys + njdh ey
J
+ Zmiyfef‘ +niyse;
i
= D miOyie} + 1))y + diae)y3)
i

+ni(yzef + ¢31(€) V1 + ¢ () y3).
which completes the proof. O

Remark 3.3. The third type of relation (_L3) of B' can be replaced by
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(L3) {ef v + yiof;(€f) +y305;(ef) j=1,2,i = 1,....n}

since the relation R3 can be replaced by R3'.

Proposition 3.4. Suppose that A is a Koszul algebra and B = Ap[y1, y2;0]isa
trimmed double Ore extension of A. Then,

(1) A" is a subalgebra of B';

(2) B' is a free right (and left) A'-module with a basis {1, i ¥3, yivil

Proof. The statement (1) is a consequence of Lemma 3.2. Moreover, there is a
surjective algebra homomorphism 7 : A'[[C' — B' from the coproduct of A'
and C' to B'. Hence, as a left A'-module, B' is generated by 1, yi, y; and y{y3.
By Lemma 3.2 and Remark 3.3, the kernel of 7 is the ideal generated by

{efyi +yiofi(e)) +y305;(ef); j = 1,2,i =1,...,n}.

Therefore, the elements 1, yj', y5 and y{'y; are also the generators of B' as aright
A'-module. o
Next, since B is a free left A-module with basis {y] yé; i, j > 0} by definition,
the Hilbert series of B is equal to the Hilbert series of A ® k[y1, y2], i.e.,
Ha(?)
(1-n%
It is well known that there is a functional equation on Hilbert series
Hs(t)Hq(—1) =1

for any Koszul algebra S. Since both A and B are Koszul algebras by Theorem 2.1,
so we have

Hp(t) =

Hp(t) = (1+ 02 Hy (). (3.5)
Therefore, B' is a free left(also right) A'-module, with a basis (L yl, y3. ¥k
0
In order to compute the Nakayama automorphism of B', we need the following:
Lemma 3.5. With notations and assumptions as in the second paragraph of this
section, we have

(1) & := x0y]y; is a basis element of the 1-dimensional space Bc!i+2'
(2) Forany 1 <i, j <nandm = 1,2, the following equations hold:

i (@) (b) kj 1 kj kj
einjyiy; = dije, niyiye; = %(%¢2{¢i’i—;¢2{¢i’§+ P e,
. \
erxoyn, © 0, xXoyme; @ 0,

yvixoys & (~DIW'e, yixoyp € (—DAEW — Lx0e,
(e3) (e4)
vixoys 2 (=D4Y'e,  yixoyt 2 (=LY — 120,

(1) (f2)
xoy{yf = L, x0y{y; = e,

£ 1 (fa)
X0¥3 Y] = —5Es xoy3y; = 0,
| Ym1jY1Yy = Y, Niiyoym = 0,

where W', X', Y and Z' are given in (2.5).
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Proof. Part (1) is obvious by Proposition 3.4 (2). Since e?‘n j = 8ijx0, we have
einjyiys = 8ijxoyiy; = dije.

So Equation (a) holds. Since A' — B' is injective, Equation (c) holds naturally.
Equation (d) holds due to the relation (L3) of Lemma 3.2. Equations (g) and (h)
follow from the relations (L2) and (L3) of Lemma 3.2. As for Equation (b), by
relation (_L3) of Lemma 3.2 and Proposition 3.1, we have:

Yiviej = =i (@31 (e))yi + d3(e)y3)
k
== > (@y|yietyi + nayierys)
k

kj kj kj
= Z<¢z{¢i‘1 E€)VEVT + 31T (€DY3yT + et (eh)yiv3)
= Z(‘/’ Bkl yivT + ol dtser iyt + daelier viv)
q . kj kj
=> (—¢>2{¢>’1’i — g5l + ¢2§¢i’i) ey
ol P
Thus, for each i

q kj I kj
niyiyier = (;dn{ o1 — ;M o1 + ¢2§¢i’i) niel yiys

k,l
q kj L
=%(;¢§{¢{’;—;¢§{¢ + oMol ) i€,

where the second equation follows from niel* = Ai1xo by the assumption. Next, we
show the rest equations. For a fixed j, suppose that n; = >, Amey, € €, |
where A, € k. Then,

D ()
X0 = e’
(yik ¥3 i
= S () eiemsens- i
_ A dF(e* yik * % *
z m® (ej) y; €mi€my - Cmyg_y
m

=17 D "€ (eh) (gk) eyl

— (1) Z)Lm¢*(e7)¢*(e:ﬁm)¢*(€:12) (e, ) (ié")

=D 2 e - e:;d_p(g)
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= (=)' €D hmely ey -l ) (y )

m

= (=D7¢*( n,)( )—( Dee* (XO)( L)-
Y2
It follows from the definition of ¢* that we obtain:
(yik) xp = (_1)d (¢11(x0) ¢12(x0)) ( ) (— )d (‘/V/)COyT< + X/Xoyi)

Y; ¢21 (x0) ¢22(x0) Y/xO.YT + Z/xo)’i‘ )

Thus, we have proved Equations (e;), i = 1, 2, 3, 4. Finally, the equations (f;), i =
., 4 and (g), (h) follow from Proposition 3.1. |

<
B % — %

Since B' is Frobenius, we may apply the Frobenius pair (3.1) on the equations
in Lemma 3.5(2).

Corollary 3.6. The following equations hold:

(@) (2] kj kj
€y E ey mobien = %( o510k — o510tk + o581k ) i
() (d
(e}, xoyp) = 0, (xoyp €)= 0,
(¢5)
0F.x0) Y DI o) 2 Dd (4w - Lx7),
(e3/) (ea)
OFx05) Y 0y oo Y End (4y - 17)),
oD )
(xoyf vy = 4, oy}, v 21,
P ()
(x0¥3. 1) = —5. (xo¥3,y3) = 0,
@) ()
[ (s mj¥1y3) =0, (n;¥{y5, ym) = 0.
Corollary 3.7. The vector set {n1y{y5, 121 Y5, ---» Y1 Y5, X0, X0y5} forms a

k-linear basis of Bg!l i
Proof. Suppose that:
aimyiys + -+ +anmayiy; +bixoyi + baxoy; =0
for some coefficients ay, ..., a,, b1, by € k. Foreachi = 1,2, ..., n, we have
0=(ef,aimyiys + -+ anmyiys + bixoyi + baxoys)
= > ajle}. n;yy3) + bilel. xoy7) + bale} . xoy3)

j=1
= q;. (by Equations (a) and (c))
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Similarly, we have:

0= (y{,a1my{y; + -+ annyiys + bixoyi + baxoys)

n

= > a;(yF. n;y1v3) + byt xoy}) + b2 (vF, x0y3)
j=1

d 4 / 1 / dyxs/ : / / /
=bi(=D =W — =X") +b2(—=1)“W', (by Equations (g'), (e}) and (e3)).
p p

and
a4, 1., dy!
(=D =Y —=Z" )+ b(—D)Y =0
p p
obtained in a similar way. So we obtain a system of linear equations:

(%W/ — %X/) bi+ Wby =0,
qy’r _ 17 / _
(pY pZ)bl—i—sz — 0.

4w — lX/ w’
The determinant of the matrix(Pi v f 7 Y,)is nonzero by Lemma?2.6. Hence,
P p
by = by = 0. Thus, the vectors n1y{y5, My ¥5. ..., 1aY| Y5, X0y and xoy3
are linear independent. On the other hand, by Eq. (3.5), we have dim Bé, 4=
2 dim Aii +dim Aiz—l = n+2. That is, these vectors form a k-linear basis of Bc!1+l .
O

Now, we are ready to compute the Nakayama automorphism u of the Frobenius
algebra B'. This automorphism is determined by the equation

(a,b) = (u(b), a)

for any a,b € B' (see (1.2)). Note that B' is generated by the degree 1 ele-

ments: e}, e}, ...,en, vy, y;. Hence, we just need to describe the images of

those elements under the Nakayama automorphism. By Corollary 3.7, we see that
. !

MmyTys, myTys, ..., maYTy3, X0y, x0y5} forms a basis of B, ;. Due to the fact

that the Nakayama automorphism is graded, we can use the equations in Corollary
3.6 to determine the Nakayama automorphism.

Proposition 3.8. The restriction of the Nakayama automorphism g of B'to A'
equals 4 (det; ¢)*.

Proof. Suppose that
wp(e) =kirel + - +kine, +kiny1y7 + kin2ys-
Since (—, —) is a Frobenius pair,

(X0yp. €f) = (up(ef), xoym)



Nakayama automorphisms of double Ore extensions 573

for m = 1, 2. From Equations (d") and (¢’) in Corollary 3.6, we obtain:

0= (up(e), xoy,,)

kirel + -+ kiner + kinp1y) + kint2y3. X0y

o~ —~

= <ki,n+1y7< + ki,n+2y;a XOy;Z)
= kin+1(07s xX0y) + king2(y3, Xoyy,)

From Equations (¢} )-(e},) in Corollary 3.6 , we obtain the following system of linear
equations:

(0= 30 i + (39 12) 2 =0
W'king1 + Y'king2 =0,

qw/_lx/ iyl__ 4
Since the determinant of the matrix (1’ pp ¥ P ) is nonzero by

/

Lemma 2.6, we have:
ki,n+1 =0= ki,n+2

for each i. Following the definition of the Nakayama automorphism (see (1.2)) and
Equations (a’) and (b), we arrive at:

IR -
e = 3 (3 (Lotiolt — oo+ obiolt ) aa | o5
j k.l

On the other hand, we claim that

. 1 .. .
e’ eh) = 3 (Lokiofs —~otiols + ool e

k.l

Since for any e;,,

(det; §)* (] ) (em) = 6’-"(detl o (em))
¢21 o dr1(em) + ¢22 0 pr1(em) — *¢21 ° ¢12(€m))

() o) o (o)

( y

(Z > o ghie + Zd’n $hrer — Z¢12 ¢2161>
=29

k

k ki k
P11 b1 + Z(b’lnl 55 — Zd’lz P51

which coincides the value of >, ; (%¢’2‘§¢{’§ — %¢§i¢{]§+ ¢]2"2¢ﬁ) e/ (em).
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It follows that

ey 90" e =g | 3 (Loioli — obiols - ool ) e

k.l

g i 1o '
(Zotiolt— okiot+ obiolt ) muteh
p p
q
21

¢

That is, g (e]) = 4 (det; @)*(e}), for all i. O

el
, 1 .. .
Ik ki gtk | oki Ik
Z 21 11—;¢2ll¢12+ ¢212¢11)ij167~
k.l j

We need the following technical result although the proof is obvious.

Lemma3.9. Let E =k ® E| & --- D E,, be a graded Frobenius algebra which
is generated in degree 1. Suppose that {a1, a2} and {B1, B2} are k-linear bases of
E1 and E,,_1 respectively. Let

(a1, B1) =a, (B1,a1) =e,
(a1, B2) = b, (B2, 1) = f,
(a2, 1) =c¢, (B1,m2) =g,
(a2, B2) =d, (Bo,a0) =h

Then, the Nakayama automorphism of E is given by:

de —cf af — be

o) = ad —be ' T ad —be*
( )_dg—ch ah — bg
PO = d —be™ T ad — b
Proof. Note that the Frobenius pair (—, —) is a nondegenerate bilinear form. It

follows that ad — bc # 0. Since the Nakayama automorphism is graded and
E is generated in degree 1, the Nakayama automorphism is determined by the
assumed equations. we are only to determine the image of elements of degree 1.
The conclusion follows from a direct computation. O

Proposition 3.10. The image of y{ and y; under Nakayama automorphism g
are given as follows:

q 1 q 1
w9 =D @X + 2X + —W)yf + @Z+—Z + —Y)y3),
p 4 p p
g (33) =D (pXyi + pZys).
where W, X, Y and Z form the homological determinant of o.
Proof. The proof is similar to the one of Proposition 3.8. Suppose that

wp P =kief + -+ knel + knp1yF + kng2yi.
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Since the equation (n;y{y5, y) = (ug (¥7), njy{y5), where j = 1,2,...,n, we
have:
0= (n;¥{y3, 1)
= (up D). 1;¥7¥3)

n
= D kilei. njyiv3) + ka1 (6 Y TVE) + ka2 (¥3. nyiyE)
i=1

n
=D kidij =k;.
i=1

It follows that wp (y}) = kyp1¥] + kng2y;. Similarly, wp (v3) = lip1y] +
Iny2y5 for some I, 41, 42 € k. Hence, both 151 (y]) and p 5 (y5) are completely
determined by the values in Equations (e’l)-(eﬁt) and ( f{ )-( fz{) in Corollary 3.6.
Thus, we arrive at the case of Lemma 3.9. It follows that

' 9y 1o _ r_ w1y
pp () = (=17 Al ”Zy*+ L M v
BT wz —x'y ! wz —x'y )
d py/ _pw/
MB!(y;):(_l) (V‘//Z/_X/Y/yik—'—V‘//Z/_)(/Y/y;< .

Finally, the statement follows from the equation:

WX\ _ 1 7' -y
Y Z] W'Z' — X'Y’ X W)

a consequence of Lemma 2.6. O

Proposition 3.11. The restriction of the Nakayama automorphism vg of B to A
equals (det, o)~ Y, and

Y1 —1 (V1
= (hdeto)P ,
'B (yz) (hdeto) (yz)

where P is given by (1.6).
Proof. By Proposition 3.8 and Proposition 3.10, the restriction of Nakayama auto-

Q1 0 ),where Q1 € My(k)and Q, € M (k).
0 O

By Proposition 1.4 and Eq. 1.3, the Nakayama automorphism of B is also of this
type. Combining Proposition 1.4, Proposition 3.8 and Proposition 1.9(3) we obtain
the first statement. By Proposition 1.4 and Proposition 3.10, we have:

morphism 5 to B ; has the form (

q 1
vp(y1) = (LIX + ;X + ;W) 1+ pXy2,

1
vp(y2) = (qZ + %Z + ;Y) yi+ pZys.

Thus, the second conclusion follows from the definition of the homological deter-
minant of ¢ in Definition 2.5 and Eq. 1.6. |
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Now we are ready to characterize the Calabi—Yau property of a trimmed double
Ore extension of a Koszul AS-regular algebra.

Theorem 3.12. Suppose that A is a Koszul AS-regular algebra with Nakayama
automorphism v. Let B = Ap[y1, y2; 0] be a trimmed double Ore extension of A.
Then B is Calabi—Yau if and only if det, 0 = v and hdeto = P.

Proof. Since B is Koszul and is of finite global dimension, the Koszul B¢-bimodule
complex provides a finitely generated projective resolution of B of finite length.
That is, B is homologically smooth. Because B is connected graded, its only inner
automorphism is the identity. So for B to be Calabi—Yau, its Nakayama automor-
phism must be the identity. Therefore, the statement is a consequence of Proposi-
tion 3.11. m]

Remark 3.13. For a Koszul AS-regular algebra A with Nakayama automorphism v,
there exists a unique skew polynomial extension D such that D is Calabi—Yau, see
[8-10,12,19]. Here, we consider the existence and the uniqueness of a Calabi—Yau
trimmed double Ore extension of a Koszul AS-regular algebra.

(1). For any Koszul AS-regular algebra A with Nakayama automorphism v,
consider the trimmed double Ore extension B = Ap[yi, y2; o] with P = (1, 0)

and o = 0 ) Then B is Calabi—Yau. But it is easy to see that B is an iterated

v
0id
Ore extension of A (see [25, Proposition 3.6] or its proof). Hence, we ask if there
exists a nontrivial double Ore extension B (not an iterated one) such that B is
Calabi—Yau? The answer is negative from the following example.

Let A = k(x1,x2)/(x2x1 — x1x2 — xf) be the Jordan plane. Its Nakayama
automorphism v is given by v(x1) = x1 and v(x3) = 2x1 + x3. Then, there is
only one nontrivial double Ore extension by the classification in [25], namely,
the type H = Ap[y1, y2; 0] with P = (—1,0) and o given by the matrix

0 0O

h 000

0 hfOh

hf 0 hO
given by det, (¢)(x1) = h’x; and det, (0)(x2) = 2h% fx1 + h®x>. Let xo to be a
base element of the 1-dimensional space A’z. Then

h2xy 0
* J—
o (¥0) _( 0 hzxo)'

Thatis, W = h%, X =0,Y = 0 and Z = h>. By Proposition 3.11, the Nakayama
automorphism of H is

with 0 # h € k and f € k. Now, det, (o) is an automorphism

Vixy —> h72x1
X = W72 (2 = 2)x1 + x2)
yi — —h%y

y2 — —h%y,.
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Therefore, there is no Calabi—Yau algebra in the class of the type H.

(2). For the uniqueness, let A = k(xg, x2)/(x2x1 + x1x2) be the quantum
plane whose Nakayama automorphism is given by v(x1) = —xj and v(xp) = —x3.
Suppose that B := Ap[yi, y2; o] with P = (—1, 0), where o is given by the matrix

00—-g f

g E)c g _()g with f, g € kand f2 # g2. So B is of type N in the classification
fg 0 0

of [25]. Now, det, (o) is an automorphism given by det, (o) (x1) = (f2 — gz)xl
and det,(0)(x2) = (f 2_ gz)xz. Let x¢ be a base element of the 1-dimensional
space A!z- Then we have:

2,2 0
O'*(XO) = ((f Og )xo (fz _ g2)x0) .

In this case, W = f2 — g2, X=0,Y=0and Z = f2 — gz. Thus, the Nakayama
automorphism of B is equal to (g2 — f2) id by Proposition 3.11. Hence, B is Calabi—
Yau if and only if g2 — f2 = 1. Therefore, a trimmed double Ore extension, which
is Calabi—Yau, of a Koszul AS-regular algebra may not be unique if it exists.
Remark 3.14. In the first example in Remark 3.13, we know that det, 0 = vy
2 —

if and only if h? = f = 1. Moreover, hdeto = (hO 1?2) .But, P = ( Ol _01)
Therefore, the condition det, 0 = v4 and the condition hdet ¢ = IPin Theorem 3.12
are independent. More examples can be constructed from iterated Ore extensions,
see Example 2.7.

To end this section, we return to discuss the Nakayama automorphism and the
Calabi—Yau property of the skew polynomial extension. For a twisted Calabi—Yau
algebra A with Nakayama automorphism v, it was proved in [12, Theorem 3.3] that
the Nakayama automorphism of an Ore extension D = A[¢; 6, §] is given by

0~ ov(x), xe€A;
ax + b, X =t,

vp(x) = [

for some a, b € A with a invertible. It was also remarked there that if § = 0, then
vp(t) = at. Now if we restrict to Koszul algebras, we can describe the Nakayama
automorphism more explicitly as follows.

Proposition 3.15. Suppose that A is a Koszul AS-regular algebra with Nakayama
automorphism v, 0 is a graded algebra automorphism of A and D = Alt; 0]. The
Nakayama automorphism vp of D is given by:

_[etovx), xeA
vp(¥) = [(hdete)x, x =1

Proof. We only give a sketch of the proof since it is similar to the one of Proposition
3.11. Suppose that D = T(V & kt)/{ Rp). The generating relations in D are

of two types: te; — 0(e;)t (1 < i < n) and the relations from A. Obviously,

{el,e5, ..., e;, "} forms a k-linear basis for D!1~ By [15, Proposition 2.4], the

s Cno
defining relations for D' consist of the following three types:
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(1) the relations from A';
() {t*ef + O H*(eHr* |1 <i <n);
(3) {9}
By [15, Proposition 2.5], D' is a free A'-module with basis {1, 7*}. Hence, xot*

is a base element of the 1-dimensional space Di, Iy denoted &, where x is a base

element of the 1-dimensional k-space A!d. Now let (b;j),xn be the matrix of the
restriction of 6~ to V., i. e.,

9_1(61-) = Zbijej (3.6)
J

for each i. Then, we have

(1) {nit*, mat™, ..., nat™, xo} is a k-linear basis of Dél;
(2) the following equations hold:

e;‘njt* = 8,']‘8, nit*e}’f = — Zk bkj)\ik&
efxp =0, xoef =0,

t*xo = (=% (hdet(0)) e, xot* =,

t*njt* =0, njt*t* = 0.

Using the same argument in the proof of Proposition 3.8 and Proposition 3.10, one
obtains that the Nakayama automorphism s, of D' is given by:

—par0 (@"H* (@), e A

wp (@) = I (—)4(hdet ), o =1*.

The last step is to transfer up to the Nakayama automorphism vp of D by
Proposition 1.4. O

Note that the homological determinant of the Nakayama automorphism of a
Koszul AS-regular algebra is equal to 1 [19, Theorem 0.4]. Thus, we arrive at the
following result which was proved in [8-10,12,19]:

Theorem 3.16. Suppose that A is a Koszul AS-regular algebra with Nakayama
automorphism v, 0 is a graded algebra automorphism of A and D = Alt; 0].
Then, D is Calabi—Yau if and only if 6 = v. O

4. Skew Laurent extensions

In this section, we consider the Calabi—Yau property of the Ore localizations of both
Alt; 8] and Ap[y1, y2; o] with some conditions. For a skew polynomial extension
A[t; 0] of an algebra A, the multiplicatively closed set {¢'; i € N}is an Ore set. The
localization of A[t; 8] with respect to this Ore set is just the skew Laurent polyno-
mial extension A[¢!; §]. Farinati proposed a general notion of a noncommutative
localization in [5]. It was proved there that the Van den Bergh duality is preserved
by such a localization and the corresponding dualizing module is also explicitly
described. The Ore localization is an example of a noncommutative localization [5,
Example 8].
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Proposition 4.1. Suppose that A is a Koszul AS-regular algebra of dimension d
and D = Alt; 0] is a skew polynomial extension of A. Then, the Nakayama auto-
morphism v of A[t*'; 0] is given by

S0) = ’VD](x), xeD

_ 1
fdetgX> X =1 ".

Proof. By assumption and [5, Theorem 6], we have:

; 0 i#d+1

i ey ~ >
Extpe (E, E7) = [E@D D'®pEd+1), i=d+1,
where E stands for the algebra A[t*!: 6]. Thus, the claim follows from the descrip-
tion of the Nakayama automorphism of D in Proposition 3.15. O

Theorem 4.2. Suppose that A is a Koszul AS-regular algebra with Nakayama auto-
morphism v and 0 is a graded algebra automorphism of A. Then, A[t*!; 0] is
graded Calabi-Yau if and only if there exists an integer n such that 0" = v and the
homological determinant of 0 equals 1.

Proof. Tt follows from the proof of [5, Theorem 6] that A[r*!; 6] is homologically
smooth. Thus, the proof focuses on the description of the Nakayama automorphisms
of algebras A[¢; 6] and A[r*!; 0] as showed in Proposition 3.15 and Proposition
4.1 respectively. Note that the only invertible elements in k[*!] are monomials.
Suppose that A[r*!; 0] is Calabi—Yau. Then, its Nakayama automorphism v is inner,
i.e., there exists anintegern € Z suchthatv(x) = t"x¢ ™" foreachx € Al 0].In
particular, v(¢) = t. Therefore, hdet(0) = 1 by Proposition 3.15.If n is nonnegative,
then for each x € A we have

V) =07 v(x) = 1"xr "
="t o)™
= "oy
= =0"(x).
Hence, v(x) = 0""!(x). Similarly, the claim also holds for the case when # is a
negative integer.

Conversely, if 6 = v for some integer n and the homological determinant of
o equals 1, then v(7) = r. Next, for each x € A, we have

T(x) =0 vx) = 0" (x).

Butin A[t*!; 6], 0(x) = rx¢~'. That s, both 6 and its inverse are inner. Therefore,
V is an inner automorphism. The proof is completed. O

Example 4.3. Let A = k(x, y)/(yx — xy — x2) be the Jordan plane. It is a twisted
Calabi—Yau algebra of dimension 2 whose Nakayama automorphism v is given by
v(x) = x and v(y) = 2x + y. Then, A[t; 6] is Calabi—Yau if and only if 6 = v by
Theorem 3.16. It is not hard to see that each graded automorphism 6 of A has the
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form 6(x) = ax and 6(y) = bx + ay for some a, b € k. By Proposition 2.3, the
homological determinant of 9 is equal to a?. Thus, A[t*!; 0] is Calabi—Yau if and
only if @ is either given by

O(x)=x

0(y) = 2x+

for some nonzero integer n, or given by

O(x) = —x

0() = 7x —y

for some even integer 7.

Finally, we consider the localization or the quotient ring of the double Ore
extension B with respect to the Ore set generated by new generators. However, we
can only do this in some special case as follows.

Proposition 4.4. Let B = Ap[y1, y2; 0] be a trimmed double Ore extension with
70
P=(p,0)ando = (0 S). Then,

(1) Both t and & are automorphisms of A. Moreover, they commutate with each

other.
(2) The multiplicatively closed set S = {ay;”y;z; a € k,ny,ny € Z>o} is an Ore
set.

(3) The quotient ring Bs of B with respect to S exists.

Proof. Since B is a trimmed double Ore extension of A, o is invertible according
to Lemma 1.8. Hence, both t and & are automorphisms of A. By the definition of
the right determinant of o (see (1.8)) and its equivalent description in Proposition
1.9, we have & = £t. The rest of the proof is straightforward.

In fact, the algebra B = Ap[y1, y2; o] considered above is an iterated skew
polynomial extension A[y;; T][y2; &'] where & is the automorphism of A[y;; 7]
defined as follows

A.
o - [E@. xea;
£ (x) Lm’ ey
If p = 1, then the quotient ring Bg is isomorphic to the iterated skew Lau-

rent ring A[ylil, yé“; 7, &] (see [7, pp. 23-24]). In the case of p # 1, we can
also construct the iterated skew Laurent ring, denoted Ap[ylil, yitl; 7, &] or just
Ap| ylil, yé‘]; o]. Similarly, the quotient ring By in the above Proposition is iso-
morphic to the iterated skew Laurent ring A p [yftl, yzil; o]

Theorem 4.5. Suppose that A is a Koszul AS-regular algebra with Nakayama auto-
morphismv, B = Ap[y1, y2; o]isatrimmed double Ore extension with P = (p, 0)

and o = ) and Bs = Ap[ylil, yitl; o. Then, Bg is Calabi-Yau if and only

0
0§
if there exist two integers m, n such that the following conditions are satisfied:
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(1) .L.né-m =;
(2) hdet(t) = p™ and hdet(£) = 1/p".

Proof. The homologically smoothness of Bg also follows from the proof of [5,
Theorem 6]. Observe that for the given homomorphism o : A — M>42(A), the

*k
induced algebra homomorphism ¢* form A' to M,>(A") has the form (TO 50*)’

where 7% and &* are automorphisms of A' induced by 7 and £ respectively. By
Example 2.7 and Proposition 3.11 we obtain that the Nakayama automorphism of
B is given as follows:

@& ovx), xeA;
vp(x) = %(hdet )X, X =y1;
p(hdet§)x, X = .

Thus, it follows from [5, Theorem 6] that the Nakayama automorphism v of By is
given by

vp(x), x€eB
~ p |
V(X) = 1 hderz ¥ X =)

o
phdece™ X =N

Note that the only invertible elements in Bg are monomials a,y|y5y' for
some a, € k and n,m € Z. Suppose that Bg is Calabi—Yau. Then, its’

Nakayama automorphism v is inner, i.e., there exists integer m, n € Z such that
—m n.,m

v(x) =y ySxy;, "y, " foreach x € Bs.Inparticular, V(y1) = y{y5' y1y, "y, " =
%(hdet 7)y1. It follows that hdet(t) = p™*! since y; and y; satisfy y2y; = py1ys.

Similarly, we have hdet(¢) = 1/p"*!. Now, without loss of generality, we may
assume that both n and m are nonnegative. For any element x € A, we have

(&) ov(x) =V(x)
=y xy, My

—1 l—m —
=y E@y, My

=" @y "

— .L.n%.m (x).

Hence, v = ¢ Hlgm+l,
The proof of the converse is similar. O
In general, if 61, . .., 6, are commuting graded automorphisms of A, one can
construct an iterated skew polynomial extension A[y1, ..., Yiu: 01, ..., 6,;] as fol-

lows.Let Ry = A[yy; 61]. Then, extend 6, to an algebra automorphism 095 of R; such
that 05| 4 = 6> and 6;(y) = y1. Now let Ry = A[y; 011[y2; 65]. In this way, one
can construct R; fori = 1,2, ...m, such that, fori < m, Ri;+1 = R; [yiH,Gi’H] s
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where ] is the automorphism of R; satisfying 6/, /|4 = 6;+1 and 6/, (y;) = y;
for j =1,...,i. Finally, let

Ry = Aly1; 011ly2; 651+ - [ym: 6,1

In order to describe the basic data that determine R,;,, one writes R,,, in a different
way as follows:

Ry =Alyt, .o, ym; 01, ..., O,

Note that y;y; = y;yi, yia = 6;(a)y; forall i, j and any a € A.
Now, let R = R,, for some positive m. The quotient ring Rg of R with respect

to the multiplicatively closed set S := {y|" -+ - yp"; n1, ..., nm € Z=o} exists and
is isomorphic to the iterated skew Laurent ring A[ylil, el yrjn:l; 61,...,6,]. For

more details, we refer to [7, p. 23-24]. In the following, we will give a criterion for
such an iterated skew polynomial extension of a Koszul AS-regular algebra to be
Calabi—Yau.

Theorem 4.6. Suppose that A is a Koszul AS-regular algebra with Nakayama auto-
morphismv, R = A[y1, ..., Ym;01,...,0n]and S := {y;’l ceeypting, L gy €
Z>0}. Then,

(1) the Nakayama automorphism vg of R is given by

DR (E) = Bro---06) tov(x), xeA
RET=1 (hdet 6))x, x=y,1<i<m;

(2) R is Calabi—Yau if and only if 01 o - -+ 0 6,, = v and hdet6; = 1 for all i;
(3) Rs is Calabi-Yau if and only if

(1) hdet(6;) = 1 forall i, and

(ii) there exist integers ki, . . ., kp, such that 9{” e 95{” = .

Proof. 1t is well-known that a skew polynomial extension of a Koszul algebra is
again Koszul, c.f. [17, Corollary 1.3]). So both R and Rg are homologically smooth.
By Proposition 3.15, the Nakayama automorphism vg, of R is given by

0 Lovg (x), xeR

VR (¥) = [ (hdet 6))x, x = y.

It follows from the construction of #; and the description of the Nakayama auto-
morphism vg, of Ry that

G0 Tov(x), xe€A;
VR, (x) = 7 (hdet6y)x, X = y1;
(hdet 6))x, X = y.

On the other hand, according to the proof of Theorem 4.5, vg, (y2) = (hdet 65)y,.
Hence, hdet#] = hdet6,. Repeating this process, we obtain Part (1). Part (2)
follows from Part (1). The proof of Part (3) is similar to the proof of Theorem 4.5.

O
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Note that a typical example of Rg is the smash product of a Koszul AS-regular

algebra with a free abelian group algebra. For example, those Hopf algebras in the
classification of Calabi—Yau pointed Hopf algebras of finite Cartan type in [23].

Acknowledgements This work is supported by Natural Science Foundation of China
#11201299 and by an FWO Grant.

References

(1]
(2]
(3]
(4]
(3]
(6]
(71
(8]
(9]
(10]
(1]
(12]
(13]
[14]
[15]
(16]
(7]
(18]
(19]

[20]

Brown, K.A., O’Hagan, S., Zhang, J.J., Zhuang, G.: Connected Hopf algebras and
iterated Ore extensions. J. Pure Appl. Algebra 219, 2405-2433 (2015)

Brown, K.A., Zhang, J.J.: Dualising complexes and twisted Hochschild (co)homology
for Noetherian Hopf algebras. J. Algebra 320, 1814—1850 (2008)

Carvalho, P,, Lopes, S., Matczuk, J.: Double Ore extensions versus iterated Ore exten-
sions. Commun. Algebra 39, 2838-2848 (2011)

Chan, K., Walton, C., Zhang, J.J.: Hopf actions and Nakayama automorphisms. J.
Algebra 409, 26-53 (2014)

Farinati, M.: Hochschild duality, localization, and smash products. J. Algebra 284,
415-434 (2005)

Ginzburg, V.: Calabi—Yau algebras. arXiv:math.AG/0612139

Goodearl, K.R., Warfield, R.B.: An Introduction to Noncommutative Noetherian Rings,
2nd edn. London Mathematical Society Student Texts, 61. Cambridge University Press,
Cambridge (2004)

Goodman, J., Kriahmer, U.: Untwisting a twisted Calabi—Yau algebra. J. Algebra 406,
272-289 (2014)

Guo, J.Y,, Yin, Y., Zhu, C.: Returning arrows for self-injective algebras and Artin—
Schelter regular algebras. J. Algebra 397, 365-378 (2014)

He, J.W., Van Oystaeyen, F., Zhang, Y.: Skew polynomial algebras with coefficients in
Koszul Artin—Schelter Gorenstein algebras. J. Algebra 390, 231-249 (2013)
Jgrgensen, P., Zhang, J.J.: Gourmet’s guide to gorensteinness. Adv. Math. 151, 313-345
(2000)

Liu, L.Y., Wang, S.Q., Wu, Q.S.: Twisted Calabi—Yau property of Ore extensions. J.
Noncommut. Geom. 8, 587-609 (2014)

Lu, D.M., Palmieri, J.H., Wu, Q.S., Zhang, J.J.: Koszul equivalences in Aoco-algebras.
N. Y. J. Math. 14, 325-378 (2008)

Lu, J., Mao, X., Zhang, J.J.: Nakayama automorphism and applications. Trans. Am.
Math. Soc. (to appear). arXiv:1408.5761 [math.RA]

Le Bruyn, L., Smith, S.P., Van den Bergh, M.: Central extensions of three-dimensional
Artin—Schelter regular algebras. Math. Z. 222, 171-212 (1996)

Liu, LY., Wu, Q.S.: Twisted Calabi—Yau property of right coideal subalgebras of
quantized enveloping algebras. J. Algebra 399, 1073-1085 (2014)

Phan, C.: The Yoneda algebra of a graded Ore extension. Commun Algebra 40, 834—
844 (2012)

Polishchuk, A., Positselski, L.: Quadratic Algebras, University Lecture Series, 37.
American Mathematical Society, Providence (2005)

Reyes, M., Rogalski, D., Zhang, J.J.: Skew Calabi—Yau algebras and homological
identities. Adv. Math. 264, 308-354 (2014)

Smith, S.P.: Some finite dimensional algebras related to elliptic curves. CMS Conf.
Proc. 19, 315-348 (1996)


http://arxiv.org/abs/math.AG/0612139
http://arxiv.org/abs/1408.5761

584

C.Zhu et al.

[21]
[22]
(23]
[24]

[25]

Van den Bergh, M.: Existence theorems for dualizing complexes over non-commutative
graded and filtered rings. J. Algebra 195, 662-679 (1997)

Wu, Q.S., Zhu, C.: Skew group algebras of Calabi—Yau algebras. J. Algebra 340, 53—76
(2011)

Yu, X., Zhang, Y.: Calabi—Yau pointed Hopf algebras of finite Cartan type. J. Noncom-
mut. Geom. 7, 1105-1144 (2013)

Zhang, J.J., Zhang, J.: Double Ore extensions. J. Pure Appl. Algebra 212, 2668-2690
(2008)

Zhang, J.J., Zhang, J.: Double extension regular algebras of type (14641). J. Algebra
322, 373-409 (2009)



