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Abstract We consider varying coefficient models, which are an extension of
the classical linear regression models in the sense that the regression coeffi-
cients are replaced by functions in certain variables (often time). Varying coef-
ficient models have been popular in longitudinal data and panel data studies,
and have been applied in fields such as finance and health sciences. We esti-
mate the coefficient functions by splines. An important question in a varying
coefficient model is whether a coefficient function is monotone or convex. We
develop consistent testing procedures for monotonicity and convexity. More-
over, we provide procedures to test simultaneously the shapes of certain coef-
ficient functions in a varying coefficient model. The tests use constrained and
unconstrained regression splines. The performances of the proposed tests are
illustrated on simulated data. We also give a real data application.
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1 Introduction

We consider varying coefficient models (VCMs) to study longitudinal data.
VCMs were developed by Hastie and Tibshirani (1993). Such models have
been widely applied to many scientific areas: environmental science, ecology,
econometrics, epidemiology, etc. VCMs are an extension of the classic linear
regression model where the coefficient corresponding to a covariate is assumed
to be constant (independent of other variables). This assumption can lead
to poor modeling when the data are for example time dependent. Therefore,
the modeling strategy ought to be revised to increase flexibility and maintain
interpretability (Fan and Wenyang (2008)). The extension consists of allowing
the coefficients to depend on other variables. In this paper we consider the
model

Y (t) = X(t)>β(t) + ε(t) = β0(t) +

d∑
p=0

X(p)(t)βp(t) + ε(t), (1.1)

where Y (t) is the response at time t ∈ T = [0, 1]; X(t) = (X(0)(t), . . . , X(d)(t))>

is the covariate vector at time t, with X(0)(t) ≡ 1; β(t) = (β0(t), . . . , βd(t))
>

is the vector of coefficient functions at time t. Note that t can be any variable
and the domain T can be any interval. The stochastic error function ε(t) has
mean zero. We assume longitudinal data to expand the applicability. The j-th
measurement of subject i (tij , Yij ,Xij) for 1 ≤ i ≤ n and 1 ≤ j ≤ Ni, is a
sample from (t, Y (t),X(t)), where tij is the observed time, Yij is the observed

response of the ith subject at time tij and Xij = (X
(0)
ij , . . . , X

(d)
ij )> is the

corresponding observed covariate vector.
The observed covariates and responses are used for nonparametric estima-

tion of the coefficient functions β0, β1, . . . , βd. This can be achieved by sev-
eral nonparametric techniques. Local polynomial techniques are discussed in
Hoover, Rice, Wu and Yang (1998) and Fan and Zhang (1999), among others.
Huang, Wu and Zhou (2002) approximates the coefficient functions by spline
functions using B-spline bases, and Antoniadis, Gijbels and Verhasselt (2012)
use B-spline approximation in a variable selection context. Note that the op-
timal choice of the smoothing level for coefficient estimation need not be the
optimal choice for the hypothesis testing, for more on this note see Zhang and
Mei (2012) (p. 1945-1946).

It can be of interest to derive some conclusions about the shapes of the
coefficient functions. In this paper, we develop tests for monotonicity and
convexity. For example, a monotonically increasing coefficient of a time inde-
pendent predictor indicates that the effect of this predicator on the response is



Shape Testing in Varying Coefficient Models 3

increasing. This can be important in, among other fields, medical sciences. See
for example our study of schizophrenia patients (Sect. 8), where the ‘Severity
of Illness’ is modeled by a VCM with covariate the binary variable whether
the patient received a drug, with coefficients depending on time (with week as
unit of time). The general finding was that the drug improved the health of
the patients considerably. Since we are employing a VCM we also looked at
the behaviour of the drug coefficient which revealed additional information on
the evolution of the drug effect on the patients.

The inference question whether a coefficient function is constant already
received a lot of attention in the literature. To the best of our knowledge
there is yet no effective testing procedure for monotonicity and convexity in
varying coefficient models. In the context of univariate regression, methods
of estimation under a monotonicity constraint and testing for monotonicity
have been widely discussed, see Bowman, Jones and Gijbels (1998), Ghosal,
Sen and van der Vaart (2000),Wang and Meyer (2011) and references therein.
In the context of varying coefficient models, not much has been written on
this subject. However, Zhang, Mei and Wang (2013) extended the SiZer map
approach to varying coefficient models where the local polynomial estimation
technique is used, which reveals the statistically significant features of the
coefficient functions. The SiZer approach leads to a good explanatory tool, for
example for choosing the level of smoothness of each coefficient function.

We develop two testing procedures for monotonicity and convexity (concav-
ity) using the nice properties of B-splines. This framework allows us to estab-
lish theoretical support for the testing procedures. The first testing procedure
uses quadratic spline approximation and is a generalisation of the testing pro-
cedure developed by Wang and Meyer (2011). The second testing procedure
uses cubic spline approximation with a very intuitive test statistic, namely the
minimum of the estimated coefficient function over a certain grid. Then, the
hypothesis is rejected if the test statistic is significantly smaller than zero. It
will be noticed that the testing procedures are quite simple. In addition, they
can be applied to various testing problem settings. Moreover, we also develop
testing procedures for testing simultaneously different coefficient functions. A
side result of this work is that we have shown that the first few derivatives of
the B-spline estimator are uniformly consistent.

The remaining of the paper is presented as follows. In Sect. 2 we discuss the
flexible B-spline estimator (Huang, Wu and Zhou (2004)), which is followed by
a section on constrained spline estimation in VCMs, providing explanation on
how to impose monotonicity on a spline function. The testing procedures for
monotonicity are presented in Sect. 4, followed by the section on testing for
convexity (concavity). When there are several covariates in the model, it can
be of interest to test simultaneously the shape of different coefficient functions.
This is discussed in Sect. 6. We use Matlabi to illustrate the performances of

i The code is available from
https://www.dropbox.com/sh/dwdhuz7e6j459eu/AAAQ7lkBocy7ACM8bw8eHSkOa?dl=0



4 M. Ahkim et al.

the testing procedures on simulated data in Sect. 7, and to apply it to real
data in Sect. 8. Sect. 9 contains a short conclusion.

2 Unconstrained spline estimation in VCMs

The coefficient functions are estimated by spline functions through a B-spline
basis; for p = 0, 1, . . . , d, βp(t) ≈

∑mp,n

l=1 αplBpl(t; qp), where {Bpl(·; qp) : l =
1, . . . ,Kp,n+qp = mp,n} is the qpth degree B-spline basis with Kp,n+1 equidis-
tant knots ξp0, ξp1, . . . , ξpKp,n

in [0, 1]. Throughout we let Kn = maxpKp,n

which is allowed to tend to infinity as n increases. Moreover we write mp to
denote mp,n.

The B-spline estimator is obtained by minimizing the following expression
with respect to α = (α>0 , . . . ,α

>
d )>, where αp = (αp1, . . . , αpmp)> for p =

0, . . . , d,
n∑
i=1

1

Ni

Ni∑
j=1

(
Yij −

d∑
p=0

mp∑
l=1

X
(p)
ij Bpl(tij ; qp)αpl

)2
, (2.1)

or more compactly written

(Y −Uα)>W(Y −Uα). (2.2)

The definitions of the introduced notation are given in Appendix A. If (U>WU)
is invertible, the minimum of (2.2) is attained at

α̂ = (U>WU)−1U>WY. (2.3)

The B-spline estimate of β(t) is

β̂(t) = B(t)α̂ = (β̂0(t), . . . , β̂d(t))
>, with β̂p(t) =

mp∑
l=1

α̂plBpl(t; qp),

where B(t) is defined in Appendix A. Lemma 1 states that (U>WU) is in-
vertible with probability tending to one.

Lemma 1 (Huang et al. (2004)) Suppose Assumptions 1−3 and Assump-
tion 5 (in Appendix B) hold. The probability that (U>WU) is invertible tends
to 1, when n→∞.

Let Gq(Ξ) denote the space of spline functions of degree q with set of
knots Ξ. Let G = Gq0(Ξ0) × . . . × Gqd(Ξd), where Ξp are set of knots in
[0, 1] for p = 0, . . . , d. The sup-norm of a function is denoted by ‖ · ‖∞. For
a g∗ = (g∗0 , . . . , g

∗
d)> ∈ G, we define ‖β − g∗‖∞ := maxp ‖βp − g∗p‖∞. Let

ρn = infg∗∈G ‖β − g∗‖∞. Throughout we work with equidistant knots and
assume that limn→∞ ρn = 0, i.e., the unknown function β can be uniformly
approximated by spline functions of certain fixed degrees as the number of sub-
jects n and the number of knots increases. For example ρn = O(K−2n ) when the
coefficients β0, . . . , βd have bounded second derivatives and G is the product



Shape Testing in Varying Coefficient Models 5

space of spline functions of degree 3 such that limn→∞minp=0,...,dKp,n = ∞
(Schumaker (2007), Theorem 6.27).

We call the estimator β̂(·) uniform consistent if ‖β̂−β‖∞ = oP (1). Under

certain conditions we have the uniform consistency of β̂ and its derivatives.
The uniform consistency for B-spline estimation of the functions themselves
is available in the literature (see e.g.Huang et al. (2004)), but the uniform
consistency result for the derivative functions was not available up to now.
Denote by Bl ([0, 1]) the set of real functions with domain [0, 1] who have a
bounded l-th derivative.

Theorem 1. Suppose βp(·) ∈ Bqp+1([0, 1]). Set

r2n =
K2
n

n2

n∑
i=1

(
1

Ni

(
1− 1

Kn

)
+

1

Kn

)
.

Then, under Assumptions 1−5,

‖β̂(v)
p − β(v)

p ‖∞ = OP (Kv
nρn +Kv−qp−1

n +Kv
nrn),

for v = 0, . . . , qp, where β
(v)
p (·) is the v-th derivative of βp(·).

The consistency of the testing procedures is based on the approximation
power given in Theorem 1, which is proved in Online Resource (see Section 2

therein). It follows immediately from Theorem 1 that β̂(·) and its derivatives
are also uniform consistent.

Corollary 1. Suppose βp(·) ∈ Bqp+1([0, 1]) for p = 0, . . . , d. Then, under
Assumptions 1−5,

‖β̂
(v)
− β(v)‖∞ = OP (Kv

nρn +K
v−minp=0,...,d qp−1
n +Kv

nrn),

for v = 0, . . . ,minp=0,...,d qp.

3 Constrained spline estimation in VCMs

The derivative of a spline function g(t) =

m∑
j=1

γjBj(t; q) having distance 1
K

between the equidistant knots, is (de Boor (2001), page 116)

g′(t) = K

m−1∑
j=1

∆γj+1Bj(t; q − 1), (3.1)

where ∆γj+1 = γj+1−γj . In the lemma below it is established that when q = 2,
monotonicity of g(t) in the knots ξ0, · · · , ξK is equivalent to monotonicity on
the whole domain [ξ0, ξK ].

Lemma 2 If q = 2, then g′(t) ≥ 0 for all t ∈ [0, 1] if and only if g′(ξi) ≥ 0
for i = 0, 1, . . . ,K.
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Proof. The derivative of a quadratic spline is piecewise linear. Therefore, the
derivative is positive if and only if it is positive at the knots.

�

3.1 Constrained splines

In Sect. 4 we describe our testing procedures for the hypothesis that a certain
coefficient function is increasing (decreasing). The estimation of the null dis-
tribution is based on a constrained estimation of the relevant function. Below
we discuss the constraints on the B-spline coefficients which need to be added
to obtain an increasing (decreasing) estimator.

3.1.1 Quadratic splines

The derivative of a quadratic spline function g(t) =
∑m
j=1 γjBj(t; 2) with B-

spline basis B1(·; 2), . . . , Bm(·; 2) which are based on the equidistant knots

ξ0, . . . , ξK is a linear spline function g′(t) = K
∑m−1
j=1 ∆γj+1Bj(t; 1) with B-

spline basis B1(·; 1), . . . , Bm−1(·; 1). Define the matrix S ∈ IR(K+1)×(K+2)

which consists of B-spline derivatives at the knots; Sij = B′j(ξi−1; 2). By
Lemma 2, the function g is increasing if and only if

Sγ ≥ 0 ∈ IRK+1, (3.2)

where γ = (γ1, . . . , γm)>. When the objective is to estimate an increasing
function, we can minimize (2.1) under the constraint (3.2) to obtain the con-
strained estimator α̂cs.

3.1.2 Cubic splines

Unlike for quadratic spline estimation where linear constraints at the knots can
impose monotonicity, for cubic spline estimation we are required to impose
quadratic constraints at the knots. This is described in Section 1 in Online
Resource. We obtain the constrained cubic spline estimator α̂cs by minimizing
(2.1) under the corresponding constraints given in Online Resource. We use
the same notation for the constrained quadratic spline estimator when there
is no ambiguity.

3.2 Selection of number of knots

Here, the B-spline estimator is attained by fixing the degree vector and al-
lowing only the knot vector to vary. We resolve to a cross validation method
to obtain a desired knot vector (K0,n, . . . ,Kd,n). We delete subject i with all
its repeated measurements from the original data to obtain the training data
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with which we determine the B-spline estimator α̂−i. This is executed for all
the subjects i = 1, . . . , n so that we can compute the cross validation score

CV (K0,n, . . . ,Kd,n) =

n∑
i=1

‖Yi −Uiα̂
−i‖22. (3.3)

The desired (K0,n, . . . ,Kd,n) is the minimizer of (3.3). This approach is called
leave-one-subject-out cross validation (Huang et al. (2004) and references therein).
One can also resolve to the v-fold cross validation method. Here we partition
the data in equal parts (with respect to the subjects) P1, P2, . . . , Pv where all
the information of one subject is contained in only one part. Then a training
data is formed by deleting one part Pi with which we determine the B-spline
estimator α̂−Pi and compute the cross validation score for the deleted part.
The total cross validation score which we seek to minimize is

CVv(K0,n, . . . ,Kd,n) =

v∑
i=1

‖YPi
−UPi

α̂−Pi‖22. (3.4)

3.3 Conditional variance estimation

Let X = {(tij ,Xij) : i = 1, . . . , n, j = 1, . . . , Ni}. Conditioning on X , we
obtain by (2.3)

Cov(α̂ |X ) = (U>WU)−1U>WVWU(U>WU)−1, (3.5)

where the only unknown is Cov(ε) = V = diag(V1, . . . ,Vn), and Cov(εi) =
Vi with εi = (εi1, . . . , εiNi

)>. More explicitly

(Vi)jj′ = Cov(εi(tij), εi(tij′)), 1 ≤ j, j′ ≤ Ni. (3.6)

Huang et al. (2004) estimate Cov(εi(tij), εi(tij′)) by a tensor product spline
on [0, 1]× [0, 1] (Chapter 12, Schumaker (2007)), that is

Cov(εi(t), εi(s)) ≈
mε∑
k,l=1

uklBk(t, qε)Bl(s, qε), t, s ∈ [0, 1], t 6= s, (3.7)

where we use a fixed set of B-splines {B1(·; qε), B2(·; qε), . . . , Bmε(·; qε)} with
degrees qε and equidistant knots in [0, 1], and let ukl = ulk. We impose
the approximation in (3.7) only when t 6= s, since the covariance function
Cov(εi(t), εi(s)) is not necessarily continuous at t = s, that is

lim
s→t

Cov(εi(t), εi(s)) 6= Cov(εi(t), εi(t)),

see Diggle and Verbyla (1998) and Diggle (1988) for example. Moreover,
E(εi(tij)εi(tij′)) = Cov(ε(tij), ε(tij′)), therefore we could estimate the coeffi-
cients ukl by finding the minimizer of

n∑
i=1

Ni∑
j=1

Ni∑
j′=j+1

εi(tij), εi(tij′)− mε∑
k,l=1

uklBk(tij ; qε)Bl(tij′ ; qε)

2

(3.8)



8 M. Ahkim et al.

if the error terms εi(tij) were observed. Since they are not observed, we replace

them by the residuals ε̂i(tij) = Yij − X>ijβ̂(tij) to obtain the minimizer ûkl
(k, l = 1, . . . ,mε).

For the estimation of σ2(t) = Cov(ε(t), ε(t)) we use the approximation
σ2(t) ≈

∑
k vkBk(t; qε). As before, we minimize

n∑
i=1

Ni∑
j=1

(
ε2i (tij)−

mε∑
k=1

vkBk(tij ; qε)

)2

(3.9)

conditioned by vk ≥ 0 to obtain v̂k, k = 1, . . . ,mε, and define the variance
estimate σ̂2(t) =

∑mε

k=1 v̂kBk(t; qε). Under mild conditions, this yields a con-
sistent estimator for the covariance function (Huang et al. (2004)).

4 Monotonicity tests in VCM

We test whether βk (k ∈ {0, . . . , d}) is increasing. Hence, the hypothesis

H0 : β′k(t) ≥ 0 for all t in [0, 1], versus ¬H0. (4.1)

When qk = 2 we use the idea of Wang and Meyer (2011) who worked with
quadratic splines to test monotonicity in the univariate case.

To test whether βk(·) is decreasing we use the varying coefficient model
where we replace X(k) by −X(k). Then, we test whether the corresponding
coefficient, which is equal to −βk(·), is increasing.

4.1 Quadratic splines approximation

For quadratic spline functions, the monotonicity constraint is translated into
a linear constraint on the B-spline coefficients (see Sect. 3.1.1). Define C =

(01,S,03) where 01 ∈ IR(Kk,n+1)×
∑k−1

j=0 mj ,03 ∈ IR(Kk,n+1)×
∑d

j=k+1mj are ma-
trices with entries 0 and S ∈ IR(Kk,n+1)×(Kk,n+2) is the matrix of deriva-
tives at the knots of B-splines corresponding to the coefficient βk(·): Sij =

B′kj(ξk(i−1); 2), see (3.2). Hence, the estimate β̂k is increasing if and only if

Cα̂ ≥ 0.

In this paper we consider the simple test statistic min(Cα̂). For other possible
ways to construct test statistics see e.g. Silvapulle and Sen (2005). Using the
test statistic min(Cα̂) the pseudo algorithm to test hypothesis H0 is as follows.

1. Determine the unconstrained estimator α̂, and calculate smin, the mini-
mum of the slopes at the knots; smin = min(Cα̂). This is the test statistic.

2. If smin is non-negative, we do not reject H0.
3. If smin < 0, determine the distribution of smin under the null hypothesis

and calculate the α percentile (see below) Qα.
4. If smin is smaller than the α percentile, then we reject H0.

Below we discuss two approaches to determine the null distribution of smin.
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4.1.1 Bootstrap method

We use a bootstrap method to determine the null distribution of smin. We
start with setting residuals

ε̂ij = Yij −
d∑
p=0

X
(p)
ij β̂p(tij)

where β̂(·) is the unconstrained B-spline estimator and let

Y psij =

d∑
p=0

X
(p)
ij β̂

cs
p (tij) + ε̂ij for i = 1, . . . , n and j = 1, . . . , Ni

be a set of pseudo responses under the null hypothesis with β̂
cs

(·) = (β̂cs0 (·), . . . , β̂csd (·))>
the constrained estimate putting the constraint on βk. The bootstrap proce-
dure to determine the null distribution of smin goes as follows.

– Step 1: Resample n subjects (with all its repeated measurements) with
replacement from

{(Y psij , Xij , tij) : i = 1, . . . , n, j = 1, . . . , Ni}

to obtain the bootstrap sample {(Y ps∗ij , X∗ij , t
∗
ij) : i = 1, . . . , n, j = 1, . . . , N∗i }

– Step 2: Repeat the above sampling procedure B times.
– Step 3: Obtain the test statistic s∗min from each bootstrap sample and derive

the empirical distribution based on all s∗min.

– Step 4: Take the α percentile Q̂α of the empirical distribution in Step 3
and reject the null hypothesis if smin < Q̂α, else do not reject the null
hypothesis.

4.1.2 Multivariate normal method

This approach is useful when we have normal errors and is also considered in
Wang and Meyer (2011). Assume normal errors ε = (ε1, . . . , εn)>

ε ∼ N(0,V). (4.2)

We need the function Pr(smin ≤ r), r ∈ IR. Since E(Y|X ) ≈ Uα and smin =
min(Cα̂), we have that Cα̂ is, conditioned on X , approximately normal with
mean Cα and covariance

Σ = C(U>WU)−1U>WVWU(U>WU)−1C>. (4.3)

We obtain the expression

Pr(smin ≤ r) = 1−
∫
· · ·
∫
{z|z−r1≥0}

φ(z; Cα,Σ)dz, (4.4)
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where z,1 = (1, 1, . . . , 1)> ∈ IR(Kk,n+1)×1, and φ(· ; Cα,Σ) denotes the mul-
tivariate normal density function with mean Cα and covariance Σ. We can
compute (4.4) only if α and V are known. It is clear that we can only approx-
imate α and V. The suggestion is to use α̂cs, the constrained estimator, for
approximating α, and the unconstrained α̂ for estimating V as in Sect. 3.3; if
we would use α̂cs instead, it would lead to a biased estimate for V under the
alternative hypothesis. Therefore, we use

PCα̂cs,Σ̂(r) = 1−
∫
· · ·
∫
{z|z−r1≥0}

φ(z; Cα̂cs, Σ̂)dz, (4.5)

where

Σ̂ = C(U>WU)−1U>WV̂WU(U>WU)−1C>. (4.6)

The estimated α percentile is determined as follows

Q̂α = inf{r | PCα̂cs,Σ̂(r) ≥ α}. (4.7)

4.1.3 Consistency of the test for quadratic splines

The following theorem states that the type II error tends to 0 when the coef-
ficient function function is strictly increasing.

Theorem 2. Assume that Knρn + Kqk
n + Knrn = o(1). Under Assumptions

1−5, if inft∈[0,1] β
′
k(t) = δ > 0, then P (smin < min(0, Q̂α)) = o(1).

The proof of this theorem can be found in Section 3 in Online Resource.

4.2 Cubic splines approximation

For cubic splines we look at the minimum of the derivative of

β̂′k(t) = Kk,n

mk−1∑
j=1

∆α̂k(j+1)Bj(t; qk − 1)

for t ∈ [0, 1], see equation (3.1), where qk = 3. The degrees for other coefficient
functions can be arbitrary. Hypothesis H0 holds if and only if β′k(·) is non-
negative on its domain. In practice we work with a grid G of [0, 1], say G =

{0, 0.001, 0.002, · · · , 1}. Then we determine the minimum of β̂k(·) over the grid

G which will be the test statistic, i.e. the test statistic is β̂k(c) for gridpoint c.
When the test statistic is nonnegative we do not reject H0. In the other case
we want to measure how plausible the negative test statistic is. Therefore we
look at the α percentile of the null distribution of β̂k(c). The pseudo algorithm
for this approach is as follows.

1. Compute s = ming∈G β̂
′
k(g)

2. If s ≥ 0, do not reject H0.
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3. If s < 0, choose a c ∈ G such that s = β̂′k(c) < 0. Determine the null
distribution of s (see below) and check whether s is smaller than the α
percentile Q̃α .

4. If s < Q̃α, reject H0, else do not reject H0.

We are left with determining Q̃α in Step 3, hence it suffices to find the null
distribution of s.

Note that we could have used the same approach when working with
quadratic splines. However, in that case we know that the minimum over the
grid G of the linear spline function β̂′k(·) is attained at a knot. This fact makes
that this approach is not appropriate when we use quadratic spline estimation.

4.2.1 Bootstrap method

The bootstrap method to determine the null distribution of s is similar as
before (Sect. 4.1.1).

4.2.2 Asymptotic normality

Another approach to estimate the null distribution is motivated by the asymp-
totic normality of β̂′k(t). Define

b(t; qk− 1) = (B1(t; qk − 1), B2(t; qk − 1), B3(t; qk − 1), · · ·Bmk−1(t; qk − 1))
>

(4.8)
and let D ∈ IR(mk−1)×dim denote the matrix such that

Dα̂ = (∆α̂k2, ∆α̂k3, · · · , ∆α̂kmk
)>.

Hence, we need to find the null distribution of β̂′k(c) = Kk,nb(c; qk − 1)>Dα̂.
This leads to the following result, for which the proof is given in Section 4 in
Online Resource.

Theorem 3. Under Assumptions 1−6 in Appendix B, where βp(·) has a

bounded fourth derivative with qp ≥ 3 for all p. Suppose qk = 3 and limn
K9

n

nmaxiNi
=

∞, then

β̂′k(c)− β′k(c)√
Var

(
β̂k(c)− β′k(c)

) d−→ N(0, 1) as n→∞. (4.9)

We can use this asymptotic normality result if we can estimate the variance
and β′k(c). For the variance, we have

Var
(
β̂k(c)− β′k(c)

)
= Var(Kk,nb(c; qk−1)>D(α̂−E(α̂)) = K2

k,nb(c; qk−1)>

D(U>WU)−1U>WVWU(U>WU)−1D>b(c; qk − 1) ∈ IR. (4.10)
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We can estimate V by V̂ as it is described in Sect. 3.3 to obtain the following
estimate of the variance (4.10)

v̂k = K2
k,nb(c; qk−1)D(U>WU)−1U>WV̂WU(U>WU)−1D>b(c; qk−1)>.

(4.11)
We now have an estimate for the variance, but we still need to estimate

β′k(c) to obtain the (estimated) null distribution of β̂′(c). Therefore we take
Kk,nb(c; qk − 1)Dα̂cs as a good approximation for β′k(c), where α̂cs is the
constrained cubic spline estimator.

The estimated α percentile Q̃α is the α percentile of a N(Kk,nb(c; qk −
1)Dα̂cs, v̂k).

4.2.3 Consistency

Suppose we estimate V by σ̂2IN where

σ̂2 =
1

N − dim
(Y −Uα̂)>(Y −Uα̂),

where dim =
∑d
p=0mp.

When there is correlation, even with this misspecified estimator of V, Theo-
rem 4 says that as n increases to infinity we correctly reject the null hypothesis
with probability tending to 1 when the coefficient βk is strictly decreasing in
a point in the domain. Also, when βk(·) is strictly increasing we do not reject
the null hypothesis with probability tending to 1.

Theorem 4. We construct a grid Gn which depends on n, such that minGn =
0, maxGn = 1 and the supremum distance between two consecutive grid points
tends to zero as n → ∞. Under Assumptions 1-5 and the condition Knρn +

K−qkn +Knrn = o(1) such that limn
K3

n

n = 0 we have the following:

1. Suppose inft∈[0,1] β
′
k(t) = δ < 0, then lim

n→∞
P (s ≥ min(0, Q̃α)) = 0.

2. Suppose inft∈[0,1] β
′
k(t) = δ > 0, then lim

n→∞
P (s < min(0, Q̃α)) = 0.

The proof of this theorem is deferred to Section 5 in Online Resource.
Theorem 4 states the effectiveness of this method under certain conditions
when we consider the space S = {βk(·) ∈ B4([0, 1])| inft∈[0,1] β

′
k(t) 6= 0}.

This function space can be seen as the space of smooth functions excluding
increasing functions with a flat part.

5 Testing convexity

It is also of interest to test for convexity or impose convexity when estimating
a coefficient function. We want to test the hypothesis that βk(·) is convex,
hence

H1 : β′′k (t) ≥ 0 for all t in [0, 1], versus ¬H1. (5.1)
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The testing procedures are analogous to these in Sect. 4, except for the obvious
adjustments since we now work with the second derivative. Moreover, the con-
sistency results in Sect. 4 are carried over under the appropriate adjustments
of the conditions.

5.1 Cubic spline

When qk = 3, the second derivative of the B-spline estimate β̂k(·) is a linear

spline function. The second derivative of β̂k(·) is nonnegative if and only if (as
in (3.2))

Tαk ≥ 0, (5.2)

where T ∈ IR(Kk,n+1)×(Kk,n+2) is the matrix of second derivatives at the knots
of B-splines corresponding to the coefficient βk(·): Tij = B′′kj(ξk(i−1); 3). Define

H = (01,T,03) where 01 ∈ IR(Kk,n+1)×
∑k−1

j=0 mj ,03 ∈ IR(Kk,n+1)×
∑d

j=k+1mj

are matrices with entries 0. Then we proceed as in Sect. 4.1.1 using the test
statistic min(Hα̂). Moreover, the estimator α̂cs is obtained under constraint
(5.2).

5.2 Quartic spline

When qk = 4 we use the bootstrap method as in Sect. 4.2.1. For the asymptotic
normality approach (Sect. 4.2.2) we need the α percentile of N(K2

k,nb(c2; qk−
2)D2α̂

cs, v̂2k) denoted by Q̂2,α, where c2 = argmint∈G β̂k(t) and D2 is the
matrix which takes the second order differences of α̂cs and

v̂2k = K4
k,nb(c2; qk − 2)D2(U>WU)−1U>WV̂WU(U>WU)−1

D>2 b(c2; qk − 2)>. (5.3)

The constrained estimator α̂csk is obtained as in Sect. 3.1.2 since we need to
constrain a quadratic spline function. The only difference is that we work with
second order differences because we work with the second order derivative of
a quartic spline function.

6 Simultaneous testing

We address how to conduct a simultaneous shape test, i.e. test simultaneously
whether certain coefficient functions are monotone and/or convex. Suppose we
want to test for b shapes (monotonicity and/or convexity). For example, we test
whether βi1(·) is monotonic, βi2(·) is convex,. . ., βib(·) is convex where i1, . . . , ib
is contained in {0, 1, . . . , d}. For simplicity we require that i1, i2, . . . , ib is a
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mutually different sequence. Let s denote the column vector with length b of
the corresponding test statistics. Thus for the example above

s = (min
t∈G

β̂′i1(t),min
t∈G

β̂′′i2(t), . . . ,min
t∈G

β̂′′ib(t))>,

for a suitable grid G ⊂ [0, 1] .
The first way is to test for the relevant coefficient functions based on the

Bonferroni correction. Thus, we do the test for each relevant coefficient func-
tion with level α/b. We do not reject the null hypothesis if all individual
tests give a positive answer, i.e. all individual null hypotheses are not rejected.
When we use cubic splines for testing monotonicity (see Sect. 4.2.3) and quartic
splines for testing convexity (see Sect. 5.2), the Bonferroni correction method
yields a consistent multiple test when we restrict to the appropriate space.

Otherwise, it is quite straightforward to use the bootstrap approach as
before (Sect. 4.1.1 and Sect. 4.2.1). If all the components of s are nonnegative,
then we do not reject the null hypothesis. In the other case, we use a bootstrap
method to determine how plausible such a test statistic is observed under the
null hypothesis. As before we start with setting residuals

ε̂ij = Yij −
d∑
p=0

X
(p)
ij β̂p(tij)

where β̂ is the unconstrained B-spline estimator and let

Y psij =

d∑
p=0

X
(p)
ij β̂

cs
p (tij) + ε̂ij for i = 1, . . . , n and j = 1, . . . , Ni

be a set of pseudo responses under the null hypothesis with β̂
cs

(·) = (β̂cs0 (·), . . . , β̂csd (·))>
the constrained estimate which is obtained by adding the appropriate con-
straints. Thus, for the example above we put the monotonicity constraint on
βi1(·), the convexity constraint on βi2(·), . . ., the convexity constraint on βib(·).
Then the bootstrap procedure to determine whether we do not reject the null
hypothesis is as follows.

– Step 1: Resample n subjects with replacement from

{(Y psij , Xij , tij) : i = 1, . . . , n, j = 1, . . . , Ni}

to obtain the bootstrap sample {(Y ps∗ij , X∗ij , t
∗
ij) : i = 1, . . . , n, j = 1, . . . , N∗i }

– Step 2: Repeat the above resampling procedure B times.
– Step 3: Obtain the test statistic vector from each bootstrap sample and

derive the center of mass µM and the sample covariance ΣM of all test
statistic vectors obtained from all the bootstrap samples. Then determine
the sample distribution of all Mahalanobis distances.

– Step 4: Take the (1 − α) percentile M1−α of the Mahalanobis distances
obtained in Step 3 and reject the null hypothesis if (s−µM )>ΣM (s−µM ) >
M1−α, else do not reject the null hypothesis.
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7 Simulation examples

In this section we evaluate the testing procedures on simulated data with signif-
icance level α = 0.05. We assume a longitudinal model with mean zero errors.
Let the number of individuals be n, the number of repeated measurements for
individual i is Ni which is randomly generated from {b3n/10c, . . . , b4n/10c}
for i = 1, . . . , n. For each individual i, the time points tij , j = 1, . . . , Ni are
equidistant in [0, 1] and blurred by adding a random variable with distribu-
tion N(0, 5 · 10−5). For the error structure we consider two settings. In the
first setting ε(tij) ∼ N(0, 0.62) and in the second ε(tij) ∼ Un[−1.73, 1.73]. In
both settings, the error terms from different subjects are independent and the
intrasubject correlation is

Corr(ε(tij), ε(tik)) = 0.2, 1 ≤ i ≤ n, 1 ≤ j, k ≤ Ni, j 6= k. (7.1)

Throughout the simulations, the signal-to-noise ratio (SNR) is around 7. The
SNR is defined by

Var
(
β0(t) +

∑d
p=0X

(p)(t)βp(t)
)

Var (ε(t))
.

In practice the SNR is estimated by its sample version. Moreover, the simula-
tion results are based on 200 samples. First we study the performances for the
test whether a certain coefficient function is increasing, followed by a study for
testing the convexity of one coefficient function and for simultaneous testing.

7.1 Monotonicity tests

We consider n = 50 and n = 100. We use coefficient functions β0(t) = 0.25 +
2t, β1(t) = f(t), β2(t) = −0.5 + 10(t − 0.5)2. The hypothesis (4.1) is tested
for β1 using several functions f . We consider

– f1,a(t) = −2 + 2(1 + t− a exp(−50(t− 0.5)2));
– f2(t) = 1.1;
– f3(t) = 5(t− 0.25)2;
– f4(t) = 5(t− 0.25)2+.

The function f1,a(·) is taken from Bowman et al. (1998). This function is
strictly monotone for a = 0.15, whereas a dip appears when a = 0.30 and
more profoundly when a = 0.45. The function f3(·) is a parabola which is
strictly decreasing on [0, 0.25] and strictly increasing on [0.25, 1]. Wang and
Meyer (2011) used f4(·), which is the same as the function f3(·) but is zero
for t ≤ 0.25, to show that certain testing procedures reject too often the null
hypothesis in (4.1) when the increasing function has flat parts.

We employ the time dependent bivariate vector(
X(1)(t)
X(2)(t)

)
∼ N(0,Σ(t)), Σ(t) =

(
1 1/(4 + t)

1/(4 + t) 1

)
. (7.2)
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f(·), n Characteristics Normal errors Uniform errors

of f(·) quadratic cubic cubic quadratic cubic cubic
splines splines

2 3 (B) 3 (AN) 2 3 (B) 3 (AN)

f1,0.15(·), 50 increasing 0.045 0.010 0.045 0.025 0.015 0.025
f1,0.15(·), 100 function 0.030 0.005 0.020 0.015 0.005 0.010

f1,0.3(·), 50 non-increasing 0.445 0.340 0.900 0.450 0.340 0.955
f1,0.3(·), 100 with small dip 0.945 0.990 1.000 0.965 0.990 1.000

f1,0.45(·), 50 non-increasing 0.910 0.920 1.000 0.910 0.940 1.000
f1,0.45(·), 100 with large dip 1.000 1.000 1.000 1.000 1.000 1.000

f2(·), 50 constant 0.075 0.045 0.335 0.055 0.040 0.385
f2(·), 100 function 0.050 0.045 0.705 0.055 0.065 0.625

f3(·), 50 non-monotonic, 0.510 0.545 0.600 0.480 0.545 0.595
f3(·), 100 parabolic 0.875 0.935 1.000 0.835 0.950 1.000

f4(·), 50 increasing 0.050 0.045 0.300 0.045 0.050 0.265
f4(·), 100 but with flat part 0.020 0.045 0.530 0.035 0.040 0.515

Table 1: The rejection rates for the hypothesis that β1(·) is increasing are stated based
on 200 simulations. The functions in the most left column are consecutively substituted in
β1(·). In the case of cubic splines we differentiate between the bootstrap method (denoted
by B) and the method based on asymptotic normality (AN).

We set for the cubic spline testing procedure K0,50 = K1,50 = K2,50 = 4
with q0 = q1 = q2 = 3, whereas for the quadratic spline testing procedure
K0,50 = K2,50 = 4,K1,50 = 5 with q0 = q2 = 3, q1 = 2. The number of knots
are chosen in such a way that the number of B-splines for each coefficient is
the same irrespective of the degree we use.

The rejection rates are collected in Table 1. The quadratic spline testing
procedure is based on the bootstrap method (Sect. 4.1.1) with bootstrap size
equal to 200. For the cubic spline approach we look at both the bootstrap
method and the method based on asymptotic normality (Sect. 4.2.1-4.2.2)
where we restrict the grid G to [0.05, 0.95] using 100 equidistant grid points.
In the asymptotic normality approach (AN) there is the obstacle of estimating

the covariance (see (4.10)). Note that Theorem 4 holds when we replace V̂ in
(4.10) by σ̂2IN . The rejection rates in the asymptotic normality approach
where we use the true covariance matrix are very close (differences of less than
1%) to the rejection rates using the (misspecified) covariance σ̂2IN , therefore
we only report the results based on σ̂2IN .

From the results in Table 1 we see that the bootstrap outcomes (B) are com-
parable to each other and consistent as n increases, i.e. the rejection rates when
the function is not increasing (f1,0.3(·), f1,0.45(·) and f3(·)) tend to 1 while the
rejection rate is about 0.05 (the testing level, as the sample size increases) for
increasing functions (f1,0.15(·), f2(·) and f4(·)). The asymptotic normality ap-
proach (AN) rejects too often for increasing functions which are not contained
in S (see Sect. 4.2.3), i.e. the constant function and the increasing function
with a flat part (bold numbers in Table 1). This seems to be inherent to the
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approach, since the simulations for a much bigger n = 500 reveal extremely
high rejection rates (0.995 for the constant function and 1 for the increasing
function with a flat part). This is fully in line with the theoretical result in
Sect. 4.2.3, in which the consistency of the AN testing procedure is established
but for this excluding functions that have flat parts was needed. However, for
functions in S (f1,0.15(·), f1,0.30(·), f1,0.45(·) and f3(·)) the asymptotic normal-
ity approach performs better than the bootstrap methods. We could expect
this bad performance for functions with flat parts since the AN approach is
based on the pointwise asymptotic normality result given in Theorem 3, and
for increasing functions with flat parts the test statistic s is attained at dif-
ferent grid points while the AN approach assumes the grid point where the
minimum is attained to be unique. Furthermore, the results for normal er-
rors and uniform errors are comparable. The first two rows of Table 1 suggest
that the test level is not reached as n increases. For the AN approach this
seems to be in contradiction with result (4.9) which uses the true coefficient
function and the true variance with increasing number of knots. However, we
estimate both the coefficient function and the variance with fixed number of
knots (which do not increase as n increase). By our remark at the end of
the previous paragraph, the ‘problem’ seems to lie with the estimation of the
coefficient function (under the null hypothesis). The results of the bootstrap
approach which uses the same coefficient function estimation agrees with this
conclusion.

Therefore, the recommendation is to use the AN approach when it is known
that the true coefficient function has no flat parts. Otherwise it is better to
use the bootstrap approaches.

7.2 Convexity and simultaneous tests

In addition, we test the convexity of β0(t) = 0.25 + 2t in first instance and
β1(·) = f1,0.45(·) in second instance, using quartic splines and the bootstrap
method. To illustrate the effectiveness of our simultaneous approach, we also
test whether β0(·) and β2(·) are both increasing using cubic splines and the
bootstrap method. Table 2 contains the results where we have fixed the knots
K0,50 = K1,50 = K2,50 = 4. As before, we see that the powers tend to one and
we do not reject too often when the null hypothesis holds.

8 Real data application

We consider data from the National Institute of Mental Health Schizophrenia
Collaborative Study. Specifically, we study Item 79, ‘Severity of Illness’, of the
Inpatient Multidimensional Psychiatric Scale (IMPS; Lorr and Klett (1966)).
Item 79 was originally measured on a numerical scale ranging from 1 (normal,
not at all ill) to 7 (among the most extremely ill). In this study, most patients
were measured at weeks 0, 1, 3 and 6; however, a few patients were additionally



18 M. Ahkim et al.

Hypothesis n = 50 n = 100 n = 150

β0(·) is convex (case one) 0.04 0.025 0

β1(·) is convex (case one) 0 0.47 1

β0(·) and β2(·) are increasing (case two) 1 1 1

β0(·) and β2(·) are increasing (case three) 0.265 0.915 0.955

Table 2: The rejection rates stated are based on 200 simulations with normal errors. These
results are based on the bootstrap method using cubic splines for monotonicity testing
and quartic splines for convexity testing. Three cases are considered. In each case β0(t) =
0.25 + 2t, and further in case one β1(t) = f1,0.45(t), β2(t) = −0.5 + 10(t − 0.5)2; for
case two we take β1(t) = f1,0.30(t), β2(t) = −0.5 + 10(t − 0.5)2; for case three we use
β1(t) = −0.5 + 10(t− 0.5)2, β2(t) = f1,0.30(t).
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Fig. 8.1: Schizophrenia data. The full lines are the cubic spline estimations
(i.e. the degree vector is (3, 3)) of the coefficients β0(·) and β1(·), the dashed
lines are the estimations when the degree vector is (3, 2). (a) contains the
estimations of β0(·), and (b) the estimations of β1(·).

measured at weeks 2, 4 and 5. The n = 437 patients were randomly assigned
to either receive a drug or a placebo. The data are available in R (Package
‘vcrpart’). Previously, these data were studied by Hedeker and Gibbons (1997)
who used a mixed-effects probit regression model to model the changes of the
‘Severity of Illness’ measurements. Here, we study the changing of Item 79
(= Y ) with the VCM

Y (week) = β0(week) + β1(week)Drug + ε(week), (8.1)

Drug is a binary variable where Drug = 1 denotes a patient who received
the drug, otherwise the patient received a placebo. The number of knots are
determined by a 4-fold cross validation where the possible number of knots
varies from 1 to 8. This yields the knot vector (1, 1) for both the degree vectors
(3, 3) and (3, 2). As for the degree vector (2, 3), the knot vector obtained is
(2, 1). In Figure 8.1 we depict the cubic spline estimators for β0(·) and β1(·)
(the solid curves in respectively Figures 8.1(a) and (b)). We also present, as
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Fig. 8.2: Schizophrenia data. The mean fits from model (8.1) are shown of the
placebo group and the drug group. The squares and triangles are the mean
Item 79 measurements at weeks 0, 1, 3 and 6, of the placebo group and drug
group, respectively.

dashed curves, the spline estimators when using the degree vector (2, 3). The
question of interest is how the drug affects the illness of the patients, that is the
coefficient β1(·). A negative β1(·) which is decreasing proves that the drug is
effective. The full line in Figure 8.1(b) suggests that such is the case. Moreover,
from Figure 8.1(b) the drug effect drops quickly to reach a steady effect of −1
from week 3 onwards. Figure 8.1(a) shows an overall mildly decreasing trend
for the baseline coefficient function β0(·), revealing a little improvement of the
illness over time (in weeks).

Figure 8.2 contains the mean fits, i.e. β̂0(week) + β̂1(week)Drug, for the
placebo group and the drug group. We see that the varying of mean Item 79
measurements are well described by model (8.1) for both groups.

Table 3 contains the results of the monotonicity tests. The asymptotic
normality results are included for completeness. However, as we have concluded
in the end of Sect. 7, we base our judgments on the bootstrap approach. For
test level 0.10 we reject the hypothesis that β0(·) is increasing, moreover, the
high p-values for the decreasing hypothesis indicates that β0(·) is decreasing.
For β1(·) we totally reject the hypothesis that it is increasing. For cubic splines
we do not reject the hypothesis that β1(·) is decreasing. On contrary is the
result for quadratic splines, because the cubic fit is monotonically decreasing
while the quadratic fit is not from week 4 onwards (see Figure 8.1(b)). This
discrepancy can be explained by noting that very few measurements were taken
on weeks 4 and 5.
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Hypothesis p-values

2 3 (B) 3 (AN)

β0(·) is increasing 0.08 0.05 0.21
β0(·) is decreasing 0.69 0.65 0.50

β1(·) is increasing 0.00 0.00 0.02
β1(·) is decreasing 0.03 0.70 0.35

Table 3: The p-values concerning the Schizophrenia data with bootstrap size
B = 500. In the case of cubic splines we differentiate between the bootstrap
method (denoted by B) and the method based on asymptotic normality (AN).

9 Conclusion and discussion

In this paper we presented two approaches for (simultaneous) shape testing in
varying coefficient models. We showed in simulation examples that in general
the bootstrap approach is consistent and yields the best results. As an applica-
tion we modeled the ‘Severity of Ilness’ measurements from the Schizophrenia
data by a varying coefficient model with covariate a binary variable which in-
dicates whether the patient received a drug, and where the coefficients depend
on the week number. Our interest has been the drug coefficient and whether
it is decreasing, which would reveal how affective the drug is. It turned out
that the drug coefficient is negative and mainly monotonically decreasing as
the age increases.

Varying coefficient models are also applied in other contexts, in particular
in the generalized linear models context and in survival analysis (see Fan
and Wenyang (2008) for an overview). It should be noted that the bootstrap
approach is quite universal because one mainly needs an estimation of the
B-spline coefficients which satisfies the null hypothesis, i.e. one only needs to
impose the relevant constraints on the B-spline coefficients.

Appendix A Notation

In this paper two submultiplicative matrix norms are considered. For a real ma-

trix A ∈ IRn1×n2 , ‖A‖2 denotes the Frobenius norm: ‖A‖2 =
√∑n1

i=1

∑n2

j=1 A2
ij .

The norm ‖ · ‖∞ is defined by ‖A‖∞ = maxi=1,...,n1

∑n2

j=1 |Aij |. Further, we
use the notation
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Yi = (Yi1, . . . , YiNi)
> Y = (Y1, . . . ,Yn)>

B(t) =

B01(t; q0) . . . B0m0
(t; q0) 0 . . . 0 0 . . . 0

0 . . . 0
. . . 0 . . . 0

0 . . . 0 0 . . . 0 Bd1(t; qd) . . . Bdmd
(t, qd)

 ,

B(t) ∈ IRd×dim where dim =

d∑
p=0

mp

U′ij = X′ijB(tij) ∈ IR1×dim Ui = (Ui1, . . . ,UiNi
)′ ∈ IRNi×dim

U = (U1, . . . ,Un)′ ∈ IRN×dim, where N =

n∑
i=1

Ni

Wi = diag
(
N−1i , . . . , N−1i

)
∈ IRNi×Ni (a diagonal matrix with Ni times

N−1i on the diagonal)

W = diag
(
W1, . . . ,Wn

)
∈ IRN×N (a block diagonal matrix

with the matrices Wi on the diagonal)

εi = (ε(ti1), . . . , ε(tiNi
))> ε = (ε1, . . . , εn)>

Vi = E(εiε
>
i ) V = E(εε>)

Appendix B Assumptions
Assumptions:

1. The observation times tij , j = 1, . . . , Ni, i = 1, . . . , n, are chosen indepen-
dently according to a distribution function FT (t) on T . Moreover, they are
independent of the response and the covariate process {(Yi(t), Xi1(t), . . . ,
Xid(t))}, i = 1, . . . , n. The distribution function FT (t) has a Lebesgue
density fT (t) that is bounded away from zero and infinity, uniformly over
all t ∈ T , that is, there exist positive constants M1 and M2 such that
M1 6 fT (t) 6M2 for all t ∈ T .

2. The eigenvalues η0(t), . . . , ηd(t) of Σ(t) = E(X(t)X(t)′) are bounded away
from zero and infinity, uniformly over all t ∈ T , that is, there exist positive
constants M3 and M4 such that M3 6 η0(t) 6 . . . 6 ηd(t) 6 M4 for all
t ∈ T .

3. There exists a positive constant M5 such that |Xp(t)| 6 M5 for all t ∈ T
and p = 0, . . . , d.

4. There exists a positive constant M6 such that E(ε2(t)) 6 M6 < ∞ for all
t ∈ T .

5. lim supn→∞(
maxpmp

minpmp
) <∞.

6. The process ε(t) can be decomposed as the sum of two independent stochas-
tic processes, ε(1)(t) and ε(2)(t), where ε(1)(t) is an arbitrary mean zero
process and ε(2)(t) is a process of measurement errors that are indepen-
dent at different time points and have mean zero and constant variance
σ2.
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