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Abstract. Let A be a Koszul Artin–Schelter regular algebra and σ an algebra homomor-
phism from A to M2×2(A). We compute the Nakayama automorphisms of a trimmed dou-
ble Ore extension AP [y1, y2; σ ] [introduced in Zhang and Zhang (J Pure Appl Algebra
212:2668–2690, 2008)]. Using a similar method, we also obtain the Nakayama automor-
phism of a skew polynomial extension A[t; θ ], where θ is a graded algebra automorphism of
A. These lead to a characterization of the Calabi–Yau property of AP [y1, y2; σ ], the skew
Laurent extension A[t±1; θ ] and A[y±1

1 , y±1
2 ; σ ] with σ a diagonal type.

Introduction

Nakayama automorphisms play an important role in noncommutative algebraic
geometry especially in noncommutative invariant theory [4,14,19]. Let A be a
Koszul Artin–Schelter regular algebra with Nakayama automorphism ν in the
sense of [2]. The Nakayama automorphism and Calabi–Yau property of Ore exten-
sions and of skew polynomial extensions were studied in [1,8–10,12,19]. In this
paper, we compute the Nakayama automorphisms of certain double Ore extension
AP [y1, y2; σ ] of A; the general notion of a double Ore extension was introduced by
Zhang and Zhang [24]. Then we study the Calabi–Yau property of AP [y1, y2; σ ], a
skew Laurent extension A[t±1; θ ], where θ ∈ GrAut(A), and A[y±1

1 , y±1
2 ; σ ] with

σ a diagonal type.
It is well-known that a graded Ore extension of a Koszul algebra is also Koszul

(see [17, Corollary 1.3] for example). For a Koszul Artin–Schelter regular algebra,
Van den Bergh proposed an effective method to compute the Nakayama automor-
phism through the Yoneda Ext algebra (see Proposition 1.4 or [21, Theorem 9.2]).
Inspired by these two facts, we first show the following:

Theorem 1. (Theorem 2.1) Let A be a Koszul algebra and B = AP [y1, y2; σ ] be
a trimmed double Ore extension of A. Then, B is a Koszul algebra.
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By describing the Yoneda Ext algebra, we are able to compute the Nakayama
automorphism of a trimmed double Ore extension of a Koszul Artin–Schelter reg-
ular algebra.

Theorem 2. (Proposition 3.11 and Theorem 3.12) Let A be a Koszul Artin–
Schelter regular algebra with Nakayama automorphism ν, and B = AP [y1, y2; σ ]
a trimmed double Ore extension of A. Then,

(1) The restriction of theNakayamaautomorphism νB of B to A equals (detr σ)−1ν,
and

νB

(
y1
y2

)
= (hdet σ)P−1

(
y1
y2

)
,

where detr σ is an algebra automorphism induced by σ , hdet σ ∈ M2(k) is
determined by σ , and P ∈ M2(k) is determined by the data P (see Eqs. 1.6, 1.8
and Definition 2.5 for their definitions);

(2) B is Calabi–Yau if and only if detr σ = ν and hdet σ = P.

In a similar way, one can obtain the analogous results on the Nakayama auto-
morphism and the Calabi–Yau property of the skew polynomial extension of a
Koszul Artin–Schelter regular algebra (see Proposition 3.15 and Theorem 3.16).

Farinati [5, Theorem 6] showed that the Calabi–Yau property is preserved by
noncommutative localizations. Here, we characterize the Calabi–Yau property of
the localization of both the skew polynomial extension with respect to the Ore set
{t i , i ∈ N} (called the skew Laurent extension) and the iterated skew polynomial
extension. The third main result reads as follows:

Theorem 3. (Theorems 4.2 and 4.5) Let A be a Koszul Artin–Schelter regular
algebra with Nakayama automorphism ν.

(1) The skew Laurent extension A[t±1; θ ] of A is Calabi–Yau if and only if there
exists an integer n such that θn = ν and the homological determinant hdet(θ)

of θ equals 1.
(2) Given two automorphisms τ and ξ of A, let, Q = A[y±1

1 , y±1
2 ; σ ], where

σ = diag(τ, ξ) is a map from A to M2×2(A). Then, Q is Calabi–Yau if and only
if there exists two integersm, n such that τmξn = ν and hdet(τ ) = hdet(ξ) = 1.

In fact, Part (2) of Theorem 3 is a special case of what is proved in Theorem 4.5. The
aforementioned results and their proofs indicate that there exists a strong relation
between the Nakayama automorphisms of those extensions and the homological
determinants of the automorphisms which determine those extensions (see Theo-
rems 2 and 3). TheNakayama automorphisms of the right coideal subalgebras of the
quantized enveloping algebras were explicitly computed [16]. In fact, those coideal
subalgebras are special iterated Ore extensions. The general case of iterated Ore
extensions and their relation with double Ore extensions were discussed in [3]. So
it would be interesting to study the Nakayama automorphism and the Calabi–Yau
property of double Ore extensions and those of the localizations of iterated skew
polynomial extensions in general.
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The paper is organised as follows. In Sect. 1, we recall the definitions and the
properties, including the relation between theNakayama automorphism of aKoszul
Artin–Schelter regular algebra and its Yoneda Ext algebra. Section 2 prepares nec-
essary means for computing the Nakayama automorphisms of trimmed double Ore
extensions of Koszul algebras.

In Sect. 3, we mainly compute the Nakayama automorphism and study the
Calabi–Yau property of trimmed double Ore extensions of Koszul Artin–Schelter
regular algebras. In Sect. 4, apart from what we mentioned in Theorem 3, the
Calabi–Yau property of the skew Laurent extensions and the Calabi–Yau property
of a localization of iterated Ore extensions are studied. Necessary and sufficient
conditions for those algebras to be Calabi–Yau are determined, see Theorem 4.6.

Throughout, k is a field and all algebras are k-algebras; unadorned ⊗ means
⊗k and ∗ always denotes the dual over k.

1. Preliminaries

An N-graded algebra A = ⊕
i�0 Ai is called connected if A0 = k. By a graded

algebra we mean a locally finite graded algebra generated in degree 1. Let Ae =
A ⊗ Aop denotes the enveloping algebra of A. A module means a left (graded)
module. The shifting of a graded module is denoted ( ). For a module M over A,
ϕM stands for a twisted module by an algebra automorphism ϕ, where the action
is defined by a · m := ϕ(a)m. Similarly, Mϕ and 1Mϕ denote the twisted right
module and the twisted bimodule respectively.

Let V be a finite-dimensional vector space, and Tk(V ) be the tensor algebra
with the usual grading. A connected graded algebra A = Tk(V )/〈 R 〉 is called a
quadratic algebra if R is a subspace of V⊗2. The homogeneous dual of A is then
defined as A! = Tk(V ∗)/〈 R⊥ 〉, where

R⊥ = {λ ∈ V ∗ ⊗ V ∗ | λ(r) = 0, for all r ∈ R}.
Here, we identify (V ⊗ V )∗ with V ∗ ⊗ V ∗ by

(α ⊗ β)(x ⊗ y) = α(x)β(y) (1.1)

for α, β ∈ V ∗ and x, y ∈ V . For more detail, see [20].

Definition 1.1. A quadratic algebra A is called Koszul if the trivial A-module Ak
admits a projective resolution

· · · −→Pn−→Pn−1−→ · · · −→ P1−→P0−→Ak−→0

such that Pn is generated in degree n for all n ≥ 0.

For more detail about Koszul algebras and the Koszul duality, we refer the
reader to [18, Ch.2]. Now, we recall the definitions of an Artin–Schelter regular
algebra, a Nakayama automorphism and a Calabi–Yau algebra.

Definition 1.2. A connected graded algebra A is called Artin–Schelter (AS, for
short) Gorenstein of dimension d with parameter l for some integers d and l, if
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(i) inj . dim(A A) = inj . dim(AA) = d; and

(ii) ExtiA(k, A) ∼= ExtiAop (k, A) ∼=
{
0, i �= d,

k(l), i = d.

If, in addition, A has a finite global dimension, then A is called AS-regular.

Definition 1.3. [2,6] A graded algebra A is called twisted Calabi–Yau of dimension
d if

(i) A is homologically smooth, i.e., A, as an Ae-module, has a finitely generated
projective resolution of finite length.

(ii) ExtiAe (A, Ae) ∼=
{
0, i �= d
Aν(l), i = d

as Ae-modules for some automorphism ν of

A and some integers d, l.

The automorphism ν is called the Nakayama automorphism of A. If, in addition,
Aν is isomorphic to A as Ae-modules, or equivalently, ν is inner, then A is called
Calabi–Yau of dimension d. Ungraded Calabi–Yau algebras are defined similarly
but without degree shift.

Let E be a Frobenius algebra. By definition, there is an isomorphism ϕ : E −→
E∗ of right E-modules. This is equivalent to the existence of a nondegenerate
bilinear form, often called Frobenius pair, 〈−,−〉 : E×E → k such that 〈ab, c〉 =
〈a, bc〉 for all a, b, c ∈ E (where the bilinear form is defined by 〈a, b〉 := ϕ(b)(a)).
By the nondegeneracy of the bilinear form, there exists an automorphismμ, unique
up to an inner automorphism, such that

〈a, b〉 = 〈μ(b), a〉 (1.2)

for all a, b ∈ E . Thus, ϕ becomes an isomorphism of E-bimodules μE ∼= E∗. The
automorphism μ is usually called the Nakayama automorphism of E . For more
detail, see [20].

Now, there are two notions of Nakayama automorphisms: one for twisted
Calabi–Yau algebras and one for Frobenius algebras. We use ν for the former
and μ for the latter if there is no confusion. In fact, the notion of a Nakayama
automorphism in [2] can be defined for algebras with finite injective dimension,
and it coincides with the classical Nakayama automorphism of a Frobenius algebra.
But in this paper, we focus ourselves on twisted Calabi–Yau algebras (or equiv-
alently, AS-regular algebras in the connected graded case [19, Lemma 1.2]). It
is well known that a connected graded algebra A is AS-regular if and only if its
Yoneda Ext algebra is Frobenius [13, Corollary D]. In this case, the two notions
of Nakayama automorphisms will coincide in the sense of the Koszul duality, see
Proposition 1.4. To get there, we need the following preparation.

Let A = Tk(V )/〈 R 〉be aKoszul algebra. Then itsYonedaExt algebra E(A) :=⊕
i∈N ExtiA(k,k) is isomorphic to A! = Tk(V ∗)/〈 R⊥ 〉, see [20]. For a graded

automorphism θ of A, we define a map θ∗ : V ∗ → V ∗ by θ∗( f )(x) = f (θ(x)) for
each f ∈ V ∗ and x ∈ V . It is easy to see that θ∗ induces a graded automorphism of
A! because θ is assumed to preserve the relation space R.We still use the notation θ∗
for this algebra automorphism. Suppose that {e1, e2, . . . , en} is a k-linear basis of
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V and {e∗
1, e

∗
2, . . . , e

∗
n} is the corresponding dual basis of V ∗. If θ(ei ) = ∑

j ci j e j
for ci j ∈ k (1 ≤ i, j ≤ n), then we have:

θ∗(e∗
i ) =

∑
j

c ji e
∗
j . (1.3)

Moreover, for each i, j = 1, 2, . . . , n, we have:

θ∗(e∗
i )(e j ) = e∗

i (θ(e j )). (1.4)

Proposition 1.4. [21, Theorem9.2]Let A be aKoszul AS-regular algebra of dimen-
sion d. Then, the Nakayama automorphism ν of A is equal to εd+1μ∗, whereμ is the
Nakayama automorphism of the Frobenius algebra A! and ε is the automorphism
of A defined by a → (−1)deg aa, for each homogeneous element a ∈ A. ��

Next, we recall the definition and some basic properties of a double Ore exten-
sion.

Definition 1.5. [24,25] Let A be a subalgebra of a k-algebra B.

(1) B is called a right double Ore extension of A if
(i) B is generated by A together with two variables y1 and y2;
(ii) y1 and y2 satisfy the relation:

y2y1 = py1y2 + qy21 + τ1y1 + τ2y2 + τ0

for some p, q ∈ k and τ1, τ2, τ0 ∈ A;
(iii) B is a free left A-module with basis {yi1y j

2 ; i, j ≥ 0};
(iv) y1A + y2A ⊆ Ay1 + Ay2 + A.

(2) B is called a left double Ore extension of A if:
(i) B is generated by A and two new variables y1 and y2;
(ii) y1 and y2 satisfy the relation

y1y2 = p′y2y1 + q ′y21 + y1τ
′
1 + y2τ

′
2 + τ ′

0

for some p′, q ′ ∈ k and τ ′
1, τ

′
2, τ

′
0 ∈ A;

(iii) B is a free right A-module with basis {yi2y j
1 ; i, j ≥ 0};

(iv) Ay1 + Ay2 ⊆ y1A + y2A + A.
(3) B is called a double Ore extension of A if it is a left and a right double Ore

extension of A with the same generating set {y1, y2}.
Note that Condition (1).(iv) in the Definition 1.5 is equivalent to the existence

of two maps:

σ =
(

σ11 σ12
σ21 σ22

)
: A → M2×2(A) and δ =

(
δ1
δ2

)
: A → M2×1(A)

subject to (
y1
y2

)
a = σ(a)

(
y1
y2

)
+ δ(a) (1.5)
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for all a ∈ A, where σi j , δi ∈ Endk(A). In case B is a right double Ore exten-
sion of A, we will write B = AP [y1, y2; σ, δ, τ ], where P = (p, q) ∈ k2,
τ = (τ0, τ1, τ2) ∈ A3, and σ, δ as above. Along with the datum P , we define
a matrix P in M2(k) as follows:

P =
(

p 0
−(1 + 1

p )q 1
p

)
(1.6)

Like in an Ore extension, here σ is a homomorphism of algebras and δ is a σ -
derivation, that is, δ is k-linear and satisfies δ(ab) = σ(a)δ(b) + δ(a)b, for all
a, b ∈ A. The double Ore extensions that we shall consider mainly in this work are
the so-called trimmed double Ore extensions.

Definition 1.6. AdoubleOre extension AP [y1, y2; σ, δ, τ ] is called a trimmed dou-
ble Ore extension, if δ is the zero map and τ = {0, 0, 0}. In this case, we use the
short notation AP [y1, y2; σ ] for a trimmed double Ore extension.

Condition (2).(iv) in Definition 1.6 is equivalent to the existence of two maps

φ =
(

φ11 φ12
φ21 φ22

)
: A → M2×2(A) and δ′ = (

δ′
1 δ′

2

) : A → M1×2(A)

satisfying
a

(
y1 y2

) = (
y1 y2

)
φ(a) + δ′(a) (1.7)

for all a ∈ A. For a double Ore extension, the connection between σ and φ in
Eqs. (1.5) and (1.7) can be seen in the following definition and lemma.

Definition 1.7. [24] Let σ : A → M2×2(A) be an algebra homomorphism. We say

that σ is invertible if there is an algebra homomorphism φ =
(

φ11 φ12
φ21 φ22

)
: A →

M2×2(A) satisfies the following conditions:

2∑
k=1

φ jk(σik(r)) =
{
r, i = j
0, i �= j

and
2∑

k=1

σk j (φki (r)) =
{
r, i = j
0, i �= j

for all r ∈ A. The map φ is called the inverse of σ .

The following lemma gives the relation of the condition that σ is invertible and
the condition a right double Ore extension being a double Ore extension.

Lemma 1.8. [24, Lemma 1.9 and its proof, Proposition 2.1] Let B= AP [y1, y2; σ,

δ, τ ] be a right double Ore extension of A.

(1) If B is a double Ore extension, then σ is invertible with the inverse φ such that
the Eq. (1.7) holds for some δ′.

(2) Suppose that both A and B are connected graded algebras. If p �= 0 and σ is
invertible, then B is a double Ore extension. ��
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Next, we list the identities induced by commuting the equation y2y1 = py1y2+
qy21 with element r ∈ A. Explicitly, since y2y1r = (py1y2 +qy21 )r for each r ∈ A,
so we get the relations R3.1-R3.3 in [24, p. 2674] (as we only consider the trimmed
double Ore extension here). Dually, we have the following

(R′3.1) φ11(φ12(r))+qφ11(φ22(r)) = pφ12(φ11(r))+qφ11(φ11(r))+ pqφ12(φ21
(r)) + q2φ11(φ21(r))

(R′3.2) φ21(φ12(r))+ pφ11(φ22(r)) = pφ22(φ11(r))+qφ21(φ11(r))+ p2φ12(φ21
(r)) + pqφ11(φ21(r))

(R′3.3) φ21(φ22(r)) = pφ22(φ21(r)) + qφ21(φ21(r))

In order to study the regularity of double Ore extensions, Zhang and Zhang
introduced an invariant of σ , called the (right) determinant of σ , which is similar
to the quantum determinant of the 2× 2-matrix. As we will see, this invariant will
play an important role in the description of the Nakayama automorphism of the
trimmed double Ore extension.

Let B = AP [y1, y2; σ, δ, τ ] be a right double Ore extension of A. The right
determinant of σ is defined to be the map:

detr σ : A −→ A, a → −qσ12(σ11(a)) + σ22(σ11(a)) − pσ12(σ21(a)) (1.8)

for a ∈ A. If σ is invertible with the inverse φ, then the left determinant of φ is
defined by:

detl φ := −qφ11 ◦ φ21 + φ11 ◦ φ22 − pφ12 ◦ φ21.

We remark that when q = 0 the above expression of detl φ coincides with the
one in [24] after E2.1.6. The following properties of the determinant of σ were
given in [24].

Proposition 1.9. [24, proof of Proposition 2.1] Let B = AP [y1, y2; σ, δ, τ ] be a
double Ore extension of A such that σ is invertible with inverse φ. Then,

(1) detr σ is an algebra endomorphism of A;
(2) if p �= 0, then

detr σ = q

p
σ11 ◦ σ12 + σ11 ◦ σ22 − 1

p
σ21 ◦ σ12,

detl φ = q

p
φ21 ◦ φ11 + φ22 ◦ φ11 − 1

p
φ21 ◦ φ12;

(3) detr σ is invertible with inverse detl φ.

Remark that the equation detl φ = q
pφ21 ◦φ11 +φ22 ◦φ11 − 1

pφ21 ◦φ12 follows
from the relation R′3.2. Here, we use the notions of detr and detl in order to differ
themorphisms determined by σ and φ. Note that there is a print typos in the formula
of [24, line-11, p. 2677], where the minus sign of the first term should be dropped.
In fact, that can be verified by using [24, R3.2, p. 2674].
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Double Ore extensions are used to construct higher dimensional AS-regular
algebras from lower dimensional ones because of the following result which will
be used later.

Lemma 1.10. [24,Theorem0.2]Let A beanAS-regular algebra. If B is a connected
graded and a double Ore extension of A, then B is AS-regular and gldim B =
gldim A + 2. ��

2. Koszul algebra and homological determinant

In this section, we make necessary preparation for computing the Nakayama auto-
morphism of a trimmed double Ore extension. To this aim, we first prove that
the Koszul property is preserved by making a trimmed double Ore extension.
We then introduce the homological determinant of an algebra homomorphism
σ : A → M2×2(A) for a Koszul algebra A and study its properties.

Theorem 2.1. Let A be a Koszul algebra and B = AP [y1, y2; σ ] be a trimmed
double Ore extension of A. Then, B is a Koszul algebra.

Proof. Suppose that M is a B-A-bimodule and ϕ is an automorphism of A. Recall
that 1Mϕ is the twisted bimodule on the k-space M with

b · m · a = bmϕ(a)

for all m ∈ M, b ∈ B and a ∈ A. On the space M ⊕ M , there is another right
A-module structure defined by using σ as follows:

(m, n)◦a = (m, n)

(
σ11(a) σ12(a)

σ21(a) σ22(a)

)
= (mσ11(a)+nσ21(a),mσ12(a)+nσ22(a))

(2.1)
for all m, n ∈ M and a ∈ A. Since σ is an algebra homomorphism, M ⊕ M is a
B-A-bimodule. Denote by (M ⊕ M)σ this B-A-bimodule. By [24, Theorem 2.2],
there is an exact sequence of B-A-bimodules

0 → Bdetr σ g→ (B ⊕ B)σ
f→ B

ε→ A → 0, (2.2)

where, f maps (s, t) to sy1 + t y2, g sends r to (r(qy1 − y2), rpy1) and the last
term A is identified with B/(y1, y2). Moreover, (2.2) is a linear resolution of B A
in case both y1 and y2 are of degree 1.

Now, by assumption, Ak admits a projective resolution:

· · · −→Pn−→Pn−1−→ · · · −→ P1−→P0−→Ak−→0 (2.3)

with Pn generated in degree n for each n ≥ 0. We consider the third quadrant
bicomplex:
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0 0 0

· · · B ⊗A P2 B ⊗A P1 B ⊗A P0 0

· · · (B ⊕ B)σ ⊗A P2 (B ⊕ B)σ ⊗A P1 (B ⊕ B)σ ⊗A P0 0

· · · Bdetr σ ⊗A P2 Bdetr σ ⊗A P1 Bdetr σ ⊗A P0 0

0 0 0

It follows that detr σ is an automorphism of A and that B is a right free A-
module, Bdetr σ is projective as a right A-module. Now, for the right A-module
(B ⊕ B)σ , we are going to show it is also projective as a right A-module. Since we
have the following general result: if M, P, Q are projective in the exact sequence

0 → M → N → P → Q → 0,

then so is N . For this end, we take K to be the kernel of P → Q and we get two
short exact sequence

0 → M → N → K → 0, 0 → K → P → Q → 0.

Since P and Q are projective, the second sequence is split and K is projective.
Therefore, the first sequence is split and N is projective. Hence, each term in
the sequence (2.2) is projective as a right A-module. Further, all the rows of the
bicomplex are exact except at the (−1)-st column. Thus, the homology along the
rows yields a single nonzero column, that is,

· · · → 0 → Bdetr σ ⊗A k→(B ⊕ B)σ ⊗A k→B ⊗A k → 0. (2.4)

Moreover, the sequence (2.2) is a split exact sequence. Therefore, the homology of
(2.4) is B A⊗A k =B k. Namely, the total complex of the bicomplex is a projective
resolution of the B-module Bk. Finally, both sequence (2.2) and (2.3) are linear
resolutions, so is the total complex of the bicomplex. The proof is completed. ��

Remark 2.2. (1) Theorem 2.1 generalizes the well-known result that a graded Ore
extension of a Koszul algebra is again Koszul (see [17, Corollary 1.3]).

(2) It was proved in [25, Theorem 0.1(b)] that a graded double Ore extension of an
AS-regular algebra of dimension 2 is Koszul. Since an AS-regular algebra of
dimension 2 is always Koszul, Theorem 2.1 generalizes [25, Theorem 0.1(b)]
in the trimmed case.
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For an AS-Gorenstein algebra A, Jørgensen and Zhang proposed the notion of
the homological determinant of a graded automorphism in [11] in order to study
the noncommutative invariant theory. Roughly speaking, for an AS-Gorenstein
algebra A, the homological determinant, denoted hdet , is a homomorphism from
the graded automorphism group GrAut(A) of A to the multiplicative group k\{0}
generalizing the usual determinant of a matrix. For the precise definition and its
application, we refer to [11,19]. Here, we just need the following characterization
of the homological determinant of an automorphism of a Koszul algebra.

Proposition 2.3. [22, Proposition 1.11] Let A be a Koszul AS-regular algebra of
global dimension d. Suppose that θ is a graded automorphism of A and θ∗ is its
corresponding dual graded automorphism of the dual algebra A!. Then, we have
θ∗(u) = (hdet θ)u for any u ∈ ExtdA(k,k). ��

Suppose that A = Tk(V )/〈R〉 is a Koszul algebra. Let σ : A → M2×2(A) be
an algebra homomorphism. Then,

(
σ ∗
11 σ ∗

12
σ ∗
21 σ ∗

22

)
: V ∗ → M2×2(V

∗)

defines a k-linear map, denoted by σ ∗, where σ ∗
i j is the dual of σi j on the space

V ∗ (see the paragraph before Proposition 1.4) for each pair (i, j) with i, j ∈
{1, 2}. Extend σ ∗ to an algebra homomorphism σ ∗ : Tk(V ∗) → M2×2(Tk(V ∗))
by letting:

σ ∗(xy) := σ ∗(x)σ ∗(y)

for each x, y ∈ V ∗. In particular, for e∗
i , e

∗
j ∈ V ∗

σ ∗(e∗
i e

∗
j ) =

(
σ ∗
11(e

∗
i ) σ ∗

12(e
∗
i )

σ ∗
21(e

∗
i ) σ ∗

22(e
∗
i )

) (
σ ∗
11(e

∗
j ) σ ∗

12(e
∗
j )

σ ∗
21(e

∗
j ) σ ∗

22(e
∗
j )

)

=
(

σ ∗
11(e

∗
i )σ

∗
11(e

∗
j ) + σ ∗

12(e
∗
i )σ

∗
21(e

∗
j ) σ ∗

11(e
∗
i )σ

∗
12(e

∗
j ) + σ ∗

12(e
∗
i )σ

∗
22(e

∗
j )

σ ∗
21(e

∗
i )σ

∗
11(e

∗
j ) + σ ∗

22(e
∗
i )σ

∗
21(e

∗
j ) σ ∗

21(e
∗
i )σ

∗
12(e

∗
j ) + σ ∗

22(e
∗
i )σ

∗
22(e

∗
j )

)
.

For any ek, el ∈ V ,

(σ ∗
11(e

∗
i )σ

∗
11(e

∗
j ) + σ ∗

12(e
∗
i )σ

∗
21(e

∗
j ))(ekel)

by(1.1)= σ ∗
11(e

∗
i )(ek)σ

∗
11(e

∗
j )(el) + σ ∗

12(e
∗
i )(ek)σ

∗
21(e

∗
j )(el)

by(1.4)= e∗
i (σ11(ek))e

∗
j (σ11(el)) + e∗

i (σ12(ek))e
∗
j (σ21(el))

by(1.1)= e∗
i e

∗
j (σ11(ek)σ11(el) + σ12(ek)σ21(el))

= e∗
i e

∗
j

(
(σ11σ11 + σ12σ21)(ekel)

)
.

Then, σ ∗
11(r

′) ∈ R⊥ for any r ′ ∈ R⊥. For this end, assuming that r ′ =∑
i, j ci j e

∗
i e

∗
j ∈ R⊥, then for any r = ∑

k,l dklekel ∈ R it follows from the above
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computation that

σ ∗
11(r

′)(r) =
∑
i, j

ci j (σ
∗
11(e

∗
i )σ

∗
11(e

∗
j ) + σ ∗

12(e
∗
i )σ

∗
21(e

∗
j ))

⎛
⎝∑

k,l

dklekel

⎞
⎠

=
∑
i, j

ci j e
∗
i e

∗
j

⎛
⎝(σ11σ11 + σ12σ21)

⎛
⎝∑

k,l

dklekel

⎞
⎠

⎞
⎠

= r ′(σ11(r)).

Since σ11 is an algebra endomorphism of A = Tk(V )/〈R〉, we obtain that σ11(r) ∈
R. Hence, σ ∗

11(r
′)(r) = r ′(σ11(r)) = 0. It is shown that σ ∗

11(r
′) ∈ R⊥ for any

r ′ ∈ R⊥. That is, σ ∗
11 induces an algebra endomorphism of A! = Tk(V ∗)/〈R⊥〉.

Similarly, the same claims for σ ∗
12, σ

∗
21 and σ ∗

22 hold by computation. Furthermore,
σ ∗ induces an algebra homomorphism from A! to M2×2(A!). We still use the same
notation σ ∗ for this algebra homomorphism if no confusion occurs. The following
property is easy to check.

Lemma 2.4. Let A be a Koszul algebra and σ : A → M2×2(A) an algebra homo-
morphism. Then σ is invertible ( in the sense of Definition 1.7) with inverse φ if
and only if σ ∗ is invertible with inverse φ∗. Here both σ ∗ and φ∗ are algebra
homomorphisms from A! to M2×2(A!).

Let x0 be a base element of the highest nonzero component A!
d , which is 1-

dimensional k-space, of A!. We assume that:

σ ∗(x0) =
(
Wx0 Xx0
Y x0 Zx0

)
, φ∗(x0) =

(
W ′x0 X ′x0
Y ′x0 Z ′x0

)
(2.5)

for some W, X,Y, Z ,W ′, X ′,Y ′, Z ′ ∈ k.
Inspired by Proposition 2.3, we may introduce the following:

Definition 2.5. Let A be a Koszul AS-regular algebra. Suppose that σ is an algebra
homomorphism from A toM2×2(A) and σ ∗ is its dual algebra homomorphism from
A! to M2×2(A!). The homological determinant of σ , denoted hdet σ , is defined by

hdet σ :=
(
W X
Y Z

)
,

where W, X,Y and Z are determined by (2.5).

The following property follows directly from Lemma 2.4.
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Lemma 2.6. Let A be a Koszul AS-regular algebra. Suppose that σ and φ are two
algebra homomorphism from A to M2×2(A) such that they are inverse of each other
in the sense of Definition 1.7. Then

hdet σ(hdet φ)t = I2,

or equivalently,
(
W X
Y Z

) (
W ′ Y ′
X ′ Z ′

)
= I2,

where Mt is the transpose of a matrix M and I2 is the 2 × 2 identity matrix. ��
Example 2.7. Let A be a Koszul AS-regular algebra and B = AP [y1, y2; σ ] be
a trimmed double Ore extension of A with σ =

(
τ 0
0 ξ

)
. Then, both τ and ξ are

automorphisms of A and τξ = ξτ (see Proposition 4.4 for its proof). Moreover, B
is an iterated Ore extension of A by [3, Theorem 2.2]. It is easy to see that

hdet σ =
(
hdet τ 0
0 hdet ξ

)
.

3. Nakayama automorphisms

In this section, we study the Yoneda Ext algebra of a trimmed double Ore extension
of a Koszul AS-regular algebra, and compute the Nakayama automorphism of the
trimmed double Ore extension. This leads to the characterization of the Calabi–Yau
property of a trimmed double Ore extension. As consequences, we recover several
known results on the Calabi–Yau property of a skew polynomial extension.

Throughout this section, A = Tk(V )/〈 R 〉 is a Koszul AS-regular algebra of
global dimension d with Nakayama automorphism ν, and B = AP [y1, y2; σ ] is a
trimmed double Ore extension of A, where σ =

(
σ11 σ12
σ21 σ22

)
is an algebra morphism

subject to (1.5). Let φ =
(

φ11 φ12
φ21 φ22

)
be the inverse of σ in the sense of (1.7),

hdet σ =
(
W X
Y Z

)
, and hdet φ =

(
W ′ X ′
Y ′ Z ′

)
throughout this section. We choose a

basis {e1, . . . , en} of V , and let {e∗
1, . . . , e

∗
n} be the corresponding dual basis of V ∗.

For the the Frobenius algebra A!, we fix a base element x0 of the 1-dimensional
k-space A!

d . By [20, Lemma 3.2], A! possesses a nondegenerate bilinear form given
by

〈a, b〉 = cab (3.1)

where cab is the coefficient of x0 in the product of ab. We can pick a k-linear basis
{η1, η2, . . . , ηn} of A!

d−1 such that e∗
i η j = δi j x0. Then ηi e∗

j = λi j x0 for some
λi j ∈ k. Or equivalently,

〈e∗
i , η j 〉 = δi j , 〈ηi , e∗

j 〉 = λi j
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for i, j = 1, 2, . . . , n. Then, it follows from (1.2) that the Nakayama automorphism
μA! of A! is given by:

μA!(e∗
i ) =

∑
j

λ j i e
∗
j . (3.2)

Nowwe assume that the algebra homomorphism φ =
(

φ11 φ12
φ21 φ22

)
: A → M2×2(A)

is given by

φi j (el) =
∑
k

φlk
i j ek (3.3)

for each l, where φlk
i j ∈ k. Then, we have

φ∗
i j (e

∗
l ) =

∑
k

φkl
i j e

∗
k . (3.4)

Now B is a Koszul algebra and it can be presented by generators and relations as
B = Tk(V ⊕ ky1 ⊕ ky2)/〈 RB〉, where RB consists of three types of relations:

(R1) the relations defining A;
(R2) y2y1 − py1y2 − qy21 ;
(R3) {y j ei − σ j1(ei )y1 − σ j2(ei )y2; j = 1, 2, i = 1, . . . , n}.
Note that from Definition 1.5 and Definition 1.7 it follows that the relation (R3) is
equivalent to

(R3’) {ei y j − y1φ1 j (ei ) − y2φ2 j (ei ); j = 1, 2, i = 1, . . . , n}.
Let C := k〈y1, y2〉/〈y2y1 − py1y2 − qy21 〉(p �= 0). We need the following well-
known property of the algebra C .

Proposition 3.1. The algebra C is Koszul AS-regular of dimension 2. Its Yoneda
Ext algebra C ! is k〈y∗

1 , y
∗
2 〉/〈(y∗

1 )
2 + qy∗

2 y
∗
1 , y

∗
1 y

∗
2 + py∗

2 y
∗
1 , (y

∗
2 )

2〉.
Proof. The algebra is known as the Jordan plane (q �= 0) or quantum plane (q = 0)
which are both Koszul AS-regular of dimension 2. Its Yoneda Ext algebra E(C) :=⊕

i∈N ExtiC (k,k) is isomorphic to C ! = Tk(V ∗)/〈 R⊥ 〉, see [20, Theorem 5.9].
��

Next, we can describe the algebra B! in terms of generators and relations. It is
obvious that {e∗

1, e
∗
2, . . . , e

∗
n, y

∗
1 , y

∗
2 } forms a k-linear basis of B!

1.

Lemma 3.2. The algebra B! is generated by elements {e∗
1, e

∗
2, . . . , e

∗
n, y

∗
1 , y

∗
2 } with

the relations:

(⊥1) the relations for A!;
(⊥2) the relations for C !;
(⊥3) {y∗

j e
∗
i + φ∗

j1(e
∗
i )y

∗
1 + φ∗

j2(e
∗
i )y

∗
2 ; j = 1, 2, i = 1, . . . , n}, where φ is the

inverse of σ .



568 C. Zhu et al.

Proof. Since B isKoszul,we have B! = Tk(V ∗⊕ky∗
1⊕ky∗

2 )/〈 (RB)⊥〉. According
to the defining relations of B, it is easy to see that relations (⊥1) and (⊥2) belong
to (RB)⊥. Now we show that (⊥3) also belongs to (RB)⊥. It suffices to verify that
for every i, j , we have:

(
y∗
j e

∗
i + φ∗

j1(e
∗
i )y

∗
1 + φ∗

j2(e
∗
i )y

∗
2

)
(r) = 0

for each r ∈ RB by the definition of (RB)⊥ for each i, j . But this is trivial since
the generating relations of B are given by (R1), (R2) and (R3).

On the other hand, each element in (V ∗)⊗2 has the form f + g + h, where
f = ∑

i ki e
∗
i y

∗
1 + li e∗

i y
∗
2 + mi y∗

1e
∗
i + ni y∗

2e
∗
i , g = ∑

ci j e∗
i e

∗
j and h = a(y∗

1 )
2 +

by∗
1 y

∗
2 + cy∗

2 y
∗
1 + d(y∗

2 )
2. Assume that f + g + h ∈ (RB)⊥. Then, it is easy to see

g is in the span of (⊥1) and h is in the span of (⊥2). For the rest, we need to show
that every element f = ∑

i ki e
∗
i y

∗
1 + li e∗

i y
∗
2 + mi y∗

1e
∗
i + ni y∗

2e
∗
i ∈ (RB)⊥ can be

written as

f =
∑

ai (y
∗
1e

∗
i + φ∗

11(e
∗
i )y

∗
1 + φ∗

12(e
∗
i )y

∗
2 ) + bi (y

∗
2e

∗
i + φ∗

21(e
∗
i )y

∗
1 + φ∗

22(e
∗
i )y

∗
2 ),

for ai , bi ∈ k. Firstly, we have

ki =
∑
j

m j e
∗
j (φ11(ei )) + n j e

∗
j (φ21(ei ))

and

li =
∑
j

m j e
∗
j (φ12(ei )) + n j e

∗
j (φ22(ei ))

for any i . Further,
∑
i

e∗
j (φ11(ei ))e

∗
i = φ∗

11(e
∗
j )

by the definition of φ∗
11. Hence, we have

f =
∑
j

m jφ
∗
11(e

∗
j )y

∗
1 + n jφ

∗
21(e

∗
j )y

∗
1

+
∑
j

m jφ
∗
12(e

∗
j )y

∗
2 + n jφ

∗
22(e

∗
j )y

∗
2

+
∑
i

mi y
∗
1e

∗
i + ni y

∗
2e

∗
i

=
∑
i

mi (y
∗
1e

∗
i + φ∗

11(e
∗
i )y

∗
1 + φ∗

12(e
∗
i )y

∗
2 )

+ ni (y
∗
2e

∗
i + φ∗

21(e
∗
i )y

∗
1 + φ∗

22(e
∗
i )y

∗
2 ),

which completes the proof. ��
Remark 3.3. The third type of relation (⊥3) of B! can be replaced by
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(⊥3′) {e∗
i y

∗
j + y∗

1σ
∗
1 j (e

∗
i ) + y∗

2σ
∗
2 j (e

∗
i ); j = 1, 2, i = 1, . . . , n}

since the relation R3 can be replaced by R3′.
Proposition 3.4. Suppose that A is a Koszul algebra and B = AP [y1, y2; σ ] is a
trimmed double Ore extension of A. Then,

(1) A! is a subalgebra of B!;
(2) B! is a free right (and left) A!-module with a basis {1, y∗

1 , y
∗
2 , y

∗
1 y

∗
2 }.

Proof. The statement (1) is a consequence of Lemma 3.2. Moreover, there is a
surjective algebra homomorphism π : A! ∐C ! → B! from the coproduct of A!
and C ! to B!. Hence, as a left A!-module, B! is generated by 1, y∗

1 , y
∗
2 and y∗

1 y
∗
2 .

By Lemma 3.2 and Remark 3.3, the kernel of π is the ideal generated by

{e∗
i y

∗
j + y∗

1σ
∗
1 j (e

∗
i ) + y∗

2σ
∗
2 j (e

∗
i ); j = 1, 2, i = 1, . . . , n}.

Therefore, the elements 1, y∗
1 , y

∗
2 and y∗

1 y
∗
2 are also the generators of B! as a right

A!-module.
Next, since B is a free left A-module with basis {yi1y j

2 ; i, j ≥ 0} by definition,
the Hilbert series of B is equal to the Hilbert series of A ⊗ k[y1, y2], i.e.,

HB(t) = HA(t)

(1 − t)2
.

It is well known that there is a functional equation on Hilbert series

HS(t)HS!(−t) = 1

for any Koszul algebra S. Since both A and B are Koszul algebras by Theorem 2.1,
so we have

HB!(t) = (1 + t)2 HA!(t). (3.5)

Therefore, B! is a free left(also right) A!-module, with a basis {1, y∗
1 , y

∗
2 , y

∗
1 y

∗
2 }.��

In order to compute the Nakayama automorphism of B!, we need the following:
Lemma 3.5. With notations and assumptions as in the second paragraph of this
section, we have

(1) ε := x0y∗
1 y

∗
2 is a basis element of the 1-dimensional space B !

d+2.
(2) For any 1 ≤ i, j ≤ n and m = 1, 2, the following equations hold:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e∗
i η j y∗

1 y
∗
2

(a)= δi jε, ηi y∗
1 y

∗
2e

∗
j

(b)= ∑
k,l

(
q
pφ

k j
21φ

lk
11− 1

pφ
k j
21φ

lk
12+ φ

k j
22φ

lk
11)λilε,

e∗
i x0y

∗
m

(c)= 0, x0y∗
me

∗
i

(d)= 0,

y∗
1 x0y

∗
2

(e1)= (−1)dW ′ε, y∗
1 x0y

∗
1

(e2)= (−1)d( qpW
′ − 1

p X
′)ε,

y∗
2 x0y

∗
2

(e3)= (−1)dY ′ε, y∗
2 x0y

∗
1

(e4)= (−1)d( qp Y
′ − 1

p Z
′)ε,

x0y∗
1 y

∗
1

( f1)= q
p ε, x0y∗

1 y
∗
2

( f2)= ε,

x0y∗
2 y

∗
1

( f3)= − 1
p ε, x0y∗

2 y
∗
2

( f4)= 0,

y∗
mη j y∗

1 y
∗
2

(g)= 0, η j y∗
1 y

∗
2 y

∗
m

(h)= 0,

where W ′, X ′,Y ′ and Z ′ are given in (2.5).
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Proof. Part (1) is obvious by Proposition 3.4 (2). Since e∗
i η j = δi j x0, we have

e∗
i η j y

∗
1 y

∗
2 = δi j x0y

∗
1 y

∗
2 = δi jε.

So Equation (a) holds. Since A! → B! is injective, Equation (c) holds naturally.
Equation (d) holds due to the relation (⊥3) of Lemma 3.2. Equations (g) and (h)
follow from the relations (⊥2) and (⊥3) of Lemma 3.2. As for Equation (b), by
relation (⊥3) of Lemma 3.2 and Proposition 3.1, we have:

y∗
1 y

∗
2e

∗
j = −y∗

1 (φ
∗
21(e

∗
j )y

∗
1 + φ∗

22(e
∗
j )y

∗
2 )

= −
∑
k

(φ
k j
21y

∗
1e

∗
k y

∗
1 + φ

k j
22y

∗
1e

∗
k y

∗
2 )

=
∑
k

(φ
k j
21φ

∗
11(e

∗
k )y

∗
1 y

∗
1 + φ

k j
21φ

∗
12(e

∗
k )y

∗
2 y

∗
1 + φ

k j
22φ

∗
11(e

∗
k )y

∗
1 y

∗
2 )

=
∑
k,l

(φ
k j
21φ

lk
11e

∗
l y

∗
1 y

∗
1 + φ

k j
21φ

lk
12e

∗
l y

∗
2 y

∗
1 + φ

k j
22φ

lk
11e

∗
l y

∗
1 y

∗
2 )

=
∑
k,l

(
q

p
φ
k j
21φ

lk
11 − 1

p
φ
k j
21φ

lk
12 + φ

k j
22φ

lk
11

)
e∗
l y

∗
1 y

∗
2 .

Thus, for each i

ηi y
∗
1 y

∗
2e

∗
j =

∑
k,l

(
q

p
φ
k j
21φ

lk
11 − 1

p
φ
k j
21φ

lk
12 + φ

k j
22φ

lk
11

)
ηi e

∗
l y

∗
1 y

∗
2

=
∑
k,l

(
q

p
φ
k j
21φ

lk
11 − 1

p
φ
k j
21φ

lk
12 + φ

k j
22φ

lk
11

)
λilε,

where the second equation follows from ηi e∗
l = λil x0 by the assumption. Next, we

show the rest equations. For a fixed j , suppose that η j = ∑
m λme∗

m1
e∗
m2

. . . e∗
md−1

,
where λm ∈ k. Then,(

y∗
1
y∗
2

)
x0 =

(
y∗
1
y∗
2

)
e∗
jη j

=
∑
m

λm

(
y∗
1
y∗
2

)
e∗
j e

∗
m1
e∗
m2

. . . e∗
md−1

= −
∑
m

λmφ∗(e∗
j )

(
y∗
1
y∗
2

)
e∗
m1
e∗
m2

. . . e∗
md−1

= (−1)2
∑
m

λmφ∗(e∗
j )φ

∗(e∗
m1

)

(
y∗
1
y∗
2

)
e∗
m2

. . . e∗
md−1

= · · ·
= (−1)d

∑
m

λmφ∗(e∗
j )φ

∗(e∗
m1

)φ∗(e∗
m2

) . . . φ∗(e∗
md−1

)

(
y∗
1
y∗
2

)

= (−1)d
∑
m

λmφ∗(e∗
j e

∗
m1
e∗
m2

. . . e∗
md−1

)

(
y∗
1
y∗
2

)
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= (−1)dφ∗(e∗
j

∑
m

λme
∗
m1
e∗
m2

. . . e∗
md−1

)

(
y∗
1
y∗
2

)

= (−1)dφ∗(e∗
jη j )

(
y∗
1
y∗
2

)
= (−1)dφ∗(x0)

(
y∗
1
y∗
2

)
.

It follows from the definition of φ∗ that we obtain:

(
y∗
1
y∗
2

)
x0 = (−1)d

(
φ∗
11(x0) φ∗

12(x0)
φ∗
21(x0) φ∗

22(x0)

) (
y∗
1
y∗
2

)
= (−1)d

(
W ′x0y∗

1 + X ′x0y∗
2

Y ′x0y∗
1 + Z ′x0y∗

2

)
.

Thus, we have proved Equations (ei ), i = 1, 2, 3, 4. Finally, the equations ( fi ), i =
1, . . . , 4 and (g), (h) follow from Proposition 3.1. ��

Since B! is Frobenius, we may apply the Frobenius pair (3.1) on the equations
in Lemma 3.5(2).

Corollary 3.6. The following equations hold:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈e∗i , η j y
∗
1 y

∗
2 〉 (a′)= δi j , 〈ηi y∗

1 y
∗
2 , e∗j 〉

(b′)= ∑
k,l

(
q
pφ

k j
21φ

lk
11− 1

pφ
k j
21φ

lk
12+ φ

k j
22φ

lk
11

)
λil ,

〈e∗i , x0y
∗
m〉 (c′)= 0, 〈x0y∗

m , e∗i 〉 (d ′)= 0,

〈y∗
1 , x0y

∗
2 〉 (e1′)= (−1)dW ′, 〈y∗

1 , x0y
∗
1 〉 (e′

2)= (−1)d
(
q
pW

′ − 1
p X

′) ,

〈y∗
2 , x0y

∗
2 〉 (e3′)= (−1)dY ′, 〈y∗

2 , x0y
∗
1 〉 (e4′)= (−1)d

(
q
p Y

′ − 1
p Z

′) ,

〈x0y∗
1 , y∗

1 〉 ( f ′
1)= q

p , 〈x0y∗
1 , y∗

2 〉 ( f ′
2)= 1,

〈x0y∗
2 , y∗

1 〉 ( f ′
3)= − 1

p , 〈x0y∗
2 , y∗

2 〉 ( f ′
4)= 0,

〈y∗
m , η j y

∗
1 y

∗
2 〉 (g′)= 0, 〈η j y

∗
1 y

∗
2 , y∗

m〉 (h′)= 0.

Corollary 3.7. The vector set {η1y∗
1 y

∗
2 , η2y

∗
1 y

∗
2 , . . . , ηn y

∗
1 y

∗
2 , x0y

∗
1 , x0y

∗
2 } forms a

k-linear basis of B!
d+1.

Proof. Suppose that:

a1η1y
∗
1 y

∗
2 + · · · + anηn y

∗
1 y

∗
2 + b1x0y

∗
1 + b2x0y

∗
2 = 0

for some coefficients a1, . . . , an, b1, b2 ∈ k. For each i = 1, 2, . . . , n, we have

0 = 〈e∗
i , a1η1y

∗
1 y

∗
2 + · · · + anηn y

∗
1 y

∗
2 + b1x0y

∗
1 + b2x0y

∗
2 〉

=
n∑
j=1

a j 〈e∗
i , η j y

∗
1 y

∗
2 〉 + b1〈e∗

i , x0y
∗
1 〉 + b2〈e∗

i , x0y
∗
2 〉

= ai . (by Equations (a′) and (c′))
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Similarly, we have:

0 = 〈y∗
1 , a1η1y

∗
1 y

∗
2 + · · · + anηn y

∗
1 y

∗
2 + b1x0y

∗
1 + b2x0y

∗
2 〉

=
n∑
j=1

a j 〈y∗
1 , η j y

∗
1 y

∗
2 〉 + b1〈y∗

1 , x0y
∗
1 〉 + b2〈y∗

1 , x0y
∗
2 〉

= b1(−1)d
(
q

p
W ′ − 1

p
X ′

)
+ b2(−1)dW ′, (by Equations (g′), (e′

1) and (e′
2)).

and

b1(−1)d
(
q

p
Y ′ − 1

p
Z ′

)
+ b2(−1)dY ′ = 0

obtained in a similar way. So we obtain a system of linear equations:
⎧⎨
⎩

(
q
pW

′ − 1
p X

′
)
b1 + W ′b2 = 0,(

q
p Y

′ − 1
p Z

′
)
b1 + Y ′b2 = 0.

Thedeterminant of thematrix

(
q
pW

′ − 1
p X

′ W ′
q
p Y

′ − 1
p Z

′ Y ′

)
is nonzerobyLemma2.6.Hence,

b1 = b2 = 0. Thus, the vectors η1y∗
1 y

∗
2 , η2y

∗
1 y

∗
2 , . . . , ηn y

∗
1 y

∗
2 , x0y

∗
1 and x0y∗

2
are linear independent. On the other hand, by Eq. (3.5), we have dim B!

d+1 =
2 dim A!

d +dim A!
d−1 = n+2. That is, these vectors form a k-linear basis of B!

d+1.��
Now, we are ready to compute the Nakayama automorphismμ of the Frobenius

algebra B!. This automorphism is determined by the equation

〈a, b〉 = 〈μ(b), a〉
for any a, b ∈ B! (see (1.2)). Note that B! is generated by the degree 1 ele-
ments: e∗

1, e
∗
2, . . . , e

∗
n, y

∗
1 , y

∗
2 . Hence, we just need to describe the images of

those elements under the Nakayama automorphism. By Corollary 3.7, we see that
{η1y∗

1 y
∗
2 , η2y

∗
1 y

∗
2 , . . . , ηn y

∗
1 y

∗
2 , x0y

∗
1 , x0y

∗
2 } forms a basis of B!

d+1. Due to the fact
that the Nakayama automorphism is graded, we can use the equations in Corollary
3.6 to determine the Nakayama automorphism.

Proposition 3.8. The restriction of the Nakayama automorphism μB! of B! to A!
equals μA!(detl φ)∗.

Proof. Suppose that

μB!(e∗
i ) = ki,1e

∗
1 + · · · + ki,ne

∗
n + ki,n+1y

∗
1 + ki,n+2y

∗
2 .

Since 〈−,−〉 is a Frobenius pair,
〈x0y∗

m, e∗
i 〉 = 〈μB!(e∗

i ), x0y
∗
m〉
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for m = 1, 2. From Equations (d ′) and (c′) in Corollary 3.6, we obtain:

0 = 〈μB!(e∗
i ), x0y

∗
m〉

= 〈ki,1e∗
1 + · · · + ki,ne

∗
n + ki,n+1y

∗
1 + ki,n+2y

∗
2 , x0y

∗
m〉

= 〈ki,n+1y
∗
1 + ki,n+2y

∗
2 , x0y

∗
m〉

= ki,n+1〈y∗
1 , x0y

∗
m〉 + ki,n+2〈y∗

2 , x0y
∗
m〉

FromEquations (e′
1)-(e

′
4) in Corollary 3.6 , we obtain the following system of linear

equations:
{(

q
pW

′ − 1
p X

′
)
ki,n+1 +

(
q
p Y

′ − 1
p Z

′
)
ki,n+2 = 0,

W ′ki,n+1 + Y ′ki,n+2 = 0,

Since the determinant of the matrix

( q
pW

′ − 1
p X

′ q
p Y

′ − 1
p Z

′
W ′ Y ′

)
is nonzero by

Lemma 2.6, we have:

ki,n+1 = 0 = ki,n+2

for each i . Following the definition of the Nakayama automorphism (see (1.2)) and
Equations (a′) and (b′), we arrive at:

μB!(e∗
i ) =

∑
j

⎛
⎝∑

k,l

(
q

p
φki
21φ

lk
11−

1

p
φki
21φ

lk
12+ φki

22φ
lk
11

)
λil

⎞
⎠ e∗

j .

On the other hand, we claim that

(detl φ)∗(e∗
i ) =

∑
k,l

(
q

p
φki
21φ

lk
11−

1

p
φki
21φ

lk
12+ φki

22φ
lk
11

)
e∗
l .

Since for any em ,

(detl φ)∗(e∗
i )(em) = e∗

i (detl φ(em))

= e∗
i

(
q

p
φ21 ◦ φ11(em) + φ22 ◦ φ11(em) − 1

p
φ21 ◦ φ12(em)

)

= e∗
i

(
q

p
φ21

(∑
k

φmk
11 ek

)
+ φ22

(∑
k

φmk
11 ek

)
− 1

p
φ21

(∑
k

φmk
12 ek

))

= e∗
i

⎛
⎝ q

p

∑
k,l

φmk
11 φkl

21el +
∑
k,l

φmk
11 φkl

22el − 1

p

∑
k,l

φmk
12 φkl

21el

⎞
⎠

= q

p

∑
k

φmk
11 φki

21 +
∑
k

φmk
11 φki

22 − 1

p

∑
k

φmk
12 φki

21,

which coincides the value of
∑

k,l

(
q
pφki

21φ
lk
11− 1

pφki
21φ

lk
12+ φki

22φ
lk
11

)
e∗
l (em).
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It follows that

μA!(detl φ)∗(e∗
i ) =μA!

⎛
⎝∑

k,l

(
q

p
φki
21φ

lk
11−

1

p
φki
21φ

lk
12+ φki

22φ
lk
11

)
e∗
l

⎞
⎠

=
∑
k,l

(
q

p
φki
21φ

lk
11−

1

p
φki
21φ

lk
12+ φki

22φ
lk
11

)
μA!(e∗

l )

=
∑
k,l

(
q

p
φki
21φ

lk
11−

1

p
φki
21φ

lk
12+ φki

22φ
lk
11

) ∑
j

λ jl e
∗
j .

That is, μB!(e∗
i ) = μA!(detl φ)∗(e∗

i ), for all i . ��
We need the following technical result although the proof is obvious.

Lemma 3.9. Let E = k ⊕ E1 ⊕ · · · ⊕ Em be a graded Frobenius algebra which
is generated in degree 1. Suppose that {α1, α2} and {β1, β2} are k-linear bases of
E1 and Em−1 respectively. Let⎧⎪⎪⎨

⎪⎪⎩

〈α1, β1〉 = a, 〈β1, α1〉 = e,
〈α1, β2〉 = b, 〈β2, α1〉 = f,
〈α2, β1〉 = c, 〈β1, α2〉 = g,
〈α2, β2〉 = d, 〈β2, α2〉 = h.

Then, the Nakayama automorphism of E is given by:

μ(α1) = de − c f

ad − bc
α1 + a f − be

ad − bc
α2,

μ(α2) = dg − ch

ad − bc
α1 + ah − bg

ad − bc
α2.

Proof. Note that the Frobenius pair 〈−,−〉 is a nondegenerate bilinear form. It
follows that ad − bc �= 0. Since the Nakayama automorphism is graded and
E is generated in degree 1, the Nakayama automorphism is determined by the
assumed equations. we are only to determine the image of elements of degree 1.
The conclusion follows from a direct computation. ��
Proposition 3.10. The image of y∗

1 and y∗
2 under Nakayama automorphism μB!

are given as follows:

μB!(y∗
1 ) = (−1)d+1((qX + q

p
X + 1

p
W )y∗

1 + (qZ + q

p
Z + 1

p
Y )y∗

2

)
,

μB!(y∗
2 ) = (−1)d+1(pXy∗

1 + pZy∗
2 ).

where W, X,Y and Z form the homological determinant of σ .

Proof. The proof is similar to the one of Proposition 3.8. Suppose that

μB!(y∗
1 ) = k1e

∗
1 + · · · + kne

∗
n + kn+1y

∗
1 + kn+2y

∗
2 .
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Since the equation 〈η j y∗
1 y

∗
2 , y

∗
1 〉 = 〈μB!(y∗

1 ), η j y∗
1 y

∗
2 〉, where j = 1, 2, . . . , n, we

have:

0 = 〈η j y
∗
1 y

∗
2 , y

∗
1 〉

= 〈μB!(y∗
1 ), η j y

∗
1 y

∗
2 〉

=
n∑

i=1

ki 〈ei , η j y
∗
1 y

∗
2 〉 + kn+1〈y∗

1 , η j y
∗
1 y

∗
2 〉 + kn+2〈y∗

2 , η j y
∗
1 y

∗
2 〉

=
n∑

i=1

kiδi j = k j .

It follows that μB!(y∗
1 ) = kn+1y∗

1 + kn+2y∗
2 . Similarly, μB!(y∗

2 ) = ln+1y∗
1 +

ln+2y∗
2 for some ln+1, ln+2 ∈ k. Hence, both μB!(y∗

1 ) and μB!(y∗
2 ) are completely

determined by the values in Equations (e′
1)-(e

′
4) and ( f ′

1)-( f
′
4) in Corollary 3.6.

Thus, we arrive at the case of Lemma 3.9. It follows that

μB!(y∗
1 ) = (−1)d

(
qY ′ + q

p Y
′ − 1

p Z
′

W ′Z ′ − X ′Y ′ y∗
1 + −qW ′ − q

pW
′ + 1

p X
′

W ′Z ′ − X ′Y ′ y∗
2

)
,

μB!(y∗
2 ) = (−1)d

(
pY ′

W ′Z ′ − X ′Y ′ y
∗
1 + −pW ′

W ′Z ′ − X ′Y ′ y
∗
2

)
.

Finally, the statement follows from the equation:(
W X
Y Z

)
= 1

W ′Z ′ − X ′Y ′

(
Z ′ −Y ′

−X ′ W ′
)

,

a consequence of Lemma 2.6. ��
Proposition 3.11. The restriction of the Nakayama automorphism νB of B to A
equals (detr σ)−1ν, and

νB

(
y1
y2

)
= (hdet σ)P−1

(
y1
y2

)
,

where P is given by (1.6).

Proof. By Proposition 3.8 and Proposition 3.10, the restriction of Nakayama auto-

morphismμB! to B!
1 has the form

(
Q1 0
0 Q2

)
, where Q1 ∈ Md(k) and Q2 ∈ M2(k).

By Proposition 1.4 and Eq. 1.3, the Nakayama automorphism of B is also of this
type. Combining Proposition 1.4, Proposition 3.8 and Proposition 1.9(3) we obtain
the first statement. By Proposition 1.4 and Proposition 3.10, we have:

νB(y1) =
(
qX + q

p
X + 1

p
W

)
y1 + pXy2,

νB(y2) =
(
qZ + q

p
Z + 1

p
Y

)
y1 + pZy2.

Thus, the second conclusion follows from the definition of the homological deter-
minant of σ in Definition 2.5 and Eq. 1.6. ��
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Now we are ready to characterize the Calabi–Yau property of a trimmed double
Ore extension of a Koszul AS-regular algebra.

Theorem 3.12. Suppose that A is a Koszul AS-regular algebra with Nakayama
automorphism ν. Let B = AP [y1, y2; σ ] be a trimmed double Ore extension of A.
Then B is Calabi–Yau if and only if detr σ = ν and hdet σ = P.

Proof. Since B is Koszul and is of finite global dimension, the Koszul Be-bimodule
complex provides a finitely generated projective resolution of B of finite length.
That is, B is homologically smooth. Because B is connected graded, its only inner
automorphism is the identity. So for B to be Calabi–Yau, its Nakayama automor-
phism must be the identity. Therefore, the statement is a consequence of Proposi-
tion 3.11. ��
Remark 3.13. For a Koszul AS-regular algebra Awith Nakayama automorphism ν,
there exists a unique skew polynomial extension D such that D is Calabi–Yau, see
[8–10,12,19]. Here, we consider the existence and the uniqueness of a Calabi–Yau
trimmed double Ore extension of a Koszul AS-regular algebra.

(1). For any Koszul AS-regular algebra A with Nakayama automorphism ν,
consider the trimmed double Ore extension B = AP [y1, y2; σ ] with P = (1, 0)

and σ =
(

ν 0
0 id

)
. Then B is Calabi–Yau. But it is easy to see that B is an iterated

Ore extension of A (see [25, Proposition 3.6] or its proof). Hence, we ask if there
exists a nontrivial double Ore extension B (not an iterated one) such that B is
Calabi–Yau? The answer is negative from the following example.

Let A = k〈x1, x2〉/(x2x1 − x1x2 − x21 ) be the Jordan plane. Its Nakayama
automorphism ν is given by ν(x1) = x1 and ν(x2) = 2x1 + x2. Then, there is
only one nontrivial double Ore extension by the classification in [25], namely,
the type H := AP [y1, y2; σ ] with P = (−1, 0) and σ given by the matrix⎛
⎜⎜⎝

0 h 0 0
h 0 0 0
0 h f 0 h
h f 0 h 0

⎞
⎟⎟⎠ with 0 �= h ∈ k and f ∈ k. Now, detr (σ ) is an automorphism

given by detr (σ )(x1) = h2x1 and detr (σ )(x2) = 2h2 f x1 + h2x2. Let x0 to be a
base element of the 1-dimensional space A!

2. Then

σ ∗(x0) =
(
h2x0 0
0 h2x0

)
.

That is, W = h2, X = 0,Y = 0 and Z = h2. By Proposition 3.11, the Nakayama
automorphism of H is

ν :x1 → h−2x1

x2 → h−2((2 − 2 f )x1 + x2)

y1 → −h2y1

y2 → −h2y2.
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Therefore, there is no Calabi–Yau algebra in the class of the type H.
(2). For the uniqueness, let A = k〈x1, x2〉/(x2x1 + x1x2) be the quantum

plane whose Nakayama automorphism is given by ν(x1) = −x1 and ν(x2) = −x2.
Suppose that B := AP [y1, y2; σ ]with P = (−1, 0), where σ is given by thematrix⎛
⎜⎜⎝
0 0 −g f
0 0 f −g
g f 0 0
f g 0 0

⎞
⎟⎟⎠ with f, g ∈ k and f 2 �= g2. So B is of typeN in the classification

of [25]. Now, detr (σ ) is an automorphism given by detr (σ )(x1) = ( f 2 − g2)x1
and detr (σ )(x2) = ( f 2 − g2)x2. Let x0 be a base element of the 1-dimensional
space A!

2. Then we have:

σ ∗(x0) =
(

( f 2 − g2)x0 0
0 ( f 2 − g2)x0

)
.

In this case, W = f 2 − g2, X = 0,Y = 0 and Z = f 2 − g2. Thus, the Nakayama
automorphismof B is equal to (g2− f 2) id by Proposition 3.11.Hence, B is Calabi–
Yau if and only if g2 − f 2 = 1. Therefore, a trimmed double Ore extension, which
is Calabi–Yau, of a Koszul AS-regular algebra may not be unique if it exists.

Remark 3.14. In the first example in Remark 3.13, we know that detr σ = νA

if and only if h2 = f = 1. Moreover, hdet σ =
(
h2 0
0 h2

)
. But, P =

(−1 0
0 −1

)
.

Therefore, the condition detr σ = νA and the condition hdet σ = P inTheorem3.12
are independent. More examples can be constructed from iterated Ore extensions,
see Example 2.7.

To end this section, we return to discuss the Nakayama automorphism and the
Calabi–Yau property of the skew polynomial extension. For a twisted Calabi–Yau
algebra Awith Nakayama automorphism ν, it was proved in [12, Theorem 3.3] that
the Nakayama automorphism of an Ore extension D = A[t; θ, δ] is given by

νD(x) =
{

θ−1 ◦ ν(x), x ∈ A;
ax + b, x = t,

for some a, b ∈ A with a invertible. It was also remarked there that if δ = 0, then
νD(t) = at . Now if we restrict to Koszul algebras, we can describe the Nakayama
automorphism more explicitly as follows.

Proposition 3.15. Suppose that A is a Koszul AS-regular algebra with Nakayama
automorphism ν, θ is a graded algebra automorphism of A and D = A[t; θ ]. The
Nakayama automorphism νD of D is given by:

νD(x) =
{

θ−1 ◦ ν(x), x ∈ A
(hdet θ)x, x = t.

Proof. Weonly give a sketch of the proof since it is similar to the one of Proposition
3.11. Suppose that D = T (V ⊕ k t)/〈 RD〉. The generating relations in D are
of two types: tei − θ(ei )t (1 ≤ i ≤ n) and the relations from A. Obviously,
{e∗

1, e
∗
2, . . . , e

∗
n, t

∗} forms a k-linear basis for D!
1. By [15, Proposition 2.4], the

defining relations for D! consist of the following three types:
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(1) the relations from A!;
(2) {t∗e∗

i + (θ−1)∗(e∗
i )t

∗ | 1 ≤ i ≤ n};
(3) {(t∗)2}.

By [15, Proposition 2.5], D! is a free A!-module with basis {1, t∗}. Hence, x0t∗
is a base element of the 1-dimensional space D!

d+1, denoted ε, where x0 is a base
element of the 1-dimensional k-space A!

d . Now let (bi j )n×n be the matrix of the
restriction of θ−1 to V , i. e.,

θ−1(ei ) =
∑
j

bi j e j (3.6)

for each i . Then, we have

(1) {η1t∗, η2t∗, . . . , ηnt∗, x0} is a k-linear basis of D!
d ;

(2) the following equations hold:⎧⎪⎪⎨
⎪⎪⎩

e∗
i η j t∗ = δi jε, ηi t∗e∗

j = −∑
k bk jλikε,

e∗
i x0 = 0, x0e∗

i = 0,
t∗x0 = (−1)d(hdet(θ))−1ε, x0t∗ = ε,

t∗η j t∗ = 0, η j t∗t∗ = 0.

Using the same argument in the proof of Proposition 3.8 and Proposition 3.10, one
obtains that the Nakayama automorphism μD! of D! is given by:

μD!(α) =
{−μA! ◦ (θ−1)∗(α), α ∈ A!

(−1)d(hdet θ)α, α = t∗.

The last step is to transfer μD! to the Nakayama automorphism νD of D by
Proposition 1.4. ��

Note that the homological determinant of the Nakayama automorphism of a
Koszul AS-regular algebra is equal to 1 [19, Theorem 0.4]. Thus, we arrive at the
following result which was proved in [8–10,12,19]:

Theorem 3.16. Suppose that A is a Koszul AS-regular algebra with Nakayama
automorphism ν, θ is a graded algebra automorphism of A and D = A[t; θ ].
Then, D is Calabi–Yau if and only if θ = ν. ��

4. Skew Laurent extensions

In this section, we consider the Calabi–Yau property of the Ore localizations of both
A[t; θ ] and AP [y1, y2; σ ] with some conditions. For a skew polynomial extension
A[t; θ ] of an algebra A, the multiplicatively closed set {t i ; i ∈ N} is an Ore set. The
localization of A[t; θ ] with respect to this Ore set is just the skew Laurent polyno-
mial extension A[t±1; θ ]. Farinati proposed a general notion of a noncommutative
localization in [5]. It was proved there that the Van den Bergh duality is preserved
by such a localization and the corresponding dualizing module is also explicitly
described. The Ore localization is an example of a noncommutative localization [5,
Example 8].
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Proposition 4.1. Suppose that A is a Koszul AS-regular algebra of dimension d
and D = A[t; θ ] is a skew polynomial extension of A. Then, the Nakayama auto-
morphism ν̃ of A[t±1; θ ] is given by

ν̃(x) =
{

νD(x), x ∈ D
1

hdet θ x, x = t−1.

Proof. By assumption and [5, Theorem 6], we have:

ExtiEe (E, Ee) ∼=
{
0, i �= d + 1
E ⊗D Dν ⊗D E(d + 1), i = d + 1,

where E stands for the algebra A[t±1; θ ]. Thus, the claim follows from the descrip-
tion of the Nakayama automorphism of D in Proposition 3.15. ��
Theorem 4.2. Suppose that A is a Koszul AS-regular algebra with Nakayama auto-
morphism ν and θ is a graded algebra automorphism of A. Then, A[t±1; θ ] is
graded Calabi–Yau if and only if there exists an integer n such that θn = ν and the
homological determinant of θ equals 1.

Proof. It follows from the proof of [5, Theorem 6] that A[t±1; θ ] is homologically
smooth. Thus, the proof focuses on the description of theNakayama automorphisms
of algebras A[t; θ ] and A[t±1; θ ] as showed in Proposition 3.15 and Proposition
4.1 respectively. Note that the only invertible elements in k[t±1] are monomials.
Suppose that A[t±1; θ ] isCalabi–Yau.Then, itsNakayamaautomorphism ν̃ is inner,
i.e., there exists an integer n ∈ Z such that ν̃(x) = tnxt−n for each x ∈ A[t±1; θ ]. In
particular, ν̃(t) = t . Therefore, hdet(θ) = 1byProposition3.15. Ifn is nonnegative,
then for each x ∈ A we have

ν̃(x) = θ−1ν(x) = tnxt−n

= tn(t−1θ(x)t)t−n

= tn−1θ(x)t1−n

= · · · = θn(x).

Hence, ν(x) = θn+1(x). Similarly, the claim also holds for the case when n is a
negative integer.

Conversely, if θn = ν for some integer n and the homological determinant of
σ equals 1, then ν̃(t) = t . Next, for each x ∈ A, we have

ν̃(x) = θ−1ν(x) = θn−1(x).

But in A[t±1; θ ], θ(x) = t xt−1. That is, both θ and its inverse are inner. Therefore,
ν̃ is an inner automorphism. The proof is completed. ��
Example 4.3. Let A = k〈x, y〉/(yx − xy − x2) be the Jordan plane. It is a twisted
Calabi–Yau algebra of dimension 2 whose Nakayama automorphism ν is given by
ν(x) = x and ν(y) = 2x + y. Then, A[t; θ ] is Calabi–Yau if and only if θ = ν by
Theorem 3.16. It is not hard to see that each graded automorphism θ of A has the
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form θ(x) = ax and θ(y) = bx + ay for some a, b ∈ k. By Proposition 2.3, the
homological determinant of θ is equal to a2. Thus, A[t±1; θ ] is Calabi–Yau if and
only if θ is either given by {

θ(x) = x
θ(y) = 2

n x + y

for some nonzero integer n, or given by{
θ(x) = −x
θ(y) = 2

n x − y

for some even integer n.

Finally, we consider the localization or the quotient ring of the double Ore
extension B with respect to the Ore set generated by new generators. However, we
can only do this in some special case as follows.

Proposition 4.4. Let B = AP [y1, y2; σ ] be a trimmed double Ore extension with

P = (p, 0) and σ =
(

τ 0
0 ξ

)
. Then,

(1) Both τ and ξ are automorphisms of A. Moreover, they commutate with each
other.

(2) The multiplicatively closed set S := {ayn11 yn22 ; a ∈ k, n1, n2 ∈ Z≥0} is an Ore
set.

(3) The quotient ring BS of B with respect to S exists.

Proof. Since B is a trimmed double Ore extension of A, σ is invertible according
to Lemma 1.8. Hence, both τ and ξ are automorphisms of A. By the definition of
the right determinant of σ (see (1.8)) and its equivalent description in Proposition
1.9, we have τξ = ξτ . The rest of the proof is straightforward.

In fact, the algebra B = AP [y1, y2; σ ] considered above is an iterated skew
polynomial extension A[y1; τ ][y2; ξ ′] where ξ ′ is the automorphism of A[y1; τ ]
defined as follows

ξ ′(x) =
{

ξ(x), x ∈ A;
px, x = y1.

If p = 1, then the quotient ring BS is isomorphic to the iterated skew Lau-
rent ring A[y±1

1 , y±1
2 ; τ, ξ ] (see [7, pp. 23–24]). In the case of p �= 1, we can

also construct the iterated skew Laurent ring, denoted AP [y±1
1 , y±1

2 ; τ, ξ ] or just
AP [y±1

1 , y±1
2 ; σ ]. Similarly, the quotient ring BS in the above Proposition is iso-

morphic to the iterated skew Laurent ring AP [y±1
1 , y±1

2 ; σ ]
Theorem 4.5. Suppose that A is a Koszul AS-regular algebra with Nakayama auto-
morphism ν, B = AP [y1, y2; σ ] is a trimmeddoubleOre extensionwith P = (p, 0)

and σ =
(

τ 0
0 ξ

)
and BS = AP [y±1

1 , y±1
2 ; σ ]. Then, BS is Calabi–Yau if and only

if there exist two integers m, n such that the following conditions are satisfied:
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(1) τ nξm = ν;
(2) hdet(τ ) = pm and hdet(ξ) = 1/pn.

Proof. The homologically smoothness of BS also follows from the proof of [5,
Theorem 6]. Observe that for the given homomorphism σ : A → M2×2(A), the

induced algebra homomorphism σ ∗ form A! to M2×2(A!) has the form
(

τ ∗ 0
0 ξ∗

)
,

where τ ∗ and ξ∗ are automorphisms of A! induced by τ and ξ respectively. By
Example 2.7 and Proposition 3.11 we obtain that the Nakayama automorphism of
B is given as follows:

νB(x) =
⎧⎨
⎩

(τξ)−1 ◦ ν(x), x ∈ A;
1
p (hdet τ)x, x = y1;
p(hdet ξ)x, x = y2.

Thus, it follows from [5, Theorem 6] that the Nakayama automorphism ν̃ of BS is
given by

ν̃(x) =
⎧⎨
⎩

νB(x), x ∈ B
p

hdet τ x, x = y−1
1

1
p hdet ξ x, x = y−1

2

Note that the only invertible elements in BS are monomials anm yn1 y
m
2 for

some anm ∈ k and n,m ∈ Z. Suppose that BS is Calabi–Yau. Then, its’
Nakayama automorphism ν̃ is inner, i.e., there exists integer m, n ∈ Z such that
ν̃(x) = yn1 y

m
2 xy−m

2 y−n
1 for each x ∈ BS . In particular, ν̃(y1) = yn1 y

m
2 y1y

−m
2 y−n

1 =
1
p (hdet τ)y1. It follows that hdet(τ ) = pm+1 since y1 and y2 satisfy y2y1 = py1y2.

Similarly, we have hdet(ξ) = 1/pn+1. Now, without loss of generality, we may
assume that both n and m are nonnegative. For any element x ∈ A, we have

(τξ)−1 ◦ ν(x) = ν̃(x)

= yn1 y
m
2 xy−m

2 y−n
1

= yn1 y
m−1
2 ξ(x)y1−m

2 y−n
1

= · · ·
= yn1 ξm(x)y−n

1

= · · ·
= τ nξm(x).

Hence, ν = τ n+1ξm+1.
The proof of the converse is similar. ��
In general, if θ1, . . . , θm are commuting graded automorphisms of A, one can

construct an iterated skew polynomial extension A[y1, . . . , ym; θ1, . . . , θm] as fol-
lows.Let R1 = A[y1; θ1]. Then, extend θ2 to an algebra automorphism θ ′

2 of R1 such
that θ ′

2|A = θ2 and θ ′
2(y1) = y1. Now let R2 = A[y1; θ1][y2; θ ′

2]. In this way, one
can construct Ri for i = 1, 2, . . .m, such that, for i < m, Ri+1 = Ri [yi+1, θ

′
i+1] ,
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where θ ′
i+1 is the automorphism of Ri satisfying θ ′

i+1|A = θi+1 and θ ′
i+1(y j ) = y j

for j = 1, . . . , i . Finally, let

Rm = A[y1; θ1][y2; θ ′
2] · · · [ym; θ ′

m].
In order to describe the basic data that determine Rm , onewrites Rm in a different

way as follows:

Rm = A[y1, . . . , ym; θ1, . . . , θm].
Note that yi y j = y j yi , yia = θi (a)yi for all i, j and any a ∈ A.

Now, let R = Rm for some positive m. The quotient ring RS of R with respect
to the multiplicatively closed set S := {yn11 · · · ynmm ; n1, . . . , nm ∈ Z≥0} exists and
is isomorphic to the iterated skew Laurent ring A[y±1

1 , . . . , y±1
m ; θ1, . . . , θm]. For

more details, we refer to [7, p. 23-24]. In the following, we will give a criterion for
such an iterated skew polynomial extension of a Koszul AS-regular algebra to be
Calabi–Yau.

Theorem 4.6. Suppose that A is a Koszul AS-regular algebra with Nakayama auto-
morphism ν, R = A[y1, . . . , ym; θ1, . . . , θm] and S := {yn11 · · · ynmm ; n1, . . . , nm ∈
Z≥0}. Then,
(1) the Nakayama automorphism νR of R is given by

νR(x) =
{

(θ1 ◦ · · · ◦ θm)−1 ◦ ν(x), x ∈ A
(hdet θi )x, x = yi , 1 ≤ i ≤ m;

(2) R is Calabi–Yau if and only if θ1 ◦ · · · ◦ θm = ν and hdet θi = 1 for all i ;
(3) RS is Calabi–Yau if and only if

(i) hdet(θi ) = 1 for all i , and
(ii) there exist integers k1, . . . , km such that θk11 · · · θkmm = ν.

Proof. It is well-known that a skew polynomial extension of a Koszul algebra is
againKoszul, c.f. [17, Corollary 1.3]). So both R and RS are homologically smooth.
By Proposition 3.15, the Nakayama automorphism νR2 of R2 is given by

νR2(x) =
{

(θ ′
2)

−1 ◦ νR1(x), x ∈ R1
(hdet θ ′

2)x, x = y2.

It follows from the construction of θ ′
2 and the description of the Nakayama auto-

morphism νR1 of R1 that

νR2(x) =
⎧⎨
⎩

(θ2θ1)
−1 ◦ ν(x), x ∈ A;

(hdet θ1)x, x = y1;
(hdet θ ′

2)x, x = y2.

On the other hand, according to the proof of Theorem 4.5, νR2(y2) = (hdet θ2)y2.
Hence, hdet θ ′

2 = hdet θ2. Repeating this process, we obtain Part (1). Part (2)
follows from Part (1). The proof of Part (3) is similar to the proof of Theorem 4.5.

��
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Note that a typical example of RS is the smash product of a Koszul AS-regular
algebra with a free abelian group algebra. For example, those Hopf algebras in the
classification of Calabi–Yau pointed Hopf algebras of finite Cartan type in [23].
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