
Analyzing the Impact of the Adaptive Clearing

Mechanism on Algorithm Accuracy in Variable

Mesh Optimization

Frank Vanhoenshoven1, Gonzalo Nápoles1, Mathijs Creemers1,
Maikel Leon Espinosa2, and Koen Vanhoof2

1Faculty of Business Economics, Hasselt University, Campus
Diepenbeek, Agoralaan Building D, BE3590 Diepenbeek, Belgium
2Department of Business Technology, University of Miami, Coral

Gables, FL 33124, USA

2016

Abstract

The area of population-based meta-heuristics has been researched ex-
tensively in recent years. The focus of this research has been on finding
improvements and variations to existing algorithms while the inner details,
that are treated as a black box, remain poorly understood. The purpose of
this paper is to uncover the detailed behavior of Variable Mesh Optimiza-
tion (VMO), a population-based meta-heuristic, and describe the patterns
that drive the algorithm in finding new optima. Our results suggest that,
in VMO, the improvement of the best solution is strongly correlated with
its adaptive clearing mechanism. It is observed that each relaxation of the
threshold that is used by the mechanism, is likely to increase the accuracy
of the final solution. These findings suggest that future research, aiming
to improve algorithm accuracy, could focus on improving the adaptive
clearing mechanism in order to increase the likelihood of creating supe-
rior algorithms.

1 Introduction

Recent years have shown extensive research activity in the area of population-
based meta-heuristics (pmh). Due to this extensive research, numerous authors
have described the fundamentals behind the heuristics [?], [?], [?], [?]. The
inner workings operate based on the idea that a group of relatively simple indi-
viduals are nonetheless able to display complex behavior. Inspiration for these
algorithms is drawn from nature and examples are abundant in the behavior of
schools of fish, flocks of birds, ant colonies...

1

This behavior is translated into a population-based meta-heuristic by repre-
senting an optimization problem in an n-dimensional solution space and popu-
late it with individuals that each represent a possible solution. The individuals
will use the mechanism of the system that has been used as inspiration, to move
through the solution space in search of an optimal location.

Amongst others, a comprehensive overview of these heuristics has been pub-
lished by Yang [?]. Judging by the amount of research papers published on the
subject, Particle swarm optimization, introduced by Kennedy et al. [?] can be
considered a popular population-based meta-heuristic. In PSO, particles move
in a search space with a certain velocity and try to find an optimal position. In
each iteration, this velocity is updated by using information from their surround-
ings and a memory of personal best positions. In Ant colony optimization [?],
behavior of the system has been inspired on the nature of an ant colony and
the characteristic of ants to drop and use pheromone trails to help with their
navigation. Inspiration for the Bee algorithm [?] was drawn from the behavior
of a bee hive. Other examples can be found in Cuckoo qearch and the Firefly
algorithm, which is a more generic form of PSO [?].

Variable mesh optimization (VMO), presented by Puris et al. [?], [?], defines
its individuals as nodes that are organized in a mesh. The nodes will generate
offspring nodes in promising regions of the search space, aiming to detect the
optimal solution. Typical to pmh, the algorithm assumes that those promising
regions are located nearby the nodes with the highest fitness values. Therefore,
local best and global best nodes will be used as reference nodes and node gen-
eration will be concentrated around them. To promote exploration and avoid
early convergence, the algorithm uses what is called the adaptive clearing mech-
anism. Adaptive clearing is designed to avoid, especially in the early phases of
the algorithm, too dense concentrations of nodes in a single area and imposes
a minimal distance between nodes by removing all individuals whose proximity
to a better node falls within a certain threshold value. In short, for every given
area in the search space, the algorithm will only retain the node with highest
fitness value. The shift from exploration towards exploitation is achieved by
decreasing that minimal allowed distance at discrete steps throughout the life
cycle of the algorithm, allowing nodes to exist closer to each other, and explore
the same area of the search space. More details on VMO will be provided in
section 2.

Many improvements have been proposed on the population-based meta-
heuristics and a lot of the research in this area is focusing on the topic of
algorithm improvements. For VMO, effort has been put in modifying the algo-
rithm to deal with multimodal problems [?], [?], [?], [?].

Although these alterations of an original implementation often prove to be
successful in solving a variety of problem sets, it is still not well understood why
some of these modifications generate positive results whereas others do not. A
notable exception has been provided by Clerc and Eberhart [?], who described
the internal behavior of PSO by tracking and examining the movements of in-
dividual particles.
This paper attempts to perform a similar research on the VMO algorithm and

2

gain insights into the inner workings by examining the behavior of the indi-
viduals rather than the group. The goal is to identify the internal drivers of
algorithm accuracy, hereby highlighting the areas in which future improvements
have a higher likelihood of being successful. As VMO is one of the younger
pmh’s, less modifications already exist, which increases the added value of a
better understanding of hidden dynamics.

A priori, we have concerns about the threshold used by adaptive clearing.
The mechanism will remove nodes in order to promote exploitation, but is there-
for likely to remove nodes that could have helped the algorithm in finding a
better solution as well. The original implementation [?] defines seemingly ran-
dom moments in which to decrease the adaptive clearing threshold, while also
decreasing it by a seemingly random factor. The main focus of this paper will
thus concentrate on the impact of the current adaptive clearing mechanism on
algorithm accuracy.

The remainder of this paper is organized as follows: Section 2 provides more
details about the VMO algorithm that has been devised by Puris et al. [?]. The
research questions in Section 3 are solved using the methodology that is briefly
described in Section 4. Results can be found in Section 5, with the discussion in
Section 6. Finally, conclusions and further research scopes will be summarized
in Section 7.

2 Variable Mesh Optimization

The pseudo-code of the VMO procedure, described in [?], can be found in Al-
gorithm 1.

Starting from a random group of individuals, nodes, in a problem set, the
VMO algorithm will iterate between expansion and contraction phases until a
maximum number of iterations is reached.

In the expansion phase, explained in subsection 2.1, each of the existing
nodes will generate new nodes in more promising regions of the problem space.
These new nodes will roughly appear halfway between the parent node and a
target node. The target nodes represent the promising regions of the search
space and are selected based on the best fitness values among the neighboring
nodes (local search) and the entire group (global search). To increase the search
space, some nodes will generate offspring away from the center of the group,
called frontier search.

During the contraction phase, see subsection 2.2, only the most promising
nodes are retained for the next iteration. The algorithm aims to favor explo-
ration in the early phases while shifting focus to exploitation towards the end.
The adaptive clearing mechanism is designed to do exactly this by removing all
nodes that fall within a minimum allowed distance of a better node. At discrete
points throughout a run, more specifically after 15, 30, 60 and 80% of the maxi-
mum allowed number of function evaluations, the minimal allowed distances are
decreased and the algorithm is allowed to populate promising areas of the search
space more densely. After adaptive clearing, the N best performing individuals

3

Algorithm 1 Variable Mesh Optimization

1: Determine Parameters
2: N = Number of nodes in Mesh
3: C = Maximum number of function evaluations
4: k = Number of neighboring nodes used in local search
5: Generate N nodes at random
6: Calculate all fitness values
7: Determine global best ng
8: while Maximum problem evaluations not reached do
9: Update adaptive clearing threshold ς if needed

10: procedure Local Search
11: for all n ∈ N do
12: Determine k nearest nodes
13: Determine local best nl
14: Generate new node between n and nl
15: end for
16: end procedure
17: procedure Global Search
18: for all n ∈ N do
19: Generate new node between n and ng
20: end for
21: end procedure
22: procedure Frontier Search
23: Select T nodes from frontier of mesh
24: for all ni ∈ T do
25: Generate new node outwards
26: end for
27: Select Z nodes from center of mesh
28: for all ni ∈ Z do
29: Generate new node outwards
30: end for
31: end procedure
32: Sort all nodes by fitness value
33: procedure Adaptive Clearing
34: for all ni ∈ N do
35: if distance(ni, ni−1) ≤ ς then
36: Remove ni from N
37: end if
38: end for
39: end procedure
40: Retain only the N best nodes
41: Determine global best ng
42: end while

4

are selected for the next iteration, while the remaining nodes are discarded.
As explained in subsection 2.3, the algorithm will stop after a defined number

of function evaluations has been performed.

2.1 Expansion Phase

In the expansion phase, the algorithm will generate new nodes in promising
areas of the search space. Creation of these new nodes is handled by three
different mechanisms.

First of all, the algorithm will calculate the fitness values for all nodes. Each
node will then identify the local best solution by comparing the fitness values of
their k nearest neighbors. Once the local best is identified, each other node will
generate a new node towards the local best, using Eq. 1 and 2. The value of a
new node x in dimension j, vxj , is equal to the average position mj between its

parent node, vij and the parent’s best neighbor vi
∗

j , if that average mj is further
than a threshold ςj (see Eq. 3) from the local best and if the fitness values of
parent node and local best are relatively similar to each other (see Eq. 2). In
case the average position mj would fall within the minimum allowe distance ςj
of the local best, the new coordinate will be randomly located anywhere near
the local best. In other cases, the new node will be located somewhere between
the average position and the parent node.

This mechanism is called local search and is depicted in Fig. 1a.
Note that the nearness Pr is a a measure of similarity between fitness values
of two nodes. The threshold ςj evolves during the course of the algorithm
and is a function of the lowest possible value for dimension j, aj , the highest
possible value; bj , as well as the current (c) and maximum (C) number of fitness
evaluations.

vxj =


m̄j , if |m̄j − vi

∗

j | > ςj .

AND U [0, 1] ≤ Pr(ni, n∗i).

vi
∗

j + U [−ςj , ςj], if |m̄j − vi
∗

j | ≤ ςj .
U [vij , m̄j], otherwise.

(1)

Pr(ni, n
∗
i) =

1

1 + |fitness(ni)− fitness(n∗i)|
(2)

ξj =



range(aj ,bj)
4 , if c < 0.15C

range(aj ,bj)
8 , if 0.15C ≤ c < 0.30C

range(aj ,bj)
16 , if 0.30C ≤ c < 0.60C

range(aj ,bj)
50 , if 0.60C ≤ c < 0.80C

range(aj ,bj)
100 , if c ≥ 0.8C

(3)

In global search (Fig. 1b), the node with highest fitness is elected as the
global best solution. Each other node will then generate a new node, generally in
between themselves and the global best, as shown in Eq. 4, where vij represents

5

(a) Local Search [?]
(b) Global Search [?]

the parent node and vgj the global best. Here, the new node will be placed at
the exact average location for nodes with a high nearness, Pr, and somewhere
between the average and the global best for other nodes.

vxj =

{
average(vij , v

g
j), if U [0, 1] ≤ Pr(ni, ng)

U [average(vij , v
g
j), vgj], otherwise

(4)

The last mechanism is called frontier search and is intended to retain di-
versity in the mesh. It also detects optimal solutions that are laying outside
the ranges of the original search space. In frontier search, a number of nodes
will generate extra nodes from the boundaries of the mesh, thus increasing the
range of the search area. The mechanism follows Eq. 6 and 7 for nodes on the
boundaries of the search space and Eq. 5 and 7 for inner nodes and is depicted
in Fig. 2a. As parent nodes, the algorithm will use those that are nearest, vg,
and furthest, vu from the center of the mesh.

vhj =

{
vgj + wj , if vgj > 0

vgj − wj , if vgj ≤ 0
(5)

vhj =

{
|vuj + wj |, if vuj > 0

|vuj − wj |, if vuj ≤ 0
(6)

wj = (
range(aj , bj)

10
− range(aj , bj)

100
)
C − c
C

+
range(aj , bj)

100
) (7)

2.2 Contraction Phase

During the contraction phase, the algorithm eliminates the nodes that it consid-
ers least useful and will continue the next iteration with only the most promising
ones. Selection of these most promising nodes is done via two different mech-
anisms. Both mechanisms require that the entire mesh is first sorted based on
fitness value.

6

(a) Frontier Search [?]

The first mechanism, adaptive clearing, iterates through the sorted list and
removes all nodes that are too close to this better node. The rationale is to
prevent too many nodes searching the same space of the search area. The
algorithm attempts to shift its focus from exploration towards exploitation by
decreasing the adaptive clearing threshold at certain defined iterations. These
relaxations of the adaptive clearing threshold are defined in Eq. 3.

Secondly, the algorithm will select the N nodes with best fitness values from
the resulting mesh. In case the size of the mesh falls below N after adaptive
clearing, the algorithm will randomly generate new nodes that will be added to
the mesh.

2.3 Stopping Conditions

The algorithm will iterate through the expansion and contraction phases until a
maximum number of fitness evaluations C has been performed. After this, the
node with best fitness is elected as final solution.

3 Research Questions

The paper aims to discover patterns that drive algorithm accuracy of VMO.
Based on the description of the algorithm as provided in Section 2, the following
statements will be analyzed and validated.

1. As explained in subsection 2.2, the algorithm discards nodes in each iter-
ation without keeping a memory of failed exploration. Furthermore, node
generation for local search (Eq. 1) and global search (Eq. 4), leaves the
possibility of generating a new node at a fixed location, without random
component.
How often will VMO explore the same location in the search area?

7

2. Each pmh needs a healthy population of individuals to advance its search
towards a better optimum. A new optimum can only be found if VMO
generates nodes in more promising areas, thus preventing them from being
removed by either adaptive clearing or the sort and select mechanism
explained in subsection 2.2.
What is the efficiency of VMO in terms of node generation?

3. The adaptive clearing mechanism tries to balance the exploration and
exploitation capabilities of the algorithm. The original paper [?] com-
pared the performance of VMO with and without adaptive clearing and
concluded that the mechanism has a positive impact on the algorithm.
However, no explanation has been given on the seemingly random mo-
ments at which the adaptive clearing threshold ς is relaxed, nor is the
degree of each relaxation scientifically explained (See Eq. 3). As ς is used
in local search (Eq. 1) and therefor relevant in both the expansion and the
contraction phase, we assume it has a potential big impact on algorithm
accuracy.

(a) What is the impact of an updated adaptive clearing threshold on the
efficiency of VMO within an iteration?

(b) What is the impact of an updated adaptive clearing threshold on the
accuracy of VMO within an iteration?

3.1 Definitions

Throughout the paper, the following definitions will be used.

• Algorithm Accuracy : The ability of the algorithm to find an accurate
global optimum

• Useful node: A node that has been retained for at least one iteration, as
opposed to nodes that are immediately removed. These are the nodes that
are global or local bests or nodes that are used as parents for new node
generations.

• Algorithm Efficiency : The ability of the algorithm to generate useful nodes

• Adaptive Clearing Threshold ς: The minimum allowed distance that is
used the adaptive clearing mechanism (See. Eq. 3). Nodes that fall
within a distance ς of a better node, will be removed by adaptive clearing.

• Relaxation of the adaptive clearing threshold : The operation in which, at
various points throughout the algorithm, the adaptive clearing threshold
ς is decreased, thus allowing more areas around optima to be populated
more densely.

8

4 Methodology

The analysis covers the expansion as well as the contraction phase of the al-
gorithm. For the expansion phase, the main focus is on analyzing the exact
location on which new nodes are generated. The contraction phase is evaluated
by specifically monitoring the adaptive clearing mechanism and its impact on
algorithm accuracy.

All algorithm runs have been performed with the configuration as depicted
underneath. The values have been chosen in accordance with the original paper
[?].

• Size of the mesh N : 20

• Maximum number of problem evaluations C: 100000

• Number of neighbors k: 3

The original paper is not unambiguous about the exact usage of adaptive
clearing. We adopted the strictest interpretation in which a node is only removed
if it falls within the minimum allowed distance ς for each of the ten dimensions.

The list of goal functions that has also been used in [?], is provided un-
derneath. The functions have been evaluated in ten dimensions, with twenty
independent runs executed per function. For each initialization of the mesh,
it was ensured that the optimum would not be found within the boundaries of
the mesh. This has also be done in the original paper, giving the algorithm a
less straightforward path towards a solution. This is a common practice that
has also been applied by Puris in the original paper [?] and aims at giving the
algorithm a less straightforward path towards the solution. Both exploration
and exploitation can be validated as VMO has to move its mesh of nodes across
the search space rather than immediately exploiting the global optimum.

f1 Sphere function

f1(x) =

D∑
i=1

x2i (8)

Simple, convex function with a global optimum in 0.

f2 Rosenbrock’s function

f2(x) =

D−1∑
i=1

(100(xi+1 − x2i)2 + (1− xi)2) (9)

Shaped like a through, with the global optimum in 0. Fitness values
rapidly improve while entering the through, but only marginally decrease
while searching within the through. Locations relatively far from the
global optimum may still have a similar fitness value to the optimum.

9

f3 Griewank’s function

f3(x) =
1

4000

D∑
i=1

x2i −
D∏
i=1

cos (
xi√
i
) + 1 (10)

A general downward trend towards the global optimum in 0. The trend
is modified by the cosinus function, creating a more hilly, but relatively
smooth, function landscape.

f4 Rastrigin’s function

f4(x) =

D∑
i=1

(x2i − 10cos(2πxi)) + 10D (11)

Displays many local optima that are regularly distributed throughout the
function landscape. Optimum is located in 0. Similar to f3 but with more
narrow peaks and throughs.

f5 Weierstrass’ function

f5(x) =

D∑
i=1

(

20∑
k=0

(0.5k cos (2π3k(xi + 0.5))))

−D(

20∑
k=0

(0.5k cos (π3k))) (12)

Very irregular function that shows a general trend towards the global
optimum in 0, but is never gradually declining nor increasing and displays
constant upward and downward movements that is less smooth and more
erratic than for example f3.

f6 Ackley’s function

f6(x) = −20exp(−0.2

√√√√ 1

D

D∑
i=1

x2i

−exp(1

D

D∑
i=1

cos(2πxi)) + 20 + exp(1) (13)

Cone-shaped function with a narrow, deep global optimum in 0.

Detailed algorithm execution is logged by storing each creation and removal
of a node in a database. Apart from this individual node life cycle, we record
each identification of a new optimum as well as the relaxations of the adaptive
clearing threshold.

This data is used to examine the different locations in which nodes are
generated. In addition, we correlate the number of new nodes as well as the
convergence of the algorithm to the adaptive clearing mechanism.

10

5 Results

Table 1 provides an overview of the statistical results retrieved from the different
runs on the goal functions. The first column gives an indication about algorithm
efficiency and depicts both the absolute and relative amounts of useful nodes
that the algorithm managed to produce on average. In general, between 1 and
22% of all nodes generated are retained for a next iteration. All other nodes are
discarded immediately, within the very iteration they are created in.

Next in the table, adaptive clearing refers to the number of nodes that are
removed by adaptive clearing. Note that adaptive clearing is by design only
applied on nodes that are not considered useful. The percentages indicate that
adaptive clearing is responsible for about half the removals that are performed
by the algorithm.

Revisits refers to the number of times the algorithm generated a node on
exactly the same location that has already been evaluated before. For f3, a
surprisingly high 36.64% of nodes are generated at a location where previous
iterations already generated a node. Please be reminded that this is an exact
location in ten dimensions where coordinates are displayed with a precision of
12 decimals.

The last column of Table 1 displays the average number of times the al-
gorithm elected a new node as global best to replace the previous temporary
solution. Out of the 100000 nodes generated, very few appear to be an improve-
ment to the current best solution.

In figures 3, 4, 5, 6, 7, and 8, a detailed insight in VMO execution has been
provided. The x-axis depicts the progress of the algorithm and is expressed in
percentiles of node generation. With a maximum number of problem evaluations
equal to 100000, each percentile roughly represents the creation of 1000 new
nodes. The bar plot represents the number of useful nodes that are generated
within that percentile and is expressed as the percentage of useful nodes in
the total number of nodes generated in that percentile. The bar chart can be
considered as the evolution of algorithm efficiency. In general, the efficiency
shows a steady decline from the start but seems to display short peaks at the
moments that correspond with a relaxation of the adaptive clearing threshold
ς.

The line plot within the same graphs can be seen as the evolution of algorithm
accuracy. It represents the percentage improvement in the global optimum that
has been achieved compared to the previous percentile and is calculated as
in Eq. 14. This relative representation was chosen to display accuracy in the
later stages of the algorithm, when improvements are typically small in absolute
terms. Improvements of the optimum seem to be somewhat unpredictable, but
clear trends are emerging anyway. Starting from a random population, the
algorithm can easily find better solution. Over time, improvements become less
likely and less dramatic, with the exception of peaks that again correspond to
the relaxation of the adaptive clearing threshold ς.

Table 2 provides statistical support for a correlation between a relaxation of
the adaptive clearing threshold and algorithm accuracy. The table displays the

11

Table 1: Summary

F Useful Adaptive Total Nr. New
Nodes Clearing Revisits Optima

f1 1615.85 46224.2 25303.45 79.95
1.62% 46.20% 25.29%

f2 2080.25 49888.5 9045.95 106.70
2.08% 49.87% 9.04%

f3 1270.35 46290.6 36659.55 70.35
1.27% 46.27% 36.64%

f4 1374.00 47517.6 477.00 99.80
1.37% 47.50% 0.48%

f5 1173.35 52178.6 27.35 66.45
1.17% 52.16% 0.03%

f6 1435.6 46220.95 3291.2 83.6
1.44% 46.22% 3.29%

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
CreationNodePercentile

A
vg

G
B

es
tD

iff

Figure 3: f1 Node generation and optimum improvements

average relative improvement of the optimum within percentiles where the adap-
tive clearing threshold is relaxed (ς0) and compares it to the average relative
improvements in percentiles with a constant threshold (ς1). Statistical output
from a Welch t-test supports the hypothesis that a relaxation of adaptive clear-
ing has an impact on the average optimum improvement at a significance level
0.05.

δp =
gbestp−1 − gbestp

gbestp−1
(14)

12

0.00

0.25

0.50

0.75

1.00

0 25 50 75 100
CreationNodePercentile

A
vg

G
B

es
tD

iff

Figure 4: f2 Node generation and optimum improvements

0.00

0.25

0.50

0.75

0 25 50 75 100
CreationNodePercentile

A
vg

G
B

es
tD

iff

Figure 5: f3 Node generation and optimum improvements

0.00

0.03

0.06

0.09

0 25 50 75 100
CreationNodePercentile

A
vg

G
B

es
tD

iff

Figure 6: f4 Node generation and optimum improvements

6 Discussion

By design, VMO’s ability to improve its current optimum is influenced by the
success rate of its node generation. Because only the most promising nodes are

13

0.00

0.03

0.06

0.09

0.12

0 25 50 75 100
CreationNodePercentile

A
vg

G
B

es
tD

iff

Figure 7: f5 Node generation and optimum improvements

0.0

0.2

0.4

0 25 50 75 100
CreationNodePercentile

A
vg

G
B

es
tD

iff

Figure 8: f6 Node generation and optimum improvements

carried over to the next iteration, we can consider both the number of useful
nodes and the average age of these nodes reasonable indicators for algorithm
accuracy.

With between 98 and 99% of nodes immediately discarded, Table 1 indicates
a low level of efficiency in node generation. The algorithms inability to generate
useful nodes becomes further evident by looking at the high amount of nodes
removed by adaptive clearing as well as the number of locations that are ex-
plored more than once. Ranging from anywhere between a lowly 0.03% and an
astonishing 36.64%, the analysis indicates a major potential drawback of VMO.
Due to the rigid placings of new nodes (See Eq. 4 and 1), the algorithm runs
the risk of generating and removing nodes in exactly the same locations over
and over again. Imagine a node generating a new node halfway towards a local
best. If the new node is not retained for the next iteration, but the parent nodes
are, the process between these nodes will loop eternally until adaptive clearing
modifies the generation or removal rules or one of the parents is removed from
the selection by chance.

In addition to the aforementioned problem, about half of the nodes that are

14

Table 2: Average optimum improvements in relation to adaptive clearing relax-
ation

Average Improvement Statistics
f ξ0 ξ1 t df p

f1 27.01% 2.89% 7.8742 84.914 1.019e-11
f2 10.16% 2.33% 4.4679 80.62 2.549e-05
f3 50.00% 2.53% 17.159 84.248 < 2.2e-16
f4 1.85% 0.56% 2.1893 85.867 0.03129
f5 3.90% 1.75% 2.3209 76.576 0.02296
f6 12.72% 2.41% 5.8502 90.465 7.733e-08

generated by VMO, are placed in areas from which they are immediately to be
removed by adaptive clearing.

The first two research questions, related to useful nodes and the exploration
of the search area, cannot be answered favorably based on the results above.
Due to the high level of subjectivity in what would constitute a healthy efficiency
in node generation, it is not straightforward to add statistical evidence to these
claim.

The Figures 3, 4, 5, 6, 7, and 8, and the statistical proof in Table 2, seems
to suggest a significant correlation between a relaxation of the adaptive clearing
threshold and the ability of the algorithm to find an improved optimum as well
as the ability of the algorithm to produce more useful nodes.

The correlation between a relaxed adaptive clearing and the number of useful
nodes that are generated, can be considered logical and expected. A smaller
threshold should result in a lower number of nodes removed under adaptive
clearing, hereby increasing the likelihood of survival for nodes that are generated
close to a local or global optimum.

While the effect of adaptive clearing on the number of useful nodes was to
be expected, the correlation between a relaxed adaptive clearing threshold and
algorithm accuracy is not as intuitive as it may seem. As adaptive clearing does
not influence the amount of generated nodes, the improved accuracy cannot
be attributed to a higher statistical probability of finding a better solution. A
better explanation can be found in the fact that the adaptive clearing threshold
is taken into account during the expansion phase, thus influencing the locations
of new nodes. Additionally, refraining the algorithm from removing nodes closer
by a local or global optimum and instead using them as a basis to generate new
nodes seems to have a positive influence on algorithm accuracy. One might
suggest that nodes that are closer towards an optimum are more likely to find
an improvement to that same optimum.

It is worth pointing out that the data seems to suggest that the effect of
adaptive clearing relaxations is short-lived. After each relaxation, optimum im-
provements become less likely. The algorithm soon needs another shock starter
in the form of a new adaptive clearing relaxation in order to keep on finding

15

new optima. This again may be an indication that the node generation rules
can be improved.

This claim is supported by the number of nodes that are generated in a
previously explored location. Again, we refer to the inclination of VMO to
rigidly generate nodes at an exact location (see Eq. 1).

7 Conclusion

This paper focuses on discovering internal patterns of VMO that drive algorithm
performance. We introduced the term useful nodes to indicate all nodes that
are carried into a next iteration and thus used as a basis to create new nodes.
Next to the age of nodes, the ratio of the useful nodes in the total number of
nodes can be used as an indicator for algorithm efficiency.

Regarding algorithm efficiency, the results seem to suggest that VMO only
uses the information from a very limited set of nodes, compared to the total
number of nodes generated. Firstly, the number of useful nodes generated by
the algorithm is relatively low (between 1 and 2% of total nodes generated).
Secondly, a potentially high number of locations is visited multiple times. Both
indicators suggest the inability of VMO to produce nodes in promising areas of
the search space.

Focusing on accuracy, a significant correlation between optimum improve-
ments and the adaptive clearing mechanism seems to exist. Each relaxation
of the adaptive clearing threshold seems to provide a short-lived boost to the
algorithm’s ability to improve on its current solution.

In general, the results seem to suggest that VMO’s expansion phase could
be improved by modifying node generation rules so that the resulting node
locations will have a higher degree of randomness. Alternatively, or additionally,
the algorithm could benefit from a memory that keeps track of locations already
explored. As it is currently the case, VMO does not use the information provided
by the nodes that are removed because of their insufficient fitness value or
proximity to a better solution.

The results also lend proof to revise the contraction phase. Adaptive clearing
seems to have a beneficial impact on algorithm accuracy. Modifications of the
adaptive clearing mechanisms seem to be very likely to increase algorithm per-
formance. A well tuned relaxation of the threshold ς could optimize the number
of useful nodes generated by VMO, while simultaneously boosting its accuracy.
Future research could focus on selecting the ideal iterations in which to relax the
adaptive clearing threshold, while also determining an optimal degree of relax-
ation. The degree of the relaxation will likely be characterized by the balancing
act between problem exploration and problem exploitation, a common feature
in pmh-research. The original implementation does not propose to parameter-
ize the adaptive clearing mechanism. Future research could delve into this to
suggest alternatives, potentially allowing the algorithm to self-adapt it clearing
mechanism to the problem set.

Based on the very low efficiency and a potential sub-optima adaptive clearing

16

algorithm, it seems very impressive that the VMO is nevertheless able to produce
competitive results. Given this competitiveness, the results seem to lend credit
to the idea of VMO but suggest that the implementation can still be improved.
For future research, it would therefore be very interesting to tackle the problems
that are mentioned in this paper and try to produce a superior algorithm.

17

