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Abstract 

The use of modeling and simulation aids in deriving many decisions related to transportation planning and traffic 

operations. Representing the real systems via simulation allows exploring system behavior in an articulated way, which 

is often impossible in the real world. In this paper, a simulation-based framework is presented to evaluate the impact 

of congestion charging on daily activity plans of the individuals. Personal decision to accept the congestion charges is 

evaluated by comparing the value of time with congestion charge. Value of time varies throughout the day depending 

upon the time pressure at any moment exerted by preceding and succeeding activities. Time pressure during an activity 

increases if available time for that activity is insufficient to attain the perceived utility. Daily activities in the schedules 

are modeled using bell-shaped marginal utility that results in sigmoid utility. A model is presented which derives the 

activity specific parameters of the marginal utility function for the specific individual. To examine value of time of 

each person, the congestion charging is applied where personal willingness-to-pay is determined by comparing the 

ratios of cost to utility for original and adapted schedules. A large-scaled microsimulation of the modeled framework 

is used to simulate the whole population, which is created by FEATHERS, an operational activity-based model for 

Flanders, Belgium. The results of the simulation show that the number of individuals who avoid the congestion charges 

by adapting their schedules is almost three times the number of those who agree to pay it. The proposed framework 

can be useful to evaluate the tradeoff between value of time and costs where flexibility in selection of time defines the 

variability in cost. 
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1. Introduction 

Representing the real systems via simulation allows exploring system behavior in an articulated way that is often either 

not possible, or too risky in the real world. The use of modeling and simulation within the engineering field is important 

and well recognized. It belongs to the tool set of all application areas and has been included in the body of knowledge. 

It has been applied to a broad range of topics in transportation sciences including simulation of vehicles or pedestrian 

flow, car following and lane changing models, route choice modeling, and traffic simulation. This is the key ingredient 

that drives most decisions in transportation planning and traffic operations. 

Value-of-time determines the duration of the activity, switching to the next activity and willingness-to-pay travel cost 

for that activity. It varies throughout the day depending upon the time pressure at any moment exerted by preceding 

and succeeding activities. Time pressure during an activity increases if available time for that activity is insufficient to 

attain the envisaged utility. The difference in activity participation due to the unwanted situations may result in 

disproportion of time pressure. To balance the time pressure, the duration of all activities in the schedule is re-optimized 

to compensate the lost/gained time. A schedule is optimized by maximizing the satisfaction of individuals by activity 

participation. The maximum satisfaction can only be earned if all activities are started and finished at personal preferred 

time. Hence, maximum utilization of the time is bound by the preferred start time and duration of the activities that are 

planned for any specific day. In case of any time loss or deliberated shift in trip start time, traveler would re-optimize 

the timing of all activities in the schedule to achieve the maximum satisfaction using the available time resources. 

To calculate the value of time, the researchers mostly use discrete choice modeling to select between alternatives for 

transport mode having different travel time and cost. Regression modeling is used to estimate the coefficients of cost 
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and time to calculate the value of time. Value of time calculated using this method is always trip based and does not 

take into account other importance factors like time pressure introduced by internal deadlines or public transport 

availability during back home trip. For example, having three options of transport modes (bike, car and public 

transport), a traveler selects to travel by car for work trip because he has to pick someone while travelling back from 

work. In this research, the duration of all activities in the schedule is optimized to fulfill the constraints of maximization 

of time utilization and minimization of the total travel cost. To model the utility maximization constraint, the marginal 

utility for all activities is assumed to be bell shaped that result in sigmoid utility. Purpose of the research is to evaluate 

the proposed model for use in microsimulations. In case schedules need to be adapted in microsimulations, a 

behaviorally sound model is required to redistribute the lost/gained time in the activities that still are to be executed. 

We do not consider crisis or emergency situations in which behavior becomes very specific and different from regular 

situations. Our research covers (1) situations where individuals are forced to reschedule due to some unexpected events 

and (2) situations where individuals deliberately consider rescheduling because the environment conditions for the 

future change (e.g. congestion cost). The definition of VOT is cumbersome. Most researches consider a single trip and 

activity pair to determine a VOT value, which consequently, only holds for a specific situation (e.g. morning “home 

to work” trip or effect of evening trip in “morning mode choice”). In the context of congestion charging, individuals 

can influence the travel cost by adapting the timing in the schedule. In order to avoid the need for an absolute the VOT, 

we consider the ratio of ∆C/∆U change in cost verses change in utility. All car travelers who execute their trips during 

the specified period are charged the congestion cost. To avoid the congestion charges, car travelers intend to shift their 

overlapped trip and re-optimize their schedule by fixing the shifted trip. To examine value of time of each person, the 

congestion charging is applied where personal willingness-to-pay is determined by comparing the ratios of cost to 

utility for original and adapted schedules. A large-scaled microsimulation of the modeled framework is used to simulate 

the whole population, which is created by FEATHERS, an operational activity-based model for Flanders, Belgium. 

This paper is organized as follow: Section 2 provides the conceptual overview of the paper. Section 3.1 describes the 

theoretical model of the model that covers marginal utility and utility function and a method to derive the involved 

parameters. Section 3.2 and 3.3 provide the description of travel related costs and a method for schedule adaptation to 

avoid extra costs respectively.  Section 3.4 gives the detail about evaluation of traveler’s willingness-to-pay travel 

related costs. Software implementation to simulate the proposed framework is described in section 3.5. Results and 

conclusion section are described in section 4 and 5. At the end of the paper, extensions are suggested.  

2. Literature Review 
Representation of the real systems via simulation has been applied to a broad range of topics in transportation sciences 

including simulation of vehicles or pedestrian flow, car following and lane changing models, route choice modeling, 

and traffic simulation. This is the key ingredient that drives most decisions in transportation planning and traffic 

operations. A few research studies that solve the transportation problems are discussed below; 

The agent-based modeling (ABM) is used by Hussain et al. [1] to measure the individuals’ behavior by applying direct 

interaction between agents in the carpooling process. Pel et al. [2] provide a simulation framework to model travelers’ 

decisions regarding the selection of departure time, route selection and destination choice for evacuation. 

Luetzenberger et al. [3] introduce an approach that considers a driver’s mind and examines the effect of environmental 

conditions. Authors planned to integrate the agent interactions necessary when carpooling. Rosswog et al. [4] proposed 

an algorithm to find user-equilibrium in simulation-based traffic network, which they further use to find shortest travel 

time path in street networks.  

Another category of research efforts, mechanisms underlying the schedule construction and schedule adaptation 

processes are investigated. Knapen, et al. [5] enables explicit modeling of the information flow between traffic 

information services and travelers. It combines macroscopic traffic assignment with microscopic simulation of 

individuals and offers a framework to investigate algorithms for rescheduling at a large scale. The authors used 

marginal utility that monotonically decreases with activity duration, and a monotonically converging relaxation 

algorithm to efficiently determine the new activity timing. Recker [6] and Gan and Recker [7] present a mixed integer 

programming formulation of the Household Activity Rescheduling Problem, an extensively elaborated rescheduling 

model that has been applied to a small amount of individuals suffering from a pre-specified loss of time. The idea is 

that while planning, people solve a MILP (mixed integer linear program) and the examples given show that realistic 

schedules are produced. However, the large numbers of constraints required and the level of detail does not allow for 

large-scale deployment. Nandam [8] lists the main characteristics of Computational Process Models (CPM) and their 



assumed shortcomings. They describe a data collection method to acquire data to uncover the (re) planning process. 

The method used is similar to the one described in Weis et al. [9] who report the frequency of activity compression 

due to increased travel duration but not the amount of compression for several activity types. Van Bladel et al. [10] 

point out the difficulties to estimate the utility function parameters and shows the S-shaped dependency of the utility 

on the time gap since the preceding execution of a same activity 

Another set of research efforts categorizes as calculation of value of time and willingness-to-pay the travel related cost. 

Ettema et al. [11] evaluated the traveler’s responses to road pricing schemes by modeling the marginal utility for 

activities in two parts. Duration-based marginal utility is modeled using a logarithmic function while time-of-the-day-

dependent marginal utility is described by using Cauchy function. Jenelius et al. [12] analytically derive the optimal 

timing in a schedule composed of three activities and two trips. The authors analyze a model using marginal utility 

functions for each activity using piecewise sigmoid function where the magnitude of the function is bound by 

maximum and minimum value of time of the individual for specific activity. Joh et al. [13] provide schedule generation 

and dynamic activity travel rescheduling decisions. The Aurora model is based on S-shaped utility functions. The 

maximal utility value attainable for a given activity is given by the product of functions modeling the attenuation by 

start time, location, position in the daily schedule and time break since last execution of the activity. Nagel et al. [14] 

estimated the effect on traffic flows of willingness-to-pay the congestion cost by modeling the marginal cost and 

marginal utility ratios using MATSim; Multi-agent Transportation Simulation tool. 

Kouwenhoven et al. [15] used stated preference surveys to calculate the value of time for passenger transport. Such 

methods provide value of time related with single trip without considering trip-based constraints. Similar methods of 

Value of time calculation have been reported by Baqueri et at. [16], Hess et al. [17], Fezzi et al. [18] and  Meunier and 

Quinet [19] where authors used multinomial logistic regression to find travel time and cost coefficients using SP data 

which result in value of time.  

3. Proposed model to determining changes in activity duration   

Individuals plan their daily activities to achieve maximum utility of the time by keeping the travel cost minimum. The 

travel cost involved in activity planning is only perceived cost i.e. fuel cost, toll cost and/or congestion cost. Individuals 

do not take into account the past investment cost in their daily planning. In this work, congestion cost along with fuel 

cost is taken into account in an optimization of travel start time with constraints of maximization of time utilization 

and minimization of the total cost involved with trips. Daily schedules of the individuals are rescheduled in order to 

fulfill the cost and utility constraints. The proposed rescheduling is considered day-ahead planning only without 

feeding the planning information back to the transportation network and using the updated state of network back to 

planning procedure.  

Congestion charges are applied with flat rate to all car drivers travelling during the charging period. Each individual, 

to whom congestion cost applied, intend to reschedule his or her trips that overlap with congestion charging period. 

Rescheduling of trips requires a tradeoff among difference in value of reallocated time and saved cost. Re-planning of 

time for one trip may have consequences in preceding and succeeding activities as well because utilization of time may 

differ from the original one and activity participation may also be changed.  

To test above described hypothesis, sigmoid utility is modeled for each activity. Total utility of the schedule is 

compared for the original and rescheduled cases along with saved travel cost in order to calculate the individual’s 

willingness-to-pay. In following sections, the theoretical model is described to calculate the utility of the schedule. 

This is followed by a description of the method to reschedule the original plan and the way to evaluate the utility to 

cost ratio. At the end of this section, the software implementation used to simulate the proposed evaluation framework 

is explained.   

3.1 Theoretical framework 

The framework modeled in this work postulates that individuals take part in daily activities and make trips to travel 

between activity locations. A given sequence of activities constitutes the daily schedule for each individual. Each 

activity has a preferred start time, duration and location. The initial daily schedules of the whole population of study 

area are generated using the activity-based model FEATHERS [20] and are considered to be optimal because of 

revealed preference. Feathers schedules are derived from household travel survey using data mining techniques. 

Therefore, revealed preference information is used. It is assumed that individuals try to maximize utility and hence the 

majority of the schedules can be assumed to be optimized in practice. Optimal schedule connotes that the individual 



considers activity start time and duration optimized which yields maximum satisfaction required by activity 

participation. The satisfaction is the maximum benefit earned by the individual by spending time at different activities 

and trips during the day and it is represented by schedule utility U. Total utility of the schedule U is the sum of utility 

of all activities in the schedule. The utility gained by spending a unit of time on any activity is expressed using a bell-

shaped marginal utility, which is described in section 3.1.1. Such models have been formulated previously by Ettema 

and Timmermans [21], Zhang et al.[22] and Jenelius et al.[12]. However all previous models only formulate the fixed 

number of activities or using parameters that do not take the complete schedule into account. In this work, a procedure 

is described to derive the parameters involved in marginal utility function. Suppose that a schedule consists of 𝑛 

activities where 𝑛 − 1 trips are required to travel between 𝑛 activities locations. Each activity 𝑖 starts at 𝑡𝑖
𝑠 and ends at 

𝑡𝑖
𝑒 time of day. Each trip is 𝑇𝑖  duration long, which starts from the end time 𝑡𝑖−1

𝑒  of the previous activity 𝑖 − 1 and ends 

at start time 𝑡𝑖
𝑠 of the succeeding activity 𝑖. Utility 𝑢𝑖(𝑡) of each activity is calculated by integrating the marginal utility 

of the activity from its starting time 𝑡𝑖
𝑠 to the end time 𝑡𝑖

𝑒, hence, the utility is a function of duration 𝐷𝑖  of the activity. 

The total utility 𝑈 of the schedule is the sum of the utilities of all activities as shown in formula (3.2), where 𝑣𝑖(𝑡) is 

the marginal utility of the activity 𝑖. 
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3.1.1 Bell shaped marginal utility 

Marginal utility 𝑣(𝑥) is expressed as difference of two logistic functions, which are ‘△’ units of duration apart from 

each other and have equal steepness. As shown in Fig. 1, solid line denotes the marginal utility 𝑣(𝑥) that is achieved 

by taking difference in two logistic functions 𝐿1(𝑥) and 𝐿2(𝑥) expressed by dotted lines. Difference in two logistic 

functions having equal steepness results in bell-shaped function, as expressed in equation (3.6), for which different 

examples are shown in Fig. 2. Hence, resulting bell function has three parts 1) warm-up part, 2) constant part (nearly 

constant for sufficient larger α values), and 3) cool-down part. Marginal utility function having warm-up and cool-

down parts is advantageous over monotonic decreasing marginal utility described by Knapen et. al.[23] to model the 

effect of switching between tasks. In reality, marginal utility can be described in many ways. However, benefit yielded 

by activity participation for most activities saturates after a period which is warming-up phase. Similarly, at the end of 

activity, marginal utility gradually decreases and eventually reaches at the minimum point, which is cool-down phase. 

Examples of such marginal utility are presented in in Fig. 2, where four curves show the examples of marginal utility 

functions having different steepness and duration. Steepness of the marginal utility curve is expressed using α and the 

duration of the activity is expressed using the ∆ variable. In the shown curves, center of the increasing slope occurs at 

the ∆ = 0 and center of decreasing slop occurs the specific duration value of each curve. It is important to note here 

that marginal utility function described here does not depend on time of the day but only depends on time duration.  
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Fig. 1 Marginal utility function achieved by difference in two logistic functions 

 

Fig. 2 Examples of bell-shaped marginal utility curves having different α with ∆=10 

3.1.2  Sigmoid Utility 

Utility achieved by integrating the bell shaped marginal utility results in sigmoid function. Sigmoid utility 𝑢𝑖 of a given 

activity 𝑖 is a function of duration ∆ and steepness factor α. Let ∆𝑖 be the typical/optimal duration described in section 

3.1.5 and 𝐷𝑖  is the observed/actual duration of an activity 𝑖 where ∆𝑖=  𝑡𝑖
𝑡𝑦𝑝,𝑒

− 𝑡𝑖
𝑡𝑦𝑝,𝑠

 and 𝐷𝑖 =  𝑡𝑖
𝑜𝑏𝑠,𝑒 −  𝑡𝑖

𝑜𝑏𝑠,𝑠
. Then, 

utility is given by equation (3.8) with a function of duration 𝐷𝑖 . 
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Examples of utility are shown in Fig. 3 where four curves represent four different utility functions. All curves of 

utility shown in the example have ∆ =10 but four different values of α. Sigmoid utility saturates early with higher 

value of α. 

 

 
 

 

Fig. 3 Examples of utility curves with function of duration and different values of α and ∆: left Fig. with ∆=10  
and right Fig. with ∆=0.1 

3.1.3 Determination of parameters 

To derive the parameters of marginal utility it is assumed that initial schedules created by activity-based model are 

optimal. Hence, marginal utility function is attuned to gain the utility 𝑈 <  𝑈𝑚𝑎𝑥 where 𝑈𝑚𝑎𝑥  is maximum obtainable 

utility. Parameters of marginal utility are determined separately for each schedule without any dependency on other 

schedules. Hence, there is no dependency between individuals.   

3.1.4 Determination of Delta (∆) 

During schedule simulation, schedules are adapted, as described in section 3.3, where the duration of activities can 

change. New duration is termed as observed/actual duration 𝐷𝑖  of the activity during schedule simulation. 

Observed/actual can be longer or shorter than optimal/typical duration of the activity. If 𝑡𝑖
𝑜𝑏𝑠,𝑠

 is the observed/actual 

start time and 𝑡𝑖
𝑜𝑏𝑠,𝑒

 is the observed/actual end time of an activity 𝑖 then observed/actual duration for the marginal 

utility function of that activity is calculated as follow: 𝐷𝑖 =  𝑡𝑖
𝑜𝑏𝑠,𝑒 −  𝑡𝑖

𝑜𝑏𝑠,𝑠
. 

All activities in the schedule have typical duration of activity participation. Any change (positive or negative) in the 

duration of an activity will decrease the utility of complete schedule. We assume that the typical duration delta (∆), 

which defines the width of the bell function, is the observed duration of the activity in the schedule. If 𝑡𝑖
𝑡𝑦𝑝,𝑠

 is the 

optimal/typical start time and 𝑡𝑖
𝑡𝑦𝑝,𝑒

 is the optimal/typical end time of an activity 𝑖 then typical duration or delta (∆) for 

the marginal utility function of that activity is calculated as follows: ∆𝑖=  𝑡𝑖
𝑡𝑦𝑝,𝑒

− 𝑡𝑖
𝑡𝑦𝑝,𝑠

.  

3.1.5 Determination of Alpha (𝛼) 

As described earlier, parameters of marginal utility function are determined to gain a utility 𝑈, which is always lower 

than maximum utility 𝑈𝑚𝑎𝑥  so that 𝑈 𝑈𝑚𝑎𝑥
⁄  will always be less than one.  

For each activity in the simulated schedule, the activity duration is assumed to equal the typical duration ∆ for the 

specific case (individual, activity type, day-of-week, time-of-day). Then ∆ = 𝑡𝑖
𝑜𝑏𝑠,𝑒 −  𝑡𝑖

𝑜𝑏𝑠,𝑠 . In this case, equation 

(3.8) leads to  
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An asymptotic upper boundary for the utility is given by 
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Note that 𝑣𝑚𝑎𝑥  decreases with decreasing α. The utility 𝑢𝑚𝑎𝑥 is realized for 𝛼 → ∞. The relative utility that is 

defined as the ratio between actual and maximum utility can be expressed as: 
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1. The relative attainable maximum utility for ∆ = 10 is shown in Fig. 4. In order to understand the presence of a local 

minimum, look at Fig. 2. Lower α values result in lower marginal utility (and hence in lower utility for a given 

duration). However, the marginal utility tends to approach a constant value for low α values more quickly so that for 

a given Δ the marginal utility 𝑣 approaches its maximal value 𝑣𝑚𝑎𝑥  over a large part of the activity execution interval. 

As a result, the relative maximum attainable utility is high although the absolute utility attained might be low. 
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Fig. 4 Curves of relative utility as a function of αwith different values of ∆ 

 

2. In order to determine the value for alpha (α) it is assumed that the individual reaches a sufficiently large fraction 𝑓 

of the maximum attainable utility (because the activity was observed and hence one can assume that it would not have 

been executed if the resulting utility were low. Therefore, out of the two available solutions of the equation (3.17), the 

larger alpha (α) value is to be retained. A Newton-Raphson iteration is used since equation (3.16) seems not to be 

tractable analytically.  
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3.1.6 𝐾 values  

After some analytical exploration of the marginal utility function of two adjacent activities at the activity switching 

time, it is found that k values of all activities in the schedule will be equal.  Starting with same argument that initial 

schedules are optimal and hence all consecutive activities in a schedule have equal marginal utility at time of switching 

from one activity to the next activity as shown by Knapen, et al.[5]. Assume two activities 𝑎1and 𝑎2 are planned 

consecutively. Activity 𝑎1 starts at 𝑡0 and ends at 𝑡1 while activity 𝑎2 starts from 𝑡1 and ends at 𝑡2. The respective 

activity durations are ∆1= 𝑡1 − 𝑡0 and ∆2= 𝑡2 − 𝑡1. Hence, marginal utilities of both activities will be equal at 𝑡1 at 

which activity switching occurs.  
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Equation (3.6) is inserted on both sides of equation (3.18), which leads to  
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 The assumption that the relative utility attained is identical for all activities in the schedule leads to the conclusion 

that the product 𝛼∆ is the same for all activities. This follows from equation (3.16) when 𝑟(𝛼) is given. Hence 

 1 1 2 2 3 3 n n              (3.21) 



Substitution of equation (3.21) into equation (3.20) yields  

 

2

1

1
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  (3.22) 

Hence, for all activities in the schedule  
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  (3.23) 

 

3.2 Travel cost 

Travel costs (𝑡𝑐𝑜𝑠𝑡) incurred to the traveler are fuel cost (𝐹𝑐𝑜𝑠𝑡) and congestion charging (𝑐𝑐𝑜𝑠𝑡). Details about 

congestion charging are described in section 3.2.1. Fuel cost is calculated as fuel consumption rate 𝐹𝑟𝑎𝑡𝑒
𝑐𝑜𝑛𝑠 multiplied 

by the distance travelled by car (𝑡𝑑𝑖𝑠
𝑐𝑎𝑟).  

 
cons car

cost cost rate dist c F t     (3.24) 
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3.2.1 Congestion period and congestion rates: 

A congestion profile is introduced for the morning peak for every car traveler. The congestion period starts from 07:00 

am and ends at 09:00 am. Every car traveler, having active travel during the congestion period is charged for 

congestion. Congestion charging 𝑐𝑟𝑎𝑡𝑒 charged as Eurocents per kilometer. Hence, congestion cost 𝑐𝑐𝑜𝑠𝑡  is calculated 

depending on the number of kilometers travelled during the congestion period.  

Overlap between travel and congestion periods can occur in four ways as shown in Fig. 5. Let 𝑗𝑠 and 𝑗𝑒denote journey 

start and end time while 𝑐𝑠 and 𝑐𝑒are start and end time of congestion period. Travel and congestion period can occur 

in several ways. As shown in the figure, overlap between travel and congestion period is possible only as described in 

𝑐𝑎𝑠𝑒 1: 𝑗𝑠 > 𝑐𝑠 ∧ 𝑗𝑒 < 𝑐𝑒 

𝑐𝑎𝑠𝑒 2: 𝑗𝑠 < 𝑐𝑠 ∧ 𝑐𝑠 < 𝑗𝑒 < 𝑐𝑒 

𝑐𝑎𝑠𝑒 3: 𝑐𝑠 < 𝑗𝑠 < 𝑐𝑒 ∧  𝑗𝑒 > 𝑐𝑒 

𝑐𝑎𝑠𝑒 4: 𝑗𝑠 < 𝑐𝑠 ∧ 𝑗𝑒 > 𝑐𝑒 

𝑐𝑎𝑠𝑒 5: 𝑗𝑠 > 𝑐𝑒 

𝑐𝑎𝑠𝑒 6: 𝑗𝑒 < 𝑐𝑠 

𝑐𝑠 

 

𝑐𝑒 

 

Fig. 5 Possible ways of overlap between congestion period and a trip 



cases 1 to 4. If congestion and travel periods occur as shown in cases 5 and 6, the overlap period between them will 

be zero.  

 

Let  𝑇𝑝 denotes the intersection of the travel and congestion periods, 𝑇𝑠
𝑝
 denote the start time and  𝑇𝑒

𝑝
the end time of 

the period of overlap. Calculation of starting and end times of the overlap period can be generalized as follows: 

 ( , )p

s s sT Max j c   (3.26) 

 ( , )p

e e eT Min j c   (3.27) 

 𝑇𝑑𝑢𝑟
𝑃 = 𝑀𝑎𝑥 (0, 𝑇𝑒

𝑃 − 𝑇𝑠
𝑃) (3.28) 

where 𝑇𝑑𝑢𝑟
𝑝

is the duration of the overlap period. There will be an overlap between travel and congestion period if  

𝑇𝑑𝑢𝑟
𝑝

> 0 (cases 1 to 4), and no overlap when  𝑇𝑑𝑢𝑟
𝑝

= 0 (cases 5 and 6). 

If a non-zero overlap between travel and congestion period is found, the distance travelled during the congestion period 

is required to calculate the congestion cost applied to the traveler. The only information available about travel is starting 

time, travel duration, travel distance, starting location and ending location. Exact route followed from starting location 

to the destination is also unknown. In this scenario, to calculate the exact distance travelled during overlap period is 

impossible. The distance is estimated as follow: 

Assume that the individuals travel at uniform speed throughout the trip. If 𝑑𝑖𝑠(𝑡) is the trip distance, 𝑑𝑢𝑟(𝑡) is the trip 

duration, then distance travelled 𝑇𝑑𝑖𝑠
𝑝

 during congestion overlapping period 𝑇𝑑𝑢𝑟
𝑝

 can be found as follows: 

 

( )

( )

p p

dis dur

dis t
T T

dur t
 

  (3.29) 

Hence, congestion cost is calculated as follows: 

 
p

cost dis ratec T c    (3.30) 
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3.3 Schedule adaptation  

Original daily schedules predicted by FEATHERS are assumed to be optimal (and hence results in maximum attainable 

utility); it incurs travel cost in terms of fuel cost but no congestion cost to the travelers. Congestion cost only applies 

to any traveler if he/she has any car trip during congestion period. Now we assume that any car trips which overlaps 

with congestion period is tried to shift up to 𝑠𝑚𝑎𝑥 time units. The trip is shifted over time in order to bring it out of 

congestion period. This shift can result in lower travel cost as congestion cost will be lower than before (can also be 

zero if trip is completely shifted out of congestion period). Shift in any trip requires retiming of all activities and trips 

in the schedule; this is described in detail in section 3.3.2. Since activities are retimed, a new equilibrium state will 

emerge in the schedule. This adapted schedule may have less travel cost as compared to initial cost, but utility of the 

adapted schedule is always lower than the initial utility.  

3.3.1 Shift in trip 

Any car trip, which overlaps with the congestion period, is shifted either backwards or forwards in order to bring it out 

of congestion period. Decision of shifting the trip to the backward or forward depends upon to which direction required 

shift is smaller. The trip is shifted backwards if 𝑠𝑏𝑤𝑑 < 𝑠𝑓𝑤𝑑, otherwise it is shifted forwards. Either way to shift, 

shifting value cannot be greater than the maximum possible shift 𝑠𝑚𝑎𝑥. 

 



 As shown in the Fig. 6, congestion period starts at 𝑐𝑠 and ends at 𝑐𝑒. There is a trip which overlaps with congestion 

period, it starts at 𝑗𝑠 and ends at 𝑗𝑒. Trip can be shifted out of the congestion period either shifting backwards for 𝑠𝑏𝑤𝑑  

time units or to the forward for 𝑠𝑓𝑤𝑑  time units. In the example shown in this figure, shifting backwards requires less 

time shift then shifting forwards. Hence, backward shift is selected, but required shift is longer than maximum allowed 

shift. Hence, only a part of trip manages to avoid congestion period. Even in case of small part of trip shifts out of 

congestion period, it creates marginal difference of cost.  

 

Shifting the trip adjusts the activity starting time and causes a change in duration of the activities between which the 

trip is enclosed in time. The activity that is compressed is under run, while the activity that is decompressed may get 

very low marginal utility due to overrun. This requires timing relaxation in the schedule while keeping the shifted trip 

fixed in place. This introduces an intermediate deadline in the schedule. The intermediate deadline is kept at a fixed 

point in time and the relaxation algorithm operates on the schedule in two independent parts. Time pressure and 

relaxation produced by compressing/decompressing activities are distributed among all activities in the respective parts 

of the schedule. An example is shown in the Fig. 7, where a schedule is presented (in row → 1) having five activities 

(shown by white boxes) and four trips (shown by grey colored boxes) in between the activities. The second (from left) 

trip overlaps with the congestion period, and shifts backwards in time to avoid congestion cost as represented in row 

→2.  This causes a compression in the second and a decompression in the third activity. The shifted trip shown with a 

bold line box on row → 3, is fixed in time and its boundaries are treated as intermediate deadlines. All activities on 

both sides of the fixed trip are retimed to distribute the lost and gained time respectively.  

𝑠𝑚𝑎𝑥 
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𝑝

 𝑐𝑒 

 

𝑠𝑓𝑤𝑑 
𝑠𝑏𝑤𝑑 

𝑗𝑠
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Fig. 6 Shift in a trip to avoid congestion charging 



 

During relaxation of activities in the schedule, start time and duration of each activity is recalculated. This is done by 

means of an iterative method, where two adjacent activities are evaluated in a pair. In each pair of two activities, 

swapping time from on activity to the other is recalculated by fixing their outer ends (start time of first activity and 

end time of second activity), and their duration values are updated according to the new time of swapping. Swapping 

between two adjacent activities should occur when the marginal utility value of first activity in cool-down part becomes 

equal to the marginal utility value of second activity at the warm-up part. This conforms to the hypothesis of equal 

marginal utility rule at activity swapping time. Using this rule, calculation of new activity starting time is described in 

section 3.3.2. 

    (3.32) 

3.3.2 Activity start time adjustment 

Consider two adjacent activities 𝑎1 and 𝑎2 have 𝑑1 and 𝑑2 units duration. Activity 𝑎1 starts at 𝑡0 and ends at 𝑡1 where 

second activity 𝑎2 starts at 𝑡1 and ends at 𝑡2. Travel from first activity to the second activity should occur at the point 

where the values of their marginal utilities are equal. The following method is used to calculate their new swapping 

time 𝑡1 while keeping the outer ends (𝑡0 and 𝑡2) fixed. 

 1 1 2 2( ) ( )v d v d   (3.33) 
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Since 1 2k k , rewriting equation (3.34) yields, 
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     (3.36) 

Since 𝑑1 = 𝑡1 − 𝑡0 and 𝑑2 = 𝑡2 − 𝑡1 

 1 1 0 2 2 1( ) ( )t t t t      (3.37) 
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𝑐𝑠 𝑐𝑒 

1→ 

4→ 

2→ 

3→ 

𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒  

𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 

Fig. 7 Schedule (de) compression with intermediate deadline 



3.4 Evaluation of change in cost to utility ratio  

Execution of a schedule has a travel cost and it produces some utility. Initial schedules are considered optimal; hence, 

they produce maximum utility. Introduction of congestion cost for a specific period of the day can increase the travel 

cost for an individual if there is any car trip during the congestion period. The method to evaluate the individual’s 

decision to either accept the congestion cost and keeping the utility maximum or shift the trip to avoid the congestion 

cost leading to a utility drop is described in this section. 

The proposed method to evaluate any individual’s willingness-to-pay is based on hypothesis of minimizing the cost to 

utility ratio. Two scenarios are used to compare the ratio between cost and utility; (i) the optimal case (original 

schedule), and (ii) congestion avoidance described in section 3.3. The optimal case always results in maximum utility 

with some travel cost; it is used as the reference case. In the adapted case, utility of the schedule always decreases 

while cost either can decrease or increase. Travel cost of the schedule decreases if shifting a trip and following schedule 

relaxation does not bring any succeeding or preceding trip into the congestion period; otherwise, travel cost may 

increase.  

So, ratio of cost to utility will decrease only if decrease in travel cost is higher than decrease in utility for the shifted 

period. On the other hand, the ratio of cost to utility will increase if the travel cost of the adapted schedule exceeds the 

reference cost or the decrease in the travel cost is lower than the decrease in utility for the shifted period. Therefore, 

an individual accepts to pay the congestion cost only if his/her ratio of cost to utility exceeds the corresponding value 

for the reference case. If the ratio of cost to utility drops, the individual will accept the adaptation of the schedule to 

save the congestion cost.  

 

Table 1 Comparison of cost to utility ratios 

Indicator Decision 

𝐶𝑠ℎ𝑖𝑓𝑡𝑒𝑑

𝑈𝑠ℎ𝑖𝑓𝑡𝑒𝑑

≤
𝐶𝑖𝑛𝑖𝑡

𝑈𝑖𝑛𝑖𝑡

 Accepts adaptation in schedule to avoid congestion charging 

𝐶𝑠ℎ𝑖𝑓𝑡𝑒𝑑

𝑈𝑠ℎ𝑖𝑓𝑡𝑒𝑑

>
𝐶𝑖𝑛𝑖𝑡

𝑈𝑖𝑛𝑖𝑡

 Accepts to pay the congestion charging  

 

Assume an individual 𝐼 has a schedule 𝑆 that consists of 𝑛 activities where at least one car trip has an overlap with 

congestion period. Initially schedule 𝑆 has the utility 𝑈𝑖𝑛𝑖𝑡  and a travel cost 𝐶𝑖𝑛𝑖𝑡, which is the fuel cost. In order to 

evaluate the individual 𝐼’s willingness-to-pay the congestion cost, the trip which overlaps with congestion is shifted 

out of the congestion period and the activity timings in schedule 𝑆 are recomputed. Now cost 𝐶𝑠ℎ𝑖𝑓𝑡𝑒𝑑  and utility 

𝑈𝑠ℎ𝑖𝑓𝑡𝑒𝑑 are calculated for the adapted schedule where 𝑈𝑠ℎ𝑖𝑓𝑡𝑒𝑑  is always less than 𝑈𝑖𝑛𝑖𝑡  while 𝐶𝑠ℎ𝑖𝑓𝑡𝑒𝑑can be less than, 

equal to or greater than 𝐶𝑖𝑛𝑖𝑡. Their ratio is compared to evaluate the willingness-to-pay, which is summarized in Table 

1.  

3.5 Implementation and Simulation  

A software simulation is implemented using Java to evaluate the theoretical model described above. Daily activity 

schedules of individuals, which are used as source input to feed the model are created by the FEATHERS activity-

based model. The source information is used in the form of a list containing the complete information about each 

individual. In the simulation, an individual is represented by the person entity. Each person owns one schedule where 

a schedule is a list of episodes. An episode consists of a (possibly empty) trip and an activity. One FEATHERS 

prediction produces a schedule for each member of the considered population for one specific day only. A schedule 

starts from 3:00 AM in the morning and ends at 3:00 AM next day morning. The number of activities in the schedule 

for each person can vary and it is person specific. Each activity has a specific purpose, starting time, duration and 

location of activity execution. A trip is required to travel between two activity locations. Each trip has a specific mode 

of transport, travel duration and travel distance. As shown in Fig. 8 that represents the class diagram, the basic 

information about these entities is populated from FEATHERS is passed to the moduleManager. ParamCalibrator 

determines the parameters of the marginal utility function for each activity. 



CongestionProf entity contains the information about the congestion period and congestion rate. ScheduleAdapter 

module updates the timing of the trip that overlaps with the congestion period by (de)compressing the two activities 

one after and one before the trip. This module also contains the schedule relaxation algorithm that updates the timing 

of all activities in the schedule in two parts by fixing the time of the shifted trip. The framework contains the 

CUREvaluator, which calculates the total travel cost and total utility for initial schedule and adapted schedule. 

CUREvaluator compares the cost to utility ratio of the initial and adapted schedules to evaluate the willingness-to-pay 

the congestion cost.  

 

Trip

Activity

Marginal Utility 
params

ParamCalibrator

CongestionProf ScheduleAdapter

CUREvaluator

Schedule

Person

<<IPerson>>

<<IActivity>>

FEATHERS

ModuleManager

 

Fig. 8 Class diagram of the framework 
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Fig. 9 Sequence diagram of flow of messages between framework entities 



 

Fig. 9 shows the sequence diagram to explain the interactions among the components of the framework. 

ModuleManager invokes the DataManager module to fetch the schedule of next person by reading the predictions 

made by FEATHERS. Then moduleManager calls the paramCalibrator module by passing this basic information to 

compute the marginal utility parameters using the basic information for each activity. ScheduleAdaptor fetches the 

congestion information from DataManager and using the information about personal schedule and congestion period 

it retimes all activities in the schedule by shifting trips out of the congestion period. ModuleManager sends the message 

to CUREvaluator to compare the utility and cost of original and adapted schedule. 
4. Experiment and Results 

The study area covers Flanders (Belgium). It is modeled by 2386 traffic analysis zones (TAZ) with an average area of 

about 5[𝑘𝑚]2. TAZ are bundled into 319 municipalities. The population consists of 5.8 million individuals. 

FEATHERS predicts daily schedules of 2395514 individuals, out of which 805964 schedules contain at least one car 

trip during the considered day.  

To compute the parameters of marginal utility, it is assumed that a fraction of maximum utility can be reached as 

described in equation (3.17). Fraction of utility to the maximum utility is used equal to 95%. Hence alpha (α) values 

used in marginal utility function of each activity are calculated with 𝑓 = 0.95. During schedule adaptation, trips are 

shifted to avoid the congestion period by moving them either to the forward or to the backward, but trips are not 

allowed to shift more than a maximum value 𝑆𝑚𝑎𝑥 . This is based on carpooling research survey, which find that due 

to appointments, people do not shift their activities more than 30 min [24]. The evaluation presented here assumes that 

the maximum allowed shift is 30 minutes.  

Fig. 10 shows the frequency distribution of difference in cost to utility ratio between adapted and initial schedules in a 

histogram. Out of 805964 individuals who used car at least for one trip, 3.63% individuals had an overlapping trip with 

a congestion charging period and found a different travel cost after schedule adaptation. Out of all individuals who 

found a different travel cost, 76.4% individuals would adapt their schedule to avoid congestion cost and 23.6% 

individuals were found willing to pay congestion cost rather than adapting their schedules.  

 

 

Fig. 10 Distribution of absolute difference in cost to utility ratio 

Individual’s behavior to decide the willingness-to-pay the congestion cost is predicted using the marginal utility 

function. The variables used in marginal utility function are determined by assuming that a certain fraction of maximum 

utility is attainable. The used fraction of maximum attainable utility determines the parameters used in marginal utility 

function and can have influence on behavior. To determine the influence of used fraction, a sensitivity test is carried 
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out. To test the model’s sensitivity, experiment is repeated using different values of relative utility (f) that is described 

in equation (3.17). A range from 0.88 to 0.96 with step of 0.02 is used for relative utility to test the sensitivity of the 

model. Two variables used to sense the influence of relative utility are; 1) total congestion cost paid by the travelers, 

and 2) the fraction of the population that decide to pay the congestion cost. Fig. 11 shows the values of two variables 

for different values of relative utility. For different values of relative utility, the observable variation in both variables 

is very small.  

 

Fig. 11 Total congestion cost (dotted line) paid by the travelers and fraction of population (solid line) that decides to 

pay the congestion charges rather than rescheduling 

5. Conclusion 
In this work a model for rescheduling is presented, which can be useful to evaluate the effect of traveler’s willingness-

to-pay the congestion charges. Willingness-to-pay is evaluated by comparing the ratio of schedule utility and travel 

cost of original and adapted schedules. Individuals whose trips overlap the congestion charging period shift their trips 

in time if that decreases the cost per unit of utility. A new bell-shaped function is used to represent the marginal utility 

of the activities in the schedule, which results in sigmoid utility. The sum of sigmoid utilities of all activities in the 

schedule results in total schedule utility. A method is proposed to determine the parameters of marginal utility bell-

shaped functions using basic information about activity plans. In this study schedules predicted by an activity-based 

model FEATHERS were used as input. The simulated results show the percentage of travelers who would accept or 

reject to pay the travel cost. 

6. Future work 
Application of the proposed model with static input from congestion profile grants the travelers a freedom with given 

flexibility to adapt their schedule in order to save the congestion cost. At the individual level, adapted daily plans 

outperform the original ones but at the aggregated level a shifted traffic peak larger than the original one occurs. This 

is because the current model has no feedback loop using traffic assignment (i.e. the effect on travel time is not fed 

back). A feedback loop is required in an iterative procedure where individuals update their trips in the schedule with 

new travel duration. This can be achieved by adding a new module of traffic assignment that updates the state of the 

traffic network with adjusted travel times between locations. Hence, using updated schedules, individuals should re-

calculate their cost to utility ratio to evaluate their willingness-to-pay the congestion cost.  

Schedule adaptation using monotonic decreasing marginal utility has been described by Knapen et al. [23] and a 

framework of large-scaled microsimulation using macroscopic information of traffic state is presented. Monotonically 

decreasing marginal utility connotes that during rescheduling, even in case of high time loss, individuals will prefer to 

execute the activity because marginal utility starts with highest value and decays monotonically. This may not be the 

case when bell-shaped marginal utility is used, since the marginal utility has a warm-up period, which cause different 

behavior due to heavy time loss. In case of high time pressure, individuals may prefer to drop an activity, which due 

to compression cannot reach its saturation period, to compensate the time loss of any other activity that is already in 

saturation period in order to maximize the total utility.  
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