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Abstract

In geostatistics, both kriging and smoothing splines are commonly used to gener-
ate an interpolated map of a quantity of interest. The geoadditive model proposed
by Kammann and Wand (2003) represents a fusion of kriging and penalized spline
additive models. Complex data issues, including non-linear covariate trends, multiple
measurements at a location and clustered observations are easily handled using the
geoadditive model. We propose a likelihood based estimation procedure that enables
the estimation of the range (spatial decay) parameter associated with the penalized
splines of the spatial component in the geoadditive model. We present how the spa-
tial covariance structure (covariogram) can be derived from the geoadditive model.
In a simulation study, we show that the underlying spatial process and prediction of
the spatial map are estimated well using the proposed likelihood based estimation
procedure. We present several applications of the proposed methods on real-life data
examples.

Keywords: Covariogram; Geoadditive Model; Kriging; Mixed Model; Penalized Splines
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1 Introduction

The objective of geostatistics (Mathéron, 1963) is to produce a map of a variable of in-

terest on a specified domain based on observations which are measured with or without

noise. Geostatistics emerged in geology, mining and hydrology, but is now a widely spread

statistical tool. Consider the geostatistical model

y(si) = z(si) + εi, i = 1, . . . , n, (1)

where the y(si) are observed data values from the underlying true values z(si). These

data values are possibly noise-corrupted by measurement error εi. It is assumed that the

εi are white-noise error terms. The spatial locations si belong to a specified continuous

domain D ⊂ R
d. The idea of geostatistics is to use the data y(si) to make a prediction of

z(s0) where s0 ∈ D. Both kriging and spline methods can be used to handle geostatistical

problems.

In the case of kriging the values z(si) are assumed to be the realisations of a spatially

correlated random process (Mathéron, 1963; Cressie, 1993). Kriging yields the optimal - in

terms of minimizing the mean squared error - unbiased linear predictor of the spatial process

z(·) at a specified location. Smoothing splines assume that the z(si) are the values of smooth

non-parametric function (see e.g., Hutchinson and Gessler, 1994). The objective of both

methods is different. In kriging, the predicted surface does not need to be aesthetic, only

accurate (Dubrule, 1984). The covariation of the spatially correlated process is modelled

explicitly. The goal of smoothing splines is to create a prediction surface that is as smooth

as possible, meaning that the roughness of the predicted surface is taken into account in the

fitting procedure. There is no account for possible spatial autocorrelation and therefore it is

argued that smoothing splines are build for surfaces that are deterministic or deterministic

with white noise (Cressie, 1993).

Several authors have compared the predictive performance of kriging and splines in

geostatistics (Altman, 2000; Dubrule, 1984; Hutchinson and Gessler, 1994; Laslett, 1994).

The conclusions of this research about the merits of both approaches vary. The formal

equivalence between kriging and splines has been discussed often in literature (Cressie, 1993;

Dubrule, 1983, 1984; Handcock et al., 1994; Mathéron, 1981; Nychka, 2000; Salkauskas,
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1982; Watson, 1984). In summary, a kriging estimate will be identical to a spline if the

appropriate (generalized) covariance is used. One well studied example is the equivalence

of natural thin plate splines (Wahba and Wendelberger, 1980; Green and Silverman, 1994)

and the use of specific generalized covariance functions (see e.g., Dubrule, 1984).

More recently, several authors have investigated low rank approximations of the kriging

approach. Low rank techniques to perform kriging have emerged from two main problems

related with kriging: (1) Kriging large spatially indexed datasets is often computationally

infeasible or impossible; (2) Standard kriging approaches do not allow for the incorporation

of non-linear covariate effects.

Most of the approaches proposed to perform kriging on large datasets rely on a low rank

approximation of the spatial covariance matrix. In fixed rank kriging a low rank is achieved

by representing the spatial covariance through a small set of basis functions (Cressie and

Johannesson, 2008). Covariance tapering imposes sparsity in the spatial covariance matrix

(Kaufman et al., 2008). Kleiber and Nychka (2015) propose equivalent kriging which is

based on approximating the kriging weight function using an equivalent kernel. Other ap-

proaches to low rank kriging can be found in, for example, Banerjee et al. (2008), Lindgren

et al. (2011), Sang and Huang (2012), Stein (2014) and Nychka et al. (2015).

On the other hand, the geoadditive model by Kammann and Wand (2003) is such a

low rank approach in geostatistics that allows for the incorporation of non-linear covariate

effects. The geoadditive model consists of a penalized spline additive model with a geo-

statistical extension. Radial basis functions at a smaller set of data locations are used as

spline functions to model the geostatistical component of the model. In addition, since an

additive model is used, non-linear relationships between covariates and the response vari-

able are easily incorporated in geoadditive models. This is an important extension since

linearity of the covariate effects is usually assumed in kriging approaches. The geoadditive

model can be expressed as a linear mixed model which allows for fitting and diagnosis

using standard methodology. Unlike kriging approaches, the covariation of the underlying

spatial process is not modelled explicitly by using the geoadditive model. This inability

of the spline methods to take proper account of spatial autocorrelation of the underlying

process has been a main argument against splines in geostatistics (Cressie, 1993).
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In this paper the focus is on the geoadditive model and we add to the literature a like-

lihood based estimation procedure that enables the estimation of covariogram parameters

from the geoadditive model. This is achieved by estimating the spatial decay parameter of

the radial basis functions describing the spatial component in the geoadditive model. The

proposed estimation procedure enables the estimation of the underlying spatial process in

terms of a covariogram. We present how the (implicitly) estimated spatial covariance struc-

ture can be derived from the geoadditive model. The advantages the described method are:

(1) In a geoadditive model extensions such as non-linear covariate effects, multiple mea-

surements at the same location and clustered observations, which are difficult to account

for in kriging methods, can easily be integrated due to the mixed model representation of

the model; (2) Standard software can be used; (3) Predictions have similar performance as

standard kriging methods; and (4) The implied spatial structure of the geoadditive model

can easily be represented by a covariogram function. Previous work (e.g., Stein, 1999;

Gelfand et al., 2010) has described likelihood based estimation of covariogram parameters,

however, linear effects in the mean function must be assumed and possible incorporation

of random effects is not discussed.

Section 2 gives a review of two important concepts used throughout this paper: the

covariogram and the geoadditive model introduced by Kammann and Wand (2003). In

Section 3 we describe the proposed methodology in detail. A simulation study and real-life

data applications are provided in Sections 4 and 5, respectively. We close the paper with

a discussion in Section 6.

2 Important Concepts

The covariogram is an often used measure of association for spatially dependent data. The

covariance for a spatially correlated random process z(s) is defined as

Cov [z(s + h), z(s)] = E [z(s + h), z(s)]− E [z(s + h)] E [z(s)] . (2)

The random process is said to be weakly stationary if Cov [z(s + h), z(s)] = C(h). The

function C(·) is the so-called covariogram (Gelfand et al., 2010). In this paper, we only

consider isotropic processes which imply that C(·) depends only on the difference vector h
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through its Euclidean length ‖h‖. The novelty of this paper is that we propose a likelihood

based estimation procedure which enables estimation of covariogram parameters using the

geoadditive model.

The geoadditive model proposed by Kammann and Wand (2003) is an additive model

which incorporates a geographical component, and that is expressed as a linear mixed

model. For simplicity, suppose that the data are (yi, si, ai, bi) , 1 ≤ i ≤ n, where yi is the

value of the response at the ith location, ai and bi are the values of two predictor variables

a and b, and si represents the geographical location. Suppose the predictor a enters the

model linearly and that the predictor b enters the model non-linearly. The geoadditive

model is

yi = β0 + βaai + f(bi) + S(si) + εi, 1 ≤ i ≤ n, (3)

where εi ∼ N (0, σ2
ǫ ), f is a smooth function of b and S is the geographical component

of the model. Both f and S are modelled using penalized spline functions. Kammann

and Wand (2003) use the truncated spline basis functions to define f . Here, we use the

approximating thin plate spline family. More specifically,

f(b) = βbb+

Kb
∑

k=1

ub
k|b− κb

k|3, (4)

where κb
1, . . . , κ

b
Kb

are Kb pre-specified knots of b and ub
1, . . . , u

b
Kb

are knot coefficients.

Guidelines for knot selection in one dimension can be found in Ruppert et al. (2003). The

coefficients ub
1, . . . , u

b
Kb

are penalized to overcome overfitting of the trend in the b-direction.

Although spline basis functions of the class of Matérn-splines (Handcock et al., 1994)

were recommended, no firm prescriptions regarding the choice of basis functions for the

spatial component S in the geoadditive model (3) were given by Kammann and Wand

(2003). In this paper we investigate radial spline basis functions of the form

S(s) =

Ks
∑

k=1

us
igτ (s− κs

k) (5)

where gτ can be any of the proper covariance or generalized covariance functions used

in Kriging (French et al., 2001). The subscript in gτ is used to denote a possible de-

pendence on a (strictly positive) spatial decay parameter τ . For example, Kammann

and Wand (2003) presented the geoadditive model with the Matérn covariance function
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gτ (x) = exp (−‖x‖/τ) (1+‖x‖/τ). Another often used covariance function is the exponen-

tial function represented by gτ (x) = exp (−‖x‖/τ). An overview of important (generalized)

covariance functions gτ used in (5) are given in the Supplementary Materials. The vector

(us
1, . . . , u

s
Ks
) contains the Ks unknown knot coefficients that are penalized to overcome

overfitting. The Ks knots κs
1, . . . ,κ

s
Ks

are a representative subset of (s1, . . . , sn) used for

the construction of the basis functions. A representative subset of knots can be obtained

via an efficient space filling algorithm (e.g., Johnson et al., 1990).

To allow for fitting of the geoadditive model using standard mixed model software

Kammann and Wand (2003) proposed to choose τ via the simple rule

τ̂ = max
1≤i,j≤n

‖si − sj‖. (6)

It is important to notice that this choice does not have to be made for the geoadditive

model. Other rules would be equally possible. In this paper, we propose to estimate τ

via a likelihood based approach. In the simulation study in Section 4 we observe that this

latter choice leads to less variable predictions.

Choosing τ upfront via a simple rule, e.g. using (6), has the nice feature that the

geoadditive model given in (3) can be expressed as a linear mixed model. Using linear mixed

models, penalization of the ub
k and us

k coefficients is equivalent to treating them as random

effects (Brumback et al., 1999; Ruppert et al., 2003). Specifically, let β = (β0, βa, βb)
T ,

u = (ub
1, . . . , u

b
Kb
, us

1, . . . , u
s
Ks
)T = (uT

b ,u
T
S )

T , X = (1 ai bi)1≤i≤n and Z = (Zb|ZS), where

Zb = (|bi − κb
k|3

1≤k≤Kb

)1≤i≤n and ZS = (gτ (si − κs
k)

1≤k≤Ks

)1≤i≤n, (7)

then the geoadditive model in (3) can be expressed as y = Xβ + Zu + ε. For fitting

purposes, one should reparametrize to Z̃ = (Z̃b|Z̃S) and ũ = (ũT
b , ũ

T
S )

T , where Z̃b =

ZbΩ
−1/2
b , Z̃S = ZSΩ

−1/2
S , ũb = Ω

1/2
b ub, ũS = Ω

1/2
S uS, Ωb = (|κb

k − κb
k′|3

1≤k≤Kb

)1≤k′≤Kb
and ΩS =

(gτ (κ
s
k − κs

k′)
1≤k≤Ks

)1≤k′≤Ks
, which yields

y = Xβ + Z̃ũ+ ε,





ũ

ε



 ∼ N















0

0



 ,











σ2
b I 0 0

0 σ2
SI 0

0 0 σ2
εI





















. (8)
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The matrices of Ω
−1/2
b and Ω

−1/2
S are calculated using singular value decomposition. For

example, Ω
−1/2
S = Udiag(1/

√
d)VT , where U,d and V correspond to the singular value

decomposition of ΩS and
√
d is obtained by replacing the entries of d by their non-negative

square roots. The linear mixed model given in (8) can be fitted using standard linear mixed

model software. The incorporation of more linear or non-linear covariates is straightfor-

ward. In addition, clustering of observations can be incorporated by the introduction of a

random intercept.

3 Methodology

In this section, we describe the proposed likelihood based approach to estimate the spatial

decay parameter τ . In the simulation study in Section 4, we will observe that this enables us

to estimate the covariogram parameters with minor bias. Next, we present how predictions

can be made using the geoadditive model. Finally, we discuss how the covariogram can be

derived from the geoadditive model.

Maximum Likelihood Estimation

Consider the geoadditive model in (3), where (4) and (5) are used to model f and S,

respectively. A two-stage iterative likelihood based estimation method is proposed. At the

first stage the linear mixed model in (8) is estimated fixing τ at its current value, and in

the second stage the τ parameter is optimized. This process is iterated until convergence

is attained. To be more specific, the estimation method consists of the following steps:

[i] Set an initial value, τ̂ (0), for the τ parameter.

[ii] Fixing τ at τ̂ (k) in the gτ function used in (5), fit the linear mixed model (8) using

maximum (ML) or restricted maximum likelihood (REML). This yields estimates of

the variance parameters θ(k+1) =
{

(σ̂2
b )

(k+1), (σ̂2
S)

(k+1), (σ̂2
ε )

(k+1)
}

and of the fixed and

random effects parameters β̂
(k+1)

and ˆ̃u(k+1), respectively.

[iii] Using θ(k+1) and β̂
(k+1)

maximize, in case of ML in step (ii), the likelihood function

lML(τ) = −n

2
log(2π)− 1

2
log |Σ̃(τ)| − 1

2

(

y −Xβ̂
(k+1)

)T

Σ̃
−1
(τ)

(

y−Xβ̂
(k+1)

)

,

(9)
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or in case of REML in step (ii) the restricted likelihood function

lREML(τ) = −n− p

2
log(2π)− 1

2
log |Σ̃(τ)| − 1

2
log |XT Σ̃

−1
(τ)X|

−1

2

(

y −Xβ̂
(k+1)

)T

Σ̃
−1
(τ)

(

y −Xβ̂
(k+1)

)

(10)

with respect to the parameter τ , where p denotes the number of fixed effects in

the linear mixed model (8), Σ̃(τ) = Σ
(

τ ; θ̂
(k+1)

)

= Z̃GZ̃T + (σ̂2
ε )

(k+1)I and G =




(σ̂2
b )

(k+1)I 0

0 (σ̂2
S)

(k+1)I



. The value of τ that maximizes these functions is denoted

by τ̂ (k+1).

[iv] For k = 0, 1, . . ., iterate between steps [ii] and [iii] until the difference between two

successive τ̂ value is smaller than a prespecified tolerance level, namely |τ̂ (k)− τ̂ (k+1)| <
c. We set c = 1e-6.

An R module to fit geoadditive models using this iterative approach has been developed

(see Supplementary Materials Section 4).

Predictions

An important aspect of geostatistics is predicting the value of the outcome at an arbitrary

location s0 ∈ D. Suppose the covariate values a0 and b0 of a and b are available at location

s0. The prediction using model (8) has the form ŷ0 = x0β̂ + Z̃0
ˆ̃u, where x0 = [1 a0 b0],

Z̃0 = [Z̃0,b, Z̃0,S], Z̃0,b = Z0,bΩ
−1/2
b , Z̃0,S = Z0,SΩ

−1/2
S , Z0,b = (|b0 − κb

k|3)T1≤k≤Kb
and

Z0,S = (gτ (s0−κs
k))

T
1≤k≤Ks

. Note that the prediction ŷ0 can be written as ŷ0 = c0[β̂
T
, ˆ̃uT ]T

where c0 = [x0, Z̃0].

Prediction Variance

The variance associated with the prediction ŷ0, var(ŷ0), can be calculated using the covari-

ance matrix

Cov









β̂

ˆ̃u− ũ







 =

(

1

σ2
ε

CTC+B

)−1

, where B =





0 0

0 G−1



 (11)

and C = [X|Z̃] (Ruppert et al., 2003). Thus the prediction variance is given by var(ŷ0) =

c0

(

1
σ2
ε

CTC+B
)−1

cT0 . An estimate of the variance is obtained by plugging in the (re-

stricted) maximum likelihood estimates of the variance parameters. A confidence inter-

val (CI) is calculated by adding and subtracting the square root of the variance from the
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prediction using the normal distribution as reference. We will observe in the simulation

study in Section 4 that CIs based on this analytical expression of the variance do not

reach acceptable nominal coverages. Gelfand et al. (2010) note that, indeed, uncertainty

estimation is problematic with penalized spline methods in geostatistics, especially if the

standard deviation of the measurement errors is not large compared to the changes in the

underlying function.

We propose a bootstrap method to calculate the prediction variance that properly

accounts for the uncertainty associated with the spatial component S. The procedure

resembles bootstrap methods used in kriging to obtain bootstrapped prediction variances

(Schelin and Sjöstedt-de Luna, 2010). The procedure consists of the following steps:

[i] From the original data, use the estimation method described above to obtain the

estimates τ̂ , (σ̂2
b , σ̂

2
S, σ̂

2
ε), β̂ and ˆ̃u = (ˆ̃uT

b ,
ˆ̃uT
S )

T .

[ii] Compute µ∗ =





X

x0



 β̂ +





Z̃b

Z̃0,b



 ˆ̃ub. If the model in (8) also contains a random

intercept, this is included in µ∗ where the random intercepts are drawn from a normal

distribution with mean zero and variance equal to the estimated random intercept

variance.

[iii] Let sn+1 = s0 and construct a (n+1)× (n+1) matrix Ξ with ijth entry σ̂2
Sgτ̂ (si− sj).

The Cholesky decomposition yields Ξ = LLT , where L is a lower triangular (n+1)×
(n+ 1) matrix (Stewart, 1973). Values S∗ representing the spatial component can be

simulated by S∗ = Lǫ, where ǫ = (ǫ1, . . . , ǫn+1)
T is a vector of uncorrelated normally

distributed random variables with zero mean and unit variance.

[iv] Let (ỹ∗T , ỹ∗0)
T = µ∗ + S∗ and (y∗T , y∗0)

T = µ∗ + S∗ + ε, where ε = (ε1, . . . , εn+1)
T and

εi
i.i.d.∼ N (0, σ̂2

ε) for 1 ≤ i ≤ n + 1.

[v] Using the y∗ as response values, fit model (8) using the estimation method described

above to obtain the estimates τ̂ ∗, (σ̂∗2
b , σ̂∗2

S , σ̂∗2
ε ), β̂

∗
and ˆ̃u∗ = (ˆ̃u∗T

b , ˆ̃u∗T
S )T . Define

ŷ∗0 = x0β̂
∗
+ Z̃0

ˆ̃u∗.

[vi] Using steps [ii]-[v], construct B bootstrap replicates (ỹ
∗(b)
0 , ŷ

∗(b)
0 )1≤b≤B. The bootstrap

prediction variance of ŷ0 is 1
B

∑B
b=1

(

ŷ
∗(b)
0 − ỹ

∗(b)
0

)2

.

The time consuming part of the bootstrap procedure is the model fitting in step [v].

We consider an approximation to the proposed bootstrap procedure by fixing the scale and
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variance parameters in step [v] at their original estimates, namely τ̂ and (σ̂2
b , σ̂

2
S, σ̂

2
ε). Con-

sequently, the computation of estimates β̂
∗
and ˆ̃u∗ involve only matrix operations, namely

β̂
∗
= (XT Σ̃

−1
X)−1XT Σ̃

−1
y∗ and ˆ̃u∗ = GZ̃T Σ̃

−1
(y∗ − Xβ̂

∗
). In this manner, a boot-

strapped prediction variance (with B=500) is obtained fast (e.g., within three seconds on

a laptop personal computer with Intel Core i5-4210M @ 2.60HGz processor). In Section 4,

we investigate the performance of this approximated bootstrap procedure in a simulation

study.

The estimated parameters β̂
∗
and ˆ̃u∗ can also be used to calculate 95% pointwise

bootstrap confidence intervals of the non-linear effect and the spatial component S.

Deriving the Covariogram from the Geoadditive Model

From model (3) and (8) it follows that the spatial covariance of y implied by the spatial

component S is given by ΣS = Z̃S(σ
2
SI)Z̃

T
S = σ2

SZ̃SZ̃
T
S . Let yk = (y1, . . . , yKs

)T be the

response values at the Ks knots (κs
1, . . . ,κ

s
Ks
)T . It follows that the spatial covariance

between yk and y0 at an arbitrary spatial location s0 is given by cov(S)(yk, y0) = σ2
SZ̃k,SZ̃

T
0,S ,

where Z̃k,S = Zk,SΩ
−1/2
S and Zk,S is a Ks ×Ks matrix with kk′th entry gτ (κ

s
k − κs

k′). We

thus have that Zk,S = ΩS (Section 2) which implies Z̃k,S = ΩSΩ
−1/2
S . If ΩS is positive

semi-definite it further follows that Z̃k,S = Ω
1/2
S (Searle, 1982). Since Z̃0,S = Z0,SΩ

−1/2
S it

follows that

cov(S)(yk, y0) = σ2
SΩ

1/2
S Ω

−1/2
S ZT

0,S = σ2
SZ

T
0,S (12)

and thus

cov(S)(yk, y0) = σ2
S{gτ (s0 − κs

k)}1≤k≤Ks
. (13)

Thus cov(S)(yk, y0) is fully defined by σ2
S , τ and the function gτ used as basis function for

the spatial component S in (3). The covariance cov(S)(yk, y0) is similar in form as the

covariogram functions used in kriging. Since the considered functions gτ only depend on

the distance ‖h‖ between two spatial points, the implied covariogram can be calculated by

σ2
Sgτ (h) for every distance ‖h‖. We further note that the value of the implied covariogram

at a distance zero is σ2
S + σ2

ε . This is equivalent as the covariogram in kriging when it is

assumed that the nugget of the covariogram is entirely made out of the measurement error

variance.
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To be able to derive (13), we used the condition that ΩS is positive semi-definite. Most

of the typically used covariogram functions imply a positive semi-definite matrix ΩS (see

Supplementary Materials). Without this condition, the implied covariance in (13) does not

hold. For example, thin plate splines do not imply a positive semi-definite matrix ΩS when

used to model the spatial component S. Therefore, a covariogram cannot be derived for

thin plate splines, however they imply a generalized covariance function (Cressie, 1993).

4 Simulation Study

In order to evaluate the proposed methodology we carried out a simulation study. We

focus on two scenarios: (1) Data is simulated from a spatial process with constant mean;

and (2) Data is simulated from a spatial process with a mean function depending on two

covariates.

No Covariates

We consider as spatial domain the unit square with a resolution of 0.01 × 0.01. Data at a

spatial location s = (sx, sy) on this square is simulated using the model

ys = S(s) + εs, (14)

where εs ∼ N (0, σ2
ε) and S(s) is a zero-mean Gaussian Random Field (GRF) (Gelfand

et al., 2010) with one of the following four distinct covariogram models:

• Exponential covariogram: C(h) = cs exp
(

−‖h‖
τ

)

• Matérn covariogram (ν = 3/2): C(h) = cs exp
(

−‖h‖
τ

)(

1 + ‖h‖
τ

)

• Spherical covariogram: C(h) = cs

(

1− 3
2
‖h‖
τ

+ 1
2
‖h‖3

τ3

)

I‖h‖≤τ

• Gaussian covariogram: C(h) = cs exp
(

−‖h‖2

τ2

)

Note that εs represents the so-called nugget effect in kriging which consist entirely out of

measurement error in this case. As parameter values we consider σ2
ε = 0.10 and in all four

covariogram models cs = 0.50 and τ = 0.15. For each covariogram model we obtained 250

simulated realizations using (14). In each realization a random sample is drawn. For the

exponential and Matérn covariogram we consider a sample of size n = 200, and for the

spherical and Gaussian covariogram n = 500.

12



For each simulated dataset, the covariogram parameters (cs, τ) and the measurement

error parameter σ2
ε were estimated using seven different methods. [1] Direct maximum like-

lihood (DML) parameter estimation for GRFs, and [2] Direct restricted maximum likelihood

(DREML) parameter estimation for GRFs. We use the term direct to indicate to all param-

eters are estimated jointly. [3] Weighted least squares (WLS) estimation using Cressie’s

(1985) weights of the empirical semivariogram. [4] Maximum likelihood estimation of the

geoadditive model with τ fixed at (6) (GM1ML), and [5] restricted maximum likelihood es-

timation of the geoadditive model with τ fixed at (6) (GM1REML). [6] Maximum likelihood

estimation of the geoadditive model using the estimation procedure proposed in Section 3

(GM2ML). [7] Restricted maximum likelihood estimation of the geoadditive model using

the estimation procedure proposed in Section 3 (GM2REML). For each estimation method

the mean function contains only the intercept. DML, DREML and WLS are often used

methods in kriging to obtain covariogram parameter estimates (for more details on these

estimation methods we recommend Gelfand et al., 2010).

In addition to estimation performance of the covariogram parameters, the prediction

performance corresponding to each of the seven methods is also evaluated. The predictive

performance is investigated at five locations on the considered spatial domain, namely

(0.50,0.50), (0.05,0.05), (0.05,0.95), (0.95,0.05) and (0.95,0.95). For DML, DREML and

WLS, the standard ordinary kriging equations are used to obtain predictions and kriging

variances (Cressie, 1993). For GM1ML, GM1REML, GM2ML and GM2REML, predictions

are made as described in Section 3. The prediction variances are calculated using the

analytical formula using the covariance matrix (11). For GM2ML and GM2REML, we also

use the bootstrap approach presented in Section 3 to obtain prediction variances. The

prediction performance was measured by the mean squared error averaged over the five

locations. Using the prediction variances, 95% pointwise confidence intervals (CIs) are

calculated using the normal distribution as reference (i.e., ±1.96 × the square root of the

prediction variance). The reported nominal coverages of the CIs are calculated by averaging

over the five prediction locations.

For each covariogram model used to simulate the GRF, we use the same covariogram

model to perform parameter estimation. For example, when the exponential covariogram

13



0
1

2
3

4
5

6

p
a
ra

m
e
te

r 
c

s

D M
L

D R
EM

L

W
LS

G
M

1 M
L

G
M

1 R
EM

L

G
M

2 M
L

G
M

2 R
EM

L 0
.0

0
0
.1

0
0
.2

0
0
.3

0

p
a
ra

m
e
te

r 
σ
ε2

D M
L

D R
EM

L

W
LS

G
M

1 M
L

G
M

1 R
EM

L

G
M

2 M
L

G
M

2 R
EM

L

0
.0

0
.5

1
.0

1
.5

p
a
ra

m
e
te

r 
τ

D M
L

D R
EM

L

W
LS

G
M

1 M
L

G
M

1 R
EM

L

G
M

2 M
L

G
M

2 R
EM

L

0
2

4
6

8

ra
ti
o
 
c

s
/τ

D M
L

D R
EM

L

W
LS

G
M

1 M
L

G
M

1 R
EM

L

G
M

2 M
L

G
M

2 R
EM

L

Figure 1: Boxplots of the estimated covariogram parameters (cs, τ) and the measurement

error parameter σ2
ε over 250 simulations using seven methods (see text). Data is simulated

according to model (14) with the exponential covariogram model.

is used to simulate data for the GRF S, the exponential function gτ is also used in the

geoadditive model. For the simulations using the exponential, Matérn and spherical co-

variogram models all sampled locations are used as knots. For the simulations using the

Gaussian covariogram model only 150 knots are used since surfaces obtained from a Gaus-

sian covariogram are more smooth.

Results are displayed in Figure 1 and Tables 1-2. Results for the ratio cs/τ are also

presented since this ratio is known to affect predictions more than either the parameters

cs and τ do individually in kriging (Stein and Handcock, 1989). As expected, estimated

covariogram parameters using GM1ML and GM1REML are seriously biased, which also

affects the estimation of the measurement error parameter σ2
ε . GM2ML and GM2REML

perform well and yield very similar results as the direct likelihood approaches DML and

DREML. Results for other covariogram models are qualitatively similar (see Supplementary

Materials Figures 1-3)

With respect to MSE (Table 1), it is observed that the geoadditive model in which τ is

estimated using the proposed procedure (GM2ML and GM2REML) performs well and similar
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Table 1: MSE (×100) of the covariogram parameters (cs, τ), the measurement error pa-

rameter σ2
ε and the ratio cs/τ over 250 simulations using seven methods (see text). Data

is simulated according to model (14) with four different covariogram models.

DML DREML WLS GM1ML GM1REML GM2ML GM2REML

Exponential covariogram

cs 1.27 1.83 115.88 626.45 678.70 1.27 1.83

τ 0.21 0.40 41.72 139.58 139.58 0.21 0.40

σ2
ε 0.13 0.13 0.21 0.25 0.22 0.13 0.13

cs/τ 140.29 122.72 222.59 177.82 160.24 140.35 122.76

Matérn covariogram

cs 4.81 9.49 138.76 > 103 > 103 4.81 9.51

τ 0.16 0.23 1.31 138.80 138.80 0.16 0.23

σ2
ε 0.02 0.02 0.03 0.03 0.03 0.02 0.02

cs/τ 83.92 110.44 212.08 > 103 > 103 83.93 110.54

Spherical covariogram

cs 0.43 0.43 0.62 > 103 > 103 0.43 0.43

τ 0.02 0.02 0.03 147.77 147.77 0.02 0.02

σ2
ε 0.04 0.04 0.08 0.05 0.05 0.04 0.04

cs/τ 19.32 19.32 35.15 28.16 29.33 19.33 19.32

Gaussian covariogram

cs 1.32 1.45 2.91 > 103 > 103 1.33 1.47

τ 0.01 0.01 0.05 147.52 147.52 0.01 0.01

σ2
ε 0.00 0.00 0.01 4.46 3.87 0.00 0.00

cs/τ 44.23 47.36 78.35 > 103 > 103 44.66 48.02

as the direct likelihood methods. This implies that the proposed doubly iterative estimation

procedure performs as good as direct likelihood methods for this simple simulation setting

(no covariates or clustering). Thus although both methods are different, in DML and DREML

the spatial variation is modelled via a Gaussian process and in GM2ML and GM2REML

the spatial variation is modelled through splines in the geoadditive model, they perform

similar for this simulation setting. ML approaches yield slightly better results than REML

approaches for the parameters cs and τ . However, for the ratio cs/τ there is no clear answer
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Table 2: MSE (×100) of the predictive performance and the nominal coverage of the 95%

confidence intervals over 250 simulation using seven methods (see text). Data is simulated

according to model (14) with four different covariogram models.

DML DREML WLS GM1ML GM1REML GM2ML GM2REML

Exponential covariogram

MSE (×100) 18.24 18.25 18.25 18.89 18.84 18.24 18.25

95% coverage 94.0 93.8 94.1 67.1 67.0 56.8 57.9

95% coveragea 94.1 94.0

Matérn covariogram

MSE (×100) 4.82 4.78 4.94 4.99 4.97 4.82 4.78

95% coverage 94.1 94.2 93.1 89.1 89.7 90.9 91.2

95% coveragea 94.2 94.0

Spherical covariogram

MSE (×100) 16.08 16.08 16.27 16.42 16.41 16.08 16.08

95% coverage 94.7 94.8 94.6 63.0 62.8 65.4 65.4

95% coveragea 94.6 94.5

Gaussian covariogram

MSE (×100) 2.35 2.35 2.47 15.46 14.32 2.35 2.35

95% coverage 95.7 95.7 94.9 56.7 58.2 94.6 94.6

95% coveragea 95.9 96.0

a: Based on the boostrap procedure described in Section 3.

whether ML or REML is better. The WLS approach does not perform as well as the direct

likelihood estimators, which is in line with other simulations studies comparing DML and

WLS (e.g., Zimmerman and Zimmerman, 1991; Zhang and Zimmerman, 2007). GM1ML

and GM1REML yield marked increases in the MSE of cs, τ and cs/τ . This is expected since

methods GM1ML and GM1REML do not pursue estimation of the covariogram parameters.

However, this also leads to worse MSE results for the parameter σ2
ε . This is clearly observed

for the Gaussian covariogram case. Results are qualitatively similar over the different

covariogram models.

Differences amongst the different approaches in terms of predictive performance (Ta-

ble 2) are less pronounced. In particular, GM2ML and GM2REML perform similar as
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the kriging methods using direct likelihood estimation (DML and DREML) and perform

(slightly) better than GM1ML and GM1REML. However, for the Gaussian covariogram

model there is a clear difference in MSE. Looking at the coverage of the predictions (Ta-

ble 2), it is observed that the bootstrap prediction variance is necessary for GM2ML and

GM2REML to obtain CIs with close to 95% nominal coverage.

Additional results with respect to prediction bias are given in the Supplementary Ma-

terials Figure 4. In Figure 5 in the Supplementary Materials, we also present the estimated

covariogram functions.

Covariates

The simulation scenarios in the previous section all assumed a constant mean. In this

section, we introduce covariate effects, namely one linear effect and one non-linear effect.

Data on the unit square are now simulated using the model

ys = S(s)− 0.5x1s + sin(2πx2s) + εs, (15)

where again εs ∼ N (0, σ2
ε = 0.10), x1s ∼ U(0, 1), x2s ∼ U(0, 1), and S(s) is a GRF

with a Gaussian covariogram model or a circular covariogram model, namely C(h) =

cs
{

1− 2
π

(

ϑ
√
1− ϑ2 + arcsinϑ

)}

I‖h‖≤τ , where ϑ = min
(

‖h‖
τ
, 1
)

. Again, we consider cs =

0.50, τ = 0.15 and obtain 250 simulated realizations from (15) from which a random sam-

ple of size n = 500 is obtained. The estimation methods DML, DREML, WLS, GM1ML,

GM1REML, GM2ML and GM2REML are used to obtain estimates of the covariogram pa-

rameters, the measurement error parameter σ2
ε and predictions at five spatial locations. For

DML, DREML and WLS, both covariates x1 and x2 enter the mean function linearly (only

considering linear effects is a common choice for kriging methods). For the geoadditive

models (GM1ML, GM1REML, GM2ML and GM2REML), the covariate x1 enters the model

linearly and x2 non-linearly. The simulations using the circular covariogram model use all

sampled locations as knots, and the simulations using the Gaussian covariogram model use

150 knots.

The results are displayed in Tables 3 and 4. It is observed that GM2ML and GM2REML

perform the best for the estimation cs, τ and σ2
ε . As expected, entering the non-linear

covariate x2 linearly in the mean function for DML, DREML and WLS has an effect on the

estimation of the covariogram parameters. The higher MSE values for DML, DREML and
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Table 3: MSE (×100) of the covariogram parameters (cs, τ), the measurement error pa-

rameter σ2
ε and the ratio cs/τ over 250 simulations using seven methods (see text). Data

is simulated according to model (15) with two different covariogram models.

DML DREML WLS GM1ML GM1REML GM2ML GM2REML

Gaussian covariogram

cs 1.67 1.82 2.03 > 103 > 103 1.51 1.55

τ 0.02 0.02 0.06 148.52 148.52 0.01 0.01

σ2
ε 3.76 3.83 3.88 3.71 3.73 0.01 0.01

cs/τ 58.97 62.24 75.33 > 103 > 103 49.11 50.06

Circular covariogram

cs 4.75 5.28 1.02 > 103 > 103 1.70 1.71

τ 1.07 1.14 0.06 147.73 147.73 0.12 0.12

σ2
ε 3.91 3.96 4.10 0.17 0.13 0.03 0.03

cs/τ 38.21 38.83 55.38 201.10 155.19 22.96 22.96

Table 4: MSE (×100) of the predictive performance and the nominal coverage of the 95%

confidence intervals over 250 simulation using seven methods (see text). Data is simulated

according to model (15) with two different covariogram models.

DML DREML WLS GM1ML GM1REML GM2ML GM2REML

Gaussian covariogram

MSE (×100) 23.65 23.64 23.88 14.61 14.61 2.39 2.40

95% coverage 57.2 57.2 57.6 63.4 64.4 94.8 94.8

95% coveragea 95.0 95.3

Circular covariogram

MSE (×100) 37.68 37.67 37.67 15.50 15.10 14.40 14.42

95% coverage 80.6 80.7 80.2 62.3 64.6 68.5 68.5

95% coveragea 93.7 93.8

a: Based on the boostrap procedure described in Section 3.

WLS are mainly caused by an increase in the variability of the obtained estimates (see

Supplementary Material Figures 9 and 10). The parameter estimates of σ2
ε are biased for

DML, DREML and WLS (see Supplementary Material Figures 9 and 10).
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In terms of prediction, the geoadditive models in which τ is estimated using the proposed

procedure (GM2ML and GM2REML) outperform the other considered approaches (Table 4).

The higher MSE values for DML, DREML, WLS, GM1ML and GM1REML are associated

with higher variability of the obtained predictions (see Supplementary Material Figure 8).

The prediction bias is negligible for all considered methods. For the circular covariogram

model, we observe that the bootstrap approach for variance estimation using GM2ML and

GM2REML is necessary to obtain acceptable nominal coverage values for the 95% CIs.

The covariate effects of x1 and x2 are both well estimated for the geoadditive model

approaches (see Supplementary Material Figures 11-13). Similar as the predictive perfor-

mance, GM2ML and GM2REML yield less variable estimates of the covariate effects.

5 Data Application

We apply our proposed methodology on two data examples. In the Supplementary Materi-

als Section 3, additional tables and graphical results are provided, as well as an additional

example.

Paraná State, Brazil, Rainfall Data

In this first application, average precipitation levels throughout Paraná State, Brazil, are

considered. Data is available on 143 locations and the response represents average winter

(dry season) rainfall. Figure 2 (a) presents the data. No covariate information is available.

This dataset is available from the R-package geoR. This data was also used by Diggle and

Ribeiro (2002) to illustrate methodology on Bayesian inference of Gaussian model-based

geostatistics. We will analyse this data using the geoadditive model which is fitted using

the proposed procedure in Section 3 and compare results with results in Diggle and Ribeiro

(2002).

The data will be analysed using the following geoadditive model

yi = β0 + β1s1i + β2s2i + S(si) + εi, 1 ≤ i ≤ 143, (16)

where s1 and s2 are the latitude and longitude of the spatial location s. We consider

different choices for gτ to model the spatial component S in (16) and compare different

model fits using AIC (Akaike, 1973). All data locations are used as knots in the analysis.
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Diggle and Ribeiro Jr (2002):

exponential

Geoadditive model: circular

Figure 2: (a) Map of Paraná State, Brazil, showing the locations and correspond-

ing recorded average precipitation values; (b) Predicted surface based on geoadditive

model (16) fitted using the proposed estimation procedure in Section 3; (c) Prediction

variance using the bootstrap approach described in Section 3; (d) Estimated Covariogram

obtained by Diggle and Ribeiro (2002) and based on geoadditive model (16).

The lowest AIC value for the geoadditive model fitted using the proposed methodology

is observed for a circular gτ function (see Supplementary Materials). The predicted surface

and associated prediction variances based on the bootstrap approach for the geoadditive

model are given in Figures 2 (b)-(c). The model chooses 29.9 degrees-of-freedom for the

spatial component S in (16). This indicates that there is a strong non-planar spatial

trend in the data. The prediction map is very similar to the one obtained by Diggle and
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Ribeiro (2002) which is based on a Bayesian geostatistical analysis using an exponential

covariogram. Figure 2 (d) presents the implied covariogram function of the best fitting

geoadditive model, together with the estimated covariogram (based on direct maximum

likelihood estimation using an exponential covariogram) obtained by Diggle and Ribeiro

(2002).

We note that the geoadditive model using an exponential gτ function fitted using the

proposed methodology yields similar results as obtained using direct maximum likelihood

estimation in Diggle and Ribeiro (2002). Furthermore, for each choice of the function

gτ , all estimated covariogram parameters using the geoadditive model fitted using the

proposed methodology were similar as results obtained by direct likelihood estimation (see

Supplementary Materials). This can be expected, since model (16) only includes linear

covariate effects. It was also observed that geoadditive models fixing τ at (6) have higher

AIC values than the geoadditive models fitted using the proposed estimation procedure in

Section 3.

Meuse Dataset

The Meuse data is a classical geostatistical dataset used frequently to demonstrate various

geostatistical analyses. The dataset comprises of four heavy metals measured in the top soil

in a flood plain along the river Meuse. Polluted sediment is carried by the river, and mostly

deposited close to the river bank. In total, 155 heavy metal concentration measurements

(ppm) are available along with a number of soil and landscape variables. This dataset is

available in the R-package gstat.

The goal is to create a prediction map of the lead concentrations using the distance to the

river as covariate. Additionally, the landscape class variable landuse is used in the model.

The landuse variable takes 15 different values and is considered as a clustering variable

which is accounted for by a random intercept. One measurement has no information on

the landuse value and is, consequently, deleted from the analysis. Thus, in total, 154 lead

concentration measurements are available. In Figures 3 (a) and (b) the locations of the

recorded log-lead values and the associated landuse variable are shown over the area of

interest. The lead concentrations are log-transformed to remove skewness.

Two geoadditive models are fit to the data, one without taking into account the clus-
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Figure 3: (a) Map showing the Meuse river and the locations and corresponding recorded

log-lead values; (b) Map showing the locations of the different landuse categories; (c)

Estimated spatial component using geoadditive model (17) with a circular function gτ fitted

using the proposed estimation procedure in Section 3; (d) Estimated spatial component

using geoadditive model (18) with a circular function gτ fitted using the proposed estimation

procedure in Section 3; (e) Difference between the surface in (d) and (c) with marks at

locations with landuse level ’Bw’.
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tering

log(leadi) = β0 + f(disti) + S(si) + εi, 1 ≤ i ≤ 154, (17)

and one accounting for the clustering

log(leadi) = β0 + f(disti) + S(si) + αk(i) + εi, 1 ≤ i ≤ 154, (18)

where αk(i) is a random intercept for landuse with αk ∼ N (0, σ2
α), for k = 1, . . . , 15. For

the spatial component S we used the exponential, Matérn, circular, spherical and Gaussian

as gτ function. The circular function yielded the best fit in terms of AIC, namely 174.6

for model (17) and 174.0 for model (18). Thus the model accounting for the landuse by a

random intercept has a slightly better fit.

Using the circular function, the estimated covariogram parameters are (ĉs = 0.14, τ̂ =

0.76) and (ĉs = 0.13, τ̂ = 0.76) for model (17) and (18), respectively. The cluster vari-

ance parameter σ2
α in model (18) is estimated to be 0.03. Figures 3 (c) and (d) present

the estimated spatial component S for models (17) and (18). Figure 3 (e) shows the dif-

ference between the estimated surfaces in Figures 3 (c) and (d). The estimated random

intercept was highest, namely 0.371, at the landuse level ’Bw’. It is observed that the

spatial component S estimated by model (18) has lower values in the surroundings of lan-

duse ’Bw’ (Figure 3 (e)) to compensate for the estimated value of the random intercept.

Thus, from this application we observe that higher (smaller) estimated values of the spa-

tial component S by a model that does not account for clustering could be induced by a

clustering variable. A geoadditive model fitted using the proposed estimation procedure in

Section 3 can account for this clustering and also estimate the spatial covariation in terms

of a covariogram.

6 Discussion

The geoadditive model Kammann and Wand (2003) is useful to analyse geostatistical data

where the data could be accompanied with (non-linear) covariates, the data could exhibit

clustering and multiple measurements at a spatial location could be available. We described

a likelihood based estimation procedure that estimates the spatial decay parameter of the

radial basis functions describing the spatial component in the geoadditive model. The
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estimation of the spatial decay parameter enables one to derive the covariogram function

implied by the geoadditive model. We emphasize once more that a covariogram can only

be derived in geoadditive models where the function gτ implies a positive semi-definite

matrix ΩS.

Only Gaussian data were considered. In the case where the response is binary, a count

variable or heavily skewed, the geoadditive should be defined within the framework of

generalized linear mixed models. Future research will investigate the use and practicalities

of the proposed estimation procedure in this context.

Hypothesis testing of parameters in the geoadditive model can be performed within

the likelihood ratio paradigm due to the linear mixed model representation. Testing for a

linear effect of f or the spatial effect of S can be done by hypotheses where the variance

parameter σ2
b and σ2

S are set to zero in the null hypothesis, respectively. These kind of

hypotheses are complicated because the variance parameter in the null hypothesis is on the

boundary of the parameter space and thus asymptotic theory from Self and Liang (1987) is

required. However, Crainiceanu and Ruppert (2004) show that this theory does not hold for

penalized spline models and propose a simulation algorithm to derive the null distribution.

This should be further investigated in the context of geoadditive models.

Towards model selection, the Akaike’s information criterion (AIC) (Akaike, 1973) does

not take proper account of the degrees-of-freedom in penalized spline models, therefore a

modified AIC called corrected AIC (AICc) could be used instead (Ruppert et al., 2003).

Nevertheless, we used the standard AIC to perform model selection across the different

fitted models in Section 5.

The considered functions gτ for the radial basis functions are only able to describe

isotropic spatial processes. Many geostatistical applications exhibit, however, anisotropy.

It remains a topic of future research to investigate how geoadditive models can be used

to describe anisotropic processes. The use of tensor product splines could be one option

within this context (Wood, 2006; Lee and Durbán, 2009, 2011). Another interesting and

related future research topic is the investigation of the spatial dependency assumption.

In this paper, we only considered weak stationary spatial processes. It is worthwhile to

investigate how the proposed methods can be extended to other stationary processes.
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No theoretical justification is given for the performance of the described likelihood based

estimation procedure. We only investigated the performance of the proposed procedure

using elaborate simulation studies. A theoretical justification, especially with regard to

basis selection, knot selection and the number of knots, would be interesting. We also want

to indicate that the convergence rate of the proposed procedure was very high (> 99%).

Some recently developed geostatistical approaches focus on the analysis of very large

spatial datasets and attempt to overcome the computational burdens of kriging in the

presence of large datasets (Cressie and Johannesson, 2008; Kaufman et al., 2008; Kleiber

and Nychka, 2015). In this paper, we did not investigate the performance of our proposed

estimation procedure on very large spatial datasets. However, since geoadditive models

make use of penalized splines that are of low rank, this is an interesting topic to be studied.

The simulation study revealed that, in terms of prediction, the geoadditive model where

the spatial decay parameter τ is estimated using the proposed procedure in Section 3 per-

forms better than when τ is estimated using (6). Although both approaches yield unbiased

predictions at the spatial locations, the obtained predictions using the proposed procedure

exhibit less variability which, consequently, results in lower MSE values. When compared

with estimation methods used for kriging purposes, the proposed methods perform similar

or better for the estimation of covariogram parameters. In the Supplementary Materials

we also present simulation results for data that is simulated from a spatial process with

constant mean in which clustering is introduced. Overall, results are comparable with the

results without clustering. In addition, we also give simulation results on the predictive

performance when thin plate splines are used for the spatial component. These spline basis

functions are often used to compare the performance of kriging and splines (Dubrule, 1984;

Hutchinson and Gessler, 1994; Laslett, 1994; Altman, 2000).

The bootstrap approach to calculate the prediction variance described in Section 3 is

needed to obtain confidence intervals with close to 95% nominal coverage. Within the

bootstrap approach, we do not re-estimate the variance parameters and spatial decay pa-

rameter in step [v] but fix them at the original estimates. Although we recognize that this

approximation is not without danger, it results in huge gains in computational time and

does not lead to worrisome losses in the nominal coverages of the confidence intervals.
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SUPPLEMENTARY MATERIAL: (xxxxxxxx.pdf) This file contains additional in-

formation concerning the amount of smoothing in geoadditive models and plotting

issues. Additional results of the simulation study in Section 4 and the applications in

Section 5 are provided. Some information on the R-module to fit geoadditive models

using the proposed estimation procedure is also provided.
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