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Abstract

As part of central statistical monitoring of multicenter clinical trial data, we propose a
procedure based on the beta-binomial distribution for the detection of centers with atypical
values for the probability of some event. The procedure makes no assumptions about the
typical event proportion and uses the event counts from all centers to derive a reference model.
The procedure is shown through simulations to have high sensitivity and high specificity if the
contamination rate is small and the atypical event proportions are the result of some systematic
shift in the underlying data generating mechanism.
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1 Introduction

Central Statistical Monitoring (CSM) is a novel approach to the monitoring of multicenter clinical

trial data, based on statistical tests, models, and scoring algorithms [1, 2, 3, 4]. The rationale behind

CSM is that data quality issues arising from transcription errors, measurement problems, misun-

derstandings, procedural issues, data tampering or even data fabrication may remain undetected

with on-site monitoring, but are more easily detected when the data of each center are compared

with the data from all other centers. Some authors propose to use statistical tests to identify centers

with unsual data patterns for selected clinical variables [2, 4], while others have used trials with

known cases of fraud to build a model predictive of fraud based on a limited number of key clini-

cal variables [3]. In the most radical implementation of CSM, a large battery of statistical tests is

applied to all variables collected in the clinical database and the resultingp-values are combined

in an overalldata inconsistency scorefor each center [1].

In this paper, we focus on the test for the comparison of proportions in the aforementioned con-

text. The test is one of the most frequently used in CSM, because it applies to all situations where

a binary variable captures an event that is either directly measured (e.g., if the patient reported

a specific adverse event) or derived from other data (e.g., if there are observations missing for a

given variable). Assuming that the trial procedures are similar across the centers (as imposed by

the protocol) and that patient populations are comparable, we expect similar proportions of such

events in all centers. However, we aim at detecting situations where an issue in one of the centers

leads to a different data-generating mechanism, resulting in a lower or higher proportion than in

other centers. We will refer to such a center asatypical, in contrast to thetypical centers (not

affected by any issue).

Our test procedure is based on the idea of using the beta-binomial model to account for extra-

binomial variation often seen in biological and biomedical data (see, e.g., Griffiths [7] and Williams

[8]). Chuang-Stein [5] followed this approach to detect atypical adverse event rates in new trials

based on a meta-analysis of comparable historical trials. To this aim, she used the beta-binomial

model estimated from the pooled data as a reference.

In the CSM setting, we aim at automatically detecting atypical centers within a single trial
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without any prior information. Moreover, we do not wish to rely on any prior assumptions about

the nature of the binary event or its probability. We do assume, however, that observed event

counts in the typical centers are realizations of a single data-generating mechanism, namely a

beta-binomial model with (unknown) location parameterμ0 and (small) overdispersion parameter

ρ0. In addition, we assume that

(i) atypical centers, if present, represent only a small fraction of all centers (say, at most 5% and

very often a single center), and

(ii) event counts in the atypical centers are realizations from a beta-binomial model with a differ-

ent (unknown) location parameterμ1 and (small) overdispersion parameterρ1.

In our experience, the extra-binomial variation is usually small and can be adequately captured

by values typically in the 0.01 to 0.05 range for parametersρ0 andρ1.

The detection problem consists of automatically detecting the atypical centers, if any. In Sec-

tion 2 we discuss the rationale for a simple detection procedure based on beta-binomial modeling

and evaluate its performance in terms ofpower (the ability to detect atypical centers) andspeci-

ficity (the ability to avoid flagging typical centers). To enhance the performance and obtain more

consistent properties, a number of pre-processing and adjustment steps are introduced, leading to

the comprehensive algorithm presented in Section 3. A simulation study, as well as real examples,

are presented in Section 4. We end with a discussion of the properties and possible applications

of the proposed approach for central statistical monitoring of multicenter clinical trials. Technical

details on the beta-binomial distribution are deferred to the Appendix. All simulations were carried

out using the R software.

2 Beta-binomial-modeling-based detection approach

To fix notations, we consider grouped binary data, where the raw data are pairs (xi ,ni) or pro-

portionsxi/ni for i = 1, ...,N, with xi denoting the event counts,ni the corresponding number of

trials andN the number of groups. For convenience, we will refer to the groups ascenters, with-

out assuming thatni always corresponds to a number of subjects, allowing for applications where

multiple items are observed per subject.
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We assume that the raw dataset consists ofN0 typicalcenters with countsxi ∼Beta-binomial(ni , μ0, ρ0)

(the null model), and possibly, in addition,N1 atypicalcenters with countsxi ∼Beta-binomial(ni , μ1, ρ1)

(the alternative model), with μ1 , μ0 and smallρ0 andρ1. Without loss of generality we assume

throughout the text thatμ0 ≤ 0.5 (thesymmetry property).

The detection procedure assesses each center in terms of the plausibility of its observed count,

with respect to the (unknown) null-distribution that is assumed valid for the typical centers.

The p-value for an observed countx in a center of sizen is defined as follows [9]:

p(x) =





min(2P(X ≥ x),1) if x > nμ0

min(2P(X ≤ x),1) if x ≤ nμ0

(1)

where, under the null model,X ∼ Beta-binomial(n, μ0, ρ0).

We use thisp-value in the following decision rule:fla gan observationx as suspicious if and

only if p(x) < αcrit . Since the Type I error probability equalsαcrit , we will refer to this value as the

significance level(taken 0.05 throughout this text).

In practice, we have no means of deriving the null model from the observed data, because

some of the centers in our dataset may be atypical. Therefore, we will use as a working reference

the model estimated fromall data, the so-calledhybrid model, and assume that it is a good ap-

proximation of the null-model, provided that thecontamination rate, defined asN1/(N0 + N1), is

low.

Based on the aforementioned assumptions, a simple detection procedure is defined as follows:

1. Fit a beta-binomial model to all data (xi ,ni)i=1,...,N.

2. Based on the estimated (hybrid) model, assign to each centeri a p-value pi and flag it if

pi < αcrit .

The procedure is illustrated in a simulated example with 48 typical centers generated from

Beta-binomial(n = 50, μ0 = 0.3, ρ0 = 0.02), and 2 atypical centers from Beta-binomial(n =

50, μ1 = 0.6, ρ1 = 0.02). Relevant densities and the resulting estimated hybrid model are de-

picted in the left panel of Figure 1. Note that, in this case the contamination rate is small (4%) and

the hybrid model is a reasonable approximation of the null model.
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The decision rule for detection of an atypical center of size 50, based on the estimated hybrid

model, is illustrated in the right panel of Figure 1. In particular, centers with at most 5 or at least 27

events are considered inconsistent with the null model. This implies that most centers consistent

with the alternative model would be flagged.

The left panel of Figure 1 presents also the estimated hybrid model for the contamination rate

of 40%, i.e., for the case of 30 typical and 20 atypical centers. The hybrid-model-based critical

bounds for detecting an atypical center are equal to 5 and 39. However, in that case, the atypical

centers will not always be detected. This is because the hybrid model does not offer a reasonable

approximation of the null model. In particular, as compared to the null model, the hybrid model

has a larger variance and a smaller critical region. As a result, the specificity is conservatively

controlled at 1− αcrit , i.e., typical centers are mostly not flagged.

While the procedure seems promising, its performance is not guaranteed under all circum-

stances. In fact, in another example with a contamination rate of 4% and overdispersionρ0 = ρ1 =

0.02, but withμ0 = 0.001 andμ1 = 0.999, the power of the detection procedure is surprisingly

equal to 0, in spite of the larger difference|μ0− μ1|. The reason is that the estimated hybrid density

becomesU-shaped and it does not allow detecting of atypical centers, as shown in Figure 2. This

situation corresponds to a violation of the assumption that the hybrid model is a reasonable ap-

proximation of the null model. To recover the power in such cases, in the next section we propose

a refined procedure that includes a model-adjustment step. Moreover, we provide a comprehensive

algorithm for practical application in an automated context such as CSM.

3 A practical detection procedure

The algorithm as detailed below follows the ideas of the beta-binomial-based detection approach

but includes preliminary steps to deal with particular cases and the beta-binomial model fitting is

made more robust in the sense that it uses method of moments estimation as a backup if conver-

gence fails for maximum likelihood. At several points it is assessed whether a binomial model

is more appropriate and if a beta-binomial model is selected, model adjustment is performed if

needed.
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3.1 The full algorithm

Stage 1: Preliminary steps.

- 1A. Stop the procedure ifxi = 0 in all centers orxi = ni in all centers.

- 1B. Define and compute the following quantities:

p̂ :=
1
N

N∑

i=1

xi

ni
(2)

p̂w :=

∑N
i=1 xi

∑N
i=1 ni

; (3)

μ̂M := p̂; (4)

ρ̂M :=

∑N
i=1( xi

ni
− p̂)2 − p̂(1− p̂)[

∑N
i=1

1
ni

(1− 1
N )]

p̂(1− p̂)[
∑N

i=1(1− 1
N ) −

∑N
i=1

1
ni

(1− 1
N )]

(5)

S :=
N∑

i=1

(xi − ni p̂w)2

p̂w(1− p̂w)
; (6)

Z :=
S −

∑N
i=1 ni

√
2
∑N

i=1 ni(ni − 1)
. (7)

- 1C. Go to Stage 2C ifZ < QN(0,1)(0.95) and ˆρM < 10−3, whereQN(0,1)(0.95) is the 95% percentile

of the standard-normal distribution.

Stage 2: Model selection and estimation.

Setδ to a very small value, e.g.,δ = 10−6. Denote the maximum-likelihood estimates of the Beta-

binomial parameter by (ˆμL, ρ̂L), and the iterated method-of-moments estimates (as in reference

[5]) by (μ̂I , ρ̂I ).

- 2A. Attempt maximum likelihood estimation with starting values (ˆμM, ρ̂M).

- In case of convergence, and if ˆρL ∈ [δ,1− δ]: keep (μ̂L, ρ̂L) and go to Stage 3.

- In case of convergence, and if ˆρL < δ: if Z < QN(0,1)(0.95) or ρ̂M < 10−3 go to 2C; otherwise,

go to 2B.

- In case of convergence, and if ˆρL > 1− δ: setρ̂L to 1− δ.
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- In case of non-convergence: compute (ˆμI , ρ̂I ) and, ifZ < QN(0,1)(0.95) orρ̂I < 10−3. go to 2C;

otherwise, go to 2B.

- 2B. Keep (μ̂I , ρ̂I ) and go to Stage 3.

- 2C. Use the binomial model based on ˆpw and go to Stage 4.

Stage 3: Model adjustment step (for the estimated beta-binomial model in terms ofα̂ and β̂).

- Compute, with the following, suggested default values (γ = 0.1, αtarget = βtarget = 1)

(α̃, β̃) =





(α̂, (1− λ(p̂))β̂ + λ(p̂)βtarget) if p̂ < 0.5 andβ̂ < 1

((1− λ(p̂))α̂ + λ(p̂)αtarget, β̂) if p̂ ≥ 0.5 andα̂ < 1

where the functionλ : [0,1]→ [0,1] is defined as:

λ(x) =





(cos(π x/γ) + 1)/2 if x < γ or x > 1− γ

0 otherwise

- Assign the adjusted model ( ˜α, β̃) to centers withxi > ni − xi for p̂ < 0.5 or centers with

xi < ni − xi for p̂ ≥ 0.5 (centers that deviate strictly from the overall tendency). Assign the

unadjusted model (from Stage 2) to the remaining centers.

Stage 4: Evaluation of individual centers based on the selected model.

- Computep-values using formula (1) based on the selected model.

- Flag centeri if its p-valuepi < α.

3.2 Further details and methodological comments

Stage 1A abandons the test when data are degenerate due to limited center sizes withμ0 andμ1

both close to 0 (or 1).

In Stage 1B, we compute useful characteristic quantities. The mean estimates ˆp and p̂w are

special cases of Kleinman’s [11] moment estimator ˆμ (see equation (8) below) whenρ is equal

to 1, and 0, respectively. They coincide in the balanced case, but when overdispersion is present

and/or centers have unequal size, ˆp is more accurate. Kleinman’s estimates ˆμM = p̂ andρ̂M (taking
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ρ = 1 in equation (9) below) serve as starting values for Stage 2A. QuantitiesS andZ are related

to Tarone’s test [15] for a binomial model against a beta-binomial alternative.

Stage 1C aims at preventing a beta-binomial fit if there is strong evidence (based on the com-

bination of Tarone’s test and a method of moments estimate of the overdispersion) that the use of

a binomial model is justified.

Maximum likelihood estimation (see, e.g., [6] or [10]) with starting values (ˆμM,ρ̂M) is attempted

in Stage 2A. If it fails to converge, we rely on the iterated method of moments estimates, as

described in reference [5], by successively iterating equations (8) and (9):

wi :=
ni

1+ ρ(ni − 1)
; μ̂ :=

∑N
i=1 wi

xi
ni

∑N
i=1 wi

(8)

ρ̂ :=

∑N
i=1 wi(

xi
ni
− μ̂)2 − μ̂(1− μ̂)[

∑N
i=1

wi
ni

(1− wi∑N
i=1 wi

)]

μ̂(1− μ̂)[
∑N

i=1 wi(1−
wi∑N

i=1 wi
) −

∑N
i=1

wi
ni

(1− wi∑N
i=1 wi

)]
(9)

The iterative procedure that is an extension of Kleinman’s method [11] and is recommended

by Chuang-Stein [5]. In our experience, the maximum likelihood approach shows a more consis-

tent performance across all scenarios of interest and has the advantage of adapting well to unbal-

anced setups. We used the R software implementation provided by Yee (functionvglm in package

VGAM, [12] and [13]) and used starting values as recommended by Yee to avoid convergence

problems [14].

If ρ̂L estimates turn out to be extremely close to 0 or 1, additional steps are carried out to

safeguard the specificity of the procedure.

In Stage 3, we address the power issue described in Section 2. In terms of the assumptions

stated before, the issue occurs when (i) the contamination rate is small and (ii ) μ0 tends to 0 while

μ1 tends to 1. In such circumstances the estimated hybrid model may have a large overdispersion

parameter, thus violating the assumption that it is a reasonable approximation of the null model.

In this case, we take a more pragmatic position, attempting to restore the performance of the

procedure by adjusting the hybrid model in such a way that detection is enabled while specificity

is maintained.

In practice, we rely on ˆp (the tendency of the majority of the centers) and the shape parameters
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α̂ andβ̂ of the estimated hybrid model to assess the need for adjustment. In particular, when ˆp is

close to 0 (which implies that ˆα � β̂) and β̂ < 1, the adjustment is needed. Anadjustedbeta-

binomial model with shape parameters ˜α = α̂ andβ̃ > 1 instead of̂β enables detection of centers

with large event probabilities. On the other hand, with increasing ˆp, the mismatch between the null

model and the hybrid model becomes less severe for small contamination rates. With ˆp sufficiently

far from 0 and 1, the problem disappears as the hybrid model becomes unimodal.

To achieve a smooth transition between the situations that require adjustment and those that do

not require it, we propose to obtainβ̃ by interpolation between the original valueβ̂ and the target

value, i.e., 1 (though larger values are possible), where the coefficient of interpolation isλ(p̂), as

defined before. The functionλ is inspired by the split cosine-bell function used for tapering in

spectral density estimation (see, e.g., Bloomfield [16]) and is depicted in Figure 3 for two values

of the parameterγ. Note thatλ is zero on the [γ, 1− γ] interval. Thus, the adjustment has no effect

when p̂ lies away from 0 or 1 by a distance larger thanγ.

The adjusted density and beta-binomial distribution for the example shown in Figure 2 are

depicted in Figure 4. The adjustment enables detection of centers with at least 14 events in this

example.

4 Simulation study

In this section, we assess the properties of the proposed procedure, both on simulated data and on

real-life clinical trials.

4.1 Motivation and setup

As an analytical approach is intractable, we conducted extensive simulations to investigate the

performance of the algorithm.

A large number of scenarios in terms of the parameters (μ0, μ1) were considered, because the

detection problem depends not only on the difference in the location parameters, but also on their

individual values. However, because of the symmetry property, it is sufficient to focus on the
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(0,1) × (0,0.5] region, which we covered by a grid of sufficient resolution to fully capture the

behavior of the procedure (especially near the boundaries).

Scenarios were then further defined by the assumed amount of overdispersion (for the sake of

simplicity, we assumedρ = ρ0 = ρ1), the contamination rate, and the sizes of typical and atypical

centers.

Our simulations consisted of a large number of trials in which events were generated at random

in theN1 atypical centers according to the Beta-binomial(ni , μ1, ρ) distribution, and in theN − N1

typical centers according to the Beta-binomial(ni , μ0, ρ) distribution. For each simulated trial, the

algorithm of Section 3 was applied. While we were mainly interested in small contamination rates

for signal detection, we also wanted to assess the properties of the algorithm, and especially its

specificity, for larger contamination rates. The outcomes in individual simulations were interpreted

in terms of numbers of true positive (T P), false negative (FN), false positive (FP) and true nega-

tive (T N) findings. Power and specificity were computed asT P/(T P+ FN) andFP/(FP+ T N),

respectively. As the standard error on an estimate ˆπ of the power or specificity based onNsim repli-

cations is approximately equal to
√
π̂(1− π̂)/(N1Nsim), we adjusted the number of replicationsNsim

in function of the level of the contamination rate to keep the denominator constant. As a result, for

the considered parameter configurations, the standard error was equal to at most 0.011.

We will refer to the signals (μ1 , μ0) asdepartures. If μ0 < 0.5, we refer to 0 as theadjacent

boundary and 1 as theoppositeboundary.

4.2 Overdispersion and contamination effects

The first simulation study (see Table 1) was carried out in a balanced setup. While this setting is

not necessarily representative of clinical trials, it is a good starting point to assess the effects of

overdispersion and contamination in the absence of effects due to small sample size. The results

will be used as a benchmark in further evaluations.

Figure 5 shows the plots of powerversusμ1 for μ0 = 0.5 (top row) and 0.01 (bottom row)

combined with two levels of overdispersion: the limit value of 0 (binomial setup) and 0.1 (a fairly

large amount of overdispersion). The power curves form an ordered bundle as a function of the

contamination rate: the curve for the lowest contamination rate is on top and that for the highest
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contamination rate at the bottom.

Forμ0 = 0.5, the curves are symmetric and we can distinguish different trends: with small con-

tamination rates (say up to 10%), the power increases rapidly to 1 with increasing|μ0−μ1|, but with

20% contamination the power decreases to 0 at the boundary; with more than 40% contamination

rate the curves become flatter.

For μ0 = 0.01, only departures to the opposite boundary are detected and the power curve is

not monotonic at 10% contamination.

By comparing the left and right panel in each row we can assess the effect of increasing overdis-

persion. As expected, the detection becomes more difficult. The power curves in the left-hand

panels (ρ = 0, binomial model) are systematically higher than their counterparts in the right-hand

side panels, all other parameters being the same.

In addition, whenμ = 0.01 andρ = 0.1, the proposed algorithm and the beta-binomial-model-

based (”unadjusted”) procedure (see Section 2) show different behavior (power for the latter shown

with a dashed curve). In particular, the adjustment guarantees a monotonic power curve for depar-

tures to the opposite boundary at 5% contamination. Specificity of the procedure is conservatively

controlled at the 5% level, as can be concluded from the results reported in Table 3.

Based on the simulation exercise we could conclude that the adjusted procedure shows a con-

sistent behavior, irrespectively of (a small amount of) contamination.

4.3 Unbalanced setup and size effects

The next series of simulation studies was carried out in an unbalanced setup with only 20 centers,

a more realistic setting in the context of e.g. Phase II trials. To simulate centers of different sample

sizes, we considered empirical distributions of the number of patients observed in three multicenter

clinical trials (Figure 6). The distributions are right skewed (small sizes are dominant) and have

very different ranges. The lower and upper quartiles are equal to 6 and 27 for Distribution 1; 51

and 151 for Distribution 2; and 4 and 9 for Distribution 3.

The general setup for the simulations is given in Table 2. Center sample sizes were generated

at random from the distributions shown in Figure 6. In some simulations, in order to control the

sample sizes of the atypical centers, they were assumed to be fixed at a quantile of the distribution.
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First, we consider simulations, in which the sample sizes for all centers were drawn at random

from Distribution 2 (see Figure 6).

To visualize the performance of the proposed algorithm, we consider a grid of values forμ0

andμ1 ranging, respectively, from 0 to 0.5 and from 0 to 1 in steps of 0.02. Note that 0 and 1

were replaced by 10−6 and 1− 10−6, respectively. Figure 7 presents heatmaps summarizing the

power and specificity of the adjusted algorithm (Section 3.1), together with the power of the beta-

binomial-model based procedure (Section 2). All heatmaps in this Section relate to the settings

of ρ = 0.01 and 5% contamination. With a valueρ = 0.1 which is deemed to be a fairly large

overdispersion (see Figure 12), power is mildly affected (as in Figure 5) but the specificity stays

high (see Table 3)

The power of the adjusted algorithm is depicted in the left-hand-side panel of Figure 7. Along

the diagonalμ0 = μ1, the false-positive detection rate is at most 5% and the power is monotonically

increasing for increasing|μ1 − μ0|, as expected. The specificity, depicted in the right-hand-side

panel, is controlled at 95%.

The middle panel shows the power obtained for the same simulated data for the beta-binomial-

model procedure: a difference is seen in the scenarios whereμ0 = 10−6 andμ1 approaches the

opposite boundary.

In the next series of simulations, sample sizes for the typical centers were random, but sample

sizes of the atypical centers were fixed at the median or the 5%-tile of the sample size distributions

from Figure 6. The heatmaps showing the resulting power of the adjusted algorithm are shown

in Figures 8 and 9, respectively. Note that, as compared to Figure 7, the graphs have a coarser

resolution in the interior (steps of 0.05).

The adjusted procedure was performing best for Distribution 2 and worst for Distribution 3,

where the power attained forμ1 at the boundary was smaller (especially withμ0 close to 0.5) and

there was a very limited power to detect departures to the adjacent boundary.

When atypical-center sample sizes were small, the power was high for a large overall center-

specific sample size (Distribution 2, middle panel). But for the other two distributions, for which

the atypical-center sample size was only 2, adequate power was maintained only whenμ0 was

rather small (say up to 0.1) and was reduced to 0 with more central values ofμ0. The detection of
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departures to the opposite boundary forμ0 = 10−6 was again enabled by the adjustment step, as

can be seen by comparing Figure 9 and Figure 10.

The specificity across all scenarios and all simulations is summarized in Table 3. Overall, the

specificity was adequately controlled. Only in few scenarios the specificity fell below 95%; these

were the more challenging settings where the contamination rate was high (40% and 50%) and

ρ = 0.

4.4 Actual clinical trials

We illustrate the use of the proposed detection procedure using data from two clinical trials.

The first trial was carried out in 37 centers. We focus on the missingness of a laboratory

value that had to be obtained for each patient at a number of visits over time. The proportion

of missing lab-values per center is shown in the left-hand-side panel of Figure 11. There was a

considerable amount of missing data at all centers because of a delay in entering the laboratory

values in the database: the overall proportion of missing values was around 11% ( ˆp = 0.11253).

In one of the centers 165 out of 866 (19.05%) records were missing, and this center (indicated

by the cross the left-hand-side panel of Figure 11) was flagged with ap-value of 0.00227. In this

trial, the overdispersion was very small ( ˆρ = 0.0038) and the hybrid distribution reflected the null

distribution quite well (under the assumption of a small contamination rate). However, the beta-

binomial model appears preferable to the binomial model, which would have flagged the outlying

center with ap-value of 1.47× 10−11, which is quite extreme, and in addition the binomial model

is likely to generate an excessive number of false positive findings.

The second trial was carried out in 122 centers, most of which were quite small. In fact, the

distribution of the center sizes was very similar to Distribution 1 from Figure 6. In this example, we

focus on the missingness of the health score of each patient. The proportion of missing scores per

center is shown in the right-hand-side panel of Figure 11. The overall proportion of the missing

health scores was very low ( ˆp = 0.0090, with p̂w = 0.0012) and most centers had no missing

values at all. Only two centers had missing values: one center of size 10 (1 missing value) and one

center of size 2 (both values missing). This is a very challenging case and the model adjustment

proved helpful here. The model estimated from all centers yielded a large overdispersion estimate
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(ρ̂ = 0.77), which was reduced to ˆρ = 0.50 by adjusting theα parameter. It is difficult to say that

this model is a good approximation of the underlying null model, but the adjustment improved

detection, in the sense that it made thep-value for the center of size 2 more significant (from

p=0.015 when a standard beta-binomial was used top=0.0027 after the proposed adjustment).

Even though the center would be considered a statistically significant outlier by both approaches,

havingp-values that adequately quantify the extremeness (in terms of order of magnitude) of such

outlying centers is crucial in CSM, where an overall score is computed based on thep-values of a

battery of statistical tests [1].

5 Discussion

In a previous paper, we showed that linear mixed-effects models can be used to detect centers

with atypical data on a continuous scale [17]. In the present paper, we extend the concept to the

detection of centers with atypical event proportions, where the center size need not necessarily be

the number of patients.

The proposed procedure can be applied to monitor any aspect of data quality that can be ex-

pressed as a binary event probability like, for instance, the proportion of missing values, the pro-

portion of visit dates that fall on a Sunday, the proportion of untoward events, etc. The event of

interest may also be derived from more complex data structures, like the transition probabilities

between two states in a sequence of repeated binary observations. Note that the procedure is not

appropriate for counts, e.g. for adverse events where the number of episodes is important. For such

situations a modeling based on the Poisson distribution, or similar, would be indicated.

The procedure uses the beta-binomial distribution for a reliable, versatile, and automatic detec-

tion of centers having atypical event proportions thanks to a model adjustment step and a number

of diagnostic checks and measures to address convergence problems. Note that the procedure but

does not pursue an unbiased estimation of the underlying null model.

The simulation study confirmed that the power for departures towards the opposite boundary

is maintained for contamination rates of interest (typically up to 5%), irrespectively of the values

of μ0 andμ1. The adjustment does not decrease specificity, which was shown to be conservatively

14
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 0
9:

50
 1

2 
A

pr
il 

20
16

 



ACCEPTED MANUSCRIPT

controlled across all simulated scenarios.

The procedure is robust with respect to unbalanced center sample sizes, but performance may

obviously decline with decreasing sample sizes. However, the power to detect departures to the

opposite boundary decreases mostly in scenarios whereμ0 is close to 0.5 and not when it is close

to 0 or 1, the latter being of more interest in practice.

Regarding the assumptions of the procedure, it is fair to assume that the atypical phenomena

are the exception, hence the small contamination rate, and that the variability of the typical centers

is limited since subjects are comparable and treated as per protocol. However it is not unreason-

able to imagine multiple atypical centers corresponding to different location parameters. Through

simulation we investigated the power for detection of one or a few atypical center(s) of two classes

with different location parameters (μ1 , μ2) in a population of typical centers (meanμ0). Unsur-

prisingly, the power for detecting theμ1-class is hardly affected whenμ2 is similar toμ0 or μ1, and

is most affected whenμ2 is far away fromμ0, especially towards the opposite boundary, as this

leads to a large estimated overdispersion in the hybrid model. In such cases however, while we

may not detect centers of theμ1-class, we would detect those of theμ2-class. It can then be argued

that an a posteriori investigation would also reveal the presence of the former, e.g. after removing

the latter.

The setup of the detection procedure may raise the issue of multiple testing and the appropri-

ateness ofαcrit = 0.05 in the decision rule. In this respect it is important to note that the purpose

of the test procedure is not to detect atypical centers on the basis of multiple hypotheses (one per

center), but rather to label centers as potentially atypical or not. Thep-value is crucial in the sense

that it allows to quantify the compatibility between the data from a given center and the parametric

model derived from all the centers. Smallerp-values correspond to larger signals and have greater

influence on the data inconsistency score for the centers concerned. Since in the computation of the

data inconsistency scorep-values from different test procedures are combined, the issue of multi-

ple testing is appropriately handled at that level. The interpretation of flagging centers in Section 2

is a pragmatic way to allow definition of the performance criteria and the chosen valueαcrit = 0.05

corresponds to the mean fraction of false positives under the null-hypothesis (regardless of the total

number of centers).
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It is worth adding that the parameterγ in the adjustment step allows for some flexibility in the

detectable level of contamination, as the adjustment is applicable for ˆp in the (0, γ) or (1− γ, 1)

interval. Thus, for example, withγ = 0.2, the correction will stop at 20% contamination, but will

have sufficient effect to guarantee the power at 10% contamination. The magnitude of the adjust-

ment can also be adapted in terms of the target parameterβtarget (orαtarget) used in the interpolation.

With values larger than 1 the adjustment becomes more aggressive (better power and smallerp-

values), but values smaller than 1 may be considered to obtain a weaker adjustment. Clearly, the

optimal parameter choices will depend on the specifications of the intended application.

Given the flexibility of the proposed procedure, and the satisfactory performance shown through

simulations, it has potential as a building block in statistical monitoring applications, where thep-

values from different detection procedures are combined to assign an overall score and a rank to

each center [1]. We have implemented this approach in the SMARTTMsoftware (Statistical Mon-

itoring Applied to Research Trials), which can be used to identify data quality and consistency

issues in multicentre clinical trials [18]. Reference [19] provides details on data quality checks

performed in a large trial for patients with gastric cancer.

A Beta-binomial and related distributions

We review some useful results on relevant distributions: beta (continuous), binomial and beta-

binomial (discrete).

Parametrisation.The shape parametersα andβ are the natural parameters for the beta density,

while the usual parameters in the context of the beta-binomial model areμ (mean) andρ (overdis-

persion). Note that 0< μ < 1 (success probability 0 or 1 is excluded) and 0< ρ < 1 (binomial is

limiting case of beta-binomial whenρ tends to 0). These constraints are equivalent toα > 0 and

β > 0.

Conversion formulas.

ρ = 1
1+α+β , μ =

α
α+β

andα = μ(1
ρ
− 1), β = (1− μ)(1

ρ
− 1).

Notation, mean and variance expressions.
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Beta(α, β) or (μ, ρ) Beta-binomial(n, α, β) or (n, μ, ρ) Binomial(n, p)
Mean α

α+β
= μ nα

α+β
= nμ np

Variance αβ

(α+β)2(α+β+1) = μ(1− μ)ρ
nαβ(α+β+n)

(α+β)2(α+β+1) = nμ(1− μ)(1+ (n− 1)ρ) np(1− p)

Symmetry properties. The beta pdf is given byf (x) = xα−1(1−x)β−1

B(α,β) for 0 < x < 1 whereB is the beta

function. Exchangingα andβ corresponds to exchanging argumentsx and 1− x.

Event countsx follow a Beta-binomial(n, μ, ρ) model iff non-event countsn − x follow a Beta-

binomial(n,1− μ, ρ) model (this is just a generalisation of a similar property of the binomial). As

a consequence, we can limit our discussion to the caseμ ≤ 0.5.

Shape of the beta density.By computing derivatives one can verify the behaviour shown below at

the left boundary (symmetric result at the right boundary in terms ofβ).

limx→0+ f (x) limx→0+
df
dx limx→0+

d2 f
dx2

α < 1 +∞ +∞ +∞
α = 1 c +∞ +∞

1 < α < 2 0 +∞ +∞
α = 2 0 c +∞

2 < α < 3 0 0 +∞
α = 3 0 0 c
α > 3 0 0 0

Forα > 2 andβ > 2, the density is unimodal with sigmoidal tails. Ifα < 2 andβ < 2 there is

a pole on either side and the density isU-shaped. If one is large (> 2) and the other is small (< 1)

we have a pole on one side and a tail on the other side. In this paper we model event rates with

a small amount of overdispersion, say at most 0.1, and we refer to Figure 12 to get an idea of the

variance in such models. The densities are unimodal orL-shaped, but neverU-shaped.
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Table 1: Setup for simulations in the balanced case

number of centers N = 100
number of atypical centersN1 = 1,2, 5, 10,20, 40, 50
all center sizes ni = n = 100 (balanced)
null mean μ0 = 10−6,10−4, 0.001, 0.01,0.1, 0.2, 0.4,0.5
alternative mean μ1 = 10−6,10−4, 0.001, 0.01,0.04, 0.08, ..., 0.98, 0.99, 0.999,1− 10−4, 1− 10−6

overdispersion level ρ = 0 (binomial),0.01 (mild overdispersion), 0.1 (large overdispersion)
number of replications Nsim adjusted s.t.NsimN1 = 2000

Table 2: Setup for simulations in the unbalanced case

number of centers N = 20
number of atypical centersN1 = 1,4, 10
sizes (typical centers) random drawn from size distributions (unbalanced)
sizes (atypical centers) random, fixed at 5% quantile or fixed at 50% quantile
null mean μ0 = 10−6,10−4, 0.001, 0.01,0.05, ..., 0.45,0.5
alternative mean μ1 = 10−6,10−4, 0.001, 0.01,0.02, ..., 0.98,0.99, 0.999, 1− 10−4, 1− 10−6

overdispersion level ρ = 0,0.01, 0.1
number of replications Nsim adjusted s.t. (NsimN1 = 2000)

Table 3: Specificity in the simulations

Min. 1%-tile 1st Qu. Median (Mean) 3rd Qu.Max.
Table 1 0.9460 0.9562 0.9913 1.0000 (0.9931) 1.0000 1
Table 2, Distribution 2, all random 0.9572 0.9587 0.9782 0.9942 (0.9881) 0.9993 1
Table 2, Distribution 1, small atypical sample size 0.9290 0.9577 0.9779 0.9825 (0.9848) 0.9935 1
Table 2, Distribution 1, median atypical sample size 0.9510 0.9585 0.9750 0.9945 (0.9877) 1.0000 1
Table 2, Distribution 2, small atypical sample size 0.9555 0.9690 0.9860 0.9900 (0.9909) 0.9982 1
Table 2, Distribution 2, median atypical sample size 0.9680 0.9741 0.9843 0.9950 (0.9918) 1.0000 1
Table 2, Distribution 3, small atypical sample size 0.9555 0.9594 0.9831 0.9990 (0.9909) 1.0000 1
Table 2, Distribution 3, median atypical sample size 0.9750 0.9810 0.9886 0.9953 (0.9939) 1.00001
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Figure 1: Left panel: null, alternative, and estimated hybrid densities for two levels of contamina-
tion. Right panel: hybrid beta-binomial distribution for a center of size 50 (critical sizes delimited
with dashed line). Parameters areμ0 = 0.3 andμ1 = 0.6; ρ0 = ρ1 = 0.02.

Figure 2: Same as Figure 1, but withμ0 = 0.001 andμ1 = 0.999;ρ0 = ρ1 = 0.02 (4% contamina-
tion). In the hybrid distribution allp-values exceedα = 0.05.
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Figure 3: Left panel: plot of the functionλ on [0,1], for two values of the parameterγ. Right
panel: zoom-in on the left boundary.

Figure 4: Adjustment in the example of Figure 2. Left panel: hybrid density and adjusted density.
Right panel: critical region under the adjusted distribution.
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Figure 5: Powerversusμ1 for fixedμ0 (indicated by dashed vertical lines) andρ = 0 (left) and 0.1
(right).

Figure 6: Probability distribution functions based on observed center sizes in three actual clinical
trials.
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Figure 7: Performance in the unbalanced case with Distribution 2. Heatmaps on a fine gridsize
(0.02) forρ = 0.01 and 5% contamination.

Figure 8: Power levels on a grid of (μ0, μ1) values with 5% contamination andρ = 0.01. Typical-
centers sample sizes were drawn at random from Distribution 1 (left panel), Distribution 2 (middle
panel), or Distribution 3 (right panel). Atypical-center sample sizes were fixed at the median of
the corresponding sample size distribution (13 for Distribution 1, 100 for Distribution 2, and 6 for
Distribution 3).
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Figure 9: Power levels on a grid of (μ0, μ1) values with 5% contamination andρ = 0.01. Typical-
centers sample sizes were drawn at random from Distribution 1 (left panel), Distribution 2 (middle
panel), or Distribution 3 (right panel). Atypical-center sample sizes were fixed at the 5%-tile of
the corresponding sample size distribution (2 for Distribution 1, 24 for Distribution 2, and 2 for
Distribution 3).

Figure 10: Same as Figure 9 but for the (unadjusted) beta-binomial-model procedure.
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Figure 11: Scatter plots of sizes (x-axis) and observed proportions (y-axis) in Example 1 (left
panel) and Example 2 (right panel). Note that in Example 1 the sizes are not the center sizes as
multiple visits per patient are aggregated.

Figure 12: Beta densities for two levels of overdispersion.
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