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Abstract 

 

Serial cognitive assessment is conducted to monitor changes in the cognitive abilities 

of patients over time (e.g., to detect dementia). A problem with serial cognitive 

assessment is that the test scores at retesting occasions tend to increase due to practice 

effects. This should be taken into account when normative data are established.  

At present, mainly the regression-based change and the ANCOVA approaches 

are used to establish normative data for serial cognitive assessment. However, these 

methods have some severe drawbacks. For example, they can only consider the data 

of two measurement occasions, and they cannot handle missing data appropriately.  

In this paper, we propose three alternative methods that are not hampered by 

these problems (i.e., multivariate regression, the standard linear mixed model, and the 

linear mixed model combined with multiple imputation). The different methods are 

illustrated based on the data of a large longitudinal study in which the Stroop Color 

Word Test was administered at four subsequent measurement occasions. Based on 

these analyses and theoretical considerations, we recommend the use of the linear 

mixed model with multiple imputation, because (i) it allows for  adequate modelling 

of the covariance structure (in contrast to the multivariate regression method), and 

because (ii) it takes the uncertainty of dealing with missing values into account (in 

contrast to the standard linear mixed model approach).  

[GEERT] De standard linear mixed model approach, gebaseerd op direct likelihood, neemt die onzekerheid ook in overweging 

en in die zin is MI en direct likelihood (i.e., the standard approach) equivalent.  

 

Word count abstract: 220 (max. 250) 

 

Keywords: serial testing, norms, practice effects, longitudinal data, linear mixed 

model, multiple imputation, Stroop Color Word Test   
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Cognition is an umbrella term that refers to various higher-order behavioural abilities, 

such as memory, attention, and executive functions (Lezak, Howieson, & Loring, 

2004). These higher-order behavioural abilities are latent variables that cannot be 

directly observed. Instead, they have to be inferred from proxy measures (Mitrushina, 

Boone, Razani, & D’Elia, 2005). For example, a person’s verbal memory cannot be 

directly observed; what can be observed is the person’s ability to recall verbal 

material that is presented in a specific standardized test setting. 

Cognitive assessment is widely used in medical settings and in the behavioural 

sciences, for example in the context of diagnosing dementia (Lezak et al., 2004; 

Pasquier, 1999). In diagnostic settings, the “raw” score of a person on a cognitive test 

(e.g., the number of items that were recalled in a memory test) is usually not of direct 

interest. The reason for this is that the raw scores on cognitive tests are strongly 

affected by demographic variables (such as age and educational level; Mitrushina et 

al., 2005; Strauss, Sherman, & Spreen, 2006; Van der Elst, 2006). For example, the 

same raw test score may be indicative of a severe memory problem in a 50-year-old 

person, whilst it is within the normal limits of test performance for an 80-year-old 

person (Van der Elst, Van Breukelen, Van Boxtel, & Jolles, 2005). Clinicians 

therefore use relative measures (rather than raw test scores) to evaluate a patient’s test 

performance (e.g., what is the percentage of demographically-matched “cognitively 

healthy” peers who obtain a test score that is equal to or worse than the test score of 

this patient?). So-called normative data are used to convert raw test scores into 

demographically-corrected relative measures (Mitrushina et al., 2005; Van der Elst, 

2006). 

In many diagnostic situations, the same cognitive test (or a parallel test 

version) is repeatedly administered to the same person. For example, a clinician may 
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need to determine whether a patient with early dementia has experienced cognitive 

decline since his or her last evaluation, or a clinician may need to evaluate whether a 

stroke patient has benefited from taking part in a rehabilitation program. Ideally, the 

observed changes in the test scores at subsequent measurement occasions would be 

directly interpretable in terms of true changes in the latent cognitive trait of interest. 

This is, however, generally not the case (Calamia, Markon, & Tranel, 2012). The 

main reason for this is that practice effects occur in serial testing situations. Practice 

effects refer to a variety of factors – such as procedural learning, memory for specific 

items, and increased comfort with formal testing situations (McCaffrey, Duff, & 

Westervelt, 2000) – that result in systematic improvements in test scores at retesting 

occasions, even though there was no true change in the latent trait that is measured by 

the cognitive test (Bartels, Wegrzyn, Wiedl, Ackermann, & Ehrenreich, 2010; 

Calamia et al., 2012; Dikmen, Heaton, Grant, & Temkin, 1999; Van der Elst, Van 

Breukelen, Van Boxtel, & Jolles, 2008; Temkin, Heaton, Grant, & Dikmen, 1999). 

Practice effects are especially pronounced when the test-retest intervals are short (e.g., 

Theisen, Rapport, Axelrod, & Brines, 1998), but they also occur when test-retest 

intervals of several years are used (Rönnlund & Nilsson, 2006; Salthouse, Schroeder, 

& Ferrer, 2004). In the latter case, the changes in the test scores over time reflect the 

combined influences of practice effects and true changes in the latent cognitive 

abilities (Van der Elst et al., 2008). Furthermore, the extent to which practice effects 

occur is affected by person characteristics such as the age and the educational level of 

a tested person (Mitrushina & Satz, 1991; Rapport, Brines, Axelrod, & Theisen, 1997; 

Stuss, Stethem, & Poirier, 1987; Van der Elst et al., 2008). 

Failure to take practice effects into account may invalidate the conclusions 

that are drawn from a serial cognitive assessment (Calamia et al., 2012; Van der Elst 
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et al., 2008). For example, practice effects may mask the cognitive decline in a patient 

with early dementia, or practice effects may lead to the incorrect conclusion that a 

stroke patient has benefitted from a rehabilitation program. Normative data for serial 

cognitive assessment should thus take the testing history of a patient into account, but 

it is not clear which statistical method is optimal to achieve this aim (Heaton, 

Dikmen, Avitable, Taylor, Marcotte, & Grant, 2001; Temkin et al., 1999; Van der 

Elst et al., 2008).  

 

Existing normative methods 

In non-serial cognitive testing situations, normative data are established as based on 

classical univariate statistical methods. For example, an often-used procedure is the 

regression-based normative approach (Testa, Winicki, Pearlson, Gordon, & Schretlen, 

2009; Van Breukelen & Vlaeyen, 2005; Van der Elst, Ouwehand, van Rijn, Lee, Van 

Boxtel, & Jolles, in press; Van der Elst, Van Boxtel, Van Breukelen, & Jolles, 2006a, 

2006b, 2006c, 2006d). In this method, a classical multiple linear regression model is 

fitted to the data of a large sample of cognitively healthy people who were 

administered the cognitive test of interest (the normative sample). The multiple linear 

regression model assumes that 𝒀𝒀𝑖𝑖 = 𝑿𝑿𝑖𝑖𝜷𝜷 + 𝜺𝜺𝑖𝑖, where 𝒀𝒀𝑖𝑖 is the vector of the outcomes, 

𝑿𝑿𝑖𝑖 is the design matrix (which typically includes age, gender, and educational level in 

normative studies), 𝜷𝜷 is the vector of regression parameters, and 𝜺𝜺𝑖𝑖 is the vector of the 

residual components (for details on this model, see, e.g., Kutner, Nachtsheim, Neter, 

& Li, 2005).  

Based on the established regression model, the test performance of a future 

patient j can be evaluated. This requires three steps. First, the expected test score of 

patient j is computed (i.e., 𝑌𝑌�𝑗𝑗 = 𝑿𝑿𝑗𝑗𝜷𝜷�). This score reflects the expected test score for a 
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cognitively healthy person who has the same demographic background as the tested 

patient. Second, the difference between the patient’s observed and expected test 

scores is computed (i.e., 𝑒𝑒𝑗𝑗 = 𝑌𝑌𝑗𝑗 − 𝑌𝑌�𝑗𝑗 ) and standardized (i.e., 𝑧𝑧𝑗𝑗 = 𝑒𝑒𝑗𝑗/𝑆𝑆𝑆𝑆(𝑒𝑒)). The 

𝑆𝑆𝑆𝑆(𝑒𝑒) is the SD of the residuals in the normative sample (i.e., the positive square root 

of the residual mean squares). Third, the standardized residual of the patient is 

converted into a percentile value as based on the distribution of the standardized 

residuals in the normative sample. A percentile value below 5 is often considered as 

being indicative for a cognitive problem (because 95% of the “cognitively healthy” 

people perform better).  

An important assumption of the classical linear regression model is that 

𝝈𝝈2{𝜺𝜺} = 𝜎𝜎2𝑰𝑰 (with 𝑰𝑰 = an n x n identity matrix). Thus, it is assumed that the residuals 

(or equivalently, the outcomes) are uncorrelated. This assumption is not realistic in 

serial cognitive testing situations, because the cognitive test scores at subsequent 

measurement occasions tend to be highly correlated within individuals (Dikmen et al., 

1999; Lezak et al., 2004; Temkin et al., 1999; Van der Elst et al., 2008). One possible 

solution to deal with this problem is to summarize the vector of the repeated 

measurements into change scores (change = endpoint score - baseline score), and 

subsequently regress these outcomes on the demographic covariates of interest in the 

normative sample (the regression-based change approach). Alternatively, the 

dependence issue can be solved by fitting a model in which the endpoint scores are 

regressed on the baseline scores and the demographic covariates in the normative 

sample (the ANCOVA approach).  

 

Motivating example  
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The Maastricht Aging Study (MAAS) is a longitudinal research project into the 

determinants of cognitive aging (Jolles, Houx, Van Boxtel, & Ponds, 1995). The 

MAAS baseline measurement took place between 1993 and 1996, and three follow-up 

measurements were conducted (3, 6, and 12 years after baseline). All participants 

were thoroughly screened for medical pathology that could interfere with normal 

cognition (such as dementia or cerebrovascular disease).  

The MAAS participants were administered an extensive battery of cognitive 

and medical tests. In the present paper, we will focus on the data of the Stroop Color 

Word Test (SCWT; Stroop, 1935). The SCWT is a well-known cognitive paradigm 

that is used to assess inhibition and other components of executive functioning (Lezak 

et al., 2004; Moering, Schinka, Mortimer, & Graves, 2004). The test consists of three 

subtasks. The first subtask shows colour words in random order (red, blue, yellow, 

green) that are printed in black ink. The second subtask displays solid colour patches 

in one of these four basic colours. The third subtask contains colour words that are 

printed in an incongruous ink colour (e.g., the word “red” printed in yellow ink). The 

participants were instructed to read the words, name the colours, and name the ink 

colour of the printed words as quickly and as accurately as possible in the three 

subsequent subtasks. The SCWT outcome variable of interest is the difference 

between the time that is needed to complete subtask three and the average time that is 

needed to complete the first two subtasks (i.e., SCWT score = time in seconds needed 

for subtask 3 - (time in seconds needed for subtasks 1 + 2) / 2). Higher SCWT scores 

are thus indicative for worse test performance. 

In the MAAS, the SCWT was administered to N=887, N=696, N=614, and 

N=454 participants at the subsequent measurement occasions. Basic demographic 

data for the sample at baseline and at the three follow-up measurement occasions are 
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provided in Table 1. Level of Education (LE) was categorized into three levels using a 

classification scheme that is often used in the Netherlands (De Bie, 1987), with low = 

at most primary education, average = at most junior vocational training, and high = 

senior vocational or academic training. More details regarding the SCWT and the 

sample frame, participant recruitment, stratification criteria, and other aspects of the 

MAAS can be found elsewhere (Jolles et al., 1995; Van der Elst, 2006). 

 

>>> Insert Table 1 about here <<< 

 

Limitations of the existing normative methods 

Suppose that the regression-based change method or the ANCOVA approach would 

be used to establish normative data for serial SCWT administration (as based on the 

MAAS data). This would have several major drawbacks.    

First, the validity of the ANCOVA model depends on the assumption that 

there are no group differences in the baseline scores of the different demographic 

groups of interest (Kutner et al., 2005). This assumption is unrealistic in the context of 

cognitive assessment, because it has been consistently shown that age, gender, and 

educational level profoundly affect performance on the SCWT and on most other 

cognitive tests (Lezak et al., 2004; Mitrushina et al., 1999; Van der Elst, 2006).  

Second, the ANCOVA and the regression-based change approaches cannot 

handle missing data appropriately. Both methods simply discard incomplete cases 

from the analyses, but a complete case analysis is only unbiased when the data are 

missing completely at random (MCAR; Little & Rubin, 1987; Verbeke & 

Molenberghs, 2000), and even then it is usually inefficient. MCAR means that the 

data are missing for reasons that are not related to the outcomes or to the 
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characteristics of the individuals. The MCAR assumption is not realistic in most serial 

testing settings. For example, the probability that a participant drops out of the MAAS 

is strongly affected by his or her baseline cognitive test score and age (Van 

Beijsterveldt, van Boxtel, Bosma, Houx, Buntinx, & Jolles, 2007), and consequently 

the MCAR assumption is not valid.  

Third, the regression-based change and the ANCOVA methods can only use 

the data of a maximum of two measurement occasions. In the MAAS, the SCWT was 

administered four times. The application of the regression-based change or the 

ANCOVA approach would thus result in a substantial loss of information, and 

consequently a lowered precision of the parameter estimates and a loss of power 

(Verbeke & Molenberghs, 2000). Note that it might be argued that the endpoint score 

could be regressed on the test scores of multiple earlier testing occasions in the 

ANCOVA method (rather than on a single one), but this is generally not the case 

because the test scores at subsequent measurement occasions are highly correlated 

and thus collinearity issues would arise.  

 

Alternative normative methods: the multivariate regression model, standard linear 

mixed model, and linear mixed model with multiple imputation  

As noted in the previous section, the existing methods to establish normative data for 

serial cognitive assessment are fundamentally flawed. Applying these methods to the 

SCWT data (from the MAAS) would lead to a substantial loss of information and 

biased results. What we need are (i) methods that can deal with two or more 

correlated outcomes (within individuals), and (ii) methods that can handle missing 

data appropriately (without making unrealistic assumptions about the missingness 

mechanism).  
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Based on these criteria, the multivariate regression model, standard linear 

mixed model, and linear mixed model with multiple imputation are considered in the 

subsequent sections.  

 

The multivariate regression model  

The multivariate regression model assumes that 𝒀𝒀𝑖𝑖 = 𝑿𝑿𝑖𝑖𝜷𝜷 + 𝜺𝜺𝑖𝑖, with 𝒀𝒀𝑖𝑖: the vector of 

the repeated measurements, 𝑿𝑿𝑖𝑖 : the design matrix, 𝜷𝜷: the vector of the regression 

parameters, and 𝜺𝜺𝑖𝑖: the vector of the error components. It is assumed that 𝜺𝜺~𝑁𝑁(𝟎𝟎,𝚺𝚺), 

with 𝟎𝟎: a zero matrix and 𝚺𝚺: a general variance-covariance matrix of the residuals (for 

details on the model, see Johnson & Wichern, 2007).  

In contrast to the classical, or univariate, linear regression model, the 

multivariate regression model can handle vectors of repeated observations for 

individuals. The parameter estimates in the multivariate regression model are based 

on likelihood methods, which allows for using all available data in the calculations. 

Moreover, the use of likelihood-based methods has the advantage that inferences can 

be based on the observed likelihood given a model that does not include a distribution 

for the missing data mechanism (so-called ignorable analyses; Little & Zhang, 2011; 

Molenberghs & Verbeke, 2005; Verbeke & Molenberghs, 2000). Note that ignorable 

analyses, when likelihood and Bayesian inferences are chosen, require that the 

missingness mechanism is missing at random (MAR, i.e., the missingness is 

independent of the unobserved data conditional on the observed data) or MCAR (as 

defined above), but this assumption can be relaxed in the context of normative 

analyses (see Discussion). Note also that the parameter estimates in a multivariate 

regression model can also be based on ordinary least squares methods (rather than on 

likelihood-based methods), but this situation will not be considered here because it 
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largely suffers from the same drawbacks as the regression-based change and the 

ANCOVA methods. 

 

The standard linear mixed model 

The standard Linear Mixed Model (LMM) assumes that 𝒀𝒀𝑖𝑖 = 𝑿𝑿𝑖𝑖𝜷𝜷 + 𝒁𝒁𝒊𝒊𝒃𝒃𝒊𝒊 + 𝜺𝜺𝑖𝑖, with 

𝒀𝒀𝑖𝑖 : the vector of the repeated measurements, 𝑿𝑿𝑖𝑖 : the design matrix for the fixed 

effects (a.k.a. population-averaged parameters), 𝜷𝜷 : the vector of regression 

coefficients, 𝒁𝒁𝑖𝑖 : the design matrix for the subject-specific effects (capturing how 

individuals deviate from the population average, where population is understood as 

anyone with the same fixed-effect design), 𝒃𝒃𝑖𝑖: the vector of the random effects, and 

𝜺𝜺𝑖𝑖 : the vector of the residual components. It is assumed that 𝒃𝒃𝑖𝑖~𝑁𝑁(𝟎𝟎,𝐃𝐃) and that 

𝜺𝜺𝑖𝑖~𝑁𝑁(𝟎𝟎,𝚺𝚺𝑖𝑖) , where 𝟎𝟎  is a zero matrix and the 𝑫𝑫  and 𝚺𝚺𝑖𝑖  are variance-covariance 

matrices (for details, see Verbeke & Molenberghs, 2000).  

As compared to the multivariate regression model, the standard LMM has the 

additional advantage that both fixed and random effects can be included in the model. 

Random effects are not of substantive interest in normative studies (the focus is on the 

marginal evolutions, i.e., on the fixed effects), but it is nevertheless useful to model 

the covariance structure adequately because this generally leads to more efficient 

inferences for the fixed effects (i.e., smaller standard errors; Verbeke & Molenberghs, 

2000). In addition, the LMM easily allows for unbalanced data, in the sense that it is 

possible for different subjects to provide different numbers of outcome values, either 

by design or because of missingness in the data. 

 

The linear mixed model with multiple imputation  
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In the Linear Mixed Model with Multiple Imputation (LMM with MI) approach, the 

MI algorithm is first applied to fill in the missing observations in the dataset. The MI 

algorithm constructs multiple “completed” datasets as based on the incomplete 

dataset, by drawing from the conditional distribution of the unobserved outcomes 

given the observed ones (for details, see Beunckens, Molenberghs, & Kenward, 2005; 

Little & Rubin, 1987; Rubin, 1996; Molenberghs and Kenward 2007). Next, a LMM 

analysis is conducted on each of the completed datasets, and the different inferences 

are combined into a single one. As compared to the multivariate regression model and 

in line with the LMM, the LMM with MI has also the  advantage that it can take the 

uncertainty of dealing with missing values into account in the analyses (Rubin, 1996; 

Verbeke & Molenberghs, 2000).  This is to be contrasted with so-called single or 

simple imputation methods, where each missing value is substituted.  

 

[GEERT] Ik heb het bovenstaande aangepast omdat er incorrect werd gesuggereerd 

dat het LMM die onzekerheid niet in overweging neemt, terwijl de beide methoden 

equivalent zijn in dit verband.  

 

Application to the motivating example  

 

In this section, we will illustrate the use of the multivariate regression, standard 

LMM, and LMM with MI methods to establish norms for serial SCWT administration 

(as based on the MAAS data). All analyses were conducted with R 2.14.0 for OS X 

and SAS v9.2 for Windows. An α-level of 0.05 was used.  

 

The multivariate regression model  
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The initial multivariate regression model included the vector of the log(SCWT) scores 

as the outcome and age, age2, gender, LE low, LE high, time and time2 as the 

covariates. The SCWT score was log-transformed because preliminary analyses 

showed that the residuals were positively skewed. Age was centred (age = calendar 

age in years - 65) prior to the computation of the quadratic age effect (to avoid 

multicollinearity; Kutner et al., 2005). Gender was coded as 1 = male and 0 = female. 

The three levels of education (LE) were coded with two dummies, i.e., LE low: 1 = at 

most primary education and 0 = otherwise, and LE high: 1 = senior vocational or 

academic training and 0 = otherwise. Time was centred prior to the computation of 

the quadratic effects (time = time since baseline in years - 5.25). In addition to the 

main effects, the age x time, age x time2, age2 x time, age2 x time2, LE low x time, LE 

high x time, LE low x time2, and LE high x time2 interaction terms were included in 

the mean structure of the initial model. This was done because previous studies have 

suggested that older age and lower levels of education are associated with a more 

pronounced cognitive decline over time (see e.g., Salthouse, 1996; Schmand, Smit, 

Geerlings, & Lindeboom, 1997; Stern, 2003; Van der Elst et al., 2006a). 

To obtain the most parsimonious model, it was evaluated whether the mean 

structure of the full model could be simplified by removing interactions and main 

effect terms. A series of classical likelihood ratio tests suggested that the model fit did 

not significantly deteriorate when the LE x time, age2 x time, and time2 covariates 

were removed from the model (see models 2 to 4 in Table 2). Next, the covariance 

structure was simplified by using a compound symmetry type (rather than an 

unstructured covariance type), but this resulted in a worse model fit (see model 5 in 

Table 2).  
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>>> Insert Table 2 about here <<< 

    

The most parsimonious multivariate regression model that still adequately 

fitted the data was thus model 4. The parameter estimates for this model are provided 

in Table 3a. As shown, males and lower educated participants had significantly higher 

log(SCWT) scores at all measurement moments. There was a significant time x age 

interaction term, which suggested that the increase in the log(SCWT) scores over time 

was more pronounced for people who were older at baseline. The interaction is 

graphically depicted in Figure 1a for 50-, 65-, and 80-year-old females with an 

average LE (note that the shape of these plots is identical for males and for people 

with a low or a high educational level, i.e., the predicted log(SCWT) values are the 

same up to a constant). There was also a small (but significant) effect of age2.     

 

>>> Insert Table 3 about here <<< 

>>> Insert Figure 1 about here <<< 

 

The standard linear mixed model 

The preliminary mean structure of the initial standard LMM was identical to the mean 

structure in the initial multivariate regression model (see above). A random intercept 

and two random slopes (for time and time2) were included in the preliminary 

covariance structure (unstructured type). We first evaluated whether the random 

effects were all needed in the model, by removing one random effect after the other in 

a hierarchical way. Note that these tests cannot be conducted by using classical 

likelihood ratio procedures. Instead, a mixture of two 𝜒𝜒2 distributions should be used 

(with equal weights of 0.5; Verbeke & Molenberghs, 2000). The p-values of all the -
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2l difference scores were significant (all p < .05; data not shown), indicating that the 

covariance structure could not be simplified by deleting random effects from the 

model. 

Next, the non-significant fixed-effect terms were removed from the model 

(one after the other, in a hierarchical way) to obtain a more parsimonious mean 

structure. This procedure yielded a model which included age, age2, gender, LE low, 

LE high, time, and the age x time interaction as the covariates (see models 2 to 7 in 

Table 4). It was subsequently evaluated whether the covariance structure could be 

simplified by using a compound symmetry structure, but this was not the case (see 

model 8 in Table 4).    

 

>>> Insert Table 4 about here <<< 

 

The parameter estimates for the final standard LMM (model 7) are presented 

in Table 3b. In agreement with the results of the multivariate regression model, being 

male and having a lower LE were associated with higher log(SCWT) scores at all 

measurement moments. There was again a significant age x time interaction, which 

suggested that the increase in the log(SCWT) scores over time was more pronounced 

for people who were older at baseline (see Figure 1b). The effect of age2 was small 

but significant. 

 

The linear mixed model with multiple imputation 

The MI algorithm (Little & Rubin, 1987; Rubin, 1996) was used to replace each 

missing value by 10 different imputations. The final standard LMM (see Table 3b) 

was fitted in each of the 10 “complete” datasets, and the 10 inferences were combined 
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into a single one. There is an 𝑟𝑟 statistic to quantify the uncertainty portion that is 

stemming from incompleteness, i.e., 𝑟𝑟 = �1+𝑀𝑀−1�𝐵𝐵
𝑢𝑢�

 (where M = the number of 

imputations, B = the between-imputation variance, and 𝑢𝑢�  = the within-imputation 

variance; Schafer, 1999).  

The final LMM with MI model is presented in Table 3c. The age x time and 

time parameters had the highest r values (i.e., 1.40 and 2.27, respectively). The r 

values for the other covariates were substantially lower and ranged between 0.07 and 

0.63. The relatively large uncertainty for the age x time and the time covariates 

resulted in parameter estimates that were closer to zero and that had larger standard 

errors as compared to the results that were obtained for the multivariate regression 

model and the standard LMM (see Table 3).  

[GEERT] Het bovenstaande is waarschijnlijk *geen* gevolg van de 

‘additional uncertainty’ maar zou kunnen resulteren van imputation under the null. 

Als je age effecten wil bestuderen, dient age een variabele te zijn die mee is 

opgenomen in het imputatie-model, *zelfs als hij volledig is*. Zie ook de voorbeelden 

in onze 2005 en 2007 boeken. Anders gebeuren de imputaties “under the null” wat 

will zeggen dat je tijdens imputatie veronderstelt dat er geen verband is met age. Het 

is dan nadien niet verwonderlijk dat het effect van age (of age x time) schijnbaar 

daalt. Misschien moet daarom de multiple imputatie opnieuw gedaan worden.  

 

 

As shown in Figure 1c, the LMM with MI model predicted a smaller increase 

in the log(SCWT) scores of older people over time, and a larger increase in the 

log(SCWT) scores of younger people over time. In agreement with the results of the 

multivariate regression model and the standard LMM, being male and having a lower 
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LE were associated with higher log(SCWT) scores at all measurement moments. The 

effect of age2 was again small but significant. The parameter estimates and standard 

errors for the age, age2, gender, and LE parameters in the LMM with MI model were 

similar to the values that were obtained for the multivariate regression model and the 

standard LMM. 

 

Obtaining normative data   

Analogously to the classical regression-based normative approach (see Introduction), 

three steps are needed to convert a future patient’s log(SCWT) scores into percentile 

values. First, the expected log(SCWT) scores of patient j at time t are computed 

(=𝑌𝑌�𝑡𝑡𝑡𝑡). Time t refers to the number of years since baseline. These calculations are 

based on the parameter estimates of the fixed effects that were provided in Table 3.     

Second, the differences between the actually observed log(SCWT) scores of 

patient j at time t and the corresponding expected test scores are computed (i.e., 

𝑒𝑒𝑡𝑡𝑡𝑡 = −(𝑌𝑌𝑡𝑡𝑡𝑡 − 𝑌𝑌�𝑡𝑡𝑡𝑡)) and standardized (i.e., 𝑧𝑧𝑡𝑡𝑡𝑡 = 𝑒𝑒𝑡𝑡𝑡𝑡/𝑆𝑆𝑆𝑆(𝑒𝑒𝑡𝑡)). Note that the sign of 

the residuals is reversed here because a higher SCWT score is indicative of worse test 

performance. The 𝑆𝑆𝑆𝑆(𝑒𝑒𝑡𝑡) values are the standard deviations of the residuals at time t 

in the normative sample. These values are presented in Table A1 (in Appendix).  

Third, the standardized residuals (i.e., 𝑧𝑧𝑡𝑡𝑡𝑡) are converted into percentile values. 

Histograms and QQ-plots suggested that the standardized residuals for the different 

models at all measurement moments were normally distributed in the MAAS (Figures 

not shown), and Kolmogorov-Smirnov tests supported this conclusion (all p-values > 

.098). The standardized residuals can thus be converted into percentile values by 

means of the standard normal distribution.  
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An example. Suppose that a 75-year-old average educated woman who is at 

risk for developing frontotemporal dementia is monitored over time. The patient was 

administered the SCWT at a baseline moment and 3, 6, and 12 years later. At the 

subsequent measurement occasions, she obtained SCWT test scores that equalled 80, 

85, 90, and 100. The patient’s log(SCWT0), log(SCWT3), log(SCWT6), and 

log(SCWT12) scores thus equalled 4.382, 4.442, 4.500, and 4.605, respectively.   

The clinician uses the LMM with MI approach to evaluate the patient's test 

performance. This requires three steps. First, the expected log(SCWT0) test score is 

computed as based on Table 3c, i.e., 4.030 (= 3.876+(10*0.023)+((102)*0.0005)+(-

5.25*0.017)+((10*-5.25)*0.0007)). Second, the standardized residual is computed (as 

based on Table A1 in Appendix), i.e., -1.067 (= -(4.382-4.030)/0.33). Third, the 

standardized residual is converted into a percentile value by means of the standard 

normal distribution. A standardized residual that equals -1.067 corresponds to a 

percentile value of 14. Thus, 14% of the population of 75-year-old cognitively healthy 

females with an average level of education obtain a log(SCWT0) score that is equal to 

or higher than the score that was obtained by this woman. Using the same three-step 

procedure, the patient's log(SCWT3), log(SCWT6), and log(SCWT12) scores were 

normed. This yielded percentile values equal to 17, 20, and 26, respectively. Thus, the 

SCWT test performance of the patient is within normal limits at all the measurement 

moments.   

 

User-friendly normative tables. A clinician can norm the test scores of a 

patient by performing the required computations by hand (as was illustrated in the 

previous paragraph), but this procedure is time consuming and prone to making 

errors. To increase the user-friendliness of the normative data for clinical use, we 
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established normative tables that present the raw SCWT scores that correspond to 

percentiles 5, 10, 25, 50, 75, 90, and 95, stratified by age (50, 55, ... , 80 years), 

gender, and LE (the normative tables can be downloaded at 

http://home.deds.nl/~wimvde/ 1). The use of the normative tables is straightforward. 

For example, Table 1 in the online document immediately shows that the SCWT0 

score equal to 80 that was obtained by the 75-year-old average educated women of 

the previous example corresponds to a percentile value between 10 and 25. Note that 

the normative tables are based on the LMM with MI approach, because this method 

has some substantial advantages over the other methods (see Introduction and 

Discussion).  

 

An automatic scoring program. The normative tables are easy-to-use but lack 

some accuracy, because (i) the tested patient’s age has to be rounded-off if he or she 

is not exactly 50, 55, ... , 80 years old, and (ii) because only a limited number of 

percentile values can be presented in the normative tables (to limit their size to a 

convenient format). To maximize both the user-friendliness and the accuracy of the 

normative data, the normative conversion procedure was implemented into an Excel 

worksheet (which can be downloaded at http://home.deds.nl/~wimvde/ 2). The use of 

the worksheet is straightforward: the clinician simply types in the age, gender, and LE 

of the tested patient together with his or her obtained raw SCWT scores at the 

different measurement moments, and the worksheet automatically computes the 

corresponding percentile values (based on the LMM with MI approach).   

                                                        
1 Reviewer note: the normative tables will be placed on this website after publication of the present 
paper. For reviewing purposes, it can be downloaded from 
https://dl.dropbox.com/u/8416806/Serial%20Testing/Tables.pdf  
 

2 Reviewer note: the worksheet will be placed on this website after publication of the present paper. 
For reviewing purposes, it can be downloaded from 
https://dl.dropbox.com/u/8416806/Serial%20Testing/Norms.xls  
 

http://home.deds.nl/%7Ewimvde/
http://home.deds.nl/%7Ewimvde/
https://dl.dropbox.com/u/8416806/Serial%20Testing/Tables.pdf
https://dl.dropbox.com/u/8416806/Serial%20Testing/Norms.xls
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Discussion 

 

The multivariate regression model or the standard linear mixed model? 

The standard LMM and the multivariate regression approaches yielded very similar 

results in the present study (see Tables 3a and b), but this will not always be the case. 

Especially when the data are highly imbalanced (e.g., when the repeated 

measurements are taken at widely varying time points), the results of both methods 

may differ more substantially (because the standard LMM approach allows for a more 

adequate modelling of the covariance structure than the multivariate regression 

method; Verbeke & Molenberghs, 2000). In the context of normative analyses, the 

use of an inappropriate covariance structure could lead to a situation where not all the 

relevant demographic covariates are taken into account in the construction of the 

normative data (not because the covariates are unimportant, but due to Type II error). 

The standard LMM approach is thus generally preferred over the multivariate 

regression method.  

 

The standard linear mixed model or the linear mixed model with multiple imputation? 

[GEERT] Gebaseerd op mijn eerdere commentaren is deze hele paragraaf fout. DL—

LMM (direct likelihood LMM) en MI-LMM zijn equivalent (indien het multiple 

imputation model alle potentiele relaties bevat die later in het model worden 

opgenomen). Het is ook zo dat het standaard LMM een effect toelaat bij patiënten op 

momenten dat ze niet gemeten zijn (voor voorbeelden van hoe dat werkt, zie ook het 

boek van 2007). In situaties waar zowel responsen als covariaten ontbreken kan het 

MI gewoon handiger zijn om mee te werken, maar verder verschil is er niet. Het 
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voordeel van DL-LMM is dat het heel makkelijk uit te voeren is, en geen Monte 

Carlo component behoeft.  

 

 

Is the missingness mechanism relevant when likelihood-based methods are used?  

As noted in the Introduction, ignorable likelihood methods assume that the 

missingness mechanism is MCAR or MAR (as defined earlier). In the MAAS and in 

most other cognitive aging studies, the MCAR assumption is not valid (Van 

Beijsterveldt et al., 2002). Thus, the missingness mechanism is either MAR or MNAR 

(missing not at random, i.e., the missingness depends on unobserved data). A 

definitive test of MAR versus MNAR is not possible (because every MNAR model 

can be exactly reproduced by a MAR counterpart; Molenberghs, Beunckens, Sotto, & 

Kenward, 2008), but Verbeke, Molenberghs, and Rizopoulos (2010) argued that 

ignorable analyses provide reasonably stable results even when the MAR assumption 

is violated. The reason for this is that such analyses constrain the behavior of the 

unobserved data to be similar to the behavior of the observed data (Verbeke et al., 

2010), and this is exactly what we want in the context of normative analyses. For 

example, suppose that a MAAS participant dropped out of the study at the second 

follow-up measurement occasion because he or she developed dementia. The 

missingness would clearly be associated with the unobserved log(SCWT6) score (i.e., 

it would be MNAR), but this is not a problem because the unknown log(SCWT6) 

score of the demented patient is not of interest. Indeed, in normative studies we are 

only interested in the test scores of cognitively healthy participants. When likelihood-

based methods are used, the “unobserved” log(SCWT6) and log(SCWT12) scores of 

the demented patient are modelled as based on the observed data of the patient at the 
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previous measurement moments (at which the patient was still cognitively healthy) 

and as based on the observed data at all measurement moments in the normative 

sample. As the observed data only include “cognitively healthy” individuals, 

appropriate estimates are obtained.    

So, in the specific case of normative studies, the missingness mechanism is of 

less importance – at least when appropriate likelihood-based methods are used. As 

was noted in the Introduction, this is not the case when the regression-based change or 

the ANCOVA methods are used (i.e., the MCAR assumption is critical to obtain 

unbiased norms when these methods are used).   

 

No Reliable Change Indices? 

Early attempts to deal with practice effects and establish norms for serial testing 

situations consisted of computing so-called Reliable Change Indices with correction 

for practice (RCI; Chelune, Naugle, Lüders, Sedlak, & Awad, 1993, see also Jacobson 

& Truax, 1991). The RCI method uses the overall mean change score and the overall 

SD(change score) in a normative sample to establish confidence intervals for change 

scores. By comparing the change score of a patient with these upper and lower 

boundaries, it can be evaluated whether the patient’s performance has changed 

significantly (i.e., declined or improved) over time.  

 We did not consider the RCI method in the present study, because it is merely 

a special case of the regression-based change method. Indeed, when the change score 

is not affected by any of the demographic covariates (in the normative sample), the 

final regression-based change model will only include the intercept (i.e., the overall 

mean change score), and the SD(residual) value will be equal to the overall 

SD(change score). Thus, apart from the general problems that hamper the validity of 
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the regression-based change method (see Introduction), the RCI method has the 

additional limitation that it makes the (unrealistic) assumption that the change scores 

are not affected by any of the demographic covariates.  

 

Using non-linear models 

The linear models that were used in the present study adequately described the 

evolution of the log(SCWT) scores over time. In most serial testing situations, linear 

models provide enough flexibility to capture the time trends of interest (e.g., quadratic 

or cubic time trends can be modelled by means of higher-order polynomials). 

Nonetheless, there are also a number of situations in which it might be useful to 

consider non-linear rather than linear models. For example, suppose that we would be 

interested in establishing normative data for the repeated quarterly measurement of 

phenomena that exhibit cyclic time trends (such as measures of immune functioning 

or depressive symptoms; Magnusson & Boivin, 2003; Nelson & Demas, 2004). Such 

phenomena cannot be easily modelled by means of linear models. Instead, a non-

linear model might be preferred in which a sine (or cosine) function is used to capture 

the seasonal time trend. Apart from the fact that a non-linear model would be used to 

obtain the fixed effect estimates, the further normative procedure is identical to the 

three-step normative approach described earlier.   

 

Correlated outcomes at a single time point 

In the present paper, we focussed on the situation where the same cognitive test was 

repeatedly administered using large test-retest intervals, but the proposed methods are 

of course equally well applicable in situations where a number of correlated outcomes 

are available at the same measurement moment. For example, Rey’s Verbal Learning 
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Test (VLT; Rey, 1958; Van der Elst et al., 2005) is a cognitive paradigm in which a 

sequence of fifteen words is presented to a participant in five subsequent learning 

trials. The increase in the number of recalled words over the five trials is often of 

clinical interest (for example, the learning curve is typically much more flat in 

demented patients than in cognitively healthy people), but it is unclear how the VLT 

data should be optimally analysed. At present, the vector of the five learning trial 

scores is typically summarized into a single measure (e.g., learning over trials = trial 5 

score - trial 1 score), or separate analyses are conducted for each of the five trial 

scores (Lezak et al., 2004; Van der Elst et al., 2005). The summary measure approach 

is not optimal because a lot of the data is discarded. The separate trial score approach 

is also not optimal because it introduces multiple testing issues, and because the 

correlated nature of the data is not used in the analyses (whilst this information would 

be useful to model a person’s VLT learning curve more adequately).  

By using multivariate regression, standard LMM, or LMM with MI 

approaches, all five VLT trial scores can be included in a single parsimonious 

analysis which is not hampered by these problems. Similarly, norms can be obtained 

that are based on all available data (using the three-step normative procedure 

described above). Note that in this setting (i.e., when correlated outcomes are 

considered that were collected at a single time point), the differences in the results 

between the standard LMM and the LMM with MI approaches will be small because 

missing values are quite uncommon in non-serial testing situations. Similarly, the 

differences in the results between the multivariate regression and the LMM 

approaches will be small because the data are (almost) perfectly balanced.  

 

General conclusion   
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At present, mainly the regression-based change and the ANCOVA approaches are 

used to establish normative data for serial cognitive assessment. These methods have 

the advantage that they are based on the classical linear regression model (which is 

well-known to most behavioural researchers and straightforward to perform), but they 

have some major disadvantages (e.g., they can only consider the data of two 

measurement occasions and they cannot deal with missing values in an appropriate 

way).    

The multivariate regression, standard LMM, and LMM with MI approaches 

are not hampered by these problems.LMM and LMM-MI are largely equivalent, 

because they are valid under the same assumptions and neither artificially decrease 

nor increase the amount of information available. The advantage of the LMM is that it 

is easy to conduct and does not require a Monte Carlo component. LMM-MI on the 

other hand, flexibly deals with missing responses and missing covariates at the same 

time. It is important, when using MI, that all relationships (e.g., between covariates 

and responses) to be studied in the scientific model of interest, are present in the 

imputation model, to avoid “imputing under the null.” 

 

 The log(SCWT) scores were affected by age, age2, time, gender, and LE. 

These covariates should thus be taken into account in the construction of the 

normative data. There was also a significant time x age interaction, which suggested 

that the increase in the log(SCWT) scores over time was more pronounced for older 

people (as compared to their younger counterparts). These results are in line with 

previous findings in the cognitive aging literature (Salthouse, 1996; Schmand, Smit, 

Geerlings, & Lindeboom, 1997; Stern, 2003; Van der Elst et al., 2006a; Van der Elst, 

2006). To increase the user-friendliness of the normative SCWT data, normative 
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tables and an automatic scoring program were provided (based on the results of the 

LMM with MI approach).  
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