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A CRITERION FOR THE JACOBSON SEMISIMPLICITY

OF THE GREEN RING OF A FINITE TENSOR

CATEGORY

ZHIHUA WANG, LIBIN LI, AND YINHUO ZHANG

Abstract. This paper deals with the Green ring G(C) of a finite ten-
sor category C with finitely many indecomposable objects over an al-
gebraically closed field k. The first part of this paper is through the
Casimir number of C to determine when the Green ring G(C), or the
Green algebra G(C)⊗ZK over a field K is Jacobson semisimple (namely,
has zero Jacobson radical). It turns out that G(C) ⊗Z K is Jacobson
semisimple if and only if the Casimir number of C is not zero in K. For
the Green ring G(C) itself, G(C) is Jacobson semisimple if and only if the
Casimir number of C is not zero. The second part of this paper focuses
on the case where C = Rep(kG) for a cyclic group G of order p over
a field k of characteristic p. In this case, the Casimir number of C is
computable and is shown to be 2p2. This leads to a complete description
of the Jacobson radical of the Green algebra G(C) ⊗Z K over any field
K.

1. Introduction

The Green ring of a finite group, or more generally, the Green ring of a
tensor category, has attracted much attention when it was realized that the
Green ring provides one context for studying the problem of decomposing a
tensor product into a direct sum of indecomposables (see e.g. [3, 7, 9, 14, 16,
26]). After J.A. Green [13] first showed that the Green ring has no nonzero
nilpotent elements for any cyclic p-group over a field of characteristic p,
much subsequent works have centered on the nilpotency problem, that is,
whether or not the Green ring possesses nonzero nilpotent elements.

This question has been completely answered for the Green ring of a finite
group. It was known that when the base field is of characteristic p, the
Green ring of a finite group G contains nonzero nilpotent elements unless
the Sylow p-subgroups of G are cyclic or elementary abelian 2-groups (see
[4, 13, 27]). For the Green ring of a Hopf algebra, if H is a finite dimensional
pointed Hopf algebra of rank one, then all nilpotent elements of the Green
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ring of H form a principal ideal, which is nothing but the Jacobson radical
of the Green ring (see [23, Theorem 5.4] and [24, Theorem 6.3]). The proofs
given for those results were heavily computational, and neither explained
the properties of nilpotent elements, nor indicated a criterion for detecting
them.

Let C be a finite tensor category with only finitely many non-isomorphic
indecomposable objects over an algebraically closed field. The Green ring
G(C) of C is a Frobenius algebra over the ring of integers Z with the bi-
linear form given by dimensions of morphism spaces (Theorem 3.5). The
pair of dual bases associated with this bilinear form is the set consisting of
isomorphism classes of indecomposable objects [X] together with δ∗[X], an

element in G(C) related to the almost split sequence ending with X (if X is
not projective). The Casimir operator of G(C) is the map c from G(C) to its
center given by

c(x) =
∑

[X]∈ind(C)

[X]xδ∗[X],

where ind(C) is the set of all isomorphism classes of indecomposable objects
in C. The intersection of the image of c and Z is a principal ideal of Z
generated by a non-negative integer, which is called the Casimir number of
C.

The aim of this paper is through the Casimir number of C to determine
whether or not the Green ring G(C), or the Green algebra G(C) ⊗Z K over
a field K is Jacobson semisimple (namely, has zero Jacobson radical). It
turns out that G(C)⊗ZK is Jacobson semisimple if and only if the Casimir
number of C is not zero in K (Theorem 3.7). In the special case when the
Green ring G(C) is a group ring ZG, the Casimir number of C is exactly the
order of G. This recovers the classical Maschke’s theorem which states that
ZG⊗Z K = KG is Jacobson semisimple if and only if the order of G is not
zero in K. In view of this, Theorem 3.7 can be regarded as a version of
Maschke’s theorem for the Green ring case.

For the Green ring G(C) itself, G(C) is Jacobson semisimple if and only if
the Casimir number of C is not zero (Theorem 3.11). If the Green ring G(C)
is commutative, then the Jacobson radical of G(C) is the set of all nilpotent
elements of G(C). As a consequence, Theorem 3.11 gives a characterization
of a commutative Green ring without nonzero nilpotent elements. In par-
ticular, this characterization works for the Green ring of a finite group of
finite representation type.

In general, it is difficult to calculate the Casimir number of a finite tensor
category C. We only focus on the case C = Rep(kG), where G is a cyclic
group of order p and k is an algebraically closed field of characteristic p.
By a straightforward computation, we find that the Casimir number of C is
2p2. This shows that the Green ring G(C) is Jacobson semisimple, which is
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a result of J.A. Green [13]. Moreover, G(C) ⊗Z K is Jacobson semisimple
if and only if the characteristic of K is not equal to 2 or p. In the case
where K is of characteristic 2 or p, we use the factorization of the Dickson
polynomials to describe the Jacobson radical of G(C)⊗Z K explicitly.

The paper is organized as follows. In Section 2, we give the definitions of a
Frobenius algebra and the Green ring of a finite tensor category. In Section
3, we show that the Green ring G(C) is a Frobenius algebra over Z if the
underlying finite tensor category C has finitely many indecomposable objects
up to isomorphism. In this case, we introduce the Casimir number of C and
use it to determine when G(C), or G(C) ⊗Z K is Jacobson semisimple. In
Section 4, by applying the obtained results to the Green ring of a finite group
G, we describe the Jacobson radical of the Green algebra of G completely.

2. Preliminaries

Throughout, C is a finite tensor category over an algebraically closed field k.
The tensor product ⊗ stands for ⊗k. The letters Z,Q,C stand respectively
for ring of integers, the field of rational and complex numbers. The symbol
Fp is a finite field consisting of p elements for a prime p.

2.1. Frobenius algebras. The notion of a Frobenius algebra here is defined
directly over Z, although it can be defined more generally over a commuta-
tive ring (see e.g. [20]). In the following of this section, R is a Z-algebra that
is free of finite rank over Z. Denote by R∗ the dual Z-algebra HomZ(R,Z).
A bilinear form (−,−) : R × R → Z is called associative if (ab, c) = (a, bc)
for all a, b, c ∈ R. It is symmetric if (a, b) = (b, a); it is right (resp. left)
nonsingular if R→ R∗ given by a 7→ (−, a) (resp. a 7→ (a,−) is a Z-module
isomorphism. The form is nonsingular if it is both left and right nonsingu-
lar. The Z-algebra R is called Frobenius if it is equipped with an associative
and nonsingular bilinear form, and is symmetric if the form is symmetric.

If R has two Z-bases {xi | 1 ≤ i ≤ n} and {yi | 1 ≤ i ≤ n} satisfying
(xi, yj) = δij , where δij is the Kronecker symbol, then {xi, yi | 1 ≤ i ≤ n} is
called a pair of dual bases of R. Accordingly, any a ∈ R can be written as

(2.1) a =

n∑
i=1

(a, yi)xi or a =

n∑
i=1

(xi, a)yi.

The Casimir operator of R (see e.g. [20, Section 3.1]) is the map c from R
to its center Z(R) defined by

c(a) =
n∑
i=1

yiaxi for a ∈ R.
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The map c is independent of the choice of dual bases {xi, yi | 1 ≤ i ≤ n},
because the dual bases {xi, yi | 1 ≤ i ≤ n} only depends on the bilinear form
(−,−) [20, Section 1.2.2]. The element c(1) is called the Casimir element
of R, it depends on (−,−) only up to a central unit [20, Section 1.2.5].
The image Im c of c is an ideal of Z(R), called the Casimir ideal of R. It
does not depend on the choice of the bilinear form [20, Section 3.2]. The
intersection of Im c and Z is an ideal of Z, so is a principal ideal generated
by a non-negative integer. We call this integer the Casimir number of R.
Obviously, the Casimir number of R does not depend on the choice of the
bilinear form on R.

Any Z-algebra morphism ε : R→ Z is called an augmentation of R. Suppose
that the Frobenius Z-algebra R has an augmentation ε. Then any element t
of R satisfying at = ε(a)t for all a ∈ R is called a left integral of R. Similarly,
if ta = ε(a)t for all a ∈ R, then t is a right integral of R. All left integrals of
R with respect to ε form a Z-module of rank one generated by

∑n
i=1 ε(xi)yi.

Similarly, all right integrals of R with respect to ε form a Z-module of rank
one generated by

∑n
i=1 ε(yi)xi [20, Section 4.1]. If the set of left integrals of

R coincides with the set of right ones, then R is called unimodular.

2.2. Almost split sequences. Let k be an algebraically closed field. An
abelian category over k is an additive category whose morphism spaces are
finite dimensional, every object has finite length, and every morphism has a
kernel and a cokernel. An abelian category is said to be finite if it has only
finitely many simple objects Xi for i ∈ I, and each simple object Xi has a
projective cover Pi for any i ∈ I. By a finite tensor category we will mean
a finite abelian rigid tensor category over k in which the neutral object 1 is
simple (see e.g. [11] for the full definition).

Let C be a finite tensor category over k. Recall from [22, Section 2.2] that a
morphism f : X → Y in C is called a source morphism if f is not a section
such that every non-section morphism X →M factors through f and every
factorization f = h ◦ f implies that h an automorphism of Y . Dually, A
morphism g : Y → Z in C is called a sink morphism if g is not a retraction
such that every non-retraction morphism M → Z factors through g and
every factorization g = g ◦h implies that h an automorphism of Y . A source
morphism (resp. a sink morphism), if it exists, is unique up to isomorphism.
The notion has been introduced originally by Auslander and Reiten under
the name minimal left almost split morphism (resp. minimal right almost

split morphism) (see e.g. [1]) A short exact sequence 0→ X
f−→ Y

g−→ Z → 0
in C is called an almost split sequence if f is a source morphism and g is a
sink morphism.

It is known that any finite tensor category C is equivalent to the represen-
tation category of some finite dimensional weak quasi-Hopf algebra over k
[12, Proposition 2.7]. The existence of such an equivalence provides that
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every indecomposable non-projective object in C is always the ending term
of an almost split sequence in C. More precisely, if F defines an equivalence
between C and Rep(H) for some finite dimensional weak quasi-Hopf algebra
H over k, then for any indecomposable non-projective objet Z in C, F (Z)
is also an indecomposable non-projective representation in Rep(H). Since
Rep(H) has an almost split sequence 0→ L→M → F (Z)→ 0 ending with
F (Z) and the functor F is an equivalence as abelian categories, the above
sequence is an image of a short exact sequence 0→ X → Y → Z → 0, which
can be easily verified to be an almost split sequence in C. Such an almost
split sequence in C is unique up to isomorphism. Indeed, an almost split
sequence (if it exists) in any additive category is always unique up to iso-
morphism for the starting term as well as for the ending term (see Theorem
1.4 and Proposition 1.5 in [19]).

2.3. Green rings. Let F(C) be the free abelian group generated by isomor-
phism classes of objects in the finite tensor category C. The abelian group
F(C) admits a ring structure with the multiplication given by the tensor
product [X][Y ] = [X ⊗ Y ]. The Green ring G(C) of C is defined to be the
quotient ring of F(C) modulo the relations [X ⊕ Y ] = [X] + [Y ] for all ob-
jects X and Y in C. The Green ring G(C) is an associative ring with the
identity represented by the neutral object 1. The set ind(C) consisting of all
isomorphism classes of indecomposable objects in C forms a Z-basis of G(C).
If C has a braiding, then G(C) is a commutative ring. The reader is referred
to [6, 10, 17, 18] for a similar notion of the Green ring of a Hopf algebra.

The Grothendieck ring Gr(C) of C is the quotient ring of F(C) modulo all
short exact sequences in C, i.e., [Y ] = [X] + [Z] holds in Gr(C) if 0 →
X → Y → Z → 0 is exact. The Grothendieck ring Gr(C) possesses a basis
{[Xi] | i ∈ I} given by isomorphism classes of simple objects in C. The
Green ring and the Grothendieck ring of C are connected by the following
natural ring epimorphism:

(2.2) φ : G(C)→ Gr(C), φ([X]) =
∑
i∈I

[X : Xi][Xi],

where [X : Xi] is the multiplicity of Xi in the Jordan-Hölder series of X.
Thus, Gr(C) ∼= G(C)/ kerφ. If C is semisimple, then φ is the identity map.

For any indecomposable object Z in C, if Z is not projective, there exists a
unique almost split sequence 0 → X → Y → Z → 0 in C with the ending
term Z, we follow the notation given in [1, Section 4, ChVI] and denote
by δ[Z] the element [X] − [Y ] + [Z] in G(C); if Z is projective, we write
δ[Z] = [Z]− [radZ], where radZ is the radical of Z.

The left dual X∗ of any object X induces a left dual operator on G(C)
given by [X]∗ = [X∗]. This operator is an anti-automorphism of G(C) since
(X ⊗Y )∗ ∼= Y ∗⊗X∗. The inverse of this operator under composition is the
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right dual operator ∗[X] = [∗X] induced by the right dual ∗X of X, since
the left and right duals of X satisfy ∗(X∗) ∼= X ∼= (∗X)∗ for any object X
in C.

Recall from [12, Section 2.4] that for each object X of C one can define its
Frobenius-Perron dimension FPdim(X), which is the largest positive eigen-
value of the matrix of the left or the right multiplication by X. Since the
Frobenius-Perron dimension is additive on exact sequences and multiplica-
tive, the assignment [X] 7→ FPdim(X) extends to an algebra morphism
FPdim : G(C) ⊗Z C → C satisfying FPdim([Xi]) > 0 for any i ∈ I. Note
that dimk HomC(Pi, Xj) = 1 if i = j, and 0 otherwise. We have

FPdim([X]) =
∑
j∈I

FPdim([Xj ])[X : Xj ]

=
∑
i,j∈I

FPdim([Xi])[X : Xj ] dimk HomC(Pi, Xj)(2.3)

=
∑
i∈I

FPdim([Xi]) dimk HomC(Pi, X) > 0.

The regular object of C is the element

RC =
∑
i∈I

FPdim(Xi)[Pi] ∈ G(C)⊗Z C

which satisfies RC [Xi] = [Xi]RC = FPdim(Xi)RC for any i ∈ I (see [11,
Definition 6.1.6]). Moreover, we have [X]RC = RC [X] = FPdim(X)RC for
any object X in C since any exact sequence in C splits after tensoring with
a projective object. The Frobenius-Perron dimension of C is defined to be

FPdim(C) = FPdim(RC) =
∑
i∈I

FPdim([Xi])FPdim([Pi]).

3. The Frobenius properties of Green rings

As shown in [3, 25], an approach to study the Green ring of a finite group or
the Green ring of a finite dimensional Hopf algebra is through the bilinear
form defined by dimensions of morphism spaces. In this section, we follow
the same approach and define a similar bilinear form on the Green ring of a
finite tensor category.

3.1. Bilinear forms. Since there is an equivalence between a finite tensor
category C and Rep(H) for some finite dimensional weak quasi-Hopf algebra
H, many of the technical results of this section can be quoted from Section
VI.4 of [1]. However, we shall reprove them along the same lines for reader’s
convenience. We first need the following lemma (see e.g. [2, Lemma 2.1.6]).

Lemma 3.1. For all objects X,Y, Z in C, we have the following canonical
isomorphisms functorial in X, Y and Z:
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(1) HomC(X ⊗ Y,Z) ∼= HomC(X,Z ⊗ Y ∗).
(2) HomC(X,Y ⊗ Z) ∼= HomC(Y

∗ ⊗X,Z).

For all objects X and Y in C, we define

([X], [Y ]) := dimk HomC(X,Y
∗).

Then (−,−) extends to a Z-bilinear form on G(C).

Proposition 3.2. The bilinear form (−,−) satisfies the following proper-
ties:

(1) ([Y ]∗, [X]) = dimk HomC(X,Y ). In particular, ([X], ∗[Y ]) = ([Y ]∗, [X])
and ([X], [Y ]) = ([Y ]∗∗, [X]).

(2) ([X][Y ], [Z]) = ([X], [Y ][Z]).

Proof. (1) Using Lemma 3.1 we have

dimk HomC(X,Y ) = dimk HomC(1⊗X,Y ) = dimk HomC(1, Y ⊗X∗)
= dimk HomC(Y

∗ ⊗ 1, X∗) = ([Y ]∗, [X]).

In particular, ([X], ∗[Y ]) = dimk HomC(X,Y ) = ([Y ]∗, [X]) and ([X], [Y ]) =
([X], ∗[Y ]∗) = ([Y ]∗∗, [X]).

(2) The associativity of the form also follows from Lemma 3.1, namely,

([X][Y ], [Z]) = dimk HomC(X ⊗ Y,Z∗) = dimk HomC(X,Z
∗ ⊗ Y ∗)

= dimk HomC(X, (Y ⊗ Z)∗) = ([X], [Y ][Z]).

�

For any [X] ∈ ind(C), denote by δ∗[X] the image of δ[X] under the left dual op-

erator ∗ of G(C). We have the following result which is similar to Proposition
4.1 and Theorem 4.2 of [1], see also [25, Lemma 3.2(1),(2),(3)].

Proposition 3.3. The following hold in G(C):

(1) For all indecomposable objects Z and M in C, we have (δ∗[Z], [M ]) = 1

if Z ∼= M , and 0 if Z �M .
(2) For any x ∈ G(C), we have x =

∑
[X]∈ind(C)(δ

∗
[X], x)[X].

(3) The set {δ∗[X] | [X] ∈ ind(C)} or {δ[X] | [X] ∈ ind(C)} is Z-linearly

independent.
(4) The form (−,−) is non-degenerate in the sense that (y, x) = 0 (resp.

(x, y) = 0) for all y ∈ G(C) implies that x = 0.

Proof. (1) If Z is not projective, there exists an almost split sequence

0→ X
f−→ Y

g−→ Z → 0
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ending with Z such that g is a sink morphism. Applying the functor
HomC(M,−) to this sequence, we obtain the following exact sequence:

0→ HomC(M,X)
HomC(M,f)−−−−−−−→ HomC(M,Y )

HomC(M,g)−−−−−−−→ ImHomC(M, g)→ 0

Denote by radC(M,Z) the set of all morphisms from M to Z which are
not isomorphic. We claim that ImHomC(M, g) = radC(M,Z). Indeed, for
any α ∈ ImHomC(M, g), there exists some β ∈ HomC(M,Y ) such that
α = g ◦ β. In this case, α is not an isomorphism since g is not a retraction.
Conversely, for any α ∈ radC(M,Z), α is not a retraction. Since g is a sink
morphism, there exists some β ∈ HomC(M,Y ) such that α = g ◦ β. Thus,
α ∈ ImHomC(M, g). Now ImHomC(M, g) = radC(M,Z), we have

(δ∗[Z], [M ]) = ([X]∗, [M ])− ([Y ]∗, [M ]) + ([Z]∗, [M ])

= dimk HomC(M,X)− dimk HomC(M,Y ) + dimk HomC(M,Z)

= dimk HomC(M,Z)− dimk radC(M,Z)

=

{
1, M ∼= Z;

0, M � Z.

If Z is projective and M � Z, then HomC(M,Z) = HomC(M, radZ), and
hence

(δ∗[Z], [M ]) = ([Z]∗, [M ])− ([radZ]∗, [M ])

= dimk HomC(M,Z)− dimk HomC(M, radZ)

= 0.

If Z is projective and M ∼= Z, then HomC(Z, radZ) = radC(Z,Z), and hence

(δ∗[Z], [Z]) = ([Z]∗, [Z])− ([radZ]∗, [Z])

= dimk HomC(Z,Z)− dimk HomC(Z, radZ)

= dimk HomC(Z,Z)− dimk radC(Z,Z)

= 1.

Part (2) and Part (3) follow from Part (1).

(4) If (y, x) = 0 for all y ∈ G(C), then (δ∗[X], x) = 0 for all [X] ∈ ind(C). It

follows from Part (2) that x = 0. If (x, y) = 0 for all y ∈ G(C), then x = 0
since (x, ∗y) = (y∗, x) by Proposition 3.2 (1). �

We have the following result which is similar to Theorem 4.3 and Theorem
4.4 of [1], see also [25, lemma 3.2 (4),(5)].

Proposition 3.4. The following statements are equivalent:

(1) The set ind(C) is finite.
(2) The set {δ[X] | [X] ∈ ind(C)} forms a basis of G(C).
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(3) The set {δ[X] | [X] ∈ ind(C) and X not projective} forms a basis of
kerφ, where φ is the map given in (2.2).

Proof. (1)⇒(2) For any x ∈ G(C), we have x =
∑

[X]∈ind(C)(δ
∗
[X], x)[X] by

Proposition 3.3 (2). If ind(C) is a finite set, then y =
∑

[X]∈ind(C)(x, [X])δ∗[X]

is a finite sum and hence an element in G(C). In this case, (y, [X]) = (x, [X])
for all [X] ∈ ind(C). It follows from Proposition 3.3 (4) that x = y, and
hence x is a Z-linear combination of the set {δ∗[X] | [X] ∈ ind(C)}. We

conclude that {δ∗[X] | [X] ∈ ind(C)}, or equivalently, {δ[X] | [X] ∈ ind(C)} is

a basis of G(C) since it is linearly independent by Proposition 3.3 (3).

(2)⇒(1) Since {δ∗[X] | [X] ∈ ind(C)} is a basis of G(C), it is also a basis of

the algebra G(C)⊗ZC over C. Suppose the regular object of C has the form
RC =

∑
[X]∈ind(C) λ[X]δ

∗
[X], where the number of nonzero summands is finite.

To verify that ind(C) is a finite set, it is enough to show that λ[X] 6= 0 for
any [X] ∈ ind(C). Indeed, on the one hand,

(RC , [X]) = (
∑

[X]∈ind(C)

λ[X]δ
∗
[X], [X]) = λ[X].

On the other hand, since RC =
∑

i∈I FPdim(Xi)[Pi], it follows from (2.3)
that

(RC , [X]) =
∑
i∈I

FPdim(Xi) dimk HomC(Pi, X
∗) = FPdim(X∗) > 0.

Thus, λ[X] > 0 for any [X] ∈ ind(C).

(2)⇒(3) We only need to show that kerφ is spanned by {δ[X] | [X] ∈ ind(C)
and X not projective } since this set is already linearly independent. For
any x ∈ kerφ, suppose that x =

∑
[X]∈ind(C) λ[X]δ[X]. Note that φ(δ[X]) = 0

if X is not projective; and φ(δ[Pi]) = [Xi] for any i ∈ I. It follows that
0 = φ(x) =

∑
i∈I λ[Pi][Xi], and hence λ[Pi] = 0 for any i ∈ I, as desired.

(3)⇒(2) For any x ∈ G(C), we only need to show that x is spanned by the
set {δ[X] | [X] ∈ ind(C)} since it is linearly independent. Suppose that x =∑

[X]∈ind(C) λ[X][X]. Consider the element x0 =
∑

i∈I
∑

[X]∈ind(C) λ[X][X :

Xi]δ[Pi]. Since φ(x) = φ(x0), we have x − x0 ∈ kerφ which is spanned by
the set {δ[X] | [X] ∈ ind(C) and X not projective }. Thus, x is spanned by
the set {δ[X] | [X] ∈ ind(C)}. �

We summarize the main result of this section as follows:

Theorem 3.5. If C is a finite tensor category with only finitely many inde-
composable objects up to isomorphism, then the Green ring G(C) is a Frobe-
nius Z-algebra.
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Proof. Since ind(C) is finite, the set {δ∗[X] | [X] ∈ ind(C)} is a basis of G(C) by

Proposition 3.4 (2). Consider the map from G(C) to the dual Z-algebra G(C)∗
given by x 7→ (x,−) or x 7→ (−, x). This map is injective by Proposition
3.3 (4) and surjective by Proposition 3.3 (1). Thus, the Green ring G(C)
is equipped with an associative and nonsingular bilinear form (−,−) with
a pair of dual bases {δ∗[X], [X] | [X] ∈ ind(C)}. Hence G(C) is a Frobenius

Z-algebra. �

Remark 3.6. If C is a fusion category, then ind(C) = {[Xi] | i ∈ I}, the
set of isomorphism classes of simple objects of C and δ∗[Xi]

= [Xi]
∗ for any

i ∈ I. In this case, the set {[Xi]
∗, [Xi] | i ∈ I} forms a pair of dual bases

of G(C) with respect to the form (−,−) and the Green ring G(C) coincides
with the Grothendieck ring Gr(C), which is a fusion ring in the sense of [11,
Definition 3.1.7].

Let C be a finite tensor category with only finitely many indecomposable
objects up to isomorphism. The regular object RC of C is an integral of
G(C) ⊗Z C with respect to the augmentation FPdim. Indeed, the algebra
G(C) ⊗Z C is a Frobenius algebra over C, and any x ∈ G(C) ⊗Z C can be
written as

(3.1) x =
∑

[X]∈ind(C)

(δ∗[X], x)[X] or x =
∑

[X]∈ind(C)

(x, [X])δ∗[X].

By Section 2.1, a left integral with respect to FPdim is up to a scalar the
following element∑

[X]∈ind(C)

FPdim([X])δ∗[X] =
∑

[X]∈ind(C)

(RC , [X])δ∗[X] = RC ,

and a right integral with respect to FPdim is up to a scalar the element∑
[X]∈ind(C)

FPdim(δ∗[X])[X] =
∑
i∈I

FPdim(Xi)[Pi] = RC .

Thus, the left and right integral spaces coincide and G(C)⊗ZC is unimodular
under the augmentation FPdim.

3.2. The Jacobson semisimplicity of Green rings. In this subsection
C is always a finite tensor category with only finitely many indecomposable
objects over an algebraically closed field k. In this case, the Green ring G(C)
of C is a Frobenius algebra over Z, and all notions given in Section 2.1 make
sense for G(C). More precisely, the Casimir operator of G(C) is the map c
from G(C) to its center Z(G(C)) given by

c(x) =
∑

[X]∈ind(C)

[X]xδ∗[X] for x ∈ G(C).
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The Casimir element of G(C) is c(1) =
∑

[X]∈ind(C)[X]δ∗[X]. In particular,

FPdim(c(1)) = FPdim(RC) = FPdim(C).
The Casimir number of C is defined to be the Casimir number of G(C),
namely, the non-negative integer m satisfying Z∩ Im c = (m). This number
is an invariant of C under tensor equivalence because it does not depend on
the choice of the bilinear form on G(C). From this number one is able to
determine when G(C), or the algebra G(C)⊗Z K over a field K is Jacobson
semisimple.

Theorem 3.7. The Green algebra G(C) ⊗Z K over a field K is Jacobson
semisimple if and only if the Casimir number of C is not zero in K.

Proof. If K = Fp, then the algebra G(C)⊗ZFp is separable (namely, Jacobson
semisimple) if and only if (p) + Im c∩Z [20, Proposition 6]. If K = Q, then
G(C)⊗Z Q is separable if and only if Im c = Z(G(C)) by Higman’s theorem
[15, Theorem 1], or equivalently, c(x) = 1 for some x ∈ G(C) ⊗Z Q. This
is equivalent to saying that c(mx) = m, where m is a positive integer such
that mx ∈ G(C). This is precisely Z ∩ Im c 6= 0. For a general field K, since
Q (resp Fp) is a perfect field, any field extension Q ⊆ K (resp Fp ⊆ K) is
separable. This implies that G(C)⊗Z K is Jacobson semisimple if and only
if G(C)⊗ZQ (resp. G(C)⊗Z Fp) is Jacobson semisimple. We have completed
the proof. �

If Z ∩ Im c = (m), then there exists some x ∈ G(C) such that c(x) = m.
Applying FPdim to this equality, we have

(3.2) m = FPdim(c(x)) = FPdim(x)FPdimc(1) = FPdim(x)FPdim(C).
This means that the Casimir number m of C is in a sense divisible by
FPdim(C). In particular, we have the following result which is a gener-
alization of [20, Proposition 22(a)].

Corollary 3.8. If C = Rep(H) for a finite dimensional quasi-Hopf algebra
H of finite representation type, then

(1) The dimension of H divides the Casimir number of C.
(2) If a prime p divides the dimension of H, then G(C) ⊗Z K is not

Jacobson semisimple for any field K of characteristic p.

Proof. (1) If C = Rep(H) for a finite dimensional quasi-Hopf algebra H,
then FPdim(C) = dimk(H) and FPdim(X) = dimk(X) for any object X in
C (see [11, Proposition 6.1.14]). In this case, Part (1) follows directly from
(3.2).

(2) It follows from Part (1) and Theorem 3.7. �

Remark 3.9. Let G be a finite group and C the discrete tensor category
associated to G. Namely, the set of objects of C is G, the tensor functor is
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g⊗ h = gh for g, h ∈ G and HomC(g, h) = idg if g = h, and ∅ if g 6= h. The
Green ring of C is the group ring ZG, and Z ∩ Im c = (m), where m is the
order of G. It follows from Theorem 3.7 that ZG ⊗Z K = KG is Jacobson
semisimple if and only if m is not zero in K. This is exactly the well-known
Maschke’s theorem. From this point of view, Theorem 3.7 can be viewed as
the Green ring version of Maschke’s theorem.

An interesting result is that the Casimir number of C can also be used to
determine when the Green ring G(C) is Jacobson semisimple. To see this,
we need the following lemma.

Lemma 3.10. Let J(G(C)) be the Jacobson radical of G(C) and pG(C) the
ideal of G(C) generated by a prime p.

(1) We have (J(G(C)))n ⊆ pG(C) for some integer n.
(2) If Z ∩ Im c = (m) and p - m, then J(G(C)) ⊆ pG(C).

Proof. (1) The ring isomorphism G(C)/pG(C) ∼= G(C) ⊗Z Fp shows that the
quotient G(C)/pG(C) is a finite ring. So the Jacobson radical J(G(C)/pG(C))
of G(C)/pG(C) is nilpotent [21, Proposition IV.7]. The canonical ring epi-
morphism π : G(C)→ G(C)/pG(C) yields that π(J(G(C))) ⊆ J(G(C)/pG(C)),
so π(J(G(C))) is nilpotent. Thus, there exists a positive integer n such that
(J(G(C)))n is contained in the kernel of π, namely, (J(G(C)))n ⊆ pG(C).

(2) If the prime p satisfies p - m, then G(C)⊗Z Fp is Jacobson semisimple by
Theorem 3.7. In this case, π(J(G(C))) ⊆ J(G(C)/pG(C)) = 0. This implies
that J(G(C)) ⊆ pG(C). �

Theorem 3.11. The Green ring G(C) is Jacobson semisimple if and only
if the Casimir number of C is not zero.

Proof. Assume that the Jacobson radical J(G(C)) of G(C) is zero. Consider
the finite dimensional algebra G(C) ⊗Z Q over Q. We first show that the
Jacobson radical J(G(C)⊗ZQ) of G(C)⊗ZQ is zero. For any x ∈ J(G(C)⊗Z
Q), there exists a nonzero integer n such that nx ∈ G(C)∩J(G(C)⊗ZQ). For
any y, z ∈ G(C), we have y(nx)z ∈ G(C) ∩ J(G(C) ⊗Z Q). Since J(G(C) ⊗Z
Q) is nilpotent, 1 − y(nx)z is invertible in G(C). This means that nx ∈
J(G(C)) = 0, and hence x = 0. Now J(G(C) ⊗Z Q) = 0 and the algebra
G(C) ⊗Z Q is Jacobson semisimple, it follows from Theorem 3.7 that the
Casimir number of C is not zero in Q, so it is a nonzero integer. Conversely,
if the Casimir number of C is m 6= 0, then the set Ω consisting of all primes
p such that p - m is an infinite set. For any x ∈ J(G(C)), we may write
x = d

∑
[X]∈ind(C) λ[X][X], where d ∈ Z and all integer coefficients λ[X] are

coprime. By Lemma 3.10 (2) we have J(G(C)) ⊆ pG(C) for all p ∈ Ω. It
follows that p | d for all p ∈ Ω. Thus, d = 0, and hence x = 0. �
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If the Green ring G(C) is commutative, then the Jacobson radical of G(C)
is the set of all nilpotent elements of G(C). As a consequence, Theorem
3.11 gives a characterization of a commutative Green ring without nonzero
nilpotent elements. In particular, if C is a representation category of a finite
group of finite representation type, then the Green ring G(C) is commutative.
In this case, the Green ring G(C) has no nonzero nilpotent elements if and
only if the Casimir number of C is not zero.

4. Applications to the Green ring of a finite group

In this section we shall determine the Casimir number of a representation
category of a finite group, and then use it to describe the Jacobson radical
of the Green algebra over a field K.

4.1. The Green ring. In the following p is an odd prime, k is an alge-
braically closed field of characteristic p, and G is a cyclic group of order
p. The group algebra kG is isomorphic to the quotient of the polynomial
algebra k[X] modulo the ideal (Xp − 1) generated by Xp − 1 or (X − 1)p:

kG ∼= k[X]/(Xp − 1) ∼= k[X]/(X − 1)p,

where the latter is a commutative Nakayama local algebra over k. Let
Mi = k[X]/(X−1)i for i = 1, · · · , p. Then {M1,M2, · · · ,Mp} is a complete
set of indecomposable kG-modules up to isomorphism [1, Section 4, ChV].
Here, each Mi is self-dual since Mi is the unique indecomposable module of
dimension i. Note that M1 is the trivial kG-module.

We follow from [1, Section 4, ChV] and present almost split sequences of
kG-modules as follows. The almost split sequence ending with the trivial
module M1 is

0→M1 →M2 →M1 → 0,

and the almost split sequence ending with Mi is

0→Mi →Mi+1 ⊕Mi−1 →Mi → 0 for 1 < i < p.

Note that the sequence

0→Mi →M2 ⊗Mi →Mi → 0

is also an almost split sequence ending withMi for 1 ≤ i < p (see [1, Theorem
4.7]). The uniqueness of an almost split sequence shows that M2 ⊗Mi

∼=
Mi+1⊕Mi−1 for 1 < i < p. We also have M2⊗Mp

∼= 2Mp. This leads to the
product [M2][Mi] = [Mi−1] + [Mi+1] for 1 < i < p, and [M2][Mp] = 2[Mp] in
the Green ring G(C) for C = Rep(kG). The product [Mi][Mj ] in G(C) can
be described as follows.

Lemma 4.1. For 1 ≤ i, j ≤ p, we have

(1) If i+ j ≤ p, then [Mi][Mj ] =
∑min{i,j}−1

t=0 [Mi+j−1−2t].
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(2) If i+j ≥ p+1, then [Mi][Mj ] = (i+j−p)[Mp]+
∑min{i,j}−1

t=i+j−p [Mi+j−1−2t].

Proof. This can be proved by induction on i+ j, or see [23, Proposition 4.2]
for a similar result. �

Let Z[X2, · · · , Xp] be a polynomial ring over Z with variables X2, · · · , Xp

and I the ideal of Z[X2, · · · , Xp] generated by

X2
2 −X3 − 1, X2X3 −X4 −X2, · · · , X2Xp−1 −Xp −Xp−2, X2Xp − 2Xp.

We have

G(C) ∼= Z[X2, · · · , Xp]/I

whose isomorphism is given by [Mi] 7→ Xi for i = 2, 3, · · · , p (see [1, Propo-
sition 4.11]). Actually, the Green ring G(C) is isomorphic to a polynomial
ring over Z with one variable modulo a relation. To see this, we recall the
Dickson polynomials of the second kind defined recursively as follows:

(4.1) E0(X) = 1, E1(X) = X, and Ei+1(X) = XEi(X)−Ei−1(X) for i ≥ 1.

Then En(X) can be written explicitly as

En(X) =

[n
2
]∑

i=0

(
n− i
i

)
(−1)iXn−2i

for n ≥ 0 (see e.g. [8, Eq.(1.2)]).

Proposition 4.2. We have G(C) ∼= Z[X]/((X − 2)Ep−1(X)).

Proof. Consider the following ring epimorphism φ from Z[X2, · · · , Xp] to

Z[X]/((X−2)Ep−1(X)) given by g(X2, · · · , Xp) 7→ g(E1(X), · · · , Ep−1(X)).

By (4.1) we have φ(I) = 0. This induces a ring epimorphism φ from
Z[X2, · · · , Xp]/I to Z[X]/((X−2)Ep−1(X)) such that the following diagram
is commutative:

Z[X2, · · · , Xp]

π

��

φ // Z[X]/((X − 2)Ep−1(X))

Z[X2, · · · , Xp]/I,
φ

44

where π is the canonical ring epimorphism. Define another ring morphism ϕ
form Z[X] to Z[X2, · · · , Xp]/I by ϕ(f(X)) = f(X2). By induction on i one is

able to check that Ei−1(X2) = Xi for i = 2, 3, · · · , p hold in Z[X2, · · · , Xp]/I.
Thus, ϕ is surjective. In particular,

ϕ((X − 2)Ep−1(X)) = (X2 − 2)Ep−1(X2) = (X2 − 2)Xp = 0.
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Hence ϕ induces a ring epimorphism ϕ from Z[X]/((X − 2)Ep−1(X)) to
Z[X2, · · · , Xp]/I such that the following diagram is commutative:

Z[X]

π

��

ϕ // Z[X2, · · · , Xp]/I

Z[X]/((X − 2)Ep−1(X))

ϕ

44

Now it is straightforward to check that φ ◦ ϕ = id and ϕ ◦ φ = id, as
desired. �

The almost split sequences of kG-modules are useful to calculate the dimen-
sions of morphism spaces, although it is not closely related to the topic of
this section. According to the notion δ[M ] in Section 2.3, we have

δ[Mi] =


2− [M2], i = 1;

2[Mi]− [Mi+1]− [Mi−1], 1 < i < p;

[Mp]− [Mp−1], i = p.

In particular, we have δ[Mi] = δ[M1][Mi] for 1 < i < p and δ[M1][Mp] = 0.
This gives the following relation between the bases {δ[Mi] | 1 ≤ i ≤ p} and
{[Mi] | 1 ≤ i ≤ p} of G(C):

δ[M1]

δ[M2]
...

δ[Mp−1]

δ[Mp]

 =


2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 1




[M1]

[M2]
...

[Mp−1]

[Mp]

 .

Note that
2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 1



−1

=


1 1 · · · 1 1

1 2 · · · 2 2
...

...
. . .

...
...

1 2 · · · p− 1 p− 1

1 2 · · · p− 1 p


whose (i, j)-entry is min{i, j}. By (3.1) we have

[Mi] =

p∑
j=1

([Mi], [Mj ])δ
∗
[Mj ]

=

p∑
j=1

dimk HomkG(Mi,Mj)δ[Mj ]

since the dual operator ∗ on G(C) is the identity map. It follows that
dimk HomkG(Mi,Mj) = min{i, j}.
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4.2. The Casimir number. The Casimir operator c of G(C) is

c(x) =

p∑
i=1

[Mi]xδ
∗
[Mi]

=

p∑
i=1

[Mi]xδ[Mi] = xc(1) for x ∈ G(C)

since G(C) is commutative. To determine the Casimir number of C, we need
to describe the Casimir element c(1) of G(C).

Lemma 4.3. The Casimir element c(1) = [Mp]+2
∑p

i=1(−1)i−1(p− i)[Mi].

Proof. Firstly, it is straightforward to check (by Lemma 4.1) that

p−1
2∑
i=1

[Mi]
2 =

p−1
2∑
i=1

(
p+ 1

2
− i)[M2i−1] =

p−1∑
p+1
2

[Mi]
2.

Using this equality we have:

c(1) =

p∑
i=1

[Mi]δ[Mi] = δ[M1]

p−1∑
i=1

[Mi]
2 + [Mp]([Mp]− [Mp−1])

= [Mp] + δ[M1](

p−1
2∑
i=1

[Mi]
2 +

p−1∑
p+1
2

[Mi]
2) = [Mp] + 2δ[M1]

p−1
2∑
i=1

[Mi]
2

= [Mp] + 2δ[M1]

p−1
2∑
i=1

(
p+ 1

2
− i)[M2i−1]

= [Mp] + 2(2− [M2])

p−1
2∑
i=1

(
p+ 1

2
− i)[M2i−1]

= [Mp] + 2

p−1
2∑
i=1

(
p+ 1

2
− i)(2[M2i−1]− [M2i]− [M2i−2])

= [Mp] + 2

p∑
i=1

(−1)i−1(p− i)[Mi].

The proof is completed. �

Note that {[Mt], δ[Mt] | t = 1, 2, · · · , p} forms a pair of dual bases of G(C).
For any x ∈ G(C), c(x) has the form c(x) =

∑p
t=1(δ[Mt], c(x))[Mt] by (3.1).

Thus, the coefficient of [Mt] in the linear expression of c(x) is (δ[Mt], c(x)).
In the following, we need to compute (δ[Mt], c(x)) for 1 ≤ t ≤ p.

Lemma 4.4. If x =
∑p

j=1 λj [Mj ], then (δ[Mp], c(x)) =
∑ p+1

2
i=1 (2i− 1)λ2i−1.
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Proof. By Lemma 4.3 we have

c(x) = c(1)x = ([Mp] + 2

p∑
i=1

(−1)i−1(p− i)[Mi])

p∑
j=1

λj [Mj ]

=

p∑
j=1

jλj [Mp] + 2

p∑
i,j=1

(−1)i−1(p− i)λj [Mi][Mj ]

=

p∑
j=1

jλj [Mp] + 2

2p∑
i+j=p+1

(−1)i−1(p− i)(i+ j − p)λj [Mp] +

p−1∑
i=1

µi[Mi],

where the last equality follows from Lemma 4.1 (2) with some µi ∈ Z. Then

(δ[Mp], c(x)) =

p∑
j=1

jλj + 2

2p∑
i+j=p+1

(−1)i−1(p− i)(i+ j − p)λj

=

p∑
j=1

jλj + 2

p∑
j=1

p∑
i=p+1−j

(−1)i−1(p− i)(i+ j − p)λj

=

p∑
j=1

jλj + 2

p∑
j=1

j∑
k=1

(−1)k−j(j − k)kλj .

Note that

j∑
k=1

(−1)k(j − k)k =

{
0, 2 - j;
− j

2 , 2 | j.

Thus,

(δ[Mp], c(x)) =

p∑
j=1

jλj −
p∑

2|j,j=1

jλj =

p∑
2-j,j=1

jλj =

p+1
2∑
i=1

(2i− 1)λ2i−1.

We have completed the proof. �

To describe (δ[Mt], c(x)) for 1 ≤ t ≤ p− 1, we need some preparations. The
left multiplication by [Mt] with respect to the basis {[M1], [M2], · · · , [Mp]}
corresponds to a matrix Mt. That is,

[Mt]


[M1]

[M2]
...

[Mp]

 = Mt


[M1]

[M2]
...

[Mp]

 .
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If we denote by Ei,j the square matrix of order p with (i, j)-entry 1, and 0
otherwise, then Mt can be written explicitly as follows:

Mt = E1,t + E2,t+1 + E3,t+2 + · · ·+ Ep−t,p−1

+ E2,t−1 + E3,t + E4,t+1 + · · ·+ Ep−t+1,p−2

+ E3,t−2 + E4,t−1 + E5,t + · · ·+ Ep−t+2,p−3

+ · · ·(4.2)

+ Et,1 + Et+1,2 + Et+2,3 + · · ·+ Ep−1,p−t

+ tEp,p + (t− 1)Ep−1,p + (t− 2)Ep−2,p + · · ·+ Ep−t+1,p

=

t∑
s=1

p−t∑
r=1

Es+r−1,t+r−s +

t∑
s=1

(t+ 1− s)Ep−s+1,p.

Lemma 4.5. If x =
∑p

j=1 λj [Mj ], then

(δ[Mt], c(x)) = 2(p− t)
t∑
i=1

(−1)t+iiλi + 2t

p−1∑
i=t+1

(−1)t+i(p− i)λi

for 1 ≤ t ≤ p− 1.

Proof. Let [Mi][Mj ] =
∑p

t=1N
t
ij [Mt] for N t

ij ∈ Z. For 1 ≤ i, j, t ≤ p− 1, the

associativity of the form (−,−) over G(C) together with the commutativity
of G(C) shows that

N t
ij = (δ[Mt], [Mi][Mj ]) = (δ[M1][Mt], [Mi][Mj ])

= (δ[M1][Mj ], [Mt][Mi]) = (δ[Mj ], [Mt][Mi])(4.3)

= N j
ti.

Consequently, we have:

c(x) = c(1)x = ([Mp] + 2

p∑
i=1

(−1)i−1(p− i)[Mi])

p∑
j=1

λj [Mj ]

= µ1[Mp] + 2

p−1∑
i,j=1

(−1)i−1(p− i)λj [Mi][Mj ] (for some µ1 ∈ Z)

= µ1[Mp] + 2

p−1∑
i,j=1

(−1)i−1(p− i)λj
p∑
t=1

N t
ij [Mt]

= µ2[Mp] + 2

p−1∑
i,j,t=1

(−1)i−1(p− i)λjN t
ij [Mt] (for some µ2 ∈ Z)

= µ2[Mp] + 2

p−1∑
i,j,t=1

(−1)i−1(p− i)λjN j
ti[Mt] by (4.3)
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Thus,

(δ[Mt], c(x)) = 2

p−1∑
i,j=1

(−1)i−1(p− i)λjN j
ti for 1 ≤ t ≤ p− 1.

Let M̂t be the submatrix of Mt obtained by deleting the p-th column and

row. By (4.2) we have M̂t =
∑t

s=1

∑p−t
r=1 Es+r−1,t+r−s and

(δ[Mt], c(x)) = 2

p−1∑
i,j=1

(−1)i−1(p− i)λjN j
ti

= 2
(
λ1 λ2 · · · λp−1

)
M̂t


p− 1

−(p− 2)
...

(−1)p−2



= 2
(
λ1 λ2 · · · λp−1

) t∑
s=1

p−t∑
r=1

Es+r−1,t+r−s


p− 1

−(p− 2)
...

(−1)p−2


= 2

t∑
s=1

p−t∑
r=1

(−1)t+r−s−1(p− t− r + s)λs+r−1

= 2(p− t)
t∑
i=1

(−1)t+iiλi + 2t

p−1∑
i=t+1

(−1)t+i(p− i)λi.

We are done. �

The Casimir number of C can be presented as follows:

Theorem 4.6. The Casimir number of C is 2p2.

Proof. Let x =
∑p

j=1 λj [Mj ]. Then c(x) =
∑p

t=1(δ[Mt], c(x))[Mt]. If c(x) ∈
Z, then (δ[Mt], c(x)) = 0 for t = 2, 3, · · · , p. However,

(4.4) (δ[Mt], c(x)) = 2(p− t)
t∑
i=1

(−1)t+iiλi + 2t

p−1∑
i=t+1

(−1)t+i(p− i)λi

for t = 2, 3, · · · , p− 1 (see Lemma 4.5), and

(δ[Mp], c(x)) =

p+1
2∑
i=1

(2i− 1)λ2i−1
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(see Lemma 4.4). This gives a system of equations with variables λ1, · · · , λp.
Consider the following equations:{

(δ[Mp−1], c(x)) = 0

(δ[Mp−2], c(x)) = 0

Using (4.4) it is not hard to see that λp−1 = 0. Similarly, the system of
equations {

(δ[Mp−2], c(x)) = 0

(δ[Mp−3], c(x)) = 0

together with λp−1 = 0 shows that λp−2 = 0. Repeating this argument we
obtain that λp−1 = λp−2 = · · · = λ3 = 0. Now the system of equations{

(δ[M2], c(x)) = 0

(δ[Mp], c(x)) = 0

can be simplified as follows:{
−λ1 + 2λ2 = 0

λ1 + pλp = 0.

It follows that λ1 = 2pµ, λ2 = pµ, λp = −2µ for any µ ∈ Z. In this case,

(δ[M1], c(x)) = 2(p− 1)λ1 + 2

p−1∑
i=2

(−1)1+i(p− i)λi

= 2(p− 1)λ1 − 2(p− 2)λ2

= 2p2µ.

We conclude that Im c ∩ Z = (2p2). �

4.3. The Jacobson radical. Since the Casimir number of C is 2p2 6= 0,
the Green ring G(C) is Jacobson semisimple. This is exactly a result of J.A.
Green [13]. For the Green algebra G(C)⊗Z K, it follows from Theorem 3.7
that G(C) ⊗Z K is Jacobson semisimple if and only if the characteristic of
K is not equal to 2 or p. In the following, we use the factorization of the
Dickson polynomials to determine the generators of the Jacobson radicals of
G(C) ⊗Z K, or equivalently, K[X]/((X − 2)Ep−1(X)) (see Proposition 5.2)
in the cases where K is of characteristic 2 or p.

Proposition 4.7. If the characteristic of K is p, then the Jacobson radical
of K[X]/((X − 2)Ep−1(X)) is a principal ideal generated by X2 − 4.

Proof. We have the decomposition Ep−1(X) = (X − 2)
p−1
2 (X + 2)

p−1
2 in

K[X] [8, Theorem 3.1 (2)]. Thus, the polynomial (X − 2)Ep−1(X) has only
two distinct prime factors X − 2 and X + 2. Since K[X] is a principal ideal
domain and every nonzero prime ideal is maximal, the Jacobson radical of
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K[X]/((X − 2)Ep−1(X)) is a principal ideal generated by (X − 2)(X + 2),
which is the product of distinct prime factors of (X − 2)Ep−1(X). �

Proposition 4.8. If the characteristic of K is 2, then the Jacobson radical
of K[X]/((X − 2)Ep−1(X)) is a principal ideal generated by

[ p−1
2

]∑
i=0

(
p− 1− i

i

)
(−1)iX

p+1
2
−i.

Proof. Since the characteristic of K is 2, we have the following isomorphism:

(4.5) K[X]/((X − 2)Ep−1(X)) ∼= K[X]/(XEp−1(X)).

The Dickson polynomial Ep−1(X) in K[X] can be written as

Ep−1(X) =

[ p−1
2

]∑
i=0

(
p− 1− i

i

)
(−1)iXp−1−2i = (f(X))2,

where

f(X) =

[ p−1
2

]∑
i=0

(
p− 1− i

i

)
(−1)iX

p−1
2
−i

and it has no multiple factors in K[X] [5, Theorem 6]. It follows that
the Jacobson radical of K[X]/(XEp−1(X)) is a principal ideal generate by

Xf(X). We have completed the proof. �
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