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The neutral C-vacancy is investigated using density functional theory calculations. We show
that local functionals, such as PBE, can predict the correct stability order of the different spin
states, and that the success of this prediction is related to the accurate description of the local
magnetic configuration. Despite the correct prediction of the stability order, the PBE functional
still fails predicting the defect states correctly. Introduction of a fraction of exact exchange, as is
done in hybrid functionals such as HSE06, remedies this failure, but at a steep computational cost.
Since the defect states are strongly localized, the introduction of additional on-site Coulomb and
exchange interactions, through the DFT+U method, is shown to resolve the failure as well, but
at a much lower computational cost. In this work, we present optimized U and J parameters for
DFT+U calculations, allowing for the accurate prediction of defect states in defective diamond. The
transferability of the U and J parameters is tested through the study of the 〈001〉 split-interstitial.
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I. INTRODUCTION

Defects play an important role in the properties
and performance of semiconductor devices. Depending
on the application, they can change the physical and
chemical properties (e.g. the introduction of luminescent
centres1,2) or need to be avoided (e.g. because they dete-
riorate conductivity3). In the case of diamond, intrinsic
defects have been studied at increasing levels of theory,
in lock-step with the advancing state of the art.4–14 In
recent years, the use of hybrid functionals has become
more and more frequent in the solid state community
as a result of ever growing computational resources,
and the continuous improvement of methodologies.Some
authors even used hybrid functionals in their simulation
of infrared and Raman spectra, this of course in combi-
nation with small localized basis-sets.15,16 Although it
is getting quite common to use such hybrid functionals
to accurately determine the electronic structure and
local spin polarization of complicated systems ,17–21

their computational cost is still prohibitively high for
extensive usage;22 e.g. structure optimization of large
super cells required for studying single defects. For most
structure optimizations, pure density functional theory
(DFT) functionals (LDA and GGA) perform admirably
well. However, in strongly correlated systems in which
the specific electronic structure is tightly related to
the atomic structure, problems occur. The neutral
C-vacancy in diamond is such a system.

The formation of a neutral vacancy in diamond gives
rise to four dangling bonds. This structure has a Td
symmetry at this level of consideration. Each dangling
bond is occupied by a single electron, which can have
either up or down spin. As the other electrons of the C
atoms neighboring the vacancy are involved in strong
covalent bonds, the four electrons in the dangling bonds
can only couple to each other, giving rise to three

possible spin states for the vacancy defect: Sz = 0, 1,
and 2. The corresponding defect states are expected to
be localized at the defect site, with an energy in the
band gap of the host material. Of the three spin states
only the Sz = 2 state (with all four electrons having
the same spin) has the same Td symmetry as the host
lattice. In case of the Sz = 0 and 1 spin states, the
magnetic configuration has a D2d and a C3v symmetry,
respectively. In case of the Sz = 0 spin state Jahn-Teller
distortion will further lower the symmetry to C2v.

14,23

As such, one may expect the modeling of this defect to
be problematic.

Recently, Zelferino and co-workers argued that due
to the open shell nature of the defect, only functionals
including a fraction of the exact exchange term can
adequately describe this defect.14 They observe that
pure DFT functionals present a qualitatively incorrect
electronic structure and fail to indicate the correct spin
ground state. As vacancies play a crucial role in many
technologically interesting defects in diamond, such
as the NV-center,24–27 it is important to understand
how and why pure DFT fails for the vacancy defect.
Furthermore, as the solution of hybrid functionals is
too computationally expensive for large scale usage, an
alternative post-DFT approach is desirable, albeit only
as a means of providing a more accurate defect geometry
for subsequent analysis using a hybrid functional.

In this work, we will therefore revisit the neutral
C vacancy in diamond. After introducing the com-
putational methods used, results are presented and
discussed in section 3. We first examine the behavior
of the defect using a pure DFT functional, and show
how using knowledge of the magnetic configuration
can help us avoid getting stuck in a local minimum.
The qualitative failure with regard to the defect states
is recognised as the well-known band gap problem of
DFT. Hybrid functional calculations are performed to
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provide reference data, and subsequently we present a
DFT+U study of the defect. We show how the on-site
Coulomb and exchange parameters, U and J, influence
different parts of the electronic structure independently.
An optimum value of (U,J)=(8.56, 15.06) eV is obtained
after fitting to the reference hybrid functional electronic
structure obtained. After validating the (U,J)-pair for
the neutral vacancy defect, we also address the 〈001〉
split-interstitial defect to test the transferability of the
U and J parameters. The conclusions are presented in
the final section of the manuscript.

II. COMPUTATIONAL DETAILS

The single vacancy defect is simulated using a conven-
tional cubic 64-atom cell from which a single C atom
is removed (see Fig. 1), giving rise to a vacancy con-
centration of 1.56%. Although vacancy concentrations
are generally lower in experiments, a super cell of this
size gives a reasonable qualitative picture of the elec-
tronic structure. As the goal of the present work is to
provide a computationally cheaper alternative to hybrid
functional calculations, rather than a quantitative study
of the neutral vacancy defect itself, this super cell suf-
fices for our needs. DFT calculations are performed
within the projector augmented wave (PAW) method
as implemented within the Vienna ab initio Simulation
Package (VASP). Because of the expected gradients in
the electron density around the vacancy defect, the ex-
change and correlation behaviour of the valence electrons
is described using the generalised gradient approximation
(GGA) as constructed by Perdew, Burke and Ernzer-
hof (PBE). In addition, high quality reference electronic
structures are calculated using the HSE06 hybrid func-
tional. This hybrid functional is specifically designed for
solids, and has been used successfully for materials rang-
ing from (porous) Metal-Organic Frameworks to dense
solids like diamond.18,28–30 The structure is optimized us-
ing the PBE functional. During structure optimisation
lattice parameters and ionic positions are allowed to opti-
mise simultaneously using a conjugate gradient method.
An energy-convergence criterion is used, which is set to
1.0×10−7. After the full relaxation, forces on the ions are
found to be below 0.5 meV/A for all systems but one, for
which the largest force is found to be 1.12 meV/A. For
all calculations the kinetic energy cutoff is set to 600 eV.
The first Brillouin zone is sampled using a Monkhorst-
Pack special k-point grid of 4 × 4 × 4 (PBE relaxation
and HSE06 post-processing calculations), 5×5×5 (PBE
static and frequency calculations) or 9×9×9 (PBE den-
sity of states) k-points.

The 4× 4× 4 k-point grid for the HSE06 calculations
is checked to be well converged compared to the 5×5×5
k-point grid, and 4 times faster due to the reduction in
number of k-points (change in energy of the system was
of the order of 0.01 meV for the 64 atom cell). In ad-

dition, we check if the k-point grid for the Hartree-Fock
part of the functional could be further reduced. Halv-
ing it to a 2 × 2 × 2 k-point grid (combined with the
4× 4× 4 k-point grid for the local part of the functional)
reduced the accuracy to about 5 meV for the 64 atom
cell, while a reduction to the Γ-point gives rise to an en-
ergy difference of nearly 2 eV, making the latter settings
entirely unacceptable. In addition, a 6 × 6 × 6 k-point
grid (for the local part of the functional) combined with a
2× and 3× reduced k-point grid for the non-local part of
the functional is considered. The accuracy of the energy
is comparable to that found for the 4×4×4 k-point grid
above, although at a higher computational cost. As a re-
sult, considering the computational cost, accuracy, and
number of required hybrid calculations for this work, we
choose to use a 4× 4× 4 k-point grid for both the local
and non-local part of the HSE06 functional.

FIG. 1. (a) Ball-and-stick representation of a single C-
vacancy defect (red cube) in a cubic diamond lattice. The
conventional cubic cell is indicated by the black lines. The
four neighbouring C atoms are indicated. (b) High symmetry
lines of the first Brillouin zone of a simple cubic system.

III. RESULTS AND DISCUSSION

The neutral C vacancy defect has previously been
studied both theoretically and experimentally by several
researchers.4–14,23,31 The experimental picture has clearly
converged showing a diamagnetic ground state (Sz = 0),
with the Sz = 1 state being slightly less stable, and the
high spin Sz = 2 state much less stable. The theoretical
picture for DFT calculations appear less coherent with
conflicting results regarding the actual ground state spin
configuration. To understand the source of these discrep-
ancies we start by revisiting the neutral C vacancy in the
standard DFT case. In the following subsection we will
also present results obtained with the hybrid functional
HSE06 which will be used as reference later on.
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A. Revisiting the C-vacancy using DFT and hybrid
functional

1. PBE without symmetry breaking

The initial geometry for the C vacancy defect is cre-
ated by removing a single C atom from a cubic 64-atom
super cell with a perfect diamond lattice. The struc-
ture is subsequently optimized with the only constraint
being the difference in number of electrons with up (↑)
and down (↓) spin, ∆↑,↓ for the entire cell. Within this
work we will assume systems for which ∆↑,↓ = 0, 2, and 4
identify with the spin state Sz = 0, 1, and 2, respectively,
and therefore use the spin states nomenclature to refer
to the different systems. After structure optimization,
the lattice parameter is found to be increased by 0.05,
0.04 and 0.24% for the Sz = 0, 1, and 2 systems, respec-
tively, which is to be expected with the introduction of a
vacancy.32

The vacancy formation energy is calculated as:

Ef = Edef −NCµC , (1)

with Edef the total energy of the super cell with the
defect, NC the number of C atoms in the super cell with
the defect, and µC the chemical potential of a C atom,
chosen to be the bulk energy for C in the diamond struc-
ture. In contrast to experiment, the vacancy formation
energies presented in Table I identify the Sz = 1 state
as the most stable configuration. This is, however, in
line with results presented in theoretical literature for
super cells containing 32, 64, or 128 atoms.8,14 For each
of the spin states the same Td space group is found,
in contrast to what is expected from a molecular-like
model.23 Investigation of the normal-modes presents,
in case of the Sz = 0 system, only three small imaginary
frequencies with energies < 0.2 meV (about two orders
of magnitude smaller than the smallest real frequen-
cies), representing the zero-modes linked to the three
translational degrees of freedom. In case of the Sz = 1
system two additional imaginary frequencies are found,
which means this system resides in a transition state.
The total energy of the 5 imaginary frequencies is about
5.5 meV which is still rather small. For the Sz = 2
system, also three imaginary frequencies are obtained,
which are at least one order of magnitude smaller than
what was found for the Sz = 0 system. This presents an
image of reasonably well converged structures, although
comparison to experimental data tells us this is not the
case.

To further investigate these systems we consider
the magnetisation of the four C atoms neighbouring
the vacancy site, given in Table II. The presented
magnetisation is obtained through the integration of
the magnetic moment inside the PAW sphere. For
the Sz = 2 system, the magnetisation of the four
neighbouring C atoms is the same in size and sign, in
line with what we expect for four electrons in the highest
spin configuration. In contrast, the Sz = 0 system shows

TABLE I. Properties of C-vacancy systems

Ef ∆0,i Symm. ZPE
(eV) (meV) (eV)

PBE
Sz = 0 6.659 0 Td 10.962
Sz = 1 6.521 −138 Td 10.944
Sz = 2 8.156 1497 Td 11.026

PBE symm.br.
Sz = 0 6.443 0 D2d 11.062
Sz = 1 6.522 79 C3v 10.947
Sz = 2 8.139 1696 Td 11.026

HSE06
Sz = 0 7.009 0 D2d -
Sz = 1 7.149 141 C3v -
Sz = 2 8.469 1461 Td -

PBE +U
Sz = 0 6.289 0 D2d 12.309
Sz = 1 6.442 153 C3v 12.307
Sz = 2 7.385 1096 Td 12.286

no net magnetisation on any of the four neighboring C
atoms. This clearly shows that although we have the
expected global magnetisation, this system clearly does
not reside in the Sz = 0 spin state. Similarly we find
that also the Sz = 1 system did not actually produce
the required Sz = 1 spin state.

Although the global magnetization may indicate the
systems to be in the Sz = 0, 1, or 2 spin state and the
normal-modes present reasonable quality structures, the
local magnetization of the neighboring C atoms shows
that the true Sz = 0, 1, or 2 spin states are not obtained.
This explains the erroneous stability ordering and local
symmetry.

At this point it is important to note that using
these obtained atomic structures, and using the same
constraints, hybrid functionals will not improve the
situation. Optimizing the electronic structure using the
HSE06 functional, the same erroneous stability ordering
is found (although this time ∆0,1 = −650 meV) as well
as the same local magnetization as was found for the
PBE calculations. From this it becomes clear that the
obtained systems are local energy minima, albeit not
the ones intended.

2. PBE with symmetry breaking

As the problem of determining the correct states
seems to be hampered by the presence of similar local
minima, the obvious way forward is to provide starting
conditions closer to the intended spin states. Starting
from the same initial geometry as before (pure diamond
lattice with a single C atom removed), including the
same constraint on the global magnetization, we now
initialize the local magnetization of the four C atoms
neighboring the vacancy in line with their intended spin



4

TABLE II. Magnetisation of four vacancy neighbour carbon atoms.

Sz = 0 Sz = 1 Sz = 2
functional C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

PBE 0.000 0.000 0.000 0.000 0.366 0.327 0.217 0.212 0.485 0.487 0.488 0.487
PBE symm.br. 0.366 −0.330 0.288 −0.325 0.159 0.300 0.317 0.341 0.486 0.489 0.489 0.489
HSE06 0.424 −0.410 0.392 −0.409 −0.232 0.449 0.446 0.452 0.514 0.518 0.518 0.518
PBE+U 0.372 −0.365 0.350 −0.361 −0.267 0.385 0.394 0.395 0.429 0.431 0.432 0.432

for three different spin states. This has the consequence
that the spin symmetry is broken even though the
atomic starting geometry remains Td. We indicate these
systems as “PBE symm.br.” in the tables.

After structure optimization, the lattice parameters
are found to have increased by 0.20, 0.04, and 0.24% for
the Sz = 0, 1, and 2 spin state, respectively. In case of
the Sz = 0 system, the lattice is no longer cubic, but has
become tetragonal with a single direction shortened by
0.22% in comparison to the cubic diamond lattice. The
calculated vacancy formation energy (cf. Table I) shows
a significant reduction for the Sz = 0 system resulting in
the experimentally expected singlet ground state. The
relative vacancy formation energy is well in line with
the value 0.06 eV obtained by Zywietz and co-workers
for a 216-atom super cell, as well as the D2d symmetry.9

Note that the C2v space group is a direct subgroup
of the D2d space group. The Sz = 1 system did not
change in energy even though the symmetry changed
significantly, from the Td to the C3v space group. For
all systems, investigation of the normal-modes showed
only three (small) imaginary frequencies, indicative of a
local minimum.

In addition, investigation of the local magnetization,
presents a significant improvement over the results
presented in the previous section. The Sz = 0 system
clearly shows two C atoms with a localized up-spin
electron, and two with a localized down-spin electron.
The Sz = 1 system, on the other hand presents three
C atoms with a ‘large’ up-spin magnetization, and one
C atom with a ‘smaller’ magnetization, unfortunately
still with the wrong spin orientation, but already a
qualitative improvement.

3. HSE06 reference electronic structure

Starting from the optimized atomic structures in
the previous section (PBE symm.br.), which show the
required symmetry breaking, the electronic structure of
the systems can be optimized at the hybrid functional
level.
The vacancy formation energy increases by about 0.6
eV for the Sz = 0 and Sz = 1 systems and 0.3 eV for
the Sz = 2 system, retaining the experimental stability
order. The local magnetization shows the correct
qualitative picture for all three spin states, in contrast

to all previous PBE calculations.
For the PBE calculations, the electronic band

structure along the high symmetry lines (see Fig. 1b)
are shown in Fig. 2. For each system, the defect states
can be clearly differentiated in the band gap of pristine
diamond. Furthermore, comparison to the HSE06
band structure, shown in Fig. 3, shows that the PBE
calculations are able to reproduce the qualitative picture
to a reasonable degree. The shape of the bands is well
represented, while their main failure is their position,
which is due to the well-known band gap problem of
DFT. The obtained HSE06 electronic band structure
is in good agreement with previous theoretical work,
presenting band gap sizes as well as the defect band
locations as expected.14

Although most of the defect bands show the correct
qualitative picture some states show significant devia-
tions (those bands are indicated in green in Fig. 2). The
Sz = 0 system seems to be reproduced best by PBE,
with only a part of the middle defect band along the
R−Γ line showing the up and down state not coinciding
as seen for the HSE06 case. The Sz = 1 system shows
a significant split between the middle defect bands (the
top up band and the bottom down band) leading to the
observed metallic behavior of this spin state in PBE. In
case of the Sz = 2 spin state, the main problem is the
location of the bottom spin down defect state, which
should be located at the Fermi level together with the
spin down defect states but is located more than 1 eV
below the Fermi level.

B. The C-vacancy using DFT+U

Although hybrid functional theory calculations are be-
coming increasingly popular for solid state applications,
their computational cost is still staggering. For the pre-
sented systems, we find an increase in computational cost
of about a factor one thousand going from PBE to HSE06
calculations while retaining the same accuracy settings.22

An alternate means of improving the electronic struc-
ture for solids in case of strongly correlated systems
or electronic structures dealing with strongly localized
states is the DFT+U approach. The basic idea behind
this methodology is to correct the on-site Coulomb inter-
action of the localized electrons by adding Hubbard-like
terms. Although these corrections are usually included
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FIG. 2. PBE electronic band structure for a single C vacancy defect in a 64-atom super cell. Majority/minority bands are
show as solid/dashed curves. Bands indicated in green are qualitatively different from the HSE06 picture.

FIG. 3. HSE06 electronic band structure for a single C vacancy defect in a 64-atom super cell. Fitting variables for the DFT+U
fitting procedure are indicated.

when dealing with d or f electrons, they can also be ben-
eficial for localized p orbitals,33 as we will show below.
There exist different ways to include these corrections in
DFT calculations. In this work we make use of the rota-
tionally invariant DFT+U implementation as proposed
by Liechtenstein and co-workers which makes use of two
parameters: U and J.34 The choice of this approach is
based on the fact that for the system at hand U and J
are independent parameters, and need to be treated as
such. This is not the case for the simplified DFT+U ap-
proach as proposed by Dudarev and co-workers, in which
U and J are combined into a single Ueff=U−J.35 From
Fig. 4, showing the example of the Sz = 1 system, it is
clear that such a simplified approach should not be used

for defective diamond. Even though Ueff is constant,
the defect state positions and shapes are changing sig-
nificantly, while the direct band gap of the host system
(pristine diamond) remains roughly the same over the
entire range.

Figures 5 and 6 show the evolution of the electronic
band structure of the Sz = 1 system at constant J and
U, respectively. Increase of the on-site Coulomb param-
eter (U) gives rise to a reduction of the band gap of the
diamond host, while at the same time pulling the defect
states open. The unoccupied down-states remain unoc-
cupied with the upper band even moving into the con-
duction band. The three up-states, which give rise to the
metallic nature under PBE, also split, making the system
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FIG. 4. Evolution of the electronic band structure as function of U and J, with U = J or Ueff = 0 eV.

FIG. 5. Evolution of the electronic band structure as function of U, for J = 0 eV.

semiconducting for U≥ 5 eV.
In contrast, keeping U constant while increasing the on-
site exchange parameter J, only slightly compresses the
defect states while opening up the band gap of the dia-
mond host (see Fig. 6). This opening of the band gap has
been observed for negative Ueff in other sp-hybridized
semiconductors as well, and is related to the localization
of the p-states making up the valence band edge.33

1. Fitting U and J parameters

Since the on-site Coulomb and exchange parameters
are independent, we fit both. Because it is our goal to
reproduce the HSE06 electronic structure as accurately
as possible, we use the HSE06 results for the three spin
states as a reference. The 14 selected variables, chosen to
represent specific features of the electronic structure, are

shown in Table III and indicated in Fig 3. Because the
direct band gap at the Γ of the host diamond is overesti-
mated by HSE06 (due to the introduced exact exchange)
we decided do use the experimental band gap of 5.47 eV
instead during the fitting procedure.

Fitting is done using a least squares method, mini-
mizing

S(U, J) =
∑
i

wi(xi(U, J)− xref
i )2 (2)

where the sum over i runs over a (sub)set of fitting
variables, xref

i is the HSE06 reference value, xi(U, J) is
the DFT+U calculated value of variable xi using the
on-site Coulomb and exchange parameters U and J, and
wi a weighing function. The most simple version of wi
gives the same weight of 1.0 to all variables (indicated
as w/o weight in Table IV). However, as the range of
possible values for a given variable can differs strongly
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FIG. 6. Evolution of the electronic band structure as function of J, for U = 0 eV.

TABLE III. Fitting variables

variable Ref.Value description
(eV)

general
1 ∆0,1 0.141 relative stability of Sz = 1
2 ∆0,2 1.461 relative stability of Sz = 2

Sz = 0 spin state

3 ∆Γ,0 6.128a direct band gap of host for ↑ at Γ

4 ∆Γ,0
1,2 −2.044 gap between ↑ states 1 and 2 at Γ

5 ∆Γ,0
1,3 −2.813 gap between ↑ states 1 and 3 at Γ

6 ∆R′,0
2,2∗ 0.000 coinciding of second defect state

↑ and ↓ at middle of R− Γ line
Sz = 1 spin state

7 ∆Γ,1 6.221a direct band gap of host for ↑ at Γ

8 ∆Γ,1
1,3 −1.691 gap between ↑ states 1 and 3 at Γ

9 ∆R′,1
3,1∗ 0.185 splitting between third ↑ and first ↓

state at middle of R− Γ line
Sz = 0 spin state

10 ∆Γ,2 6.548a direct band gap of host for ↑ at Γ

11 ∆Γ,2
1,1∗ −3.366 gap between first ↑ and ↓ state at Γ

12 ∆Γ,2
1,0∗ 0.340 cross-splitting at Γ

13 ∆R′,2
1,0∗ −0.896 cross-splitting at middle of R− Γ line

14 ∆R′,2
3,0∗ −0.264 cross-splitting at middle of R− Γ line

a The experimental band gap of 5.47 eV for pristine diamond
is used during fitting, as the HSE06 band gap overshoots

significantly due to the exact exchange contribution.

between the variables we also used a weighing variable
wi = abs(max(xi(U, J)) −min(xi(U, J)). In this case, a
strongly varying variable will carry a larger weight than
a variable which only varies very little over the entire
set of (U,J) pairs. The RMSD for the fit is calculated

as RMSD=
√
S(U, J)/n with n the number of fitting

variables considered.
The xi(U, J) variables are obtained for U and J

TABLE IV. Fitted U and J parameters (in eV).

variables w/o weight with weight
used U J RMSD U J RMSD

1,2 3.71 5.49 0.00 3.71 5.49 0.00
1,2,3,7,10 3.79 9.68 0.10 3.79 10.02 0.17
3-6 8.67 17.89 0.08 8.82 17.78 0.13
7-9 8.22 16.61 0.17 8.44 16.77 0.24
10-14 10.51 9.51 0.11 10.36 9.63 0.19
3-14 8.82 14.51 0.20 8.73 15.09 0.31
4-6,8,9,11-14 9.24 13.55 0.16 9.52 12.68 0.24
1-14 8.57 15.04 0.20 8.56 15.45 0.32

varying from 0 to 20 eV in steps of 1 eV using the atomic
structure as obtained in the PBE calculations. Values
at non-integer (U,J)-pairs are obtained through bilinear
interpolation.

The results of fitting, taking into account several
subsets of the 14 variables, are shown in Table IV.
Contrary to expectations, the weighing factors seem
to play only a minor role in determining the fitted
(U,J)-pair. Taking only the relative stabilities of the
three spin systems, a perfect fit to the HSE06 values
is obtained for (U,J)=(3.71, 5.49) eV. However, at this
value for (U,J), the electronic structure does not show
the qualitative and quantitative agreement aimed for.
Including the direct band gap at the Γ-point leads to a
significant increase of the J parameter, as this parameter
is the one responsible for opening the host band gap
as is seen from Fig. 6. At this point it is important to
note that using the experimental band gap at 0 K (5.4
eV) or room temperature (5.47 eV) does not modify the
obtained (U,J) pair significantly. Fitting the (U,J)-pair
for the specific electronic features of the three spin states
independently shows comparable results for the Sz = 0
and Sz = 1 spin states, while the Sz = 2 spin state is
the only setup in which U > J . This is related to the
lowest of the four ↓ defect states, which is located at the
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diamond valence band edge for the Sz = 0 and Sz = 1
spin states, while it is pulled up to the Fermi level for
the Sz = 2 spin state (cf. Fig. 3). Taking the electronic
structure variables into account of all three spin states
(3−14), the fitted (U,J)-pair is found to be about (9, 15)
eV, reducing the difference between U and J compared
to the fitting obtained for the Sz = 0 and Sz = 1
variables separately. Furthermore, taking this set of 12
variables and excluding the direct band gap variables
further reduces the separation between U and J, again
showing the opening of the band gap in sp-hybridized
semiconductors to be governed by a delocalization of
the p states of the valence band.33 Taking the full set
of 14 variables into account, we find value ranges of
U= 8.56− 8.57 eV and J= 15.04− 15.45 eV.

2. The neutral C-vacancy

Using the DFT+U fitting parameters
(U,J)=(8.56, 15.06) eV, we perform a full structure
optimization of the three spin-states. Allowing for
volume relaxation, we find that the volume of the system
decreases by 7.1 − 7.3% making the lattice parameter
obtained for pure diamond at PBE+U about 2.4% too
small, in comparison a near perfect match for PBE
(0.08% too big). After structure optimization, under
constraints setting the total global magnetization and
initializing the local magnetization, the correct stability
order is found (see Table I). The defect formation
energies are 154, 80, and 754 meV lower than those
found with PBE for the Sz = 0, 1, and 2 spin states,
respectively. The resulting defect formation energies
for PBE+U, presented in Table I, still nicely fall in
the range of defect formation energies for the neutral
C-vacancy (5.95 − 7.65 eV) found in the theoretical
literature of the past 30 years, making the PBE+U
values not unacceptably small.5,7,10–14

As before, we find a broken symmetry for the Sz = 0
and Sz = 1 system, and a normal mode analysis shows
only three small imaginary frequencies (< 0.02 meV),
representing the translational degrees of freedom, for all
three spin configurations. The zero-point energies of the
three systems is about 12.3 eV making it 1.3 eV higher
than was the case for PBE.
The local magnetization, shown in Table II, shows that,
just like the HSE06 case, the correct local magnetization
is obtained, even for the Sz = 1 spin system, showing an
important improvement over the normal PBE calcula-
tions.

The electronic band structures along the lines of high
symmetry are presented in Fig. 7. Comparison to the
HSE06 band structure (cf. Fig. 3) shows a very good
qualitative agreement already at first glance. At this
point it is interesting to note that all band-structure
related fitting variables are located on the Γ-R high sym-
metry line. The fact that also the other high symmetry

TABLE V. Comparison PBE+U and PBE to HSE06.

variable HSE06 PBE+U ∆ PBE ∆
(eV) (eV) (meV) (eV) (meV)

∆0,1 0.141 0.153 12 0.079 −62
∆0,2 1.461 1.096 −365 1.696 235
∆Γ,0 5.47a 5.502 32 4.930 −540

∆Γ,0
1,2 −2.044 −1.727 317 −0.765 1279

∆Γ,0
1,3 −2.813 −2.726 87 −1.129 1684

∆R′,0
2,2∗ 0.000 −0.054 −54 0.142 142

∆Γ,1 5.47a 5.547 77 5.081 −389

∆Γ,1
1,3 −1.691 −1.506 185 0.090 1781

∆R′,1
3,1∗ 0.185 0.310 125 −0.709 −894

∆Γ,2 5.47a 6.135 665 5.110 −360

∆Γ,2
1,1∗ −3.366 −3.099 267 −1.672 1694

∆Γ,2
1,0∗ 0.340 0.474 134 1.569 1229

∆R′,2
1,0∗ −0.896 −0.779 117 0.617 1513

∆R′,2
3,0∗ −0.264 −0.157 107 1.145 1409

a The experimental band gap was chosen instead of the
HSE06 band gap.

lines (Γ-X, Γ-M, and M-X) show very good agreement
supports the robustness of the (U,J)-parameter pair.

Each of the defect states is located at the position
they are expected, showing the correct order of ↑ and ↓
states. The host band gap is smaller than is the case for
HSE06, but this is as expected as we fitted against the
experimental band gap, which is almost one electronvolt
smaller than the HSE06 one. This difference is mainly
visible in the host valence band being closer to the Fermi
level. Table V presents a comparison of the PBE and
PBE+U values of the selected fitting variables to the
reference HSE06 values. The differences with the HSE06
values are indicated as ∆. The PBE+U values present
a clear improvement over the PBE case. For the Sz = 0
system, which already shows a good qualitative picture
(cf Fig. 2), the separation between the defect states in
the band gap are improved quantitatively by 1 eV at the
Γ-point. Also the small shape difference seen along the
R-Γ line is entirely removed. For the Sz = 1 system, the
highest ↑ band, which in PBE is straddling the Fermi
level, moves up to above the Fermi level but remains
below the lowest in-gap ↓ band. In case of the Sz = 2
system the large deviations seen for PBE are reduced
by an order of magnitude, and the ↓ defect state at the
valence band edge moves up to the Fermi level showing
the expected crossing of the ↑ and ↓ states.

C. The 〈001〉 split-interstitial defect

As a limited test of the transferability of the fit-
ted U and J parameters, we considered the 〈001〉
split-interstitial defect.36–40 The choice of this defect
is threefold. Firstly, as for the vacancy defect, this
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FIG. 7. PBE+U electronic band structure for a single C-vacancy defect in a 64-atom super cell. Majority/minority bands are
show as solid/dashed curves. The DFT+U parameters are chosen as U=8.56 eV and J=15.06 eV.

defect system only contains C atoms. Secondly, in
contrast to the vacancy defect, the defect states for the
split-interstitial are qualitatively well described at the
DFT level, as such, it provides a testcase indicating
whether good results are not deteriorated. This last
aspect is important when studying defect complexes
containing different contributing defects (e.g. the 〈001〉
split-interstitial compressed vacancy defect36). Thirdly,
the split-interstitial has been linked to the R2 defect,
which is a fundamental damage product with a high
production rate.36,37

The computational settings used for this defect are
the same as those used for the vacancy defect. A con-
ventional cubic 64-atom diamond super cell is modified
to include one additional C atom. The second C atom of
the split-interstitial defect consists of the nearby C atom
displaced along the 〈001〉 direction from its original
position. The structure is then optimized using the PBE
functional. As the use of U and J parameters has a
strong influence on the lattice parameter, as shown in
the previous section, and our goal is mainly to correct
the electronic structure, we opt not to use the DFT+U
framework during the structure optimization. The
resulting optimized structure is then used to calculate
the electronic band structure with the PBE, HSE06, and
PBE+U functionals. Note that no new fitting of the U
and J parameters was performed.

Both C atoms of the split-interstitial defect are sp2

bonded, with one non-bonding pπ electron remaining
each. As a result, in addition to the closed shell (cs)
configuration, two possible spin configurations are
possible: (1) a singlet state, Sz = 0, with the two pπ
electrons anti-parallel and (2) a triplet state, Sz = 1,
with both pπ electrons parallel. In this section, we will
consider all three spin-configurations as they lead to
very distinct configurations of gap-states.

TABLE VI. Properties of the split-interstitial defect: the for-
mation energy, Ef , the relative stability with regard to the
Sz = 0 ground state, ∆Sz=0, and band gap features (cf. Fig. 8.
All energies are given in eV.

HSE06 PBE PBE+U
Sz = 0

Ef 10.534 10.801 11.252
∆Γ,0 5.429 4.222 4.626

∆Γ,0
v,1 0.990 1.198 0.551

∆Γ,0
v,2 4.032 2.660 3.605

∆M,0
2,c 0.671 0.980 0.593

Sz = 1
Ef 10.558 10.822 11.289
∆Sz=0 0.024 0.021 0.037
∆Γ,1 5.467 4.249 4.701

∆Γ,1
v,1 1.056 1.244 0.639

∆Γ,1
v,2 4.072 2.696 3.668

∆X,1
1,1′ 0.552 0.538 0.477

∆X,1
2′,c 0.676 0.954 0.602

closed shell
Ef 11.920 11.367 12.752
∆Sz=0 1.386 0.566 1.500
∆Γ,cs 5.462 4.252 4.690

∆Γ,cs
v,1 2.441 1.837 1.925

∆X,cs
1,1′ 0.629 0.580 0.476

∆X,cs
1′,c 2.412 1.893 2.495

In Fig. 8 the HSE06 electronic band structure for
different spin configurations of the split-interstitial defect
are shown. This picture does not change qualitatively
when using the PBE and PBE+U functional, in contrast
to what we saw for the vacancy defect.

Calculated properties of the split-interstitial defect are
presented in Table VI. These results show that this de-
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FIG. 8. The electronic band structure for the split-interstitial defect in a 65-atom super cell, using different functionals (top:
HSE06, middle: PBE and bottom: PBE+U). Majority/minority bands are show as solid/dashed curves. The first Brillouin
zone and the lines of high symmetry are shown in Fig. 1b. The U and J parameters used for the PBE+U calculation are those
obtained from the neutral vacancy system: U=8.56 eV and J=15.06 eV.
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fect is already qualitatively well described using the PBE
functional, when comparing the HSE06 results. Looking
at the PBE+U results obtained for (U,J)=(8.56,15.06)
eV, we note that most features show improvement over
the PBE results. The relative stability of the closed shell
configuration is significantly overestimated by the PBE
functional, while for the PBE+U functional a relative
stability comparable to the HSE06 value calculated in
this work and B3LYP values in literature is found.40 It
is interesting to note that for this specific defect, the
HSE06 functional presents the experimentally observed
bulk band gap (∆Γ,x, x=0,1,cs) for diamond. PBE, as
expected, significantly underestimates this gap, while
the PBE+U results improve the situation but not
entirely. This may be related to the fact that we did
not fit to the (overestimated) HSE06 band gap for the
vacancy defect (which would have been detrimental for
the vacancy defect). When looking at the positions of
the defect states, we notice that in comparison to the
HSE06 results, the PBE calculations place the defect
states further from the band gap edges. This error is
partially resolved by the PBE+U functional, with the
limitation that the PBE+U band gap is still about 0.8
eV smaller than the HSE06 band gap.

IV. CONCLUSION

In this work, we revisited the neutral C-vacancy using
the PBE and HSE06 functionals. We show that for PBE
the correct stability order is closely related to the correct
local magnetization of the carbon atoms neighboring the
vacancy. The latter was shown to depend significantly on
the initial guess, indicative of a phase space with many
local minima, making this an important aspect to con-
sider when simulating defects in diamond. We showed
that even if the stability order is correctly predicted, the
defect states in the band gap are not qualitatively correct
for the Sz = 1 and 2 spin states.

Although a qualitatively and quantitatively more ac-
curate picture can be obtained using hybrid function-
als, their prohibitively high computational cost makes
them impractical for large scale use.22 To alleviate this
problem, we propose the use of the DFT+U methodol-
ogy using the rotationally invariant implementation as
proposed by Liechtenstein and co-workers. The on-site
Coulomb and exchange parameters U and J are obtained
through a fitting procedure taking into account the spe-
cific features of the electronic structure of the defect

states of the three spin configurations of the neutral C
vacancy defect. Using (U,J)=(8.56, 15.06) eV, the elec-
tronic structure of the C-vacancy is calculated and com-
pared to HSE06 reference results. The DFT+U results
were shown to accurately reproduce the order and posi-
tion of the defect states. In addition, the DFT+U results
also presented the correct stability order and local mag-
netization of the neighboring C atoms.

In addition, we showed that the proposed PBE+U ap-
proach will improve, to some extend, the electronic struc-
ture of the 〈001〉 split-interstitial defect. However, as the
latter is already qualitatively well described by the PBE
functional, the gain is much less significant than for the
vacancy defect.

The presented (U,J) pair should be well suited for the
investigation of vacancy based defects, such as the neu-
tral vacancy considered in this work (at the same or even
lower concentration), but even defect complexes may
benefit from this approach. The description of dopant de-
fects might be improved as well, but this will strongly de-
pend on the nature of the dopant (d- and f -block dopants
may not be properly described), and is a subject of future
work. These results show that DFT+U can be a compu-
tationally cheap (i.e. 100× to 1000× faster) alternative
to hybrid functional calculations, using plane wave basis
sets, for the study of defects in diamond in large scale
studies.

PRIME NOVELTY STATEMENT

DFT+U can be used to provide hybrid functional qual-
ity electronic structure results at a fraction of the cost.
For the neutral vacancy defect in diamond the optimum
parameter-pair is (U,J)=(8.56, 15.06) eV. The same pa-
rameters are also suitable for other intrinsic defects such
as the 〈001〉 split-interstitial defect.
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