
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Reasoning on data partitioning for single-round multi-join evaluation in

massively parallel systems

Peer-reviewed author version

AMELOOT, Tom; GECK, Gaetano; KETSMAN, Bas; NEVEN, Frank & Schwentick,

Thomas (2017) Reasoning on data partitioning for single-round multi-join evaluation

in massively parallel systems. In: Communications of the ACM, 60(3), p. 93-100.

DOI: 10.1145/3041063

Handle: http://hdl.handle.net/1942/23351

Reasoning on data partitioning for single-round multi-join
evaluation in massively parallel systems

Tom J. Ameloot
∗

Hasselt University &
transnational University of

Limburg
tom.ameloot@uhasselt.be

Gaetano Geck
TU Dortmund University

gaetano.geck@udo.edu

Bas Ketsman
†

Hasselt University &
transnational University of

Limburg
bas.ketsman@uhasselt.be

Frank Neven
Hasselt University &

transnational University of
Limburg

frank.neven@uhasselt.be

Thomas Schwentick
TU Dortmund University

thomas.schwentick@udo.edu

ABSTRACT
Evaluating queries over massive amounts of data is a ma-
jor challenge in the big data era. Modern massively parallel
systems, like e.g. Spark, organize query answering as a se-
quence of rounds each consisting of a distinct communication
phase followed by a computation phase. The communication
phase redistributes data over the available servers, while in
the subsequent computation phase each server performs the
actual computation on its local data. There is a growing
interest in single-round algorithms for evaluating multiway
joins where data is first reshuffled over the servers and then
evaluated in a parallel but communication-free way. As the
amount of communication induced by a reshuffling of the
data is a dominating cost in such systems, we introduce a
framework for reasoning about data partitioning to detect
when we can avoid the data reshuffling step. Specifically,
we formalize the decision problems parallel-correctness and
transfer of parallel-correctness, provide semantical charac-
terizations, and obtain tight complexity bounds.

1. INTRODUCTION
The background scenario for this work is that of large-

scale data analytics where massive parallelism is utilized to
answer complex join queries over multiple database tables.
For instance, as described by Chu et al. [6], data analytics
engines face new kinds of workloads, where multiple large
tables are joined, or where the query graph has cycles. Fur-
thermore, recent in-memory systems (e.g., [10, 12, 18, 22])
can fit data in main memory by utilizing a multitude of
servers. Koutris and Suciu [11] introduced the Massively
Parallel Communication model (MPC model) to facilitate
an understanding of the complexity of query processing on
shared-nothing parallel architectures. For such systems, per-
formance is no longer dominated by the number of I/O re-
quests to external memory as in traditional systems but by
the communication cost for reshuffling data during query
execution. When queries need to be evaluated in several

∗Postdoctoral Fellow of the Research Foundation - Flanders
(FWO).
†PhD Fellow of the Research Foundation - Flanders (FWO).

rounds, such reshuffling can repartition the whole database
and can thus be very expensive.

While in traditional distributed query evaluation, multi-
join queries are computed in several stages over a join tree
possibly transferring data over the network at each step, we
focus on query evaluation algorithms within the MPC model
that only require one round of communication. Such algo-
rithms consist of two phases: a distribution phase (where
data is repartitioned or reshuffled over the servers) followed
by an evaluation phase, where each server contributes to the
query answer in isolation, by evaluating the query at hand
over the local data without any further communication. We
refer to such algorithms as generic one-round algorithms.
Afrati and Ullman [1] describe an algorithm that computes
a multi-join query in a single communication round. The
algorithm uses a technique that can be traced back to Gan-
guly, Silberschatz, and Tsur [8]. Beame, Koutris and Su-
ciu [3, 4] refined the algorithm, named it HyperCube, and
showed that it is a communication-optimal algorithm for
single-round distributed evaluation of conjunctive queries.

The original version of this paper is entitled “Parallel-
Correctness and Transferability for Conjunctive Queries”
and was first published in the Proceedings of the 2015 ACM
Symposium on Principles of Database Systems. A modified
version entitled “Data partitioning for single-round multi-
join evaluation in massively parallel systems” appeared in
the March 2016 issue of ACM Sigmod Record.

The generic one-round HyperCube algorithm requires a
reshuffling of the base data for every separate query. As the
amount of communication induced by a reshuffling of the
data can be huge, it is important to detect when the reshuffle
step can be avoided. We present a framework for reasoning
about data partitioning for generic one-round algorithms for
the evaluation of queries under arbitrary distribution poli-
cies, not just those resulting from the HyperCube algorithm.
To target the widest possible range of repartitioning strate-
gies, the initial distribution phase is therefore modeled by a
distribution policy that can be any mapping from facts to
subsets of servers.

The optimization framework is motivated by two concrete

scenarios. In the first scenario, we assume that the data is
already partitioned over the servers and we want to know
whether a given query can be evaluated correctly over the
given data distribution without reshuffling the data. In the
second scenario, the data distribution might be unknown or
hidden, but it is known that it allowed the correct evaluation
of the previous query. Here, we ask whether this knowledge
guarantees that the given (next) query can be evaluated cor-
rectly without reshuffling. To this end, we formalize the
following decision problems:

Parallel-Correctness: Given a distribution policy and a
query, can we be sure that the corresponding generic
one-round algorithm will always compute the query
result correctly—no matter the actual data?

Parallel-Correctness Transfer: Given two queriesQ and
Q′, can we infer from the fact that Q is computed cor-
rectly under the current distribution policy, that Q′ is
computed correctly as well?

We say that parallel-correctness transfers from Q to Q′,
denoted Q pc−→ Q′, when Q′ is parallel-correct under every
distribution policy for which Q is parallel-correct. Parallel-
correctness transfer is particularly relevant in a setting of au-
tomatic data partitioning where an optimizer tries to auto-
matically partition the data across multiple nodes to achieve
overall optimal performance for a specific workload of queries
(see, e.g., [14, 17]). Indeed, when parallel-correctness trans-
fers from a query Q to a set of queries S, then any distribu-
tion policy under which Q is parallel-correct can be picked
to evaluate all queries in S without reshuffling the data.

We focus in this paper on conjunctive queries and first
study the parallel-correctness problem. We give a charac-
terization of parallel-correctness: a distribution policy is
parallel-correct for a query, if and only if for every mini-
mal valuation of the query there is a node in the network
to which the distribution assigns all facts required by that
valuation. This criterion immediately yields a ΠP

2 upper
bound for parallel-correctness, for various representations of
distribution policies. It turns out that this is essentially op-
timal, since the problem is actually ΠP

2 -complete. These
results also hold in the presence of union and inequalities.
When negation is added, deciding parallel-correctness might
involve counterexample databases of exponential size. More
specifically, in the presence of negation deciding parallel-
correctness is coNEXPTIME-complete. The latter result is
related to the new result that query containment for con-
junctive queries with negation is coNEXPTIME-complete,
as well.

For parallel-correctness transfer we also first provide a se-
mantical characterization in terms of a (value-based) con-
tainment condition for minimal valuations ofQ′ andQ (Propo-
sition 6.4). Deciding transferability of parallel-correctness
for conjunctive queries is ΠP

3 -complete, again even in the
presence of unions and inequalities. We emphasize that the
implied exponential time algorithm for parallel-correctness
transfer does not rule out practical applicability since the
running time is exponential in the size of the queries not in
the size of a database.

Outline. In Section 2, we introduce the necessary prelimi-
naries regarding databases and conjunctive queries. In Sec-
tion 3, we discuss the MPC model. In Section 4, we ex-
emplify the HyperCube algorithm. In Section 5 and Sec-

tion 6, we explore parallel-correctness and parallel-correct-
ness transfer. We present concluding remarks together with
direction for further research in Section 7.

2. CONJUNCTIVE QUERIES
In this article, a (database) instance I is a finite set of

facts of the form R(a1, . . . , an), where R is an n-ary relation
symbol from a given database schema and each ai is an
element from some given infinite domain dom.

A conjunctive query (CQ) Q is an expression of the form

H(x)← R1(y1), . . . , Rm(ym),

where every Ri is a relation name, every tuple yi matches
the arity of Ri, and every variable in x occurs in some yi.
We refer to the head atom H(x) by headQ and to the set
{R1(y1), . . . , Rm(ym)} by bodyQ. We denote by vars(Q)
the set of all variables occurring in Q.

A valuation for a CQ Q maps its variables to values,
that is, it is a function V : vars(Q) → dom. We refer
to V (bodyQ) as the facts required by V . A valuation V sat-
isfies Q on instance I if all facts required by V are in I. In
that case, V derives the fact V (headQ). The result of Q
on instance I, denoted Q(I), is defined as the set of facts
that can be derived by satisfying valuations for Q on I. We
denote the class of all CQs by CQ.

Example 2.1. Let Ie be the example database instance{
Like(a, b), Like(b, a), Like(b, c),Dislike(a, a),Dislike(c, a)

}
,

and Qe be the example CQ

H(x1, x3)← Like(x1, x2), Like(x2, x3),Dislike(x3, x1).

Then V1 = {x1 7→ a, x2 7→ b, x3 7→ a} and V2 = {x1 7→
a, x2 7→ b, x3 7→ c} are the only satisfying valuations. Con-
sequently, Qe(Ie) =

{
H(a, a), H(a, c)

}
.

3. MPC MODEL
The Massively Parallel Communication (MPC) model was

introduced by Koutris and Suciu [11] to study the paral-
lel complexity of conjunctive queries. It is motivated by
query processing on big data that is typically performed on
a shared-nothing parallel architecture where data is stored
on a large number of servers interconnected by a fast net-
work. In the MPC model, computation is performed by p
servers connected by a complete network of private chan-
nels. Examples of such systems include Pig [16], Hive [19],
Dremel [12], and Spark [22]. The computation proceeds in
rounds where each round consists of two distinct phases:

• Communication Phase: The servers exchange data by
communicating with all other servers.

• Computation Phase: Each server performs only local
computation (on its local data).

The number of rounds then corresponds to the number of
synchronization barriers that an algorithm requires. The
input data is initially partitioned among the p servers and
every server receives 1/p-th of the data. There are no as-
sumptions on the particular partitioning scheme. At the end
of the execution, the output must be present in the union of
the p servers. As the model focuses primarily on quantifying
the amount of communication there is no a priori bound on

the computational power of a server. A relevant measure
is the load at each server, which is the amount of data re-
ceived by a server during a particular round. Examples of
optimization goals are minimizing total load (e.g., [1]) and
minimizing maximum load (e.g., [11]).

To get a feeling for the model, we next present simple
examples of single- and multi-round algorithms in the MPC
model for evaluating specific conjunctive queries.

Example 3.1. (1) Consider the query Q1

H(x, y, z)← R(x, y), S(y, z)

joining two binary relations R and S over a common at-
tribute. Let h be a hash function mapping every domain
value to one of the p servers. The following single-round
algorithm computes Q1. In the communication phase, exe-
cuted by every server on its local data, every tuple R(a, b) is
sent to server h(b) while every tuple S(c, d) is sent to server
h(c). In the computation phase, every server evaluates Q1

on the received data. The output of the algorithm is the
union of the results computed at the computation phase.
This strategy is called a repartition join in [5].

(2) Let Q2 be the triangle query:

H(x, y, z)← R(x, y), S(y, z), T (z, x).

One way to evaluate Q2 is by two binary joins leading to a
two-round algorithm. We assume two hash functions h and
h′. In the first round, all tuplesR(a, b) and S(c, d) are sent to
servers h(b) and h(c), respectively. The computation phase
computes the join of R and S at each server in a relation K.
In the second round, each resulting triple K(e, f, g) is sent
to h′(e, g), while each tuple T (i, j) is sent to h′(j, i). Finally,
K and T are joined at each server.

We note that every MapReduce [7] program can be seen
as an algorithm within the MPC model since the map phase
and reducer phase readily translate to the communication
and computation phase of MPC.

4. HYPERCUBE ALGORITHM
To illustrate the HyperCube algorithm, we show in the

following example that the triangle query of Example 3.1(2)
can be evaluated by a single-round MPC algorithm.

Example 4.1. Consider again the triangle query Q2 of Ex-
ample 3.1(2):

H(x, y, z)← R(x, y), S(y, z), T (z, x).

Let αx, αy, and αz be positive natural numbers such that
αxαyαz = p. Every server can then uniquely be identified
by a triple in [1, αx] × [1, αy] × [1, αz]. For c ∈ {x, y, z},
let hc be a hash function mapping each domain value to a
number in [1, αc]. The algorithm then operates as follows.
In the communication phase, every fact

• R(a, b) is sent to every server with coordinate (hx(a),
hy(b), α) for every α ∈ [1, αz]; so, R(a, b) is sent to
the subcube determined by the hash values hx(a) and
hy(b) in the x- and y-dimension, respectively, as illus-
trated in Figure 1(a);

• S(b, c) is sent to every server with coordinate (α, hy(b),
hz(c)) for every α ∈ [1, αx]; and,

• T (c, a) is sent to every server with coordinate (hx(a),
α, hz(c)) for every α ∈ [1, αy].

We note that every R-tuple is replicated αz times and sim-
ilarly for S- and T -tuples.

The computation phase consists of evaluating Q2 on the
local data at each server. The algorithm is correct since for
every valuation V for Q2 some server contains the facts

{V (R(x, y)), V (S(y, z)), V (T (z, x))}

if and only if the (hypothetical) centralized database con-
tains those facts. In this sense, the algorithm distributes
the space of all valuations of Q2 over the computing servers
in an instance independent way through hashing of domain
values. In the special case that αx = αy = αz = p1/3,
each tuple is replicated p1/3 times. Assuming each relation
consists of m tuples and there is no skew, each server will
receive m/p2/3 tuples for each of the relations R, S, and T .

So, the maximum load per server is O(m/p2/3).

The technique in Example 4.1 can be generalized to arbi-
trary conjunctive queries and was first introduced in the con-
text of MapReduce by Afrati and Ullman [1] as the Shares
algorithm. The values αx, αy, and αz are called shares
(hence, the name) and the work of Afrati and Ullman fo-
cuses on computing optimal values for the shares minimizing
the total load (as a measure for the communication cost).

Beame, Koutris, and Suciu [3, 4] show that the method
underlying Example 4.1 is essentially communication opti-
mal for full conjunctive queries Q. Assuming that the sizes
of all relations are equal to m and under the assumption that
there is no skew, the maximum load per server is bounded
by O(m/p1/τ∗) with high probability. Here, τ∗ depends on
the structure of Q and corresponds to the optimal fractional
edge packing (which for Q2 is τ∗ = 3/2). The algorithm is
referred to as HyperCube in [3, 4]. Additionally, the bound
is tight over all one-round MPC algorithms indicating that
HyperCube is a fundamental algorithm.

Chu, Balazinska, and Suciu [6], provide an empirical study
of HyperCube (in combination with a worst-case optimal
algorithm for sequential evaluation [15, 21]) for complex join
queries, and establish, among other things, that HyperCube
performs well for join queries with large intermediate results.
On the other hand, HyperCube can perform badly on queries
with small output.

5. PARALLEL-CORRECTNESS
In the remainder of this paper, we present a framework

for reasoning about data partitioning for generic one-round
algorithms for the evaluation of queries under arbitrary dis-
tribution policies. We recall from the introduction that such
algorithms consist of a distribution phase (where data is
repartitioned or reshuffled over the servers) followed by an
evaluation phase where each server evaluates the query at
hand over the local data. In particular, generic one-round al-
gorithms are one-round MPC algorithms where every server
in the computation phase evaluates the same given query.

When such algorithms are used in a multi-query setting,
there is room for optimization. We recall that the Hyper-
Cube algorithm requires a reshuffling of the base data for
every separate query. As the amount of communication in-
duced by a reshuffling of the data can be huge, it is rele-
vant to detect when the reshuffle step can be avoided and

hy(b) = 2

hx(a) = 3

(a) Replication of R(a, b)

hy(b) = 2

hz(c) = 0

(b) Replication of S(b, c)

hx(a) = 3 hz(c) = 0

(c) Replication of T (c, a)

Figure 1: HyperCube distribution policies view the computing nodes in the network as arranged in a multi-
dimensional grid. Each dimension corresponds to a variable of the query to be computed. Replication happens
in a structurally restricted way: along a line, a plane or a hyperplane. This figure illustrates the replication
of facts R(a, b), S(b, c), T (c, a) as required by a valuation for the triangle query in Example 4.1 for values p = 72,
αx = 6, αy = 4, and αz = 3. All facts meet at the node with coordinate

(
hx(a), hy(b), hz(c)

)
= (3, 2, 0). Therefore

the fact H(a, b, c) can be derived locally, as desired.

the current distribution of the data can be reused to eval-
uate another query. Here, parallel-correctness and parallel-
correctness transfer become relevant static analysis tasks.
We study parallel-correctness in this section and parallel-
correctness transfer in the next section.

Before we can address the parallel-correctness problem in
detail, we first need to fix our model and our notation.

A characteristic of the HyperCube algorithm is that it
reshuffles data on the granularity of facts and assigns each
fact in isolation (that is, independent of the presence or ab-
sence of any other facts) to a subset of the servers. This
means that the HyperCube reshuffling is independent of the
current distribution of the data and can therefore be applied
locally at every server. We therefore define distribution poli-
cies as arbitrary mappings linking facts to servers.

Following the MPC model, a network N is a nonempty fi-
nite set of node names. A distribution policy P = (U, rfactsP)
for a network N consists of a universe U and a total func-
tion rfactsP that maps each node of N to a subset of facts1

from facts
(
U
)
. Here, facts

(
U
)

denotes the set of all pos-
sible facts over U . A node κ is responsible for a fact f
(under policy P) if f ∈ rfactsP (κ). For an instance I and a
κ ∈ N , let loc-instP ,I(κ) denote I ∩ rfactsP (κ), that is, the
set of facts in I for which node κ is responsible. We refer
to a given database instance I as the global instance and to
loc-instP ,I(κ) as the local instance on node κ.

The result [Q,P](I) of the distributed evaluation in one
round of a query Q on an instance I under a distribution
policy P is defined as the union of the results of Q evaluated
over every local instance. Formally,

[Q,P](I)
def
=
⋃
κ∈N

Q
(
loc-instP ,I(κ)

)
.

Example 5.1. Let Ie be the example database instance{
Like(a, b), Like(b, a), Like(b, c),Dislike(a, a),Dislike(c, a)

}
,

and Qe be the example CQ

H(x1, x3)← Like(x1, x2), Like(x2, x3),Dislike(x3, x1)

1We mention that for HyperCube distributions, the view is
reversed: facts are assigned to nodes. However, both views
are essentially equivalent and we will freely adopt the view
that fits best for the purpose at hand.

from Example 2.1. Consider a network Ne consisting of
two nodes {κ1, κ2}. Let P 1 = ({a, b, c}, rfactsP }) be the
distribution policy that assigns all Like-facts to both nodes
κ1 and κ2, and every fact Dislike(d1, d2) to node κ1 when
d1 = d2 and to node κ2 otherwise. Then,

loc-instP 1,Ie(κ1) ={
Like(a, b), Like(b, a), Like(b, c),Dislike(a, a)

}
,

and

loc-instP 1,Ie(κ2) ={
Like(a, b), Like(b, a), Like(b, c),Dislike(c, a)

}
.

Furthermore,

[Qe,P 1](Ie) =
Qe
(
loc-instP 1,Ie(κ1)

)
∪Qe

(
loc-instP 1,Ie(κ2)

)
,

which is just {H(a, b)} ∪ {H(a, c)}.
We get [Qe,P 2](Ie) = ∅ for the distribution policy P 2

that assigns all Like-facts to node κ1 and all Dislike-facts to
node κ2.

Now we can define parallel-correctness:

Definition 5.2. A query Q is parallel-correct on instance I
under distribution policy P if Q(I) = [Q,P](I).
Q is parallel-correct under distribution policy P = (U, rfactsP),
if it is parallel-correct on all instances I ⊆ facts

(
U
)
.

We note that parallel-correctness is the combination of

• parallel-soundness: [Q,P](I) ⊆ Q(I), and

• parallel-completeness: Q(I) ⊆ [Q,P](I).

For monotone queries, like conjunctive queries, parallel-
soundness is guaranteed, and therefore parallel-correctness
and parallel-completeness coincide.

While Definition 5.2 is in terms of general queries, in the
rest of this section, we only consider (extensions of) con-
junctive queries.

5.1 Conjunctive queries
We first focus on a characterization of parallel-correctness.

It is easy to see that a CQ Q is parallel-correct under dis-
tribution policy P = (U, rfactsP) if, for each valuation for
Q, the required facts meet at some node. That is, if the
following condition holds:

For every valuation V for Q over U , there is a
node κ ∈ N such that V (bodyQ) ⊆ rfactsP (κ).

(PC0)

However, Condition (PC0) is not necessary as the follow-
ing example shows.

Example 5.3. Let Q3 be the CQ

H(x, z)← R(x, y), R(y, z), R(x, x),

and V the valuation {x 7→ a, y 7→ b, z 7→ a}. Let further
N = {κ1, κ2} and let P distribute every fact except R(a, b)
onto node κ1 and every fact except R(b, a) onto node κ2.
Since R(a, b) and R(b, a) do not meet under P , valuation V
witnesses the failure of Condition (PC0) for P and Q.

However, Q3 is parallel-correct under P . Indeed, every
valuation that derives a fact f with the help of the facts
R(a, b) and R(b, a), also requires the fact R(a, a) (or R(b, b)).
But then, R(a, a) (or R(b, b)) alone is sufficient to derive f
by mapping all variables to a (or b). Therefore, if f ∈ Q(I),
for some instance I, then f ∈ [Q,P](I) and thus Q3 is
parallel-correct under P .

It turns out that it suffices to consider only valuations
that are minimal in the following sense:

Definition 5.4. A valuation V for Q is minimal for a CQ
Q, if there is no valuation V ′ for Q that derives the same
head fact with a strict subset of body facts, that is, such
that V ′(bodyQ) (V (bodyQ) and V (headQ) = V ′(headQ).

Example 5.5. For a simple example of a minimal valuation
and a non-minimal valuation, consider again the CQ Q3,

H(x, z)← R(x, y), R(y, z), R(x, x).

Both valuations V1 = {x 7→ a, y 7→ b, z 7→ a} and V2 =
{x 7→ a, y 7→ a, z 7→ a} for Q3 agree on the head variables of
Q3, but they require different sets of facts. In particular, for
V1 to be satisfying on I, instance I must contain the facts
R(a, b), R(b, a), and R(a, a), while V2 only requires R(a, a).
Thus V1 is not minimal for Q3. Further, since V2 requires
only one fact it is minimal for Q3.

The next lemma shows that it suffices to restrict valu-
ations to minimal valuations in Condition (PC0) to get a
sufficient and necessary condition for parallel-correctness.

Proposition 5.6. Let Q be a CQ. Then Q is parallel-correct
under distribution policy P if and only if the following holds:

For every minimal valuation V for Q over U ,
there is a node κ ∈ N such that

V (bodyQ) ⊆ rfactsP (κ).
(PC1)

We emphasize that the word minimal is the only differ-
ence between Conditions (PC0) and (PC1). We now turn
to algorithmic questions, that is, we study the following two
algorithmic problems, parameterized by classes P of distri-
bution policies.

PCI(CQ,P)

Input: Q ∈ CQ, P ∈ P, instance I
Question: Is Q parallel-correct on I under P ?

PC(CQ,P)

Input: Q ∈ CQ, P ∈ P
Question: Is Q parallel-correct under P ?

The quantifier structure in Condition (PC1) hints at a Πp
2

upper bound for the complexity of parallel-correctness.2 The
exact complexity can not be judged without having a bound
on the number of nodes κ and the complexity of the test
V (bodyQ) ⊆ rfactsP (κ). The largest classes of distribution
policies for which we established the Πp

2 upper bound, are
gathered in the set Pnpoly: it contains classes P of distribu-
tion policies, for which each policy comes with an algorithm
A and a bound n on the representation size of nodes in the
network, respectively, such that whether a node κ is respon-
sible for a fact f is decided by A non-deterministically in
time O(nk), for some k that depends only on P.

It turns out that the problem of testing parallel-correctness
is also Πp

2-hard, even for the simple class Pfin of distribution
policies, for which all pairs (κ,f) of a node and a fact are
explicitly enumerated. Thus, in a sense, Condition (PC1)
can essentially not be simplified.

Theorem 5.7. Problems PC(CQ,P) and PCI(CQ,P)
are Πp

2-complete, for every policy class P ∈ {Pfin} ∪Pnpoly.

The upper bounds follow from the characterization in Propo-
sition 5.6 and the fact that pairs (κ,f) can be tested in NP.

We note that Proposition 5.6 continues to hold true in the
presence of union and inequalities (under a suitable defini-
tion of minimal valuation for unions of CQs) leading to the
same complexity bounds as stated in Theorem 5.7 [9].

5.2 Conjunctive queries with negation
In this section, we consider conjunctive queries with nega-

tion. Specifically, queries can be of the form

H(x)← R1(y1), . . . , Rm(ym),¬S1(z1), . . . ,¬Sn(zn),

where, to ensure safety, we require that every variable in x
occurs in some yi or zj , and that every variable occurring
in a negated atom has to occur in a positive atom as well.
A valuation V now derives a fact V

(
H(x)

)
on an instance I

if every positive atom V
(
Ri(yi)

)
occurs in I while none of

the negative atoms V
(
Sj(zj)

)
do. We refer to the class of

conjunctive queries with negation as CQ¬.
We note that, since queries in CQ¬ need not be monotone,

parallel-soundness is no longer guaranteed and thus parallel-
correctness need not coincide with parallel-completeness.

We illustrate through an example that in the case of con-
junctive queries with negation, the parallel-correctness prob-
lem becomes much more intricate, since it might involve
counterexample databases of exponential size. We empha-
size that this exponential explosion can only occur if, as in
our framework, the arity of the relations in the database
schema are not a-priori bounded by some constant.

2Indeed, testing minimality of V does not introduce another
alternation of quantifiers, since it only requires an additional
existential quantification of a valuation V ′ that serves as a
witness, in case V is not minimal.

Example 5.8. Let Q4 be the following query:

H() ← Val(w0, w0), Val(w1, w1),¬Val(w0, w1),
Val(x1, x1), . . . , Val(xn, xn),¬Rel(x1, . . . , xn).

Let P be the policy with universe U = {0, 1} and two-
node network {κ1, κ2}, which distributes all facts except
Rel(0, . . . , 0) to node κ1 and only fact Rel(0, . . . , 0) to node κ2.

Query Q4 is not parallel-sound under policy P , due to the
counterexample I

def
= {Val(0, 0), Val(1, 1)}∪{Rel(a1, . . . , an) |

(a1, . . . , an) ∈ {0, 1}n}. Indeed, Q4(I) = ∅ but the all-zero
valuation witnesses Q4(loc-instP ,I(κ1)) 6= ∅.

However, I has 2n + 2 facts and is a counterexample of
minimal size as can easily be shown as follows. First, it is
impossible that Q4(I∗) 6= ∅ and Q4(loc-instP ,I∗(κ1)) = ∅,
for any I∗, since Rel(0, . . . , 0) is the only fact that can be
missing at node κ1, and Q4 is antimonotonic with respect
to Rel. On the other hand, if Q4(loc-instP ,I∗(κ1)) 6= ∅,
then the literals Val(w0, w0), Val(w1, w1), and ¬Val(w0, w1)
ensure that there are at least two different data values (and
thus 0 and 1) in I∗. But then Q4(I∗) = ∅ can only hold if
all 2n n-tuples over {0, 1} are in I∗. 2

Although this example requires an exponential size coun-
terexample, in this particular case, the existence of the coun-
terexample is easy to conclude. However, the following re-
sult shows that, in general, there is essentially no better
algorithm than guessing an exponential size counterexam-
ple.

Theorem 5.9. [9] For every class P ∈ Pnpoly of distribution
policies, the following problems are coNEXPTIME-complete.

• Parallel-Sound(UCQ¬,P)

• Parallel-Complete(UCQ¬,P)

• Parallel-Correct(UCQ¬,P)

The result and, in particular, the lower bound even holds
if Pnpoly is replaced by the class Ppoly, where the decision
algorithm for pairs (κ,f) is deterministic.

The proof of the lower bounds comes along an unexpected
route and exhibits a reduction from query containment for
CQ¬ to parallel-correctness for CQ¬. Query containment
asks whether for two queries Q and Q′, it holds that Q(I) ⊆
Q′(I), for all instances I. It is shown in [9] that query
containment for CQ¬ is coNEXPTIME-complete, imply-
ing coNEXPTIME-hardness for parallel-correctness as well.
The result regarding containment of CQ¬ confirms the ob-
servation in [13] that the Πp

2-completeness result for query
containment for CQ¬ mentioned in [20] only holds for fixed
database schemas (or a fixed arity bound, for that matter).

6. PARALLEL-CORRECTNESS TRANSFER
Parallel-correctness is relative to a distribution policy. The

idea of parallel-correctness transfer is to drop this depen-
dence and to infer that a distribution policy is parallel-
correct for the next query from the fact that it is parallel-
correct for the current query.

Definition 6.1. For two queriesQ andQ′, parallel-correctness
transfers from Q to Q′ if Q′ is parallel-correct under every
distribution policy for which Q is parallel-correct. In this

case, we write Q pc−→ Q′.

Example 6.2. We consider a database of document IDs
with a reference relation R among them: fact R(22, 44)
states that document 22 references document 44. Query
Q : H(d1, d2) ← R(d1, d2), R(d1, d3), R(d3, d2) asks for all
documents d1, d2 such that d1 references d2 directly as well
as in two steps, that is, hopping over a document d3.

One might expect that the syntactic subquery

Q′ : H(d1, d2)← R(d1, d3), R(d3, d2),

which asks for a two-step reference only, is parallel-correct
under every distribution policy that allows correct evalua-
tion of query Q. However, this is not the case because for
derived facts (i, i), where document i references itself di-
rectly and in two steps (taking d3 as i as well), query Q′
requires both facts R(i, j) and R(j, i) to be present at some
node for some j, while Q requires only R(i, i) to be present.
See Figure 2 for an example instance and distribution.

Parallel-correctness does transfer from a similar query,
Q′′ : H(d1, d2, d3) ← R(d1, d2), R(d1, d3), R(d3, d1), where
d3 is part of the head, to Q′ because all valuations for Q′′
are minimal and every valuation for Q′ requires a subset of
the facts required by the same valuation for Q′′. 2

Like for parallel-correctness, the characterization of parallel-
correctness transfer is in terms of minimal valuations. It
turns out that the following notion yields the desired se-
mantical characterization.

Definition 6.3. For two CQs Q and Q′, we say that Q
covers Q′ if the following holds:

for every minimal valuation V ′ for Q′, there
is a minimal valuation V for Q, such that
V ′(bodyQ′) ⊆ V (bodyQ).

Proposition 6.4. For two CQs Q and Q′, parallel-correct-
ness transfers from Q to Q′ if and only if Q covers Q′.

One might be tempted to assume that parallel-correctness
transfer is somehow directly linked with query containment.
However, as the following example shows, this is not the
case.

Example 6.5. We consider the following four queries:

Q1 : H()←S(x), R(x, x), T (x).

Q2 : H()←R(x, x), T (x).

Q3 : H()←S(x), R(x, y), T (y).

Q4 : H()←R(x, y), T (y).

Figure 3 (a) shows how these queries relate with respect to

parallel-correctness transfer. As an example, Q3
pc−→ Q1. As

Figure 3 (b) illustrates, these relationships are completely
orthogonal to query containment. Indeed, there are exam-
ples where parallel-correctness transfer and query contain-
ment coincide (Q3 vs. Q4), where they hold in opposite di-
rections (Q4 vs. Q2) and where one but not the other holds
(Q3 vs. Q2 and Q1 vs. Q4, respectively).

Proposition 6.4, allows us to pinpoint the complexity of
parallel-correctness transferability. For a formal statement
we define the following algorithmic problem:

pc-trans (CQ)

Input: Queries Q and Q′ from CQ
Question: Does parallel-correctness transfer from Q

to Q′?

1 3

V = {d1 7→ 1, d2 7→ 1, d3 7→ 3}

R(d1, d2)

R(d1, d3)

R(d3, d2)

(a) Valuation V satisfies Q globally
on I but not locally. It is not minimal
for Q.

1 3

V ∗ = {d1 7→ 1, d2 7→ 1, d3 7→ 1}

R(d1, d3)
R(d1, d2)
R(d3, d2)

(b) Valuation V ∗ satisfies Q globally on
I and locally on κ1. It is minimal for Q
and derives the same fact as V .

1 3

V = {d1 7→ 1, d2 7→ 1, d3 7→ 3}

R(d1, d3)

R(d3, d2)

(c) Valuation V satisfies Q′ globally
on I ′ but not locally. It is minimal
for Q′. It does not satisfy Q.

Figure 2: Global instances I = {R(1, 1), R(1, 3), R(3, 1)} (left and middle) and I ′ = {R(1, 3), R(3, 1)} (right) are
represented by graphs. Solid edges (facts) are located at node κ1, dashed edges at node κ2; colored edges
are required by the valuation under concern. Instance I has globally and locally satisfying valuations for
query Q, subinstance I ′ ⊆ I has a globally satisfying valuation but no locally satisfying one—under the same
distribution policy. There is thus a policy under which Q is parallel-correct but Q′ is not, and therefore
parallel-correctness does not transfer from Q to Q′.

R(x, y), T (y)

R(x, x), T (x) S(x), R(x, y), T (y)

S(x), R(x, x), T (x)

pc

pc

pc

pc

pc

(a) parallel-correctness transfer

R(x, y), T (y)

R(x, x), T (x) S(x), R(x, y), T (y)

S(x), R(x, x), T (x)

⊇ ⊆

⊆

⊆ ⊇

(b) containment

Figure 3: Relationship between the queries of Exam-
ple 6.5 with respect to (a) parallel-correctness trans-
fer (pc) and (b) query containment (⊆).

When the defining condition of “covers” is spelled out by
rewriting “minimal valuations” one gets a characterization
with a Π3-structure. Again, it can be shown that this is
essentially optimal.

Theorem 6.6. Problem pc-trans(CQ) is Πp
3-complete.

The upper bounds follow directly from the characteriza-
tion in Proposition 6.4, implying that these characterizations
are essentially optimal. We note that the same complexity
bounds continue to hold in the presence of inequalities and
for unions of conjunctive queries [2].

The complexity of transferability is considerably better for
a restricted class of conjunctive queries that we call strongly
minimal.

Definition 6.7. A CQ query is strongly minimal if all its
valuations are minimal.

Strong minimality generalizes two particularly simple classes
of queries:

Lemma 6.8. A conjunctive query Q is strongly minimal

• if it is a full query;

• if it contains no self-joins (every relation name occurs
at most once).

Theorem 6.9. pc-trans(CQ) restricted to inputs (Q,Q′),
where Q is strongly minimal, is NP-complete.

7. DISCUSSION
Parallel-correctness serves as a framework for studying

correctness and implications of data partitioning in the con-
text of one-round query evaluation algorithms. A main in-
sight of the work up to now is that testing for parallel-
correctness as well as the related problem of parallel-correct-
ness transfer boils down to reasoning about minimal val-
uations (of polynomial size) in the context of conjunctive
queries (even in the presence of union and inequalities) but
seems to require to reason about databases of exponential
size when negation is allowed.

There are many questions left unexplored and we therefore
highlight possible directions for further research.

From a foundational perspective, it would be interesting
to explore the decidability boundary for parallel-correctness
and transfer when considering more expressive query lan-
guages or even other data models. Obviously, the prob-
lems become undecidable when considering first-order logic,
but one could consider monotone languages or, for instance,
guarded fragment queries. At the same time, it would be in-
teresting to find settings that render the problems tractable,
for instance, by restricting the class of queries or by limiting
to certain classes of distribution policies.

Parallel-correctness transfer is a rather strong notion as it
requires that a query Q′ is parallel-correct for every distri-
bution policy for which another query Q is parallel-correct.
From a practical perspective, however, it could be interest-
ing to determine, given Q and Q′, whether there is at least
one distribution policy under which both queries are correct.
Other questions concern the least costly way to migrate from

one distribution to another. As an example, assume a distri-
bution P on which Q is parallel-correct but Q′ is not. Find
a distribution P ′ under which Q′ is parallel-correct and that
minimizes the cost to migrate from P to P ′. Similar ques-
tions can be considered for a workload of queries.

Even though the naive one-round evaluation model con-
sidered in this paper suffices for HyperCube, it is rather
restrictive. Other possibilities are to consider more complex
aggregator functions than union and to allow for different
queries than the original one to be executed at computing
nodes. Furthermore, it could be interesting to generalize the
framework beyond one-round algorithms, that is, towards
evaluation algorithms that comprise of several rounds.

8. REFERENCES
[1] F. N. Afrati and J. D. Ullman. Optimizing Multiway

Joins in a Map-Reduce Environment. IEEE
Transactions on Knowledge and Data Engineering,
23(9):1282–1298, 2011.

[2] T. J. Ameloot, G. Geck, B. Ketsman, F. Neven, and
T. Schwentick. Parallel-correctness and transferability
for conjunctive queries. Journal verion, 2015.

[3] P. Beame, P. Koutris, and D. Suciu. Communication
steps for parallel query processing. In PODS, pages
273–284, 2013.

[4] P. Beame, P. Koutris, and D. Suciu. Skew in parallel
query processing. In PODS, pages 212–223, 2014.

[5] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J.
Shekita, and Y. Tian. A comparison of join algorithms
for log processing in mapreduce. In SIGMOD, pages
975–986, 2010.

[6] S. Chu, M. Balazinska, and D. Suciu. From theory to
practice: Efficient join query evaluation in a parallel
database system. In SIGMOD, pages 63–78, 2015.

[7] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[8] S. Ganguly, A. Silberschatz, and S. Tsur. Parallel
bottom-up processing of datalog queries. J. Log.
Program., 14(1&2):101–126, 1992.

[9] G. Geck, B. Ketsman, F. Neven, and T. Schwentick.
Parallel-correctness and containment for conjunctive
queries with union and negation. In ICDT, pages
9:1–9:17, 2016.

[10] D. Halperin, V. Teixeira de Almeida, L. L. Choo,
S. Chu, P. Koutris, D. Moritz, J. Ortiz,
V. Ruamviboonsuk, J. Wang, A. Whitaker, S. Xu,
M. Balazinska, B. Howe, and D. Suciu. Demonstration
of the myria big data management service. In
Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14,
pages 881–884, 2014.

[11] P. Koutris and D. Suciu. Parallel evaluation of
conjunctive queries. In PODS, pages 223–234, 2011.

[12] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis. Dremel:
Interactive analysis of web-scale datasets. PVLDB,
3(1-2):330–339, 2010.

[13] M. Mugnier, G. Simonet, and M. Thomazo. On the
complexity of entailment in existential conjunctive
first-order logic with atomic negation. Inf. Comput.,
215:8–31, 2012.

[14] R. Nehme and N. Bruno. Automated partitioning
design in parallel database systems. In SIGMOD,
pages 1137–1148, 2011.

[15] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case
optimal join algorithms. In Proceedings of the 31st
ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2012, pages
37–48, 2012.

[16] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: A not-so-foreign language for
data processing. In SIGMOD, pages 1099–1110, 2008.

[17] J. Rao, C. Zhang, N. Megiddo, and G. Lohman.
Automating physical database design in a parallel
database. In SIGMOD, pages 558–569, 2002.

[18] J. Shute, R. Vingralek, B. Samwel, B. Handy,
C. Whipkey, E. Rollins, M. Oancea, K. Littlefield,
D. Menestrina, S. Ellner, J. Cieslewicz, I. Rae,
T. Stancescu, and H. Apte. F1: A distributed sql
database that scales. Proc. VLDB Endow.,
6(11):1068–1079, Aug. 2013.

[19] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
A warehousing solution over a map-reduce framework.
PVLDB, pages 1626–1629, 2009.

[20] J. D. Ullman. Information integration using logical
views. Theor. Comput. Sci., 239(2):189–210, 2000.

[21] T. L. Veldhuizen. Triejoin: A simple, worst-case
optimal join algorithm. In Proc. 17th International
Conference on Database Theory (ICDT), pages
96–106, 2014.

[22] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica. Shark: SQL and rich
analytics at scale. In SIGMOD, pages 13–24, 2013.

