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Abstract

We consider a heteroclinic connection in a planar system, between two symmetric hyper-
bolic saddles of which the eigenvalues are resonant. Starting with a C∞ normal form,
defined globally near the connection, we normally linearize the vector field by using
finitely smooth tags of logarithmic form. We furthermore define an asymptotic entry–
exit relation, and we discuss on two examples how to deal with counting limit cycles near
a limit periodic set involving such a connection.
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1. Introduction

There has been extensive research on bounding the number of isolated periodic orbits
bifurcating from graphics (the cyclicity) in analytic planar vector fields in the context
of Hilbert’s 16th problem following an idea of Roussarie ([1]). Graphics are formed by
a finite sequence of heteroclinic connections that together with the connected singular
points topologically form a circle. For instance in [2] the authors reduce the problem
of finding a uniform bound on the number of limit cycles in quadratic vector fields to
the study of 121 graphics. The classical way to do this is by studying the map of first
return of such a graphic in order to get an upper bound. However these computations
tend to be difficult in general especially in a neighborhood of singularities. Using normal
form theory (see chapter 2 of [3]) one can simplify the local calculations (e.g. near a
hyperbolic saddle, see [4]). When the graphic contains non-elementary singularities, for
example in cuspidal loops (see [5]), one usually uses advanced techniques like a blow-up
of the vector field near the singularity.
Here we will present a tool that may be useful in dealing with graphics that contain two
hyperbolic saddles. More specifically, we consider in this paper C∞ vector fields in the
plane with two hyperbolic saddles A and B having a heteroclinic connection (see figure
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1). Without loss of generality we can assume that A = (−1, 0) and B = (1, 0). We
impose that the linearization of the vector field about A (resp. about B) has a −p : q
(resp. p : −q) resonant spectrum; p and q positive and relatively prime integers. In this

Figure 1: Saddle connection with symmetric q : −p spectrum

paper, we do not consider unfoldings, i.e. here we do not consider families of vector fields
in which the parameters either break the saddle connection and/or perturb the ratios of
eigenvalues. This setting, where the ratios of eigenvalues is fixed and the saddle connec-
tion is unbroken is often encountered when studying polynomial vector fields at ∞, or
when blowing up nilpotent or degenerate singular points; the saddle connection is then
found as a segment on the equator of the blow-up circle.
Under the imposed conditions a C∞ normal form (up to time rescaling) near the con-
nection has been obtained in [6]:{

ẋ = q
2 (1− x2)

ẏ = y (px+ wnf(w) + xwng(w) + χ(x)h(y))) ,
(1)

where w = (1 − x2)pyq and χ is infinitely flat at x = ±1, n ≥ 1 and all occurring func-
tions are C∞. For readers familiar with local normal form theory, it might be beneficial
to realize that the local normal forms about A and B have resonant terms of the form
(1 + x)pyq and (1 − x)pyq. The expression xwng(w) represents the part of the normal
form where B behaves truly reversible w.r.t. A; it is the symmetric part. The expression
wnf(w) represents the anti-symmetric part. The function χ(x)h(y) contains the so-called
connecting terms (terminology from [6]); it is only present when q 6= 1. We will see that
these terms may have an effect that is distinguishably different from the effect of the
resonant terms on the dynamics near the connection.
The setup is quite specific and oriented towards symmetric resonant saddles, i.e. saddles
with reciprocal saddle quantities. Following the discussion in [7] this is the most degen-
erate case when studying 2-saddle cycles, since besides the local resonances there is a
supplementary resonance between the two saddles. Cyclicity results for these kinds of
hyperbolic 2-polycycles have already been proven in [8] however when studying specific
cases one loses information near the fixed connection. The regular transition inbetween
the saddles can be of importance, even more than the non-smooth transition close to the
saddles themselves. For instance in [5], it can be seen that the regular transition will add
a non-smooth contribution to the transition map which is dominant as we will also prove
in section 5.1. More non-degenerate cases consider connections between non-resonant
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saddles, i.e. where the ratio of the eigenvalues (here given by p/q) is not rational, or sit-
uations where the anti-symmetry is dropped and therefore has no additional resonance
between the saddles. Cyclicity results for these cases can be found in [9].
The goal of this paper is to establish a transition map along the connection and to apply
it to cyclicity problems, counting the number of limit cycles nearby a given limit periodic
set. Following the idea of linearizing individual saddles using logarithmic expressions (see
e.g. [10]), we show in section 3 that we can normally linearize (1) in terms of the y-variable
in a similar way using the local logarithmic expressions log(1− x) and log(1 + x). This
is obtained by a near-identity coordinate transformation (x, y) 7→ (x, Y ) = (x, ψ(x, y))
which is C∞ in these logarithmic expressions. The resulting normally linearized equation
is given by {

ẋ = q
2 (1− x2)

Ẏ = pxY.
(2)

A precise statement is given in Theorem 2.1. Clearly, this model can be integrated since
(1 − x2)pY q is a first integral of the system. Moreover the map Σlin

in → Σlin
out is trivially

given by x0 7→ −x0, where

Σlin
in = ]−1,−1 + δ[× {Y0},

Σlin
out = ]1− δ, 1[× {Y0},

for any given Y0 > 0 and δ ∈ ]0, 1[. Using the normal form transformation we can then
specify an invariant for the original system (1) and obtain qualitative information on the
map Σin → Σout, where

Σin = ]−1,−1 + δ[× {y0}, (3)

Σout = ]1− δ, 1[× {y0}.

A precise statement for the asymptotics of the transition map is given in Theorem 2.3.

2. Statement of the results

Theorem 2.1. Consider the C∞ vector field (1) with p, q ∈ N∗ and gcd(p, q)= 1. There
exists a near-identity coordinate change (x, y) 7→ (x, Y ) = (x, y (1 + ψ (x, y))), preserving
y = 0 and bringing (1) in the form (2). Moreover ψ is of the form

ψ(x, y) = Ψ(x, y, wn log(1 + x), wn log(1− x), (1− x2)1/q),

where Ψ is C∞ near [−1, 1]× {(0, 0, 0)} × [0, 1] and w = (1− x2)pyq.

As observed before, we know that W := (1− x2)pY q is a constant of motion for (2),
hence from Theorem 2.1 it results to

Corollary 2.2. Consider the C∞ vector field (1) with p, q ∈ N∗ and gcd(p, q)= 1. There
exists a constant of motion V (x, y) of the vector field given by

V (x, y) = (1− x2)pyq (1 + ψ(x, y))
q
,

where ψ(x, y) is the function as described in theorem 2.1.
3



We will use this idea to compute the transition map

Σin → Σout

with Σ∗ as defined in (3) and using the parametrization there introduced. Suppose the
vector field (1) can be written as{

ẋ = q
2 (1− x2),

ẏ = y
(
px+ wnf(w) + xwng(w) + χ(x)h(y)yk

)
,

(4)

where h(0) 6= 0 and f(0) 6= 0. In section 4 we prove the following.

Theorem 2.3. Consider the vector field as given by (4), where h(0) 6= 0 and f(0) 6= 0.
The transition map

D : Σin → Σout : x0 7→ D(x0),

can be written as
D(x0) = −x0 − (1 + x0)δ(x0),

where δ is a C∞ function in the variables(
x0, (1− x20)np log(1 + x0), (1− x20)np log(1− x0), (1− x20)1/q

)
.

Moreover,

D(x0) = −x0 +
1

p
f(0)(1− x20)np+1 log(1 + x0) (1 + F (x0)) , if nq < k, (5)

and

D(x0) = −x0 −
2

p
Ah(0)(1− x20)

pk
q +1(1 + F (x0)), if nq > k, (6)

where

A =

∫ 1

0

χ(x)

(1− x2)
pk
q +1

dx, and lim
x0→−1+

F (x0) = 0.

Remark 2.4. Theorem 2.3 remains true when f(0) = 0 and g(0) 6= 0 in (4). In this
case the exponent n in (5) should be replaced by the exponent of the first non-zero term
in the expansion of wnf(w). We will clarify this claim in remarks 3.3 and 4.3 without
going into further details. The asymptotics for (6) stays the same if nq > k. Note that
k = nq does not appear in the normal form from [6].

Remark 2.5. We can reformulate Theorem 2.3 in a more natural way for the asymptotics
by parametrizing Σ1 by (−1 + u0, 1) and Σ2 by (1− u1, 1). In this way, we can express

the transition map u1 = D̃(u0) as a C∞ in the variables(
u0, u

np
0 log(u0), u

1/q
0

)
.

Moreover, for u0 > 0 close to 0,

D̃(u0) = u0 +
2np+1

p
f(0)unp+1

0 log(u0)
(
1 + o

(
1
))
, if nq < k,
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and

D̃(u0) = u0 −
2
pk
q +2

p
Ah(0)u

pk
q +1

0

(
1 + o

(
1
))
, if nq > k,

where A is given in theorem 2.3.

In section 5 we discuss on two examples how this result can be used to bound the
number of limit cycles near a graphic containing a heteroclinic connection of aforemen-
tioned type. A crucial observation thereto is the non-smoothness of the principle term
in D(x0).

The present paper is organized as follows. In section 3 we construct the transformation
mentioned in theorem 2.1. First we eliminate the resonant terms by an induction process
(section 3.1) before removing the connecting terms (section 3.2). Using the invariant
of corollary 2.2, we compute the transition map (section 4) by considering it as a C∞

function of finitely smooth variables (section 4.1). Then we compute the dominant non-
linear term of this map in section 4.2. We illustrate these techniques and results on two
applications: a cuspidal loop (section 5.1) and a loop through a fake saddle (section 5.2).
We conclude on discussing this method and its applicability in section 6.

3. Proof of Theorem 2.1

3.1. Reduction of the resonant part

Consider (1) and recall that w = (1− x2)pyq, so

ẇ = qwn+1f(w) + qxwn+1g(w) + qwχ(x)h(y).

For the moment we focus on the resonant part of (1), i.e. we neglect χ(x)h(y). A simple
manipulation of the functions f + xg leads to{

ẋ = q
2 (1− x2)

ẇ = (1− x)wn+1FL(w) + (1 + x)wn+1FR(w),
(7)

where FL and FR are a linear combination of the original f and g, more precisely

FL(w) =
q

2
(f(w)− g(w)), and FR(w) =

q

2
(f(w) + g(w)).

Later we will see the effect of our manipulations on the full system. Our intention is to
increase the order of w in the equation for ẇ step by step using changes of coordinates in
w. In the easier setting where one locally works around a single saddle, it is possible to
remove the saddle’s resonant terms using finitely smooth expressions involving logarithms
(see e.g. [11]). Here we will extend this idea and therefore introduce the notion of tags.

3.1.1. Tags

In this paragraph we will introduce a series of tags which are functions of x, defined
on (−1, 1), by recursion. First we define TL and TR as the tags of order 1 satisfying
TL(0) = TR(0) = 0 where we impose that their time-derivatives, denoted as ṪL and ṪR,
should satisfy

ṪL = (1− x), and ṪR = (1 + x).
5



The time dependence of x is expressed in the first line of (7). A direct computation
shows that

TL(x) =
2

q
log(1 + x), and TR(x) = −2

q
log(1− x). (8)

are the unique solutions satisfying the requirements. We recursively define T∗ for any
word ∗ composed of the alphabet {L,R} as solutions of

Ṫ∗L = (1− x)T∗, T∗L(0) = 0, Ṫ∗R = (1 + x)T∗, T∗R(0) = 0,

more specifically

T∗L(x) =

∫ x

0

2

q

T∗(s)

1 + s
ds, T∗R(x) =

∫ x

0

2

q

T∗(s)

1− s
ds. (9)

Unlike in the case [11], the tags do not easily admit a closed expression: tags of
order 2 may already contain dilogarithm expressions and order 3 tags may even be more
complicated. We do however show the following proposition:

Proposition 3.1. Let k ≥ 1. The tags T∗ of order k (i.e. of word length k in ∗) are of
the form

T∗(x) = P∗(x, TL(x)) +Q∗(x, TR(x)),

where P∗(x, u), resp. Q∗(x, u), is polynomial in u with C∞ coefficients in x of degree
L(∗), resp. R(∗), equal to the amount of the letter L, resp. R, appearing in the word ∗.

Proof. For k = 1 this is obviously true. Suppose it is true for k ≥ 1. This means that
for words ∗ of length k we have

T∗(x) =

L(∗)∑
i=1

f i∗(x)T iL +

R(∗)∑
j=1

gj∗(x)T jR, (10)

where the functions f i∗ and gj∗ are C∞. We show that the expression for T∗R is similar
to (10) but the second summation is expanded to R(∗) + 1. The case T∗L is treated
similarly.
By the recursive definition (9), it suffices to show that for every positive integer k and
C∞ functions f and g,∫ x

0

f(s)
logk(1− s)

1− s
ds =

k+1∑
i=0

Fi(x) logi(1− x), (11)

and ∫ x

0

g(s)
logk(1 + s)

1− s
ds = G(x) log(1− x) +

k∑
i=0

Hi(x) logi(1 + x), (12)

for some C∞ functions Fi, G and Hi. Observe that for any C∞ function f , we have∫ x

0

f(s)

1− s
ds = −f(1) log(1− x) +G(x),
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for some C∞ function G. Similarly, by partial integration we have∫ x

0

f(s) log(1− s)ds = F (x) log(1−x) +

∫ x

0

F (s)

1− s
ds = (F (x)− F (1)) log(1−x) +G(x),

for some C∞ functions F and G. By induction on n ∈ N it follows:∫ x

0

f(s) logn(1− s)ds =

n∑
i=0

Fni (x) logi(1− x), (13)

for some C∞ functions Fni (i = 0, . . . , n) since by partial integration∫ x

0

f(s) logn(1− s)ds = (F (x)− F (1)) logn(1− x)−
∫ x

0

G(s) logn−1(1− s)ds,

where G is C∞ and F is a C∞ primitive function of f . From these observations (11)
immediately follows since∫ x

0

f(s)
logk(1− s)

1− s
ds = f(1)

∫ x

0

logk(1− s)
1− s

ds+

∫ x

0

g(x) logk(1− s)ds.

To deal with (12), we now define C∞ bump functions χL(x) and χR(x) = χL(−x) such
that χL(x) + χR(x) = 1, and χL is locally 1, resp. 0, near x = −1, resp. x = 1. The
integral in (12) can be separated in∫ x

0

g(s)
logk(1 + s)

1− s
ds =

∫ x

0

(
g(s)

1− s
χL(s)

)
logk(1 + s)ds

+

∫ x

0

(
g(s) logk(1 + s)χR(s)

) 1

1− s
ds.

The expressions between brackets in each of the integrals are now C∞ functions and
since a similar result as (13) holds for log(1 + x), (12) follows from all of the above.

3.1.2. Formal reduction of the resonant part using tags

We show that we can formally eliminate the resonant terms in (7). Normal lineariza-
tion amounts to finding a perturbation w∞ of w = (1 − x2)pyq for which ẇ∞ = 0, in
other words we seek a first integral of the form w∞ = w+w2ψ̄(x,w). The new coordinate
Y (x, y) is chosen such that w∞ = (1− x2)pY q, i.e.

Y = y(1 + (1− x2)pyqψ̄(x, (1− x2)pyq))1/q, (14)

will give the required normal linear form, eliminating completely the resonant part.
Denote by W the set of words with alphabet {L,R} and define for every k ∈ N0 the set
Wk of words with length k.

Theorem 3.2. There exists a formal transformation

w∞ = w −
∞∑
k=1

wkn+1
∑
∗∈Wk

F∗(w)T∗,
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where F∗ are C∞ functions and the tags T∗ are defined by (8) and (9), such that (7)
transforms to {

ẋ = q
2 (1− x2),

ẇ∞ = 0.

Proof. Let w0 = w. We claim that by appropriately choosing

wk+1 = wk − w(k+1)n+1
∑
∗∈Wk+1

F∗(w)T∗(w), k ≥ 0, (15)

for some C∞ functions F∗, we can ensure that

ẇk = w(k+1)n+1

( ∑
∗∈Wk

F∗L(w)(1− x)T∗ + F∗R(w)(1 + x)T∗

)
, (16)

for some C∞ functions F∗L and F∗R, ∗ ∈ Wk. We show how these are defined in the
induction step below. Since the order in w of the words of length k increases with k, it
will imply that ẇk becomes flatter with growing k. The limit w∞ of this transformation
is of the desired form and due to the growing flatness will satisfy ẇ∞ = 0.The claim is

obviously true for k = 0. Let us now proceed under the induction hypothesis that the
claim is correct up to order k, i.e. (16) holds. Define

wk+1 = wk − w(k+1)n+1

( ∑
∗∈Wk

F∗L(w)T∗L + F∗R(w)T∗R

)
.

A simple computation shows that

ẇk+1 =
∑
∗∈Wk

(
−wn+1FL(w)

d
(
w(k+1)n+1F∗L(w)

)
dw

)
︸ ︷︷ ︸

w(k+2)n+1F∗LL(w)

(1− x)T∗L

+
∑
∗∈Wk

(
−wn+1FR(w)

d
(
w(k+1)n+1F∗L(w)

)
dw

)
︸ ︷︷ ︸

w(k+2)n+1F∗LR(w)

(1 + x)T∗L

+
∑
∗∈Wk

(
−wn+1FL(w)

d
(
w(k+1)n+1F∗R(w)

)
dw

)
︸ ︷︷ ︸

w(k+2)n+1F∗RL(w)

(1− x)T∗R

+
∑
∗∈Wk

(
−wn+1FR(w)

d
(
w(k+1)n+1F∗R(w)

)
dw

)
︸ ︷︷ ︸

w(k+2)n+1F∗RR(w)

(1 + x)T∗R,

which is equivalent to (16) for k + 1.
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Remark 3.3. In the setting of remark 2.4, one may choose first to delete only a finite
part of the symmetric resonant terms, corresponding to the function g. Clearly, the
transformation formula (14) will in that case be even in x and such an even near-identity
transformation will have an effect on the asymmetric part of the resonant terms, i.e. the
function g will be altered. However, the principal term of f remains exactly the same.

3.1.3. Finitely smooth reduction of the resonant part

From (15) and the result of Proposition 3.1, we find that the transformation in each
step can be expressed as a C∞ function in (x, y, wn log(1 + x), wn log(1 − x)). Using
Borel’s theorem, there exists a function ψ(x, y, wn log(1 + x), wn log(1 − x)), formally
equal to w∞, so that ψ̇ is formally identically zero. Using the techniques in [6], it is
possible to adapt ψ by a flat function to make ψ̇ truly zero as a function. We will not
repeat this construction here.

Remark 3.4. The functions wn log(1−x) and wn log(1+x) are of Logarithmic Mourtada
type (LMT) near resp. 1 and −1 (see [12] or [11]) and C∞ in ] − 1, 1[. The loss of
smoothness is thus located at the points x = ±1.

3.2. Removing the connecting terms

Returning to the full system (1), we have under the new set of coordinates

ẇ = qwχ(x)h̃(x, y),

for some finitely smooth h̃. However the non-smoothness only occurs at x = ±1. Since χ
is infinitely flat at these two points, the product χ(x)h̃(x, y) persists as a C∞ function,
infinitely flat at x = ±1. In terms of the original (x, y) coordinates, this gives{

ẋ = q
2 (1− x2)

ẏ = y(px+ χ(x)h̃(x, y)).
(17)

Theorem 3.5. Consider the vector field (17). There exists a near-identity coordinate
change

(x, y) 7→ (x, Y ) = (x, Y (1 + ϕ(x, Y )),

bringing (17) in the form (2). Moreover ϕ is of the form

ϕ(x, y) = Φ
(
x, y, (1− x2)1/q

)
,

where Φ is C∞ near [−1, 1]× {0} × [0, 1].

Proof. Write 1− x2 = (1−X2)q and therefore

x = XΩ(X), where Ω(X) =

√
1− (1−X2)q

X2
. (18)

Observe that Ω(X) is a C∞ strictly positive function for X ∈ (−
√

2,
√

2). This change
of coordinates maps [−1, 1] to itself, although in a finitely smooth way at the boundary.
After division by Ω(X), the effect of (18) on system (17) is: Ẋ = 1

2 (1−X2)

ẏ = y

(
pX +

1

Ω(X)
χ (XΩ(X)) h̃(XΩ(X), y)

)
.
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Since transformation (18) fixes x = ±1, the second term remains flat and therefore ẏ can
be written as

ẏ = y(pX +H(X, y)) (19)

for some C∞ function H that is flat at X = ±1. Since this system has a saddle connection
with ratios of eigenvalues −p : 1 and p : −1, its normal form has no connecting terms (i.e.
h = 0 in the form (1)); it even has no resonant terms due to the flatness of H. Therefore
there exists, according to [6], a C∞ normalizing transformation Y = y(1 + ψ(X, y))
reducing it to normalized form. We can hence also apply the transformation

Y = y(1 + ϕ(x, y)), where ϕ(x, y) = ψ(X(x), y),

to (17) in (x, y)-coordinates to obtain a finitely smooth transition to (2).
It remains to prove that ϕ can be expressed as a C∞ function of x, s = (1 − x2)1/q, y.
Note that

X(x) = sign(x)
√

1− (1− x2)1/q,

so it suffices to prove that X(x) is C∞ in x and (1− x2)1/q. We have

X(x) = x

√
1− s
x2

= x

√
1− s
1− sq

= x

√
1

1 + s+ · · ·+ sq−1
= xρ

(
(1− x2)1/q

)
,

where ρ is C∞.

Applying subsequently the C∞ version of theorem 3.2 and theorem 3.5 to (1) finishes
the proof of theorem 2.1.

4. Proof of Theorem 2.3

4.1. The transition map as a function of the tags

As discussed in section 2 (corollary 2.2), we find a C∞ constant of motion of the
system (1) given by

V (x, y) = w
(

1 + Ψ
(
x, y, wnTL, w

nTR, (1− x2)1/q
))q

, (20)

using the first integral of the normally linearized system.
Let us now compute the entry-exit relation. Denote the initial variable on Σin by x0 and
the corresponding exit variable by x1. Remark that x1 → 1 as x0 → −1, so we write

1− x1 = (1 + x0)(1 + δ(x0)). (21)

As a matter of fact we will see that δ tends to 0 as x0 tends to −1, which we will show
using the implicit function theorem with (21) as ansatz. This form of transition map
originates from the fact that it is near-identity due to the symmetry of the eigenvalues
of the saddle (see figure 2).

At the cuts, the invariant is given by

V (x, 1) = (1− x2)p
(

1 + Ψ
(
x, 1, (1− x2)npTL, (1− x2)npTR, (1− x2)1/q

))q
.

10



Figure 2: Asymptotics of transition near saddle connection

For the sake of notation, denote the LMT-functions as

T̄L = (1− x20)npTL(x0), and T̄R = (1− x20)npTR(x0). (22)

We aim to express δ in terms of
(
x0, T̄L, T̄R, (1− x20)1/q

)
by applying the implicit function

theorem to the equation V (x0, 1) = V (x1, 1) since V is invariant under the flow and we
impose that (x0, 1) and (x1, 1) are different points of the same orbit.
First we need to express TL(x1), TR(x1), (1− x21) in terms of x0 and δ. Observe that

TR(x1) = −2

q
log(1− x1) = −TL(x0)− 2

q
δ + O

(
δ2
)
. (23)

Here and in the remainder of this section appearing O-terms are C∞ in (x0, δ) near
(−1, 0). Remark that they can blow up close to x = 1, but since we are interested in the
behaviour near x = −1 this does not pose a problem. The tag TL(x) is C∞ at x = 1,
just as TR(x) is C∞ at x = −1. We see

TL(x1) = −TR(x0)− 2

q
δ

1 + x0
1− x0

+ O
(
δ2
)
. (24)

A simple computation shows

(1− x21) = (1− x20)

(
1− 2δ

x0
1− x0

+ O
(
δ2
))

,

hence for a power r ∈ Q+,

(1− x21)r = (1− x20)r
(

1− 2rδ
x0

1− x0
+ O

(
δ2
))

. (25)

Using the expansions above, more precise (23) and (25) for r = np, we have

T̄
(1)
R := (1− x21)npTR(x1) = −T̄L +

(
2np

x0
1− x0

T̄L −
2

q
(1− x20)np

)
δ + O

(
δ2
)
, (26)
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and by (24) and (25)

T̄
(1)
L := (1−x21)npTL(x1) = −T̄R+

(
2np

x0
1− x0

T̄R −
2

q
(1− x20)np

1 + x0
1− x0

)
δ+O

(
δ2
)
. (27)

Denote
Ψ1 = Ψ

(
x1, (1− x21)npTL(x1), (1− x21)npTR(x1), (1− x21)1/q

)
, (28)

where Ψ is introduced in Theorem 2.1. This can be expressed as a function of x0 and δ
thanks to (21), (27), (26) and (25)

Ψ1 = Ψ

(
−x0 − δ(1 + x0), 1, T̄

(1)
L , T̄

(1)
R , (1− x20)1/q

(
1− 2

q

x0
1− x0

δ + O
(
δ2
)))

, (29)

where Ψ is introduced in Theorem 2.1. Since V (x1, 1) can be expressed as a function of
x0 using (25) and (29), we can search for solutions δ of

0 = Θ
(
δ, x0, T̄L, T̄R, (1− x20)1/q

)
:=

(
V (x1, 1)

(1− x20)p

)1/q

−
(
V (x0, 1)

(1− x20)p

)1/q

, (30)

where Θ is C∞ near (0,−1, 0, 0, 0), such that V (x0, 1) = V (x1, 1) is satisfied. In order
to apply the implicit function theorem to (30) at (0,−1, 0, 0, 0) and consequently show
that we can express δ in terms of

(
x0, T̄L, T̄R, (1− x20)1/q

)
, it is sufficient to show that

∂Θ

∂δ
(0,−1, 0, 0, 0) 6= 0,

since Θ(0,−1, 0, 0, 0) = 0. Notice that

Θ =

(
1− 2p

q

x0
1− x0

δ + O
(
δ2
))

(1 + Ψ1)−
(

1 + Ψ
(
x0, 1, T̄L, T̄R, (1− x20)1/q

))
.

We find
∂Θ

∂δ
= −2p

q

x0
1− x0

(1 + Ψ1) +
∂Ψ1

∂δ
+ O

(
δ
)
, (31)

where
∂Ψ1

∂δ
= O

(
1− x20, T̄R, T̄L, δ

)
.

Hence we see
∂Θ

∂δ
(0,−1, 0, 0, 0) =

p

q
+
∂Ψ1

∂δ
(0,−1, 0, 0, 0) =

p

q
6= 0.

By the implicit function theorem, we can thus write

x1 = −x0 − (1 + x0)δ(x0),

where we can express

δ(x0) = δ̄
(
x0, T̄L, T̄R, (1− x20)1/q

)
,

for a C∞ function δ̄ at (−1, 0, 0, 0).
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Remark 4.1. We can give an alternative proof of the first part of theorem 2.3 by using
the notation of remark 2.5. Here we give a sketch of the proof. Due to corollary 2.2, the
transition map u1 = D̃(u0) is given implicitly by

V (−1 + u0, 1) = V (1− u1, 1). (32)

Denote by vi = u
1/q
i for i = 0, 1. After taking the 1

npq -th power of (32), this can be
written as

v0 (1 + ΨL (v0, v
npq
0 log(v0))) = v1 (1 + ΨR (v1, v

npq
1 log(v1))) , (33)

for some smooth functions ΨL,ΨR. Denote

z1 = v1 (1 + ΨR (v1, v
npq
1 log(v1))) .

It now suffices to invert this relation, such that we find an expression

v1 = z1
(
1 + Ψ̄R (z1, z

npq
1 log(z1))

)
,

for some smooth function Ψ̄R and substitute z1 by the left-hand side of (33). This is done
by denoting V = vnpq1 log(v1) and Z = znpq1 log(z1) and applying the implicit function
theorem to the system{

z1 = v1 (1 + ΨR (v1, V )) ,

Z = vnpq1 (1 + ΨR (v1, V ))
npq

log [v1 (1 + ΨR (v1, V ))] .

After returning to the original variables u0, u1 it’s easy to see that we can express D̃(u0)

as a smooth function of the variables
(
u0, u

np
0 log(u0), u

1/q
0

)
.

4.2. Asymptotics of the transition map

In the previous section we proved that we can express the transition map in terms of

(
x0, T̄L, T̄R, (1− x20)

1
q

)
=
(
x0, (1− x20)npTL(x0), (1− x20)npTR(x0), (1− x20)

1
q

)
. (34)

We now want to compute the asymptotics of the map near x0 = −1.

Remark 4.2. One can define an asymptotic scale as has been done in [5]. For this we
express the variables (34) in terms of the small variable u0 = x0 + 1 (see remark 2.5) by

ur10 logm1(u0) � ur20 logm2(u0),

if r1 > r2 or r1 = r2 and m1 < m2 for ri ∈ Q and mi ∈ N.

Recall that δ defined in (21) should be a solution of (30). Hence if we expand Θ near
δ = 0, we ought to solve

0 = Θ
(

0, x0, T̄L, T̄R, (1− x20)1/q
)

+ δ
∂Θ

∂δ

(
0, x0, T̄L, T̄R, (1− x20)1/q

)
+ O

(
δ2
)
. (35)
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From the definition of Θ, it follows immediately that

Θ |δ=0= Ψ
(
−x0, 1,−T̄R,−T̄L, (1− x20)1/q

)
−Ψ

(
x0, 1, T̄L, T̄R, (1− x20)1/q

)
, (36)

and using (31) one can check

∂Θ

∂δ

(
0, x0, T̄L, T̄R, (1− x20)1/q

)
=

2p

q

1

1− x0
+ o
(
1
)
.

Here o
(
1
)

denotes a finitely smooth function of x0 which converges to 0 for x0 going
to −1. If we want to compute the dominant term of the transition map, i.e. the term
of lowest asymptotic order we have to describe (36). Suppose (1) can be written as (4)
where f(0) 6= 0 and h(0) 6= 0 for some n, k with k 6= nq. We have to distinguish two
cases depending on which of the transformations (section 3.1 or section 3.2) is dominant,
i.e. provides the terms of lowest degree of (1 − x2) in the linearising transformation of
theorem 2.1:

(A) k > nq,

(B) k < nq.

4.2.1. Case A

Suppose k > nq. In this case, the transformation discussed in section 3.1 provides
the lowest order terms in the linearising transformation. From theorem 3.2, it formally
is given by

w∞ = w − wn+1 (FL(0)TL + FR(0)TR) + h.o.t.,

where the higher order terms contain expressions of higher degree in w. The transfor-
mation of theorem 2.1 can be written as

Y = y

(
1− 1

q
wn (FL(0)TL + FR(0)TR) + h.o.t.

)
,

Asymptotically at x = −1, we have

Ψ |y=1= −1

q
(FL(0)TL(x) + FR(0)TR(x)) (1 + o

(
1
)
).

Therefore (36) reduces to

Θ |δ=0=
1

q
(FR(0) + FL(0)) T̄L

(
1 + o

(
1
))
.

Combining the above with the Taylor expansion given in (35), we get

δ = − 1

2p
(1− x0) (FR(0) + FL(0)) T̄L

(
1 + o

(
1
))
,

Hence

D(x0) = −x0 +
1

2p
(1− x20) (FR(0) + FL(0)) T̄L

(
1 + o

(
1
))

= −x0 +
q

2p
(1− x20)f(0)T̄L

(
1 + o

(
1
))
,

which concludes the proof of theorem 2.3 in the case k > nq.
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Remark 4.3. In the setting of remark 2.4, it’s easy to see that the transition map doesn’t
change if the lowest order term of g is lower than the lowest order term of f . Indeed,
thanks to remark 3.3 we can get these orders at the same height using a symmetric
transformation. However, this has no effect on the lowest order of δ since in (36) the
symmetric part cancels out.

4.2.2. Case B

Suppose k < nq. Here the transformation of theorem 3.5 provides the lowest order
terms in the transformation of theorem 2.1. The linearising transformation is asymptot-
ically given by

Y = y
(
1− h(0)ykΦ(x) + h.o.t.

)
,

where Φ(x) = Φ(XΩ(X)) = Φ̃(X) is a solution of

−1

2
(1−X2)Φ̃′(X)− pkXΦ̃(X) +

χ(XΩ(X))

Ω(X)
= 0,

with (1 − x2) = (1 − X2)q and Ω(X) is defined in (18). In the original variable, this
translates to solving

−q
2

(1− x2)Φ′(x)− pkxΦ(x) + χ(x) = 0,

hence

Φ(x) =
2

q
(1− x2)

pk
q

∫ x

0

χ(s)

(1− s2)
pk
q +1

ds.

The transformation Ψ at the cuts is thus given by

Ψ |y=1= −2

q
h(0)(1− x2)

pk
q

∫ x

0

χ(s)

(1− s2)
pk
q +1

ds (1 + o
(
1
)
).

Remark that∫ x0

0

χ(s)

(1− s2)
pk
q +1

ds = −A+ o
(
1
)
, and

∫ −x0

0

χ(s)

(1− s2)
pk
q +1

ds = A+ o
(
1
)
,

where A is defined in theorem 2.3. Similar as before, we see that the symmetric difference
(36) is given by

Θ |δ=0= −4

q
Ah(0)(1− x20)

pk
q (1 + o

(
1
)
),

leading to

D(x0) = −x0 −
2

p
Ah(0)(1− x20)

pk
q +1(1 + o

(
1
)
).

5. Applications

In this section we illustrate how we can use the results in some applications. They
typically originate from the blow-up of a non-elementary singularity.
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5.1. The cusp-preserving unfolding

We consider a vector field unfolding a cusp-singularity as in [5]. We assume that the
vector fields are already written into Loray’s normal form (see [13]). In this paper, the
author essentially distinguishes two cases:

αn :

{
ẋ = 2y + 2xhn (f(h) + xg(h)) ,
ẏ = 3x2 + 3yhn (f(h) + xg(h)) ,

(37)

where f(0) 6= 0 and

βn :

{
ẋ = 2y + 2xhn (hf(h) + xg(h)) ,
ẏ = 3x2 + 3yhn (hf(h) + xg(h))

(38)

where g(0) 6= 0 with h := x3 − y2 and f and g are C∞ in each case. We perform a
quasi-homogeneous blow-up (x, y) = (r2 cos θ, r3 sin θ) leading to two hyperbolic saddles
on the blow-up locus with reciprocal saddle quantities. One can check that the two cusp
separatrices of αn (resp. βn) approach the origin in the directions θ = ±θ0 for some
θ0 ∈

]
0, π2

[
. To get the transition map near the right part of the blow-up locus, we

consider the directional chart

(x, y) = (Y 2, Y 3X). (39)

The variable Y serves as the radial variable whereas X acts as (projectivized) angular
variable.

To study the part to the left of the singularity one would first think of considering a
similar directional chart, which would give us information on the directions θ ∈

]
π
2 ,

3π
2

[
.

However, as this region does not include θ0 it is better to replace this directional chart
by a chart using a rational parametrization of the parabola that approximates a circle
near θ = π:

(x, y) = (Y 2(X2 − 1), 2Y 3X).

Again, the variable Y serves as the radial variable whereas X acts as angular variable.
In fact it reveals convenient for the computations to do some scaling; we will hence use
instead:

(x, y) = (aY 2(4X2 − 1), 4Y 3X), where a :=
2

3
21/3. (40)

As will be explained in (44), this choice of a is necessary to have a nice factorization of
the Ẋ-equation.

5.1.1. Blow-up chart (39)

For αn we find, after division by the non-negative factor Y :

αn :

{
Ẋ = 3(1−X2)

Ẏ = Y X +Hn
(
f (H) + Y 2g (H)

)
,

(41)

where f(0) 6= 0 and H = (1−X2)Y 6. Similarly, βn becomes

βn :

{
Ẋ = 3(1−X2)

Ẏ = Y X +Hn
(
(1−X2)Y 6f (H) + Y 2g (H)

)
,

(42)

where g(0) 6= 0. In both cases, the saddle connection lies on Y = 0 between X = ±1.
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5.1.2. Blow-up chart (40)

A straightforward computation gives(
Ẋ

Ẏ

)
=

1

4aY 3(8X2 + 1)

(
6XY −a(4X2 − 1)
−2Y 2 4aXY

)(
ẋ
ẏ

)
(43)

Let us first compute Ẋ

Ẋ =
3Y

4a(8X2 + 1)
(16X2 − a3(4X2 − 1)3).

For the special value a3 = 16/27, this simplifies to

Ẋ =
4Y (8X2 + 1)

9a
(1−X2). (44)

After division of (43) by the non-negative factor a2

4 (1 + 8X2)Y and normalizing by

Y = (8X2 + 1)−1/3Ȳ ,

we obtain

αn :

Ẋ = 3(1−X2),

˙̄Y = XȲ +
27a

4(8X2 + 1)2/3
H̄n(f(H̄) + a

4X2 − 1

(8X2 + 1)2/3
Ȳ 2g(H̄)),

(45)

and

βn :

Ẋ = 3(1−X2),

˙̄Y = XȲ +
27a

4(8X2 + 1)2/3
H̄n(H̄f(H̄) + a

4X2 − 1

(8X2 + 1)2/3
Ȳ 2g(H̄)),

(46)

where H̄ = −16

27
(1−X2)Ȳ 6.

5.1.3. The normalizing transformation

All the previous vector fields can be written in the form{
ẋ = 3(1− x2),

ẏ = y
(
x+ F (x)yk + O

(
yl
))
,

(47)

where k = 6n − 1, l = 6n + 1, resp. k = 6n + 1, l = 6n + 5, for αn, resp. βn and where
F is not identically 0. We show in this section that the first non-zero term gives rise
to a non-zero connecting term in the normal form (4) which is of lower order than the
resonant terms, i.e. we are in the setting of section 4.2.2. From [6], we can show the
following
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Lemma 5.1. Let k = 6n− 1 for some n ≥ 1 or k = 6n+ 1 for some n ≥ 0. There exists
a smooth coordinate transformation (x, y) 7→ (x, z) = (x, ϕ(x, y)), such that system (47),
with F not identically 0, is orbitally equivalent to

ẋ = 3(1− x2),

ż = z
[
x+ γχ(x)zk + χ(x)zk+1f1(z)

+(1− x2)lz6l
(
f2
(
(1− x2)z6

)
+ xf3

(
(1− x2)z6

))]
,

(48)

where γ 6= 0, k < 6l and f1, f2, f3 are C∞. Moreover, we have

y = z +G(x)zk+1 + O
(
zl+1

)
,

where G is a C∞ solution of

−3(1− x2)G′(x)− kxG(x) + F (x) = γχ(x). (49)

Following the discussion in [6], the coefficient γ in (48) has the property that it is the
unique coefficient for which (49) has a smooth solution G in a neighbourhood of [−1, 1]
and depends on the function F .
For each of the cases above, we want to compute the coefficient γ. For this, we need the
following lemma.

Lemma 5.2. Let p, k, q ∈ N0 such that gcd(p, q) = 1 and λ = pk
q /∈ N. Let N = bλc.

There exists a γ ∈ R such that the differential equation

−q
2

dh(x)

dx
(1− x2)− pkxh(x) + (1− x2)N+1 = γχ(x), (50)

has a C∞ solution in a neighbourhood of [−1, 1]. Moreover,

γ

∫ 1

0

χ(u)

(1− u2)λ+1
du =

1

2

√
π Γ(1− α)

Γ
(
3
2 − α

) ,

where α = λ−N .

Proof. Smooth solutions of (50) correspond to smooth graphs y = h(x) tangent to the
vector field {

ẋ = q
2 (1− x2),

ẏ = −pkxy + (1− x2)N+1 − γχ(x).
(51)

This vector field admits two nodes at (−1, 0) and (1, 0) with respective eigenvalues (q, pk)
and (−q,−pk). Since pk

q /∈ N, these nodes are non-resonant except for the case p = 1
and q = nk for some n ∈ N. In this case, the Poincaré-Dulac normal form at −1 and 1
admits possibly one resonant term of the form ynk ∂

∂x . However, since the first equation
of (51) is independent of y, this resonant term will not appear and therefore (51) is
locally smoothly linearizable (as is also the case if the ratio of the eigenvalues does not
belong to N∪N−1). The curve y = 0 is a smooth separatrix of the linearized system and
induces the local existence of a smooth separatrix of (51) near (−1, 0) and (1, 0). Locally
we can denote these curves as y = ϕγ(x) and y = ψγ(x), which are C∞ at respectively
−1 and 1. By continuation, we can expand their domains of definition such that they
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contain (−1, 1), which is only possible since ẋ > 0 in (−1, 1), whereas the solution can
not escape to infinity. This can either be seen by applying the Gronwall inequality to
dy
dx = ẏ

ẋ on the interval [−1 + ε, 1 − ε], for some 0 < ε << 1 or by considering the line
at infinity by applying the transformation y = z−1. In the latter case, we get a saddle
connection as in figure 1 on the line at infinity formed by the line at infinity itself and
the axes x = ±1 and therefore no other solutions can diverge to infinity.
If we can find a γ ∈ R such that ϕγ(x) = ψγ(x) for x ∈ (−1, 1), this provides us with
a smooth graph defined in a neighbourhood of [−1, 1] which corresponds to a smooth
solution of (50). Due to uniqueness of solutions it suffices to prove that there exists a
γ ∈ R such that ϕγ(0) = ψγ(0) and thus the smooth graphs coincide on (−1, 1) (see
figure 3). Therefore we compute the C∞-graphs y = ϕγ(x) and y = ψγ(x) explicitly.

Figure 3: Connecting the smooth graphs

One can easily verify that

ϕγ(x) = (1− x2)λ
2

q

∫ x

−1
(1− u2)−αdu− (1− x2)λγ

2

q

∫ x

−1

χ(u)

(1− u2)λ+1
du, (52)

where α = λ − N ∈ (0, 1), is a solution of (50). It remains to prove that this solution
is locally C∞ near x = −1. Using Euler’s formula for hypergeometric functions, see [14]
one can check that

2

q
(1− x2)λ

∫ x

−1
(1− u2)−αdu =

21−α

q(1− α)
(1 + x)N+1(1− x)λhypergeom

(
[α, 1− α] , [2− α] ,

x+ 1

2

)
,

where hypergeom([·, ·], [·], ·) stands for the Gauss hypergeometric function. Since this is
C∞ near x = −1, we know that (52) describes the local unstable manifold. Similarly, we
can show that

ψγ(x) = − 21−α

q(1− α)
(1− x)N+1(1 + x)λhypergeom

(
[α, 1− α] , [2− α] ,

1− x
2

)
− (1− x2)λ

2γ

q

∫ x

1

χ(u)

(1− u2)λ+1
du,

describes the locally smooth graph at x = 1. We have ϕγ(0) = ψγ(0) if

2−α

1− α
hypergeom

(
[α, 1− α] , [2− α] ,

1

2

)
= γ

∫ 1

0

χ(u)

(1− u2)λ+1
du.

The result now follows from the fact

hypergeom

(
[α, 1− α] , [2− α] ,

1

2

)
=

2−1+α
√
πΓ(2− α)

Γ
(
3
2 − α

) .
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Thanks to lemmas 5.1 and 5.2 the first coefficient in the normal form of (41) can be
deduced. The other blow-up vector fields (42), (45) and (46) need to be treated in a
similar way. Lemma 5.1 applied to these vector fields provides us a differential equation
(49) which should be smoothly solvable. By choosing γ wisely, this is possible in a similar
way as in the proof of lemma 5.2. We only present the results here, since this is not the
main objective of this article. First we consider (42).

Lemma 5.3. There exists a C∞ function h defined in a neighbourhood of [−1, 1] that
satisfies

−3
dh(x)

dx
(1− x2)− (6n+ 1)xh(x) + (1− x2)n = γχ(x),

requiring

γ

∫ 1

0

χ(u)

(1− u2)n+7/6
du = −

√
πΓ
(
5
6

)
Γ
(
4
3

) .

If we treat (45), we have

Lemma 5.4. There exists a C∞ function h defined in a neighbourhood of [−1, 1] that
satisfies

−3
dh(x)

dx
(1− x2)− (6n− 1)xh(x) + (1− x2)n(8x2 + 1)−2/3 = γχ(x)

requiring

γ

∫ 1

0

χ(t)

(1− t2)n+5/6
dt =

1

3

π3/2

Γ
(
2
3

)
Γ
(
5
6

) .
Finally for (46), we have

Lemma 5.5. There exists a C∞ function h defined in a neighbourhood of [−1, 1] that
satisfies

−3
dh(x)

dx
(1− x2)− (6n+ 1)xh(x) +

4x2 − 1

(8x2 + 1)4/3
(1− x2)n = γχ(x),

requiring

γ

∫ 1

0

χ(t)

(1− t2)n+7/6
dt = −

√
3

2

Γ
(
2
3

)
Γ
(
5
6

)
√
π

.

5.1.4. The transition maps and cylicity

Theorem 2.3 states that the transition maps for the vector fields αn are of the form

D(x0) = −x0 + 2γA(1− x20)n+5/6 + h.o.t.,

where γ denotes the first non-zero coefficient in the normal form and

A =

∫ 1

0

χ(t)

(1− t2)n+5/6
dt.
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The notation ‘h.o.t.’ denotes the higher order terms with respect to the variable 1 + x0
as explained in remark 4.2. Hence for (41) by lemma 5.2, we have

D(x0) = −x0 + f(0)

√
πΓ
(
1
6

)
Γ
(
2
3

) (1− x20)n+5/6 + h.o.t., (53)

and for (45), using lemma 5.4, we have

D(x0) = −x0 +
27a

2

(
−16

27

)n
f(0)

π3/2

Γ
(
2
3

)
Γ
(
5
6

) (1− x20)n+5/6 + h.o.t.. (54)

Similarly for the vector fields βn we have

D(x0) = −x0 + 2γÃ(1− x20)n+7/6 + h.o.t.,

where γ denotes the first non-zero coefficient and

Ã =

∫ 1

0

χ(t)

(1− t2)n+7/6
dt.

Hence the transition map for for (42) is given by (see lemma 5.3)

D(x0) = −x0 − 2g(0)

√
π Γ
(
5
6

)
Γ
(
4
3

) (1− x20)n+7/6 + h.o.t.,

and for (46) by (see lemma 5.5)

D(x0) = −x0 −
√

3

a

(
−16

27

)n
g(0)

Γ
(
2
3

)
Γ
(
5
6

)
√
π

(1− x20)n+7/6 + h.o.t..

We combine the results in each of the blow-up maps (39) and (40) to get an upper bound
on the cyclicity of a cuspidal loop conjugated to (37) and (38) at the origin. Write

Σin = {(−1 + x, 1) | |x| << 1}, and Σout = {(1− y, 1) | |y| << 1},

and use x, resp. y to parametrize Σin, resp. Σout. In this way, the transition map
D : Σin → Σout can be considered as a one-dimensional function y = D(x). The two
cases x > 0 and x < 0 corresponding to either the blow-up chart (39) or (39) correspond
to two different types of limit cycles, namely the interior and exterior ones. In this way
we can bound the cyclicity of the inner or outer limit cycles separately and also bound
the true (two-sided) cyclicity as we explain shortly here. Without going in too much
detail, the transition map near the blow-up locus of (37) is given by

D(x) =

{
x+ xn+5/6(κf(0) + o

(
1
)
), if x ≥ 0,

x+ |x|n+5/6
(ηf(0) + o

(
1
)
), if x < 0,

(55)

for some non-zero κ, η related to the coefficients in (53), resp. (54). Observe that this
map is only Cn. When there is a cuspidal loop, one can consider the inverted regular
transition R : Σin → Σout near the loop. The most degenerate case is when

R(x) = x+ h.o.t..
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Since this is C∞ at x = 0, its asymptotic expansion does not contain non-smooth terms
which can compensate for the non-smooth terms in the map D. Hence if we look at the
difference map ∆(x) = D(x)−R(x), we know that

∆(n)(x) =

{
x5/6(κ̄f(0) + o

(
1
)
), if x ≥ 0,

|x|5/6 (η̄f(0) + o
(
1
)
), if x < 0.

(56)

This has only one zero in a neighbourhood U of x = 0. Due to Rolle’s theorem, we know
that ∆ can not have more than n+1 zeroes in U . This allows us to give a partial cyclicity
result since zeroes of the difference map correspond to limit cycles of the system. We
can put an upper bound on the cyclicity of a specific family of vector fields perturbating
from the cuspidal loop where the cusp is conjugated to (37) or (38) as follows.

Suppose we have a family Xλ of smooth vector fields defined in a neighbourhood V of
the parameter λ0 such that Xλ0

contains a cuspidal loop Γ. Suppose that for every λ ∈ V
the vector field Xλ has a cusp singularity conjugated to (37) where f(0) can depend on
λ but remains non-zero. The results above remain true, however the coefficients become
parameter-dependent. Moreover the coefficients κ and η in (55) and (56) can also be
parameter-dependent. Even though, the statement that (56) has at most one zero in a
neighbourhood U of x = 0 remains valid. Hence we can find a neighbourhood W of Γ
such that Xλ has at most n+ 1 limit cycles contained in W .

In a similar way we can show that for a family of vector fields Xλ conjugated to (38)
with a cuspidal loop Γ for Xλ0

can have at most n + 2 limit cycles in a neighbourhood
W of Γ.

5.2. The fake saddle

Following [15], we consider a degenerate planar singularity of the form{
ẋ = Ax2 + bxy +O(‖(x, y)‖3)
ẏ = x2 + y2 +O(‖(x, y)‖3)

(57)

with A2 < 4(1 − b) and b ∈ ]0, 1[. These are the conditions under which the origin has
exactly two hyperbolic sectors, an incoming separatrix and an outgoing separatrix. Both
separatrices are of center type, and are similar to the two branches of a one-dimensional
saddle-node singularity. The reader may verify that after a homogeneous blow-up (as we
will do in section 5.2.1), a saddle connection along the equator connects two hyperbolic
saddles with ratios of eigenvalues b − 1 : 1 and 1 − b : −1. As we are interested in this
paper in the study of the resonant case, we confine ourselves to the cases 1− b equal to
1 or 1

2 . Other resonant cases (1 − b ∈ Q) demand more involved calculations and shall
therefore not be handled in this text. Even the case 1 − b = 1

k with k ∈ N requires a

non-trivial computation since one needs to compute a residue of some function g(x)
(1−x2)k+1

at x = 1 and x = −1 in general. Before examining the transition map along the fake
saddle by seeing it essentially as a transition through two symmetric saddles, we first put
the system in a elementary form in 5.2.1 and 5.2.2. In 5.2.3 we deal with the case b = 0,
in 5.2.4 we deal with b = 1

2 ; the general case is beyond the scope of this paper as it is
merely our intention to demonstrate the applicability of our main result.
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5.2.1. Persistence of SN-fiber

We blow-up the singularity by writing (x, y) = (rX, rσ) (with σ = ±1) to find:{
ṙ = σr(X + 1) + O

(
r2
)

Ẋ = σX(σAX −X2 + b− 1).

The origin (r,X) = (0, 0) is a saddle. Then we have two C∞- separatrices X = ψ(r)
and r = 0 each of them defined in a neighbourhood of the origin. For σ = +1, the two
saddle points which appear in the polar blow-up are glued in a single saddle point, whose
invariant manifold blows down to a C∞ invariant graph

x = yψ(y),

where ψ is defined and smooth in a neighborhood of 0. This manifold corresponds to the
SN-fiber and by a C∞ change of coordinates we can straighten it to x = 0.

5.2.2. Preliminary normal form

Up to a smooth change of coordinate, we can assume that x = 0 is an invariant
manifold passing through the fake saddle. The behaviour of the vector field on this line
is of the form

ẏ = y2 + h.o.t.,

which can be put in a normal form by a C∞ transformation, eliminating all higher order
terms in the above equation except maybe a resonant cubic term (see [16]). Thanks to
this latter transformation, the system takes the form{

ẋ = Ax2 + bxy + xO
(
‖(x, y)‖2

)
,

ẏ = x2 + y2 + σy3 + xO
(
‖(x, y)‖2

)
,

(58)

for σ = 0, 1. We reduce the terms of homogeneous degree 3 and higher as follows:

Lemma 5.6. Consider the vector field (58). There exists a formal conjugacy such that
this vector field is conjugated to

• Case 1: b = 0 {
ẋ = Ax2 + x3f(x) +Bxmy,

ẏ = x2 + y2 + σy3 + x3g(x) + xh(x)y3,
(59)

for some m > 1, B 6= 0, or{
ẋ = Ax2 + x3f(x),

ẏ = x2 + y2 + σy3 + x3g(x) + xh(x)y3,
(60)

• Case 2: b = 1
N , with N ∈ N0, N ≥ 2{

ẋ = Ax2 + x3f(x) + bxy,

ẏ = x2 + y2 + σy3 + x3g(x) + αxNy2 + βx2Ny,
(61)
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• Case 3: b = 2
M , with M ∈ N0 odd, M ≥ 3{

ẋ = Ax2 + bxy + x3f(x),

ẏ = x2 + y2 + σy3 + x3g(x) + βxMy,
(62)

• Case 4: b 6= 0 and b 6= 2
K , with K ∈ N0{

ẋ = Ax2 + bxy + x3f(x),

ẏ = x2 + y2 + σy3 + x3g(x).
(63)

The functions f, g and h are C∞ in each of the cases.

Proof. The proof of this lemma is classical in normal form theory. We introduce a change
of variables in (58)

(x, y) =
(
X + CXkY l, Y +DXkY l

)
,

where k ≥ 1, l ≥ 1, and collect the coefficients of the term Xk+1Y l. Subsequently we
choose C and D such that those new coefficients vanish and continue by induction on the
homogeneous degree. Since the lowest degree terms in (58) are of homogeneous degree
2, we need to introduce terms of order 3 to eliminate a term of order 4 similar as in the
work of Takens (see [16]).

In order to compute the transition map near the saddle-node fiber, it suffices to work
up to equivalence. In this way, we can simplify even further.

Lemma 5.7. There exists a formal equivalence putting (57) into the vector fields as
given in lemma 5.6 but with σ = 0. When b = 0, we can even transform to (59) with
h = 0. When b = 1

N with N ≥ 2, we can get α = 0 in (61).

The proof is a simple adjustment of the induction argument in the previous lemma
where we rescale in each induction step.

Using Borel’s theorem, we can realize these transformations as C∞ functions, however
some flat terms arise. We will omit these from the notation, since after a blow-up
procedure they contribute to a flat term which can be eliminated according to [6].

5.2.3. Generic transition map when b = 0

By Lemma 5.7 we consider for b = 0 a vector field of the form{
ẋ = Ax2 + x3f(x) +Bxmy,

ẏ = x2 + y2 + x3g(x),
(64)

for some m > 1 and B 6= 0. Denote f0 = f(0) and g0 = g(0) and assume that m = 2.
We know that the ratio of the eigenvalues of both saddles is −1.

Similar as in section 5.1, we apply a parabolic blow-up of the form

(x, y) = (Y (X2 − 1), XY ). (65)
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After multiplication with X2+1
2Y , we get{

Ẋ = 1
2 (1−X2)

[
1 + (1−X2)F (X) + F1(X)Y + O

(
Y 2
)]
,

Ẏ = XY + (1−X2)G1(X)Y +G2(X)Y 2 + O
(
Y 3
)
,

(66)

where

F (X) = AX −X2,

F1(X) = (1−X2)(−g0X4 + f0X
3 + (B + 2g0)X2 − f0X − g0),

G1(X) = −X3 +
1

2
AX2 − 1

2
A,

G2(X) = −1

2
(1−X2)2(−2g0X

3 + f0X
2 + (B + 2g0)X − f0).

In order to compute the dominant term in the transition map, we need to put (66) in
semi-local normal form and identify the first non-zero resonant or connecting term. This
is done as follows.

Lemma 5.8. There exists a smooth transformation (X,Y ) 7→ (x, y) = (X,ϕ(X,Y )),
such that the system (66) is orbitally equivalent to{

ẋ = 1
2 (1− x2),

ẏ = y
[
x+ (αx+ β) (1− x2)y + (1− x2)2y2

(
xf̄
(
(1− x2)y

)
+ ḡ

(
(1− x2)y

))]
,

for some smooth functions f̄ and ḡ. Moreover, we have

β = B

(
1− e

−2Aπ√
4−A2

)
.

Proof. The existence of a smooth equivalence as stated in the lemma is immediate from
the results of [6]. It remains to compute the coefficient β. This is done by repeating the
first steps in the normalization procedure of [6]. Denote

G(X) = 1 + (1−X2)F (X) =

(
1−X2 +

A

2
X

)2

+

(
1− A2

4

)
X2,

which is strictly positive for A2 < 4 = 4(1− b). We divide the vector field by the factor
between square brackets in (66) and apply the transformation

Y = Ψ(X)Z,

where

Ψ(X) = exp

(∫ X
1−X2

−∞

−A
u2 +Au+ 1

du

)
.

After a straightforward computation, one can deduce the system{
Ẋ = 1

2 (1−X2),

Ż = XZ +H1(X)Ψ(X)Z2 + O
(
Z3
)
,
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where

H(X) =
G1(X)−XF (X)

G(X)
,

and

H1(X) =
G2(X)−XF1(X)− (1−X2)F1(X)H(X)

G(X)
.

We can decompose

H1(X)Ψ(X) = (1−X2)(αX + β) + (1−X2)2H2(X),

for some constant α and C∞ function H2 and with

β = B

(
1− e

−2Aπ√
4−A2

)
.

By a transformation of the form (X,Z) = (X,Z1) = (X,Z + h(X)Z2) we can eliminate
the term (1−X2)2H2(x)Z2. The rest of the normalization procedure of [6] is of the form

(X,Z1) 7→ (x, y) =
(
X,Z1 + Z3

1ψ(X,Z1)
)
,

for some smooth function Ψ and thus leaves the coefficient β unchanged.

Combining lemma 5.8 and theorem 2.3, the transition map of (64) in the blow-up
chart (65) is asymptotically given by

D(x0) = −x0 +B

(
1− e

−2Aπ√
4−A2

)
(1− x20)2 log(1 + x0) + h.o.t.. (67)

Observe that blow-up chart (66) only allows us to describe the dynamics for x < 0 of
(64). However if we apply the reflection x → −x to (64), then (65) describes exactly
the dynamics for x > 0. After the reflection the sign of A and B changes in (64). If we
repeat the discussion above, we compute in this case that the transition map is in the
blow-up chart is asymptotically given by

D(x0) = −x0 −B
(

1− e
2Aπ√
4−A2

)
(1− x20)2 log(1 + x0) + h.o.t.. (68)

Combining these results and by considering the difference map ∆ as in section 5.1.4, we
see that ∆′(x) locally has one zero if A and B are non-zero.

Again this can be generalized to a parameter-dependent situation. Suppose Xλ is a
family of vector fields such that for all λ in an open set U there is a singularity of the
form (58) with b = 0. Suppose Xλ0

has a fake saddle loop Γ and is locally equivalent to
(64) with AB 6= 0. Then there exists a neighbourhood W of Γ such that Xλ does not
contain more than two limit cycles for λ ∈ U .
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5.2.4. Generic transition map when b = 1
2

When b = 1
2 , the saddle quantity is given by 1

2 , resp. 2 at the saddles after blow-up.
Using Lemma 5.7, the vector field can locally be transformed to{

ẋ = Ax2 + x3f(x) + 1
2xy,

ẏ = x2 + y2 + x3g(x) + βx4y,
(69)

for some β ∈ R and some C∞ functions f, g. Denote f0 = f(0) and g0 = g(0). After

blow-up (65) and multiplying with (X2+1)
Y , we get a vector field of the form{

Ẋ = 1
2 (1−X2)

[
1 + (1−X2)F (X) + F1(X)Y + O

(
Y 2
)]
,

Ẏ = 2XY + (1−X2)G1(X)Y +G2(X)Y 2 + O
(
Y 3
)
,

(70)

where

F (X) = 2AX − 2X2 + 1,

F1(X) = 2(1−X2)2(g0X
2 − f0X − g0),

G1(X) = −2X3 +AX2 +
1

2
X −A,

G2(X) = (1−X2)3(−2g0X + f0).

Similar as in the case b = 0, we put (70) in semi-local normal form and identify the first
non-zero term.

Lemma 5.9. There exists a smooth transformation (X,Y ) 7→ (x, y) = (X,ϕ(X,Y )),
such that the system (70) is orbitally equivalent to{
ẋ = 1

2 (1− x2),

ẏ = y
[
2x+ (αx+ β) (1− x2)2y + (1− x2)4y2

(
xf̄
(
(1− x2)2y

)
+ ḡ

(
(1− x2)2y

))]
,

for some smooth functions f̄ and ḡ. Moreover, we have

β = 2f0

(
1 + e

−3πA√
2−A2

)
.

Proof. Again, we only need to compute β since the rest of the statement follows imme-
diately from [6]. We divide the vector field (70) by the factor in square brackets where
we remark that

G(X) = 1 + (1−X2)F (X) = 2

(
1−X2 +

A

2
X

)2

+

(
1− A2

2

)
X2

is a strictly positive function since A2 < 2 = 4(1 − b). Consequently we apply the
transformation

Y = Ψ(X)Z, with Ψ(X) = e
∫X
−1

2H(s)ds,

where

H(X) =
G1(X)− 2XF (X)

G(X)
.
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A straightforward computation shows that the vector field can now be written as{
Ẋ = 1

2 (1−X2),

Ż = 2XZ +
(
(1−X2)2(αX + β) + (1−X2)3H2(X)

)
Z2 + O

(
Z3
)
,

for some constant α and C∞ function H2 and with

β = 2f0

(
1 + e

−3πA√
2−A2

)
.

Following the normal form procedure of [6], we can remove the term (1−X2)3H2(X)Z2

by a transformation of the form

(X,Y ) =
(
X̄, Ȳ + H̄(X̄)Ȳ 2

)
,

where H̄(X̄) is a smooth solution of

−1

2
(1− X̄2)H̄ ′(X̄)− 2X̄H̄(X̄) + (1− X̄2)3H2(X̄) = 0,

without changing the coefficients α and β. The higher order terms (with respect to Ȳ )
will then be put in normal form without changing the terms of degree 2.

By lemma 5.9 and theorem 2.3, we get that the transition map in the blow-up chart
(65) for x < 0 is asymptotically given by

D(x0) = −x0 − f0
(

1 + e
−3πA√
2−A2

)
(1− x20)3 log(1 + x0) + h.o.t.,

and a similar map for x > 0 where A is replaced by −A. In a similar way as at the
end of section 5.1.4, we can see that there exists a neighbourhood of 0 where the second
derivative of the displacement map ∆ has at most one zero when f0 6= 0.

Consider a family of vector fields Xλ, λ ∈ U , with a singularity of the form (58) with
b = 1

2 . Suppose Xλ0
has a fake saddle loop Γ and is locally equivalent to (69) with

f0 6= 0. Then there exists a neighbourhood W of Γ such that Xλ does not contain more
than three limit cycles in W for λ ∈ U .

6. Discussion

As illustrated in section 5, this paper provides a method to compute the first non-zero
higher order term of the Dulac map close to a non-elementary singularity. The technique
used in section 5 is to directly compute the normal form up to some degree and use the
main result to see the effect on the transition map. Instead of this method one may
also assume an expression for the invariant V as an ansatz and establish equations for
all coefficients appearing therein; our main theorem is then merely used to prescribe the
shape of the invariant V .

Depending upon the situation, either a logarithmic term is dominant in the transition
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map (caused by a resonant term in the normal form) or a term with fractional power
is dominant in the transition map (caused by a connecting term in the normal form).
Section 5 contains examples of both situations.

In section 5, the saddle connection appears after blowing up a singular point which
is initially nilpotent or degenerate. The saddle connection on the blow-up locus can be
predicted by examining the dominant quasi-homogeneous part of the vector field. Under
the condition that the saddles are the only two singularities on the blow-up locus, one
might wonder what the relation is between the semi-local normal form after blow-up
like we obtain here (and in [6]) and the normal forms obtained from information of the
quasi-homogeneous part (before blow-up) like in [17]. This is an open question.

In [5], the transition map is computed in a very elegant and short way: instead of
computing the transition map along the real axis, the authors use a complex path and
use the monodromy of the two individual saddles to prescribe the dominant term of the
transition map. In comparision to [5], our technique is technically more involved but
at the same time it is more straightforward and applicable to the general setting. The
results in [5] are used to deal with cyclicity of the cuspidal loop, where the authors con-
sider unfoldings of the cusp preserving the singularity. In section 5, we demonstrated
how cyclicity results can be deduced from the transition map outside the generality of
the context of unfoldings as it was merely our intention to illustrate the computation of
the map. We claim that (singularity-preserving) unfoldings can be treated similarly.

The case of the fake saddle is more involved. The saddle quantities are dependent on b
nonetheless that they stay reciprocal. In this case, our claim above about the possibil-
ity of treating unfoldings is not valid: we believe we need to introduce Ecalle-Roussarie
compensators, depending on the parameter b. This will be subject of further research.
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