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Introduction

Exploratory factor analysis (EFA) and principal compo-

nent analysis (PCA) are techniques mainly based on singular

value decomposition of covariance matrices of multivariate

data, e.g., a questionnaire, several measurements on a sub-

ject, etc. In multivariate data, it is very well possible that for

some of the subjects, one or more of the variables are miss-

ing. One approach to deal with this phenomenon is listwise

deletion, i.e., removing all subjects with missing values and

only using the observed part of the data. This would lead to

loss of information, and worse than that, biased estimates and

conclusions when the amount of missing data is large or the

data are not missing completely at random (MCAR) (Rubin,

1976). Especially when the amount of missing data is large,

one may be faced with a singularity problem after removing

the incomplete subjects, i.e., the number of items could be-

come larger than the number of fully captured observations.

As a result, the estimated variance-covariance matrices may

turn out to be non-positive-definite.

Another approach to deal with estimating the covariance

matrix of incomplete data is pairwise deletion, i.e., to use

completely observed pairs. The same drawbacks as in the

listwise deletion case can be considered here. Full infor-

mation maximum likelihood (FIML) is another established

approach to deal with incomplete data. FIML tries to max-

imally use the information from all subjects by allowing

subject-specific parameter dimensions (Enders & Bandalos,

2001). The singularity problem discussed earlier could cause

difficulties for FIML. Considering the fact that EFA is usu-

ally used in early stages of data collection, the available sam-

ple size is small. As McNeish (2016) mentioned, according

to Russell (2002), 39% of studies use a sample size of less

than 100and this is between 100 and 200 for 23% of them.

Adding missing data to such small samples would face meth-

ods like listwise deletion, pairwise deletion and FIML with

difficulties. This can be seen in the simulation study we have

performed in this paper as well. One also can use the EM
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algorithm (Dempster, Laird, & Rubin, 1977) to iteratively

estimate the covariance matrix of the incomplete data.

Wold & Lyttkens (1969) proposed the nonlinear iterative

partial least squares estimation (NIPALS) procedure, which

uses an alternating weighted least squares algorithm and esti-

mates principal components one by one in a sequential man-

ner. Gabriel & Zamir (1979) extended NIPALS to directly

estimate the desired subspace, rather than sequentially. It-

erative principal component analysis (Kiers, 1997) is used

to estimate the missing values and the principal components

simultaneously. The main difference between iterative PCA

and NIPALS is that NIPALS tries to estimate principal com-

ponents regardless of the missing values, while iterative PCA

produces a single imputation for the missing values as well.

However, a main problem with the iterative PCA of Kiers

(1997) is overfitting, i.e., while IPCA gives a small fitting er-

ror, its prediction is poor . This problem would become more

serious when the amount of missing data becomes larger.

Authors like Josse, Husson, & Pagès (2009) and Ilin & Raiko

(2010) proposed a regularized version of iterative PCA to

overcome this problem. In this approach, a regularization

parameter can control the overfitting, smaller values of this

parameter would produce results similar to IPCA and larger

values would regularize more. However, performance of this

method depends on properly tuning this regularization pa-

rameter.

Recently, authors like Josse, Pagès, & Husson (2011),

Dray & Josse (2015), Lorenzo-Seva & Van Ginkel (2016),

and McNeish (2016) have considered multiple imputation

(MI) in the sense of Rubin (Rubin, 2004; Schafer, 1997;

Carpenter & Kenward, 2012) to deal with the missing data

problem in PCA and EFA. Rubin’s multiple imputation first

imputes the data using, for example, a joint (Schafer, 1997)

or conditional (Van Buuren, 2007) model, then in the sec-

ond step performs the usual analysis on each completed (im-

puted) data set. The third and last step uses appropriate com-

bination rules to combine the results from each imputed data

set. An appropriate combination rule needs to respect the

fact that the imputed data are, after all, unobserved. Thus, it

needs to take into account that each missing value is replaced

with several plausible values. The focus of the current pa-

per is on this last approach, where the multiple imputation is

done prior to the desired analysis, e.g., PCA or EFA.

In this paper, the above problem will be described and

difficulties of using MI in case of factor analysis and PCA

will be discussed. Possible solutions will be reviewed and an

alternative simple solution will be presented. An extensive

simulation study will evaluate the proposed method. Also,

considering the “Divorce in Flanders" (Mortelmans et al.,

2011) dataset as a case study, the application of the proposed

method will be illustrated. The paper ends with concluding

notes.

Using multiple imputation and exploratory factor

analysis: a review

Consider p correlated random variables X′i =

{Xi1, . . . , Xip} with observed covariance matrix Cov(X),

of which the population value is Σ. In general, the idea of

principal component analysis is to find as few as possible

(uncorrelated) linear combinations of elements of X such

that their variance becomes as large as possible (needed)

subject to proper standardization. One can show (Johnson &

Wichern, 1992) if λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0 are the ordered

eigenvalues of Σ, and (λi, ei) is the ith eigenvalue-eigenvector
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pair, then the ith principal component is given by:

Yi = ei
′X, Var(Yi) = λi, Cov(Yi,Yk) = 0, i , k. (1)

As one may see in (1), the PCA (or exploratory factor anal-

ysis from a wider perspective) are obtained using singular

value decomposition of the covariance (correlation) matrix.

The eigenvalues of Σ are the roots of the characteristic poly-

nomial |Σ − λI| where |A| denotes the determinant of matrix

A and I is the identity matrix of the same order as Σ. Obvi-

ously, there is no natural ordering among roots of a polyno-

mial. Further, as one may see in (1), λi represents a variance.

It thus makes sense to order the eigenvalues in a descend-

ing manner. Problems arise when using multiple imputation

prior to the exploratory factor analysis or PCA.

Consider X(m)
i j as the observed value for ith subject (i =

1, . . . ,N) of jth variable ( j = 1, . . . , p) in the mth imputed

dataset. The eigenvector corresponding to the largest eigen-

value of Σ(m) = Cov(X(m)) gives the structure related to the

first latent factor, and there is no guarantee that the eigen-

vector corresponding to the largest eigenvalue of Σ(k) =

Cov(X(k)) (k , m) is comparable with the one from the mth

imputed dataset. In other words, averaging the eigenvectors

(principal axes, factor loadings) using the order or the ob-

tained eigenvalues of the covariance matrix estimated from

each imputed set is likely to lead to misleading or meaning-

less results.

Another difficulty of using MI prior to EFA is determin-

ing number of factors. While it is necessary to determine a

common number of factors across imputed sets of data, there

is no guarantee that different methods of determining num-

ber of factors would propose the same decision for each and

every sets of imputed data.

In order to overcome these problems, Dray & Josse

(2015) have averaged the imputed values to have one single

complete dataset. Other authors like Josse et al. (2011) and

Lorenzo-Seva & Van Ginkel (2016) proposed to first impute

the data, then perform the PCA or factor analysis on each

imputed dataset separately. After obtaining the eigenvectors

(factor loadings), because of the discussed problem of order-

ing, one needs an intermediate step before the usual averag-

ing. This step consists of the use of the class of generalized

procrustes rotations (Ten Berge, 1977) to make these matri-

ces as similar as possible. After rotating the obtained factor

loadings simultaneously, the next step would be the usual

averaging. McNeish (2016) has simply generated one set of

imputed data to prevent the consequences we have discussed.

One intermediate solution in place of averaging the im-

puted values (Dray & Josse, 2015) or averaging the factor

loadings (Lorenzo-Seva & Van Ginkel, 2016) could be to es-

timate the covariance matrix from imputed sets of data using

Rubin’s rules first, and then apply the PCA or exploratory

factor analysis on this combined covariance matrix. This

proposal will be discussed in the next section.

Using multiple imputation with factor analysis: a

proposal

Consider ˙X(obs) a dataset with missing values and

X(1), . . . , X(M) as the M imputed datasets with estimated co-

variance matrices Σ̂(1), . . . , Σ̂(M). Using Rubin’s rules (Rubin,

2004) the multiple imputation estimate of Σ can be obtained

as follows:

Σ̃ =
1
M

M∑
i=1

Σ̂M . (2)
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Having Σ̃, one may perform PCA or EFA directly on it, and

then the problem of factor ordering as well as determining

the number of factors across imputations would vanish. Of

course, that would not come for free. Estimating the covari-

ance matrix first, and then performing EFA would make

impossible the direct use of Rubin’s combination rules for

precision purposes. Therefore, one may consider indirect or

alternative solutions. We will consider this point in more

detail. It is worth noting that this is not required if no preci-

sion estimates are needed, e.g., when principal components

are merely calculated for descriptive purposes or, in general,

when there is no need to either make inferences about them

or select a sufficiently small subset of principal components.

As it was mentioned earlier, an important aspect of PCA

or EFA is determining the number of factors or principal

axes. While this is an important step in EFA or PCA, it is

very well possible that different imputed sets of data suggest

different decisions. This problem is also reported in McNeish

(2016). While our proposed approach does not suffer from

this problem, but still it is an important problem to address

when considering MI and EFA.

One popular criterion to determine the number of fac-

tors/PCs is the proportion of explained variance. The pro-

portion of explained variance based on the first k factors, γk,

is:

γk =

∑k
j=1 λ j∑p
j=1 λ j

, (3)

with λ j as in (1). When using MI, one needs to ensure the

correct amount of information present in the data is used.

This is also important when estimating γk. This can be done

by constructing a confidence interval for γk using the esti-

mate and variance obtained by properly taking imputation

process into account.

In general, even for exploratory factor analysis, it could be

more informative to use an interval estimate rather than only

a single point estimate to make a decision about, for example,

the number of factors. Especially, when the nice properties

of such point estimates (unbiasedness, consistency, etc.) are

asymptotic. As Larsen & Warne (2010) also mentioned, an-

other reason that encourages us to use confidence intervals

in exploratory factor analysis is the American Psychological

Association’s emphasis on reporting CI’s in their publication

manual (APA, 2010). Larsen & Warne (2010) proposed CI’s

for the eigenvalues, here we extend their work and derive

confidence intervals for the proportion of explained variance.

This can be used to determine the common number of factors

across imputed sets of data, while properly taking the impu-

tation process into account. However, the idea is general and

can be used for complete data, or other methods for analyzing

incomplete data.

Consider Λ = (λ1, . . . , λp) and ∆ a diagonal matrix with

λ1 ≥ . . . ≥ λp as its diagonal elements. For large samples we

have (Anderson, 1963; Johnson & Wichern, 1992; Larsen &

Warne, 2010):

Λ̂ ∼ Np

(
Λ,

2
N

∆2
)
. (4)

Consider
(
Λ̂i, cov(Λ̂i)

)
, the estimated eigenvalues and its

variance from the ith imputed dataset (i = 1, . . . ,M). Us-

ing Rubin’s rules (Rubin, 2004), the combined estimates of

eigenvalues and their covariance matrix
(
Λ̃, cov(Λ̃)

)
can be

estimated as follows:


Λ̃ = 1

M
∑M

i=1 Λ̂i,

cov(Λ̃) = 1
M

∑M
i=1 cov(Λ̂i) +

(
M+1

M

)
B̂,

B̂ = 1
M−1

∑M
i=1(Λ̂i − Λ̃)(Λ̂i − Λ̃)′.

(5)
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For the proportion of explained variance, consider the pair

(
∑k

j=1 λ̃ j,
∑p

j=1 λ̃ j). Using (4) and (5) leads to:

cov


∑k

j=1 λ̃ j∑p
j=1 λ̃ j

 =

 σ11 σ12

σ22

 , (6)

with: 
σ11 = A1cov(Λ̃)A′1,

σ22 = Acov(Λ̃)A′,

σ12 = A1cov(Λ̃)A′,

(7)

where A is an all-one row vector of size p and A1 as a row

vector of size p with its first k elements equal to 1 and the

rest p − k elements equal to zero.

Now equipped with estimate of (
∑k

j=1 λ̃ j,
∑p

j=1 λ̃ j) and its

covariance matrix, one needs to construct a confidence in-

terval for their ratio. That can be used to determine a com-

mon number of factors across imputations. For constructing

a confidence interval of ratio of two possible correlated ran-

dom variables one can use Fieller’s theorem (Fieller, 1954).

Fieller’s confidence interval for (3) can be calculated as fol-

lows:

C2
1 =

σ11(∑k
j=1 λ̃ j

)2 , C2
2 =

σ11(∑p
j=1 λ̃ j

)2 , r =
σ11

√
σ11σ22

,

A = C2
1 + C2

2 − 2rC1C2, B = z2
α/2C2

1C2
2(1 − r2),

L =γ̃k

1 − z2
α/2rC1C2 − zα/2

√
A − B

1 − z2
α/2C2

2

, (8)

U =γ̃k

1 − z2
α/2rC1C2 + zα/2

√
A − B

1 − z2
α/2C2

2

. (9)

Note that the confidence limits in (8) and (9) are general

and one can replace Λ̃ and cov(Λ̃) with an estimate and its

covariance obtained from any other method, and all of the

equations are still valid.

The results in (4) are only valid for large samples. For

small samples or where the normality assumption is violated

we propose a bootstrap confidence interval (Efron & Tibshi-

rani, 1994). Based on Shao & Sitter (1996), we propose the

following procedure to construct a bootstrap confidence in-

terval for the proportion of explained variance for incomplete

data using multiple imputation:

1. Take a bootstrap sample (a sample with replacement of

size N, the same size as in the original data) from the

incomplete data.

2. Impute this incomplete sample only ONCE using a

predictive model.

3. Estimate the covariance matrix of the imputed data,

perform EFA and compute the proportion of explained

variance.

4. Repeat 1-3, e.g., 1000 times.

5. The 100(1 − α)% confidence interval follows from the

α/2 and 1 − α/2 quantiles of the bootstrapped propor-

tions of explained variance.”

While the main use of constructing confidence intervals for

the proportion of explained variance is to select the number

of factors, it can be used for other purposes as well. It is

well-known (Harville, 1997) that tr(
∑M

m=1 Σm) =
∑M

m=1 tr(Σm)

where tr denotes the trace of the matrix. As tr(An) =
∑p

j=1 λ j,

where λ j ( j = 1, . . . , p) are the eigenvalues, by estimating Σ̃

using (2), the sum of all of the eigenvalues would not change.

But unfortunately, as Fan (1949) has shown, for matrices A,

B, and C = A + B, with eigenvalues αi, βi, δi in descending
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order, respectively, that for any k, 1 ≤ k ≤ p, we have:

k∑
i=1

δi ≤

k∑
i=1

αi +

k∑
i=1

βi. (10)

This would mean that the proportion of explained variance

obtained using eigenvalues of Σ̃ in (2) is always smaller than

γ̃k =
∑k

j=1 λ̃ j/
∑p

j=1 λ̃ j. In case that the proportion of ex-

plained variance obtained from Σ̃ is far out of the computed

CI, one needs to use our proposed method cautiously.

This phenomenon points out that either using Σ̃, one may

explain a much smaller proportion of variance with the same

number of factors compared with averaging the factor load-

ings directly. Or this would suggest, for the given k, that the

set of selected factors across the imputations are different,

i.e., no matter the order, different sets of factors are selected

in some of the imputed datasets. At any rate, in case of such

occurrence we suggest to try other approaches as a sensitivity

analysis.

Note that, the CI computed here is for
∑M

i=1 γ̂k and not for

γ̃k. Therefore, using such CI’s to determine the number of

factors with our proposed approach is beneficial to study the

validity, etc., but it is not necessary. However, this will be

necessary when users want to pool the factor loadings di-

rectly, because in that case determining the common number

of factors is an important issue.

The proposed method in this section together with Fieller

and bootstrap confidence intervals are implemented in R

package mifa (mifa, 2017). The documentation prepared

for this package gives explanations and examples on using it.

One can use this package to impute the incomplete data using

fully conditional specification approach (Van Buuren, 2007),

then estimate the covariance matrix using the imputed data.

Also, to construct Fieller and bootstrap CI’s for the propor-

tion of explained variance for given numbers of factors. The

information on how to install it is presented in the Appendix.

Simulations

In order to evaluate the proposed methodology an exten-

sive simulation is performed in this section. The simulation

consists of three main steps. 1- generating the data, 2- creat-

ing missing values, 3- analyzing the data. These three steps

were replicated 1000 times. Let briefly go over each step.

In order to generate the data, first of all a covariance ma-

trix was generated by solving the inverse eigenvalue prob-

lem, i.e., for a given set of eigenvalues, a covariance matrix

was generated using eigeninv package in R. The eigenval-

ues vector used for this simulation is as follows:

Λ = (50.0, 48.0, 45.0, 25.0, 20.0, 10.0, 5.0,

5.0, 1.0, 1.0, 0.5, 0.5, 0.5, 0.1, 0.1). (11)

After generating the covariance matrix, its Cholesky decom-

position was used to produce a set of correlated items. The

sample size is set to N = 100 and the number of items were

p = 15.

For each simulated dataset, two missing data mechanisms

were applied from the extreme categories: non-monotone

missing completely at random (MCAR) and monotone miss-

ing not at random (MNAR). Consider Xi j the ith observation

for the jth item. For creating a non-monotone MCAR mech-

anism, if a random number generated from Uniform(0,1) be-

comes smaller than a predefined pmiss,MCAR, then Xi j is set

as missing. For a small amount of missing data pmiss,MCAR

is set to 0.05, for a large amount of missing data it is set
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to 0.3. For monotone MNAR the pmiss,MNAR is computed as

exp(α + βXi j)/
(
1 + exp(α + βXi j)

)
for β = 1, and α = −10

in case of a large amount of missing data, and α = −13 for

generating a small amount of missing data. If a random num-

ber generated from a Uniform(0,1) becomes smaller than

pmiss,MNAR, then Xl j’s for l = i, . . . ,N are set as missing.

The averaged Pearson correlation (over 15 items and 1000

replications) between the data prior to deletion and the miss-

ing data indicator is computed as 0.041 with (−0.155, 0.234)

95% confidence interval for the small amount of missing

data, and 0.033 (−0.162, 0.226) for the large amount of

missing data. Note, a correlation between a metric and a

categorical variable is typically somewhat lower; our in-

tuition stems from Pearson correlations among continuous

variables. Table 1 shows a summary of proportion of ob-

served part of sample in 1000 replications of the simulations.

Table 1
Summary (mean, median and standard deviation (SD) over
1000 replications) of proportion of observed part of gener-
ated samples for different scenarios over 1000 replications.

Missing Mechanism Mean Median SD

Small MCAR 0.950 0.950 0.006
MNAR 0.947 0.950 0.030

Large MCAR 0.700 0.700 0.012
MNAR 0.693 0.696 0.057

The covariance matrix of incomplete data was estimated

using the following methods:

1. Complete: for the complete data, before creating the

missing values. This can be used as the reference to

evaluate other methods.

2. Listwise deletion: this method ignores every row

with missing values and estimates the covariance ma-

trix using other rows. This can be done by setting

use=’complete.obs’ in the function cov in R base

functions.

3. Pairwise: this method uses all completely observed

pairs to estimate the covariance matrix. This can be

done by setting use=’pairwise.complete.obs’ in

R base functions.

4. EM: this method uses the EM algorithm to compute

the covariance matrix. This can be done using the

function em.norm in the R package norm.

5. FIML: this method uses full information maximum

likelihood to compute the covariance matrix of the in-

complete data. This can be done using the function

corFiml in the R package psych.

6. IPCA-reg: this method uses regularized iterative prin-

cipal component analysis to impute and estimate the

covariance matrix of incomplete data. This can

be done using imputePCA function in R package

missMDA.

7. MI: this method uses our proposal, the imputation

model is based on fully conditional specification

(Van Buuren, 2007) implemented in R package mice

with a function with the same name.

Note that the maximum number of iterations for both the EM

algorithm and regularized IPCA was set as 1000. Also, the

regularization parameters in IPCA-reg is set as 1 (the de-

fault). For MI, when the amount of missing data was small,

10 imputations were considered, and for a large amount of

missing data the incomplete data was imputed 30 times. The

imputation was done using the Predictive Mean Matching

(PMM) method (Little, 1988; Vink, Frank, Pannekoek, &

Buuren, 2014). Also, the iterations per imputation was set
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as 5. Furthermore, 500 sub-samples were used to construct

the bootstrap CI’s.

In order to summarize the results of the imputation we

have considered three main aspects: 1- the number of times

each of the methods could actually lead to a positive-definite

covariance estimate, 2- for cases which a positive-definite

covariance was estimated, how it could be evaluated com-

pared with the covariance estimated using complete data, 3-

the proportion of explained variance in comparison with the

one obtained from complete data.

Table 2 shows the proportion of times each method led to

a PD covariance matrix. Note that in case of e.g., singularity,

methods like listwise deletion, pairwise deletion, and FIML

would lead to a non-PD covariance matrix.

Table 2
Proportion of times (out of 1000 replications) each method
led to a positive definite covariance estimate.

Small Large
MCAR MNAR MCAR MNAR

Listwise 1.000 0.978 0.000 0.833
Pairwise 0.518 0.926 0.002 0.153
EM 1.000 1.000 1.000 1.000
FIML 0.518 0.926 0.002 0.153
Regularized IPCA 1.000 1.000 1.000 1.000
MI 1.000 1.000 1.000 1.000

For comparing the estimates obtained using each method

with the one from the complete data we use a Ma-

halanobis distance (Mahalanobis, 1936)-based measure

d(S comp., S miss.) as follows:

d(S comp., S miss.) =

√
δT

{
Var[vech(S comp.)]

}−1
δ, (12)

where δ = vech(S miss. − S comp.) and Var[vech(S comp.)] =

2(N − 1)HS comp. ⊗ S comp.H, with H the elimination matrix,

⊗ the Kronecker product and vech the half vectorized ver-

sion of the covariance matrix, i.e., the diagonal and upper (or

lower) triangular elements. Figure 1 shows this measure for

covariance matrices estimated using different methods com-

pared with complete data. To see the effect of sample size,

for small amounts of missing values with MNAR mecha-

nism the simulation is repeated for n = 100, 1000, and 5000.

Figure 2 shows (12) for covariance matrices estimated using

different methods, compared with complete data for replica-

tions that such a covariance could be estimated. As one may

see, for large samples, most of the methods are behaving sim-

ilarly. But for small samples, which are frequent in practice,

selecting an appropriate method is important.

Furthermore, for comparing the proportion of explained

variance using complete data and other methods, their dif-

ference is taken as the measure: γ̂kmiss. − γ̂kcomp. . Boxplots in

Figures 3, 4, 5, and 6 show the difference between γ̂k for

covariance estimated using incomplete data with the one es-

timated using complete data with different methods in differ-

ent scenarios. This is computed for all possible values of k

(k = 1, . . . , 15).

In addition to these, the Fieller and bootstrap confidence

intervals are computed for the MI method. Tables 3 and 4

shows the averaged (over 1000 replications) of the estimated

γ̂k and its confidence interval for k = 1, . . . , 10.

As one may see in Table 2, methods like listwise dele-

tion, pairwise deletion, and FIML would fail to estimate a

positive definite covariance matrix, and the rate of this fail-

ure increases with amount of missing values. However, the

EM algorithm, regularized IPCA, and MI would always find

an estimate, though for larger amount of missing value this

would take more time, i.e., more iterations or a larger number

of imputations.

Figure 1 shows when the missing data are MCAR and
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Figure 1. Boxplots of computed distance in (12) between
the estimated covariances using complete data and different
methods.
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Figure 2. Boxplots of computed distance in (12) between
the estimated covariances using complete data and different
methods for small of amount of MNAR missing data for
n = 100, 1000, 5000.

their amount is small then almost all of the methods provide

acceptable results, though, listiwise deletion and pairwise

deletion are not as good. In general, the EM algorithm, regu-

larized IPCA and MI provide comparable results, though, as

it is observable in Figure 1, MI is always at least as good as

its competitors.

Looking at Figures 3, 4, 5, and 6, when it comes

to estimating the proportion of explained variance, again
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Figure 3. Boxplots of difference of the estimated proportion
of explained variance using different methods with complete
data (̂γkmiss. − γ̂kcomp. ) for MCAR- low scenario.
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Figure 4. Boxplots of difference of the estimated proportion
of explained variance using different methods with complete
data (̂γkmiss. − γ̂kcomp. ) for MNAR- low scenario.

for MCAR-small scenario, all methods perform acceptably

good, specially when we look at k = 5 and k = 6 which are

the desirable number of factors. However, when the mech-

anism becomes MNAR, or the amount of missing data in-

creases, some biased results can be observed in comparison

with estimated γk from the complete data. In that sense, MI

has an overall better performance. Note that one would be

able to get better results from regularized IPCA by tuning
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Figure 5. Boxplots of difference of the estimated proportion
of explained variance using different methods with complete
data (̂γkmiss. − γ̂kcomp. ) for MCAR- high scenario. The methods
which are not presented could not be computed in none of
1000 replications.
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Figure 6. Boxplots of difference of the estimated proportion
of explained variance using different methods with complete
data (̂γkmiss. − γ̂kcomp. ) for MNAR- high scenario.
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Figure 7. Boxplots of difference of the estimated proportion
of explained variance using MI directly with complete data
(̂γkmiss. − γ̂kcomp. ) for different scenarios.

Table 3
Small amount of missing data: the proportion of explained
variance using averaged covariance, its confidence interval
using Fieller’s method and bootstrap for k = 1, . . . , 10 and
the coverage (the proportion of times each CI includes the
true proportion of explained variance).

Fieller Bootstrap
k γ̂k Lower Upper Coverage 2.5% 97.5% Coverage

MCAR

1 0.279 0.215 0.342 1.000 0.261 0.363 0.931
2 0.507 0.444 0.568 1.000 0.487 0.590 0.974
3 0.691 0.642 0.737 1.000 0.667 0.752 0.998
4 0.809 0.775 0.841 1.000 0.794 0.853 0.998
5 0.895 0.875 0.913 1.000 0.884 0.920 1.000
6 0.940 0.928 0.951 1.000 0.934 0.955 1.000
7 0.965 0.957 0.972 1.000 0.962 0.975 0.993
8 0.984 0.981 0.987 1.000 0.983 0.988 1.000
9 0.989 0.987 0.991 1.000 0.988 0.992 0.963

10 0.993 0.991 0.994 1.000 0.993 0.995 0.899

MNAR

1 0.292 0.223 0.375 1.000 0.272 0.413 0.861
2 0.518 0.456 0.595 1.000 0.501 0.630 0.855
3 0.695 0.647 0.750 1.000 0.676 0.776 0.931
4 0.811 0.778 0.849 1.000 0.799 0.867 0.926
5 0.895 0.876 0.916 1.000 0.886 0.927 0.986
6 0.940 0.928 0.952 1.000 0.934 0.959 0.988
7 0.965 0.958 0.973 1.000 0.963 0.977 0.928
8 0.984 0.981 0.987 1.000 0.983 0.989 0.984
9 0.989 0.987 0.991 1.000 0.989 0.993 0.886

10 0.993 0.992 0.994 1.000 0.993 0.996 0.830

Table 4
Large amount of missing data: the proportion of explained
variance using averaged covariance, its confidence interval
using Fieller’s method and bootstrap for k = 1, . . . , 10 and
the coverage (the proportion of times each CI includes the
true proportion of explained variance).

Fieller Bootstrap
k γ̂k Lower Upper Coverage 2.5% 97.5% Coverage

MCAR

1 0.286 0.220 0.370 1.000 0.269 0.398 0.665
2 0.512 0.452 0.594 1.000 0.498 0.625 0.628
3 0.691 0.645 0.754 1.000 0.675 0.778 0.718
4 0.810 0.780 0.855 1.000 0.801 0.873 0.630
5 0.894 0.876 0.921 1.000 0.887 0.932 0.717
6 0.939 0.929 0.956 1.000 0.936 0.963 0.665
7 0.964 0.959 0.975 1.000 0.965 0.980 0.522
8 0.983 0.980 0.988 1.000 0.982 0.990 0.747
9 0.988 0.987 0.992 1.000 0.989 0.994 0.430

10 0.992 0.992 0.995 0.964 0.993 0.997 0.274

MNAR

1 0.305 0.240 0.437 1.000 0.289 0.506 0.861
2 0.524 0.478 0.648 0.990 0.520 0.703 0.855
3 0.688 0.658 0.784 0.974 0.688 0.823 0.931
4 0.805 0.787 0.871 0.950 0.804 0.896 0.926
5 0.887 0.875 0.926 0.950 0.882 0.941 0.986
6 0.934 0.928 0.958 0.945 0.930 0.967 0.988
7 0.962 0.958 0.976 0.917 0.960 0.982 0.928
8 0.981 0.979 0.988 0.910 0.979 0.990 0.984
9 0.988 0.987 0.992 0.891 0.987 0.994 0.886

10 0.992 0.992 0.995 0.842 0.992 0.997 0.830

the regularization parameter. Here we have used the default

value of the function imputePCA in R package missMDA.

That could be another reason to prefer MI over regulazrized

IPCA in this case, since no tuning is needed for MI.

In order to compare the results when using our proposal
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Table 5
MCAR mechanism–small amount of missing data: the pro-
portion of times the estimated the proportion of explained
variance falls within Fieller and bootstrap confidence inter-
vals. ‘Y’ stands for yes (the CI includes the estimated γk) and
‘N’ stands for no (the CI does not include the estimated γk).
The first letter corresponds to complete data and the seconds
letter stands for our approach, e.g. YY means the estimated
γk in both cases is included in the CI and YN means the es-
timated γk from complete data is included in the CI, but the
one from Σ̃ does not included in the CI.

Fieller Bootstrap
k YY YN NY NN YY YN NY NN
1 1.000 0.000 0.000 0.000 0.880 0.032 0.051 0.037
2 1.000 0.000 0.000 0.000 0.946 0.011 0.028 0.015
3 1.000 0.000 0.000 0.000 0.992 0.002 0.006 0.000
4 1.000 0.000 0.000 0.000 0.995 0.002 0.003 0.000
5 1.000 0.000 0.000 0.000 0.999 0.000 0.001 0.000
6 1.000 0.000 0.000 0.000 0.999 0.000 0.001 0.000
7 0.999 0.000 0.001 0.000 0.950 0.006 0.043 0.001
8 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
9 1.000 0.000 0.000 0.000 0.904 0.023 0.059 0.014
10 1.000 0.000 0.000 0.000 0.805 0.066 0.094 0.035
11 0.999 0.000 0.001 0.000 0.372 0.179 0.143 0.306
12 0.999 0.000 0.001 0.000 0.285 0.148 0.149 0.418
13 0.996 0.000 0.004 0.000 0.948 0.010 0.040 0.002
14 0.996 0.000 0.004 0.000 0.665 0.127 0.123 0.085
15 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

with the case where MI is directly applied on the factor load-

ings, Figure 7 shows the same boxplots for the proportion of

explained variance directly obtained from imputed data. As

one may see, when the amount of missingness is small, the

results from both approaches are comparable, while for large

amount of missing data the results of directly applying MI

are generally closer to the ones obtained from complete data.

Note that obtaining the corresponding eigenvectors (factor

loadings) depends on using the right order among them while

our approach does not suffer from this requirement.

Looking at Tables 3 and 4 we may see except for k = 10 in

MCAR-large scenario where the estimated γk is slightly out

of the bootstrap CI, this quantity is always in the estimated

confidence interval. That would suggest: the selected set of

factors are comparable across imputations, and our proposed

method provides valid results.

Table 6
MCAR mechanism–large amount of missing data: the pro-
portion of times the estimated proportion of explained vari-
ance falls within Fieller and bootstrap confidence intervals.
‘Y’ stands for yes (the CI includes the estimated γk) and ‘N’
stands for no (the CI does not include the estimated γk). The
first letter corresponds to complete data and the seconds let-
ter stands for our approach, e.g. YY means the estimated γk

in both cases is included in the CI and YN means the esti-
mated γk from complete data is included in the CI, but the
one from Σ̃ does not included in the CI.

Fieller Bootstrap
k YY YN NY NN YY YN NY NN
1 1.000 0.000 0.000 0.000 0.471 0.230 0.194 0.105
2 0.998 0.000 0.002 0.000 0.430 0.246 0.198 0.126
3 0.994 0.000 0.006 0.000 0.631 0.239 0.087 0.043
4 0.990 0.000 0.010 0.000 0.503 0.260 0.127 0.110
5 0.997 0.000 0.003 0.000 0.654 0.226 0.063 0.057
6 0.990 0.000 0.010 0.000 0.586 0.235 0.079 0.100
7 0.966 0.000 0.034 0.000 0.318 0.187 0.204 0.291
8 0.993 0.000 0.007 0.000 0.706 0.185 0.041 0.068
9 0.960 0.000 0.040 0.000 0.247 0.161 0.183 0.409
10 0.880 0.029 0.084 0.007 0.099 0.097 0.175 0.629
11 0.572 0.168 0.176 0.084 0.016 0.042 0.099 0.843
12 0.368 0.278 0.185 0.169 0.027 0.043 0.070 0.860
13 0.603 0.285 0.084 0.028 0.376 0.146 0.091 0.387
14 0.488 0.236 0.186 0.090 0.127 0.084 0.089 0.700
15 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

It is also useful to see out of 1000 replications, how many

times each of Fieller and bootstrap CI’s contained the esti-

mated γk from the complete data and the one obtained from

Σ̃. Tables 5, 6, 7, and 8 show this information for our 4 differ-

ent scenarios. As one may see, for small amount of missing

data, for both MCAR and MNAR scenarios, the coverage of

Fieller’s CI for both γk’s obtained from complete data and

Σ̃ is more than 95%. This would become smaller when the

amount of missing data is large, though when k is near 5 or

6, we have almost complete coverage for MCAR and at least

80% coverage for MNAR. For all of the four scenarios Fieller

CI’s are performing better than bootstrap. So that shows even

with N = 100 the Fieller’s CI performs well. One may use

larger number of sub-samples to obtain better bootstrap re-

sults. Note that, although the Fieller’s CI’s are performing

better, the bootstrap CI’s are also performing acceptably fine
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Table 7
MNAR mechanism–small amount of missing data: the pro-
portion of times the estimated proportion of explained vari-
ance falls within Fieller and bootstrap confidence intervals.
‘Y’ stands for yes (the CI includes the estimated γk) and ‘N’
stands for no (the CI does not include the estimated γk). The
first letter corresponds to complete data and the seconds let-
ter stands for our approach, e.g. YY means the estimated γk

in both cases is included in the CI and YN means the esti-
mated γk from complete data is included in the CI, but the
one from Σ̃ does not included in the CI.

Fieller Bootstrap
k YY YN NY NN YY YN NY NN
1 0.977 0.000 0.023 0.000 0.574 0.075 0.287 0.064
2 0.971 0.000 0.029 0.000 0.530 0.075 0.325 0.070
3 0.984 0.000 0.016 0.000 0.816 0.049 0.115 0.019
4 0.978 0.000 0.022 0.000 0.787 0.050 0.139 0.024
5 0.993 0.000 0.007 0.000 0.927 0.008 0.059 0.005
6 0.993 0.000 0.007 0.000 0.930 0.008 0.058 0.003
7 0.987 0.000 0.013 0.000 0.810 0.041 0.118 0.031
8 0.984 0.000 0.016 0.000 0.914 0.014 0.070 0.002
9 0.992 0.000 0.008 0.000 0.728 0.064 0.158 0.050
10 0.984 0.000 0.016 0.000 0.663 0.084 0.167 0.086
11 0.977 0.000 0.023 0.000 0.366 0.144 0.184 0.307
12 0.965 0.000 0.035 0.000 0.283 0.144 0.163 0.410
13 0.989 0.000 0.011 0.000 0.813 0.035 0.126 0.026
14 0.980 0.000 0.019 0.001 0.642 0.073 0.158 0.127
15 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

(sometimes even better than Fieller’s method, see, e.g., Ta-

ble 8) when constructed for a reasonable number of factors

(see Tables 5–8). Also, when the normality assumption does

not hold Fieller’s method would face some difficulties. In

such cases, having alternatives like bootstrap could be useful.

Divorce in Flanders

In order to illustrate the proposed methodology we use

the Divorce in Flanders (DiF) dataset (Mortelmans et al.,

2011). DiF contains a sample of marriages registered in the

Flemish Region of Belgium, between 1971 and 2008 with

an oversampling for dissolved marriages (2/3 dissolved and

1/3 intact marriages). As a part of this study, the participants

were asked to complete the validated Dutch version (Denis-

sen, Geenen, Van Aken, Gosling, & Potter, 2008) of the Big

Five Inventory (BFI) (John & Srivastava, 1999). The valid-

Table 8
MNAR mechanism–large amount of missing data: the pro-
portion of times the estimated proportion of explained vari-
ance falls within Fieller and bootstrap confidence intervals.
‘Y’ stands for yes (the CI includes the estimated γk) and ‘N’
stands for no (the CI does not include the estimated γk). The
first letter corresponds to complete data and the seconds let-
ter stands for our approach, e.g. YY means the estimated γk

in both cases is included in the CI and YN means the esti-
mated γk from complete data is included in the CI, but the
one from Σ̃ does not included in the CI.

Fieller Bootstrap
k YY YN NY NN YY YN NY NN
1 0.902 0.000 0.098 0.000 0.574 0.075 0.287 0.064
2 0.776 0.007 0.214 0.003 0.530 0.075 0.325 0.070
3 0.819 0.024 0.155 0.002 0.816 0.049 0.115 0.019
4 0.770 0.045 0.180 0.005 0.787 0.050 0.139 0.024
5 0.831 0.049 0.119 0.001 0.927 0.008 0.059 0.005
6 0.813 0.049 0.132 0.006 0.930 0.008 0.058 0.003
7 0.733 0.069 0.184 0.014 0.810 0.041 0.118 0.031
8 0.766 0.058 0.144 0.032 0.914 0.014 0.070 0.002
9 0.703 0.084 0.188 0.025 0.728 0.064 0.158 0.050
10 0.633 0.121 0.209 0.037 0.663 0.084 0.167 0.086
11 0.495 0.149 0.283 0.073 0.366 0.144 0.184 0.307
12 0.432 0.147 0.277 0.144 0.283 0.144 0.163 0.410
13 0.596 0.102 0.245 0.057 0.813 0.035 0.126 0.026
14 0.608 0.033 0.291 0.068 0.642 0.073 0.158 0.127
15 1.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

ity of the BFI for DiF data is investigated in Lovik, Nassiri,

Verbeke, Molenberghs, & Sodermans (2017).

The sample at hand consists of 9385 persons in 4472 fam-

ilies. In each family, mother, father, step mother, step father,

and one child over 14 were asked to fill in the BFI. Note that,

depending on the presented family roles and the number of

people agreed to participate, the size of the families could

vary between 1 and 5. Among these 9385 persons, there

are 1218 persons with at least one non-response (out of 44

items). As our main purpose here was to illustrate the use of

the proposed method, in order to get rid of the problem of

intra-correlation within the families, one person from each

family was selected at random to form a sample of uncorre-

lated subjects. As a result, a random sample of size 4472 was

taken where 515 of them had at least one non-response.

This incomplete dataset was imputed using the fully
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conditional specification (FCS) of Van Buuren (2007) using

the MICE package in R (Buuren & Groothuis-Oudshoorn,

2011) with PMM method. The imputation was done

M = 25 times. The covariance matrix was estimated

for each of the imputed sets of data and the exploratory

factor analysis was done on the averaged estimated

covariance matrix, as well as on each imputed set. The

latter was used to construct a confidence interval for the

proportion of explained variance. This can be done using

function mifa.cov in the R package mifa, available at

mifa (2017), as mifa.cov(data.sub, n.factor=5,

M=25, maxit.mi=10, method.mi=’pmm’,alpha=0.05,

rep.boot=1000, ci=TRUE). data.sub here is the

selected incomplete sub-sample.

The estimated factor loadings are presented in Table 9.

The Fieller’s confidence interval for the proportion of ex-

plained variance using 5 factors is obtained as (0.428, 0.439).

Also the bootstrap CI is obtained as (0.429, 0.441). The es-

timated proportion of explained variance of the first five fac-

tors, using the proposed methodology is 0.434, which falls

within both of the estimated intervals. This is coherent with

the validity of the proposed methodology for this dataset as

in Lovik et al. (2017).

Conclusions

Nonresponse and missing values are among at the same

time major and common problems in data analysis, espe-

cially when it comes to survey data. Multiple imputation,

which was first introduced to deal with nonresponse in sur-

veys (Rubin, 2004) has become a key and effective tool

to deal with this problem. While MI has become a very

commonly used approach to handle missing data in medi-

cal sciences, its use in psychology is increasing as well. As

Lorenzo-Seva & Van Ginkel (2016) mentioned, a Google

search for the terms psychology "multiple imputation" pro-

duced about 131,000 hits. Repeating it now, the number of

hits increased to 171,000. This shows the growing use of MI

in the field of psychology and psychometry, hence the neces-

sity to develop frameworks for using MI, in conjunction with

various methods commonly used in psychological research.

However, when it comes to combining this methodology

with techniques like exploratory factor analysis and princi-

pal component analysis, due to the problems of determining

a common number of factors/principal components and then

ordering them, combining the results from different sets of

imputed data becomes as issue.

This problem is addressed in this article and a pragmatic

solution is proposed, which is justified by theoretical discus-

sion and reasoning. Our proposal states to first estimate the

covariance matrix of the correlated variables and then per-

form the EFA/PCA on this single matrix. The theoretical as-

pects of this methodology are studied and investigated. As an

extension of the work of Larsen & Warne (2010), confidence

intervals are proposed for the proportion of explained vari-

ance, which can be used to determine the common number of

factors across imputations. Also, such confidence intervals

can be useful to decide on the validity of the the proposed

method.

The simulation results show comparable performance of

the proposed method, when compared to alternative method-

ologies. To evaluate our proposal in real situations, it is

applied to an incomplete BFI dataset; the result was def-

initely acceptable. The main advantages of using the pro-

posed methodology are: it is compatible with any imputation
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methodology; implementing it is very straightforward and no

extra programming effort is needed. Therefore, it can be used

within any desired statistical package or software. It is fast

and practical. Also, the proposed confidence intervals for the

proportion of explained variance can be used to determine

the number of factors.

The proposed ideas in this article are also implemented in

an R package mifa which is available at mifa (2017). That

would make it more available for practice.

Other MI-based solutions for exploratory factor analysis

of incomplete data come with their own pros and cons. Dray

& Josse (2015) pool imputed datasets, while this should be

done for parameters. Our approach solves this issue by work-

ing at the parameter level. Also, McNeish (2016) considers

only M = 1 imputed dataset. This does not comply with

the main goal of multiple imputation, which is considering

the uncertainty imposed by replacing the unobserved val-

ues by predicted values obtained based on observed values

by replacing each missing value by several plausible candi-

dates. With our proposal it is straightforward to use M > 1

imputed datasets. Finally, the approach in Lorenzo-Seva &

Van Ginkel (2016) does not suffer from any of the issues dis-

cussed above, but implementing it in practice is difficult. To

the best of our knowledge, other than the stand-alone soft-

ware FACTOR (Lorenzo-Seva & Ferrando, 2006), no other

publicly available implementation of this approach exists.

Ideally, the results of this article and the R implementation

of our proposal would encourage the research on as well as

use of MI for EFA of incomplete data.
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Appendix: using R package mifa

The package is available on I-BioStat’s website (mifa,

2017). One needs to download the package’s zip file. Af-

ter extracting the mifa folder, one can install the package or

simply run each function separately. The functions will be

available in ..mifa/ R. The documentation of how to use

different functions can be found in mifa.pdf.

For installing the package one needs to first install Rtools

from Rtools (2017), then install the package devtools in

R. Having these two installed, the following code can be used

to install the package mifa:

devtools::install(’..\\mifa’)

Note that the input in the code above should be the path of

the extracted mifa folder.
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Table 9
Factor loadings using oblimin rotation of DiF data using the
estimated covariance matrix from multiply imputed data us-
ing M = 25 imputations.

English items∗ Factor loadings

O C N E A

19. worries a lot 0.040 0.052 0.664 -0.097 0.067
14. can be tense 0.084 0.126 0.647 -0.068 -0.049
9r∗∗. is relaxed, handles stress well -0.299 -0.063 0.551 -0.030 0.004
39. gets nervous easily -0.021 -0.004 0.701 0.000 -0.017
24r. is emotionally stable, not easily upset -0.285 -0.100 0.458 0.001 -0.005
34r. remains calm in tense situations -0.286 -0.128 0.518 0.063 -0.064
4. is depressed, blue 0.018 -0.046 0.394 -0.260 -0.097
29. can be moody 0.167 0.025 0.388 0.004 -0.306
1. is talkative 0.132 0.014 0.110 0.609 0.049
21r. tends to be quiet -0.087 -0.064 -0.018 0.730 -0.041
16. generates a lot of enthusiasm 0.381 0.139 0.015 0.418 0.211
36. is outgoing, sociable 0.186 0.004 0.117 0.431 0.415
6r. is reserved -0.111 -0.009 -0.143 0.630 0.029
31r. is sometimes shy -0.183 0.053 -0.230 0.556 -0.062
11. is full of energy 0.300 0.253 -0.181 0.301 0.029
26. has an assertive personality 0.237 0.248 -0.146 0.310 -0.143
40. likes to reflect, play with ideas 0.540 0.231 -0.005 -0.041 -0.009
25. is inventive 0.582 0.179 -0.149 0.065 -0.030
30. values artistic, aesthetic experiences 0.558 -0.054 0.017 -0.182 0.151
5. is original, comes up with new ideas 0.515 0.122 -0.053 0.113 -0.032
15. is ingenious, a deep thinker 0.425 0.325 0.115 -0.041 -0.078
20. has an active imagination 0.537 -0.141 0.041 0.102 -0.000
10. is curious about many different things 0.498 0.137 -0.084 0.141 0.017
44. is sophisticated in art, music, or literature 0.432 -0.135 -0.035 -0.103 0.088
41r. has few artistic interests 0.348 -0.112 -0.104 -0.131 0.116
35r. prefers work that is routine 0.138 -0.042 -0.188 0.006 -0.087
3. does a thorough job 0.127 0.571 0.059 0.029 -0.042
28. perseveres until the task is finished 0.109 0.642 0.026 -0.035 0.029
18r. tends to be disorganized -0.379 0.563 -0.004 -0.019 0.061
23r. tends to be lazy -0.263 0.529 -0.025 0.037 0.136
13. is a reliable worker 0.135 0.478 0.070 0.049 0.089
33. does things efficiently 0.168 0.616 -0.026 -0.014 0.076
38. makes plans and follows through with them 0.233 0.524 -0.045 0.147 -0.049
43r. is easily distracted -0.220 0.448 -0.290 -0.039 0.021
8r. can be somewhat careless -0.400 0.457 0.022 -0.039 0.104
32. is considerate and kind to almost everyone 0.193 0.108 0.126 0.064 0.534
17. has a forgiving nature 0.162 0.025 0.036 0.044 0.446
7. is helpful and unselfish with others 0.171 0.147 0.060 -0.011 0.217
12r. starts quarrels with others -0.071 0.058 -0.288 -0.132 0.389
37r. is sometimes rude to others -0.187 0.091 -0.179 -0.165 0.522
27r. can be cold and aloof -0.138 -0.002 -0.063 0.205 0.479
22. is generally trusting 0.200 -0.096 -0.015 0.043 0.344
2r. tends to find fault with others -0.195 0.003 -0.249 -0.181 0.380
42. likes to cooperate with others 0.173 0.103 0.025 0.229 0.303
∗The English translations are taken from Denissen et al. (2008).
∗∗Negatively framed items were reversed before analysis.
N = Neuroticism, E = Extraversion, O = Openness to Experience,
C = Conscientiousness, A = Agreeableness.


