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Summary: Estimating biomarker-index accuracy when only imperfect reference-test information is available is

usually performed under the assumption of conditional independence between the biomarker and imperfect reference-

test values. We propose to define a latent normally-distributed tolerance-variable underlying the observed dichotomous

imperfect reference-test results. Subsequently, we construct a Bayesian latent-class model based on the joint multivari-

ate normal distribution of the latent tolerance and biomarker values, conditional on latent true disease status, which

allows accounting for conditional dependence. The accuracy of the continuous biomarker-index is quantified by the

AUC of the optimal linear biomarker-combination. Model performance is evaluated by using a simulation study and

two sets of data of Alzheimer’s disease patients (one from the memory-clinic-based Amsterdam Dementia Cohort and

one from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database). Simulation results indicate adequate

model performance and bias in estimates of the diagnostic-accuracy measures when the assumption of conditional

independence is used when, in fact, it is incorrect. In the considered case studies, conditional dependence between

some of the biomarkers and the imperfect reference-test is detected. However, making the conditional independence

assumption does not lead to any marked differences in the estimates of diagnostic accuracy.

Key words: Alzheimer’s Disease; Bayesian Estimation; Biomarker; Conditional Dependence; Imperfect Reference-

Test.
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1. Introduction

An important issue in the development of diagnostic tests is the availability of the correct case

and control labels. However, sometimes such labels based on a gold standard (GS) reference

test may not be available or useful. For example, in the context of dementia or Alzheimer’s

disease (AD), only post-mortem pathological confirmation on brain tissue can be regarded

as a GS reference-test (Scheltens and Rockwood, 2011); obviously, the confirmation is useless

from a diagnostic perspective.

Hence, case and control labels for diagnostic-test development may be based on the result of

an imperfect reference-test, which may misclassify cases and controls. If the misclassification

is ignored in the development of a diagnostic test, the estimates of the parameters describing

its accuracy may be severely biased (Lu et al., 2010).

To take into account the absence of a gold standard when assessing the accuracy of

diagnostic tests, latent-class models with two latent classes have been proposed (Rindskopf

and Rindskopf, 1986). The models allow inclusion of the imperfect reference-test information

in the form of covariate information, but require certain strict identifiability restrictions.

Preferably, one would like to weigh the information present in the results of an imperfect

reference-test according to the prior knowledge about the accuracy of the test. For example,

in AD-biomarker research, clinical diagnosis of AD can be regarded as an imperfect reference-

test. Reports about the accuracy of the diagnosis are available in the literature (Wollman

and Prohovnik, 2004; Beach et al., 2012). Using this information might be instrumental

in obtaining more reliable estimates of biomarker accuracy and in mitigating issues of

identifiability. This is possible within the Bayesian framework.

In case a GS reference-test is available, a fully-parametric Bayesian method to estimate

the accuracy of univariate continuous diagnostic tests was introduced by O’Malley et al.

(2001). For the case of an imperfect reference-test, several Bayesian models were proposed,
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including Bayesian latent-class mixture models. In particular, Wang et al. (2006) developed

a Bayesian latent-class mixture model for a single continuous test, which considers use of a

dichotomous imperfect reference-test.

Often, diagnostic tests are developed based on biomarkers. A biomarker is ”a characteristic

that is objectively measured and evaluated as an indicator of normal biologic processes,

pathogenic processes, or pharmacologic responses to therapeutic interventions” (Biomarkers

Definition Working Group, 2001). An often-used method to summarize properties of a contin-

uous biomarker-based diagnostic test is the area under the receiver operating characteristic

curve (AUC) (Zou et al., 2012).

Combining continuous biomarkers has been shown to increase the diagnostic accuracy

over considering biomarkers alone. In particular, such a combination can be constructed

when maximizing the AUC by using a model-free approach (Huang, Qin, and Fang, 2011),

a discriminant-function approach (O’Malley and Zou, 2006), or a fully-parametric approach

(Su and Liu, 1993). Yu, Zhou, and Bandinelli (2011) developed a Bayesian latent-class

mixture model to estimate the optimal linear-combination of multiple continuous tests.

All of the aforementioned Bayesian methods of estimation of the diagnostic-test accuracy

of continuous biomarkers in the presence of an imperfect reference-test are based on the

’conditional independence’ assumption, i.e., they assume that, conditionally on the true

disease status, the misclassification error of the reference-test is independent of the error of

the candidate diagnostic test. As the methods do not allow formal testing of this assumption,

they have to rely on heuristic arguments to enforce its plausibility.

In the present paper, we propose a Bayesian latent-class mixture model to develop a

diagnostic test based on a linear combination of multiple continuous biomarkers when an

imperfect reference-test is available. Moreover, we allow for conditional dependence between

the continuous biomarkers and the imperfect reference-test. On one hand, our model is
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an extension of the approaches developed by O’Malley and Zou (2006) for the case of a

GS reference-test and by Yu, Zhou, and Bandinelli (2011) for the case when no reference

test is available. On the other hand, we extend the model proposed by Wang et al. (2006)

by developing an optimal linear-combination of continuous tests/biomarkers maximizing the

AUC of the combination. Finally, we show that the proposed model could prove an important

tool in AD-biomarker research, where admitting the imperfect nature of clinical diagnosis

could be essential in obtaining reliable estimates of biomarkers’ diagnostic accuracy.

2. Methods

2.1 Model

In the remainder of the paper, the following assumptions and notation will be used. The k -

dimensional vector y contains observations of K biomarkers. Conditional on the true disease

status D (D = 0 for controls and D = 1 for cases), y is assumed to be normally distributed:

y|D=d ∼ NK

(
µYd

,Σd

)
, (1)

with µY d and Σd denoting the underlying biomarker mean-vector and variance-covariance

matrix, respectively. Under the assumption of normality it can be shown that the linear

combination of biomarkers with maximal AUC has coefficients a ∝ (Σ0 +Σ1)
−1
(
µY1

− µY0

)

(Su and Liu, 1993). The AUC of this linear combination is then

AUCa = Φ

(√(
µY1

− µY0

)T
(Σ0 +Σ1)

−1
(
µY1

− µY0

))
, (2)

where Φ(·) represents the cumulative standard-normal distribution function. From Equa-

tion (2) it can be seen that AUCa is a rather complex function of the biomarker distribution

parameters.

Assume next that only imperfect information on the true disease status is available in the

form of an imperfect reference-test T . In other words, D is not observed, but is considered

a latent variable, from now on denoted by D̃. We assume that
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T | D̃ = d ∼ Bern (πd) , (3)

π0 = P
(
T = 1

∣∣∣ D̃ = 0
)
≡ 1− SpT ,

π1 = P
(
T = 1

∣∣∣ D̃ = 1
)
≡ SeT ,

where SpT and SeT denote, respectively, the specificity and sensitivity of the imperfect

reference T . A consequence of not observing true disease status D̃ is that estimation of

the linear combination coefficients a is not straightforward. Toward this aim, we propose a

Bayesian latent-class mixture model.

2.2 Likelihood

The full-data likelihood P (y, T, D̃) can be decomposed as follows:

P
(
y, T, D̃

)
= P

(
T
∣∣∣ y, D̃

)
× P

(
y
∣∣∣ D̃

)
× P

(
D̃
)
,

where P
(
y
∣∣∣ D̃

)
is the density function of the K-variate normal distribution given in Equa-

tion (1); P
(
D̃
)
is the probability of the latent disease status, with P

(
D̃ = 1

)
= θ, the

prevalence of disease; and P
(
T
∣∣∣ y, D̃

)
is the probability of the result of the imperfect

reference-test T conditional on biomarker values y and D̃. If, conditionally on D̃, y and T

are independent, then P
(
T
∣∣∣ y, D̃

)
≡ P

(
T
∣∣∣ D̃

)
defined by Equation (3).

To allow dependence between the imperfect reference-test T and biomarkers y, we propose

to model the dependence through a latent continuous tolerance-variable T̃ , underlying T . In

particular, we assume that T is the result of dichotomizing T̃ , with

T̃ | D̃ = d ∼ N
(
µT̃d

, 1
)
.

Note that, without loss of generality, the variance of the tolerance distribution can be fixed

at 1 (see, e.g., Renard et al., 2002).

Consequently, π0 and π1 from Equation (3) are expressed as π0 = 1 − Φ
(
−µT̃0

)
and

π1 = 1− Φ
(
−µT̃1

)
, where µT̃d

denotes the mean of T̃ for the true disease group d.
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By considering the joint-distribution of T̃ and y, their correlation can be introduced

directly. Assume that, conditionally on D̃, T̃ and y are jointly normally distributed:



T̃

y


 | D̃ = d ∼ NK+1







µT̃d

µYd


 ,Σd


 (4)

with Σd=




1 τ T
d

τ d Σd


 and τ d = (ρ1,dσ1,d, . . . , ρK,dσK,d)

T .

In Equation (4), the covariance of T̃ and the k -th biomarker is expressed as the product of

the correlation coefficient ρk,d and biomarker’s standard deviation σk,d.

By using the joint normal distribution in Equation (4), it follows that

T |y, D̃ = d ∼ Bern (πd(y)) , (5)

where

P
(
T = 1|y, D̃ = 0

)
= π0(y) = 1− Φ



−µT̃0

+ ρT
0Σ

−1

0

(
y − µY0

)

√
1− ρT

0Σ
−1

0 ρ0


 = 1− SpT (y),

P
(
T = 1|y, D̃ = 1

)
= π1(y) = 1− Φ




−µT̃1

+ ρT
1Σ

−1

1

(
y − µY1

)

√
1− ρT

1Σ
−1

1 ρ1



 = SeT (y).

From Equation (5) it follows that the imperfect reference-test T has different sensitivity

SeT (y) and specificity SpT (y) for each possible value y, which introduces the dependence

between T and y conditional on D̃.

Combining all the developments, we arrive at the following full-data likelihood function

for a data set including observations for N individuals (indexed by i):

L
(
µY0

,µY1
,Σ0,Σ1, µT̃0

, µT̃1
,ρ0,ρ1, θ|Y , t, d̃

)
=

N∏

i=1

(
θ{1− SeT (yi)}

(1−ti){SeT (yi)}
ti

1√
(2π)K |Σ1|

exp

{
−
1

2
(yi − µY 1

)TΣ−1
1 (yi − µY 1

)
})di

×

(
(1− θ) {1− Sp(yi)}

ti{SpT (yi)}
(1−ti) 1√

(2π)K |Σ0|
exp

{
−
1

2
(yi − µY 0

)TΣ−1
0 (yi − µY 0

)
})(1−di)

,

where d̃= (d1, . . . ,dN)
′ and t=(t1, . . . ,tN)

′

are the vectors containing, respectively, the true

(unobserved) disease status indicators and observed reference-test results for the N individ-
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uals, while Y is the N×K matrix containing the observed biomarker values. The parameters

of interest are µY 0
, µY 1

, Σ0, and Σ1, because together they define AUCa, as indicated in

Equation (2).

2.3 Priors

Non-identifiability is an important issue for mixture models (McLachlen and Peel, 2004), as

well as for the estimation of accuracy of imperfect diagnostic-tests (Dendukuri and Joseph,

2001). We propose prior distributions which include appropriate restrictions that mitigate

non-identifiability while allowing introduction of available prior information. Whenever fea-

sible, flat priors are proposed. Table 1 of Supplementary Materials summarizes all proposed

prior distributions for the parameters included in the model. Non-standard or non-flat priors

are discussed below.

For the prevalence parameter θ, a uniform distribution restricted between 1/N and 1−1/N

is proposed. The restriction assumes that the data contain at least one control and one case.

It helps to resolve convergence issues when MCMC algorithms get stuck in a one-component

solution instead of a mixture, a possible result of model non-identifiability (Robert and

Soubiran, 1993).

To allow a more controlled way of introducing prior biomarker-accuracy information, a

prior distribution is proposed for δ, which is defined as follows:

δ = Q
(
µY1

−µY0

)
with Q

′

Q=(Σ0 +Σ1)
−1.

By considering a flat normal prior for µY0
and a multivariate normal prior for δ, it is possible

to control the resulting prior for the AUC of the linear combination of the biomarkers. In

particular, under the assumption that δ ∼ NK(κ,Ψ) and κ=0, different choices for the

standard deviations and correlations defining Ψ will lead to AUCa-priors expressing different

amounts of prior information. Examples of so-constructed AUCa-priors are presented in
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Appendix A of Supplementary Materials. The prior distribution for µY1
is implied by the

choice of priors for µY0
, Σ0, Σ1, and δ.

We follow the proposal of Wei and Higgins (2013) to construct flat prior-distributions

for the variance-covariance matrices. In particular, the overall (K+1)×(K+1) variance-

covariance matrix Σd is decomposed as Σd = SdRdSd, where Sd and Rd are, respectively,

the diagonal matrix of standard deviations and the correlation matrix for the disease group

d. Additionally, Rd is expressed as Rd=LdL
T
d , where Ld is a lower-triangular matrix. Sub-

sequently, wide uniform-distributions are put directly on the biomarker standard deviations

σk,d included in Sd. Additionally, flat priors are put on K of the ((K + 1)2 − (K + 1))/2

non-zero off-diagonal elements of the Cholesky decomposition-factor Ld of Rd (see Table 1

of Supplementary Materials).

The prior distributions for µT̃0
and µT̃1

are derived from the prior distributions for SpT and

SeT . This way, restrictions can be enforced on µT̃0
and µT̃1

leading to a sensible interpretation

of SpT and SeT . In the case of case-control data, a sensible choice for SpT and SeT is to use

independent Beta-distributions restricted to the (0.5, 1] interval. Based on the relationship

defined in Equation 3, this leads to following prior distributions (φ(·) denotes the standard-

normal density function):

SpT ∼ Beta (a, b) trunc[0.51, 1]

fµ
T̃0

(µT̃0
) =





1
B(a,b)

(
Φ
(
−µT̃0

))(a−1)(
1− Φ

(
−µT̃0

))(b−1) ∣∣−φ
(
−µT̃0

)∣∣ if µT̃0
∈ (−∞,−Φ(0.51)]

0 otherwise

SeT ∼ Beta (c, d) trunc[0.51, 1]

fµ
T̃1

(µT̃1
) =





1
B(c,d)

(
Φ
(
µT̃1

))(c−1)(
1− Φ

(
µT̃1

))(d−1) ∣∣φ
(
µT̃1

)∣∣ if µT̃1
∈ [Φ (0.51) ,+∞)

0 otherwise

Other restrictions on the prior distributions of SpT and SeT could be considered as well. Jones

et al. (2010) propose to assume that SpT + SeT > 1 to overcome non-identifiability. This

restriction allows SpT or SeT to be smaller than 0.5, but implies a dependence between SpT

and SeT which is not trivial to implement. For this reason, we limit ourselves to assuming that
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SpT and SeT are both strictly larger than 0.5. This restriction resolves the label-switching

problem observed for mixture models (McLachlen and Peel, 2004) and mitigates the over-

parameterization with multiple imperfect reference-tests (Dendukuri and Joseph, 2001), two

consequences of model non-identifiability.

2.4 Application

To investigate the performance of the model, we carried out a simulation study and ap-

plied the model to two AD data sets: the VUmc (VU University Medical Center) data

set, which consists of patients from the memory-clinic-based Amsterdam Dementia Cohort

(see Figure 1), and the publically available data obtained from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) (see Figure 2). In these studies,

cerebro-spinal-fluid (CSF) levels of Aβ1-42, Total-tau, and P-tau181p were collected for all

individuals, as well as a clinical diagnosis of AD. More detailed information on the data sets

can be found in Appendix B of Supplementary Materials.

[Figure 1 about here.]

[Figure 2 about here.]

2.4.1 Simulation study. The goal of the simulation study was to show adequate model

performance in the conditional dependence case and, subsequently, to investigate the impact

of violating the conditional independence assumption. In particular, 400 data sets of size 600

were simulated under the conditional dependence setting. The underlying parameter settings

are summarized in Appendix C of Supplementary Materials. They yielded biomarker data

(for K=3 biomarkers) with underlying true AUCa of 0.787 and an imperfect reference-test

with SeT = SpT = 0.85. The underlying latent tolerance and biomarkers’ correlation

coefficients were set as follows: ρ1,0 = ρ1,1 = 0, ρ2,0 = ρ2,1 = 0.7, and ρ3,0 = ρ3,1 = 0.3.
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An example of a randomly selected simulation data set under the conditional dependence

setting is shown in Figure 1 of Supplementary Materials.

2.4.2 Analysis settings. The proposed model allowing for conditional dependence was

fitted to the simulated data and to the two case studies. The model assuming conditional

independence was fitted to the data as well. The latter model was obtained by fixing the

correlation parameters ρk,d between the latent continuous tolerance-variable T̃ and biomark-

ers to zero. Prior distributions were specified as in Table 1 of Supplementary Materials. For

the simulation study, parameters a, b, c, and d of the SpT and SeT Beta prior distributions

were all set to 1, leading to flat uniform-prior information. For the two case-study data

examples, the Beta-prior parameters for SpT and SeT were set so that they allowed capturing

the available information from literature. In particular, Beta(a = 2.69, b = 1.99) and

Beta(c = 4.15, d = 2.54) distributions were used, truncated to the (0.51, 1] interval. The

prior for AUCa was varied to investigate sensitivity of the results to the choice of the prior

distribution. In the ’optimistic’ case, the prior was defined by setting κ = (0, 0, 0)T and

defining Ψ by standard deviations equal to 0.7 and correlation coefficients set to 0.6. As

a result, a prior distribution disfavoring small values of AUCa was obtained (see panel a

of Figure 3). A ’conservative’ prior, favoring moderate values of AUCa (see panel c of

Figure 3), was constructed by setting κ = (0, 0, 0)T and defining Ψ by standard deviations

equal to 0.5 and correlation coefficients equal to 0.3.

[Figure 3 about here.]

In the simulation study, to compensate for the lack of prior information for SpT and SeT ,

only the ’optimistic’ AUCa prior was used together with a more restrictive U(0.1, 0.9) prior

for the prevalence parameter θ.

For both the simulation study and the real-data analyses, 10,000 MCMC samples were

retained after a burn-in of 10,000 samples. In both cases, five independent MCMC chains
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were used. After fitting the models, general diagnostic tools were applied to the results of

all 400 data sets as part of the results-analyzing R-script. Convergence over chains was

investigated by the Gelman-Rubin convergence index, for which a cut-off value of 1.1 was

applied (Gelman and Rubin, 1992). To ensure that at least 3 out of 5 chains converged, chain-

by-chain convergence was monitored by using the Geweke convergence criterion (Geweke,

1992).

The models were fitted by using OpenBUGS 3.2.1 (Lunn et al., 2009). The code is presented

in Appendix D of Supplementary Materials. Results were analyzed and summarized using R

3.0.1 (x64) (R Core Team, 2013). The R-package R2OpenBUGS (Sturtz, Ligges, and Gelman,

2005) was used as an interface between R and OpenBUGS. For the proposed conditional-

dependence model, fitting times were equal to 20h for a single simulated and the VUmc data

set, and 15h for the ADNI-data, on a 64-bit, 2.8 GHz, 8GB RAM machine. For the purpose

of the manuscript, all simulations and analyses were run on the infrastructure provided by

the VSC (Flemish Supercomputer Center).

3. Results

The results of the simulation study are summarized in Table 1. For the proposed conditional-

dependence model (the third column of the table), the mean of the 400 posterior medians is

very close to the true underlying values for all parameters.

The fourth column of Table 1 presents the results for the conditional-independence model.

It can be concluded that, on average, AUCa (true value of 0.787), SpT (true value of 0.85),

and SeT (true value of 0.85), are substantially overestimated with mean posterior-medians

equal to 0.892, 0.995, and 0.982, respectively.

[Table 1 about here.]

Table 2 presents the medians of the posterior distributions obtained for the VUmc data,
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together with their posterior standard deviations and 95%-credible intervals. The medians

of the AUCa distributions are similar irrespectively of the model (conditional-dependence or

independence) and the AUCa-prior (’conservative’ or ’optimistic’). Hence, in what follows,

only the results for the ’optimistic’ AUCa-prior are discussed.

Allowing for conditional dependence leads to posterior median SpT and SeT estimates of

0.823 and 0.940, respectively, with respective 95%-credible intervals equal to [0.768;0.870]

and [0.915;0.960]. The posterior distribution for θ has a median of 0.706 with a 95%-credible

interval of [0.672;0.739]. The posterior distributions, shown in Appendix E of Supplementary

Materials, indicate that the assumed prior distributions for SpT , SeT , and θ are well updated

by the data, suggesting a successful mitigation of model non-identifiability (Garrett and

Zeger, 2000).

Moreover, the results show dependence between the clinical diagnosis of AD and Total-

tau: the 95%-credible intervals for the correlation between the latent tolerance and Total-

tau in the control (ρ1,0) and AD (ρ1,1) groups are equal to [0.156;0.530] and [0.068;0.451],

respectively, and they both exclude the value of zero. Despite the correlation between the

latent tolerance and Total-tau, no important difference in the posterior medians of AUCa is

found for the conditional-dependence and conditional-independence models.

[Table 2 about here.]

Table 3 presents the results for the ADNI data. In this case, the resulting MCMC-samples

for the conditional-dependence model defined by using the ’conservative’ AUCa-prior require

some attention. Even after 200,000 iterations, the OpenBUGS MCMC-algorithms do not

seem to have converged (Appendix F of Supplementary Materials). This may be taken

as implying that the use of the ’conservative’ prior for AUCa does not provide enough

information to overcome potential non-identifiability of the model given the limited size of

the data set. For this reason, the data were also analyzed with a model using an ’intermediate’
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AUCa-prior (see Panel b of Figure 3). Table 3 contains the results obtained with the

’optimistic,’ as well as the ’intermediate’ AUCa-prior distribution.

No difference between the results obtained with the ’intermediate’ and ’optimistic’ AUCa-

prior were observed as the 95% credible intervals show substantial overlap. Therefore, only

the results from the ’optimistic’ AUCa-prior setting will be discussed. The results obtained

for the proposed conditional-dependence model do not indicate any correlation between

the biomarkers and the latent tolerance underlying the AD diagnosis. The posterior AUCa

distributions for the conditional-dependence and conditional-independence models show only

a slight difference. In particular, the posterior medians of AUCa are equal to 0.979 and 0.983,

respectively, with the respective 95% credible intervals of [0.939;0.994] and [0.961;0.994].

[Table 3 about here.]

To further investigate applicability of the model to the case of data structures similar to the

ADNI data, an additional simulation setting was considered (Appendix G of Supplementary

Materials). In particular, the underlying true parameter values were chosen so that a bi-modal

distribution would be observed, as is the case for the ADNI data (Figure 2). Results from

this additional simulation study show that also for bi-modal observed data, the conditional-

dependence model provides correct estimates of the true parameter values.

4. Discussion

We have proposed a Bayesian latent-class model for construction of a diagnostic biomarker-

index in the presence of a dichotomous imperfect reference-test. Importantly, the model

does not require the conditional-independence assumption because it explicitly allows for a

correlation between the results of the reference test and biomarkers.

The simulation study results showed adequate model performance leading to unbiased

estimates of the model parameters. Moreover, the results showed that falsely assuming
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conditional independence may lead to substantial bias in the estimates of biomarker-index

accuracy. The observed overestimation of AUCa may be related to the substantial overesti-

mation of SpT and SeT . As suggested by one of the reviewers, this can be explained by the

model trying to capture the excess correlation of the conditional dependence by increasing the

imperfect reference-test sensitivity estimate. Since the marginal positive rate for the reference

test is fixed together with a stable disease prevalence estimate, specificity is overestimated

as well. A similar observation was made for a dichotomous test in the paper by Pepe and

Janes (2007). A supplementary simulation study showed that the proposed model is able to

accommodate bi-modal data, similar to those observed in the ADNI dataset.

For the VUmc data set, the chosen prior distributions for SpT , SeT , θ, and AUCa addressed

the model non-identifiability issues. The form of the prior distribution for AUCa did not

affect the results. Interestingly, the model suggested dependence between clinical diagnosis

and Total-tau. Despite this, there was not much difference in the posterior-median AUC

obtained under conditional independence or dependence. A possible explanation could be

that the bias in AUCa is too small to be picked up by the model (Baker et al., 2014). Another

explanation could be that the importance of Total-tau in the linear combination comprising

the diagnostic index is only limited (McKhann et al., 2011). In fact, the posterior median

for coefficient aTotal−tau was equal to 9.43 and was smaller as compared to the medians for

the two other biomarkers (âAβ1−42 = 15.04; âP−tau181p = 21.92). It is also possible that the

lack of difference for the conditional-dependence analyses is due to a misspecification of the

correlation structure in the former. In fact, Albert and Dodd (2004) showed that estimates of

the diagnostic-performance measures may be biased if the conditional-dependence structure

is misspecified and it may be difficult to distinguish between different dependence structures

based on the observed data. However, these conclusions were formulated for the case of

multiple dichotomous tests and a frequentist analysis. Bayesian approaches based on good
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prior information may be less sensitive to this issue, as also indicated by Albert and Dodd

(2004).

For the ADNI data, convergence issues due to non-identifiability were noted for the ‘conser-

vative’ AUCa-prior distribution. They were resolved when the ‘intermediate’ or ‘optimistic’

AUCa-priors were used. This indicates that the use of the model may require a substantial

sample size or, otherwise, a substantial amount of prior information to provide reliable

results.

Although this was not anticipated, the underlying settings of the simulations seem to

mimic the results from the real-data applications. Nevertheless, the results of the simulation

study and real-data applications are different. The most important difference is the overall

accuracy of the combination which is much better for the real-data applications. Moreover,

the substantial conditional dependence included in the simulation study is affecting the

estimates of AUCa, while this is not the case in the real-data applications.

The proposed model explicitly assumes that biomarkers are normally distributed in order

to get a biomarker combination which maximizes the AUC of the combination. The real-data

application shows that applying suitable transformation (e.g., a logarithmic one) can help

in obtaining data that are compliant with the assumption. Another solution would be to

include a Box-Cox transformation directly into the likelihood, as proposed by, e.g., O’Malley

and Zou (2006). Extending the model along these lines remains a topic for further research.

To check whether valid inference could be obtained even with a minimum of prior infor-

mation, in the presented analyses we used as uninformative prior distributions as possible.

Of course, as demonstrated in the real-data application, if scientifically accepted prior infor-

mation is available, it can be used. While we have restricted ourselves to include information

on SpT , SeT , and θ, informative priors for other parameters could be added as well if the

application at hand allows it. For example, in case of the particular application in Alzheimers
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Disease, Welge et al. (2009) present AUC estimates of the linear combination of the three

considered biomarkers.

Another extension of the model could be to allow inclusion of continuous imperfect reference-

test information. If such information is available, one could think of summarizing its accuracy

information in terms of AUC and including this information as a prior, using similar param-

eterization as expressed in the Methods section.

5. Supplementary Materials

Web Appendices, Tables, and Figures referenced in Sections 2, 3, and 4 are available with

this paper at the Biometrics website on Wiley Online Library. OpenBUGS model-code for

the implementation of the proposed models is also available with this paper at the Biometrics

website on Wiley Online Library.
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Figure 1. Observed Total tau, Aβ1-42, and P-tau181p values from the VUmc data set.
Clinically diagnosed controls are indicated by the grey histograms, clinical cases by the black
histograms. a. Raw values. b. Log transformed values of Total tau and P-tau181p-values, raw
values for Aβ1-42.
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Figure 2. Observed Total tau, Aβ1-42, and P-tau181p values from the ADNI data set.
Clinically diagnosed controls are indicated by the grey histograms, clinical cases by the black
histograms. a. Raw values. b. Log transformed values of Total tau and P-tau181p-values, raw
values for Aβ1-42.
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Figure 3. Considered AUCa-prior distributions. a. ’Optimistic’ AUCa-prior distribution.
b. ’Intermediate’ AUCa-prior distribution. c. ’Conservative’ AUCa-prior distribution.
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Table 1
Mean of posterior medians, (standard deviations) and [empirical 95%-confidence intervals] for the simulated data
(400 data sets of size N=600). Results are shown for both the conditional-dependence and conditional-independence
model considering the ‘optimistic’ AUCa-prior distribution. Correlation coefficients: ρ1,0, Total-tau in the control
group; ρ1,1, Total-tau in the AD group; ρ2,0, Aβ1-42 in the control group; ρ2,1, Aβ1-42 in the AD group; ρ3,0,

P-tau181p in the control group; ρ3,1, P-tau181p in the AD group.

Model
Parameter True Conditional Dep. Conditional Ind.

AUCa 0.787 0.777 (0.023) [0.728;0.819] 0.892 (0.011) [0.869; 0.912]

SeT 0.85 0.834 (0.031) [0.770;0.894] 0.982 (0.013) [0.940; 0.993]

SpT 0.85 0.837 (0.027) [0.782;0.887] 0.995 (0.001) [0.993; 0.996]

θ 0.5 0.505 (0.023) [0.458;0.554] 0.510 (0.017) [0.479; 0.542]

ρ0,1 0 0.022 (0.090) [-0.146;0.213] 0

ρ0,2 0.7 0.702 (0.046) [0.608;0.782] 0

ρ0,3 0.3 0.318 (0.079) [0.165;0.470] 0

ρ1,1 0 0.020 (0.088) [-0.147;0.197] 0

ρ1,2 0.7 0.705 (0.052) [0.596;0.795] 0

ρ1,3 0.3 0.310 (0.078) [0.158;0.457] 0
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Table 2
Posterior medians, (standard deviations) and [95%-credible intervals] for VUmc data. In the respective columns
results are shown for the conditional-dependence and conditional-independence models for both the ‘conservative’
(Cons.) and ‘optimistic’ (Opt.) AUCa-prior distribution. Correlation coefficients: ρ1,0, Total-tau in the control
group; ρ1,1, Total-tau in the AD group; ρ2,0, Aβ1-42 in the control group; ρ2,1, Aβ1-42 in the AD group; ρ3,0,

P-tau181p in the control group; ρ3,1, P-tau181p in the AD group.

Parameter
Conditional Dep. Conditional Dep. Conditional Ind. Conditional Ind.

(Cons. AUC) (Opt. AUC) (Cons. AUC) (Opt. AUC)

AUCa
0.996 (0.002) 0.997 (0.001) 0.995 (0.002) 0.995 (0.002)

[0.992;0.998] [0.993;0.998] [0.990;0.997] [0.991;0.998]

SeT
0.940 (0.012) 0.940 (0.012) 0.955 (0.010) 0.954 (0.010)

[0.915;0.960] [0.915;0.960] [0.934;0.973] [0.934;0.971]

SpT
0.818 (0.027) 0.823 (0.026) 0.850 (0.024) 0.850 (0.024)

[0.762;0.868] [0.768;0.870] [0.799;0.894] [0.799;0.894]

θ
0.705 (0.017) 0.706 (0.017) 0.700 (0.016) 0.701 (0.016)

[0.671;0.738] [0.672;0.739] [0.668;0.732] [0.668;0.732]

ρ1,0
0.366 (0.091) 0.358 (0.093)

0 0
[0.176;0.520] [0.156;0.530]

ρ2,0
0.110 (0.103) 0.104 (0.103)

0 0
[-0.100;0.306] [-0.103;0.301]

ρ3,0
0.034 (0.095) 0.030 (0.100)

0 0
[-0.154;0.206] [-0.171;0.235]

ρ1,1
0.293 (0.091) 0.280 (0.097)

0 0
[0.102;0.454] [0.068;0.451]

ρ2,1
0.186 (0.093) 0.186 (0.092)

0 0
[-0.009;0.353] [-0.007;0.356]

ρ3,1
0.199 (0.091) 0.186 (0.098)

0 0
[0.014;0.366] [-0.018;0.366]
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Table 3
Posterior medians, (standard deviations) and [95%-credible intervals] for ADNI data. Results are shown for both the
conditional-dependence and conditional-independence models using the ‘intermediate’ (Int.) and ‘optimistic’ (Opt.)
AUCa-prior distribution. Correlation coefficients: ρ1,0, Total-tau in the control group; ρ1,1, Total-tau in the AD

group; ρ2,0, Aβ1-42 in the control group; ρ2,1, Aβ1-42 in the AD group; ρ3,0, P-tau181p in the control group; ρ3,1,
P-tau181p in the AD group.

Parameter
Conditional Dep. Conditional Dep. Conditional Ind. Conditional Ind.

(Int. AUC) (Opt. AUC) (Int. AUC) (Opt. AUC)

AUCa
0.976 (0.022) 0.979 (0.014) 0.982 (0.009) 0.983 (0.009)

[0.912;0.994] [0.939;0.994] [0.958;0.993] [0.961;0.994]

SeT
0.805 (0.061) 0.808 (0.056) 0.818 (0.044) 0.818 (0.044)

[0.669;0.906] [0.688;0.905] [0.726;0.898] [0.724;0.896]

SpT
0.829 (0.077) 0.835 (0.061) 0.880 (0.037) 0.879 (0.037)

[0.627;0.940] [0.691;0.930] [0.798;0.942] [0.798;0.941]

θ
0.463 (0.091) 0.466 (0.071) 0.499 (0.043) 0.498 (0.043)

[0.230;0.614] [0.317;0.597] [0.413;0.582] [0.414;0.582]

ρ1,0
0.142 (0.225) 0.121 (0.185)

0 0
[-0.297;0.549] [-0.264;0.459]

ρ2,0
0.295 (0.250) 0.277 (0.223)

0 0
[-0.323;0.637] [-0.288;0.584]

ρ3,0
0.186 (0.222) 0.161 (0.183)

0 0
[-0.257;0.560] [-0.226;0.494]

ρ1,1
0.322 (0.182) 0.314 (0.177)

0 0
[-0.073;0.621] [-0.073;0.610]

ρ2,1
0.053 (0.195) 0.048 (0.182)

0 0
[-0.352;0.414] [-0.318;0.394]

ρ3,1
-0.079 (0.273) -0.083 (0.252)

0 0
[-0.580;0.468] [-0.543;0.412]


