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Electrical Impedance Tomography (EIT) is a non-invasive, 
non-ionizing and inexpensive imaging modality that is 
used to image the conductivity distribution inside the sub-
ject under test. EIT is an emerging imaging technique that 
has the potential to be used in a variety of (bio)medical 
applications. A technology that is easy to integrate into a 
small portable device and also easy to setup. In this work 
a custom made impedance analyser is used as a measure-
ment device. The working principle is based on the differ-
ent conductivity distributions of the material under test, 
this due to inhomogeneous bioelectrical properties. How-

ever there is one major downside of this technique, the re-
construction problem of EIT is severely ill-posed. This 
means that the definition of a correct model is essential. 
Because of this ill-posed condition, a comparison of dif-
ferent models is done. In this work, an in depth study is 
performed to achieve the most optimal way of solving the 
inverse problem, which leads to noise suppression and re-
producible results. This technology, integrated in a lab-on-
chip for monitoring cellular growth, is based on a spatial 
reconstructed imaging technique using electrical imped-
ance tomography.
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1 Introduction Recent studies have shown the ap-
plicability of electrical impedance tomography (EIT) in 
(bio)medical imaging. One of the most convenient applica-
tions of EIT is monitoring the thorax. It is a radiation-free 
imaging modality, that can be used at the bedside with pa-
tients. The technique is suggested for the assessment of hae-
modynamic events such as stroke volume, blood pressure 
and pulmonary perfusion [1]. The inhomogeneous bioelec-
trical properties will cause an inhomogeneous conductivity 
distribution. This feature can be used to form tomographical 
images. 
 
In Regenerative Medicine (RM), imaging is imperative for 
the characterisation purposes as well as monitoring the pro-
gression of the regeneration. Many types of imaging tech-
niques already exist in the translational research, these tech-
niques often rely on synthetic or genetic fluorescent labels. 
However this labelling technique can be far from ideal, 
when looking at exogenous contrast labels, like nanoparti-
cles, the reliability will decay over time. Using genetically 
encoded labels will compensate for this. These labels have 
a good short-term as well as long-term lifespan, yet in hu-
man setting there are regulatory issues relating to the safety 

of genomic integration [2]. For this, EIT can be used as a 
valid alternative. Because the physics of the probing energy 
on the excitation electrode is diffusive, EIT is much more 
sensitive to conductivity changes near the electrodes than 
elsewhere. So as a consequence of this finding the correct 
solution for the reconstruction problem is one of the major 
challenges due to the ill-conditioned property of this recon-
struction problem. Because of this ill-posed condition, a 
comparison of different models is made to verify the influ-
ence of different approaches to solve the reconstruction for-
mulation. 
 
In this paper, a planar EIT sensor is developed to monitor 
cell proliferation. By using yeast cells, a proof-of-concept 
setup is created to monitor the cell proliferation. The sensor 
consists out of a circular array pattern of electrodes, placed 
inside a well. This gives the ability to inject a current into 
the medium and measure the changes in potential values on 
the boundary electrodes. The sensor that consists out of a 
custom made impedance analyser, has the ability for switch-
ing between multiple channels, accurate voltage measure-
ment and has the capability to generate a current with a low 
noise floor [3]–[5]. 
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2 Reconstruction algorithms 
2.1 Principle of EIT The EIT reconstruction technique 

is in essence finding the solution for a nonlinear problem by 
reconstructing the conductivity map in a closed domain (𝛺𝛺) 
based on the surface potential data developed at the bound-
ary by injecting a constant current signal, see equation (3). 
The mathematical theory of EIT can be split up into two 
parts: the “forward problem” and the “inverse problem” [6]. 
The forward solver tries to determine the boundary potential 
data and this for a known current  injection pattern. The in-
verse solver calculates conductivity distribution for which 
the boundary voltage difference becomes minimum, see 
equation (1). 

                           ∆𝑉𝑉 = 𝑉𝑉𝑚𝑚 − 𝑉𝑉𝑐𝑐 = 𝑉𝑉𝑚𝑚 − 𝑓𝑓                        (1) 

Where 𝑉𝑉𝑚𝑚  stands for the measured potential value at the 
boundary and 𝑉𝑉𝑐𝑐 is the calculated one. The parameter 𝑓𝑓 rep-
resents a function that maps a vector that has a length equal 
to the amount of elements, from which the model exists, into 
a vector consisting out of the total number of measured volt-
ages 𝑉𝑉𝑚𝑚. 
 
The next step is to find a relation between the electrical con-
ductivity value (𝜎𝜎) of each point inside the area of interest 
and their corresponding potential values (Φ). This relation 
can be represented by a derived formula from the Maxwell’s 
equation. 

                                 ∇ ∙ (𝜎𝜎∇𝛷𝛷) = 0                                 (2) 

As equation (2) represents a nonlinear partial differential 
equation it is not that trivial to solve it. In other words, since 
the potential distribution is dependent on the conductivity 
distribution, a direct or analytical method of solving will fail. 
This problem can be overcome by using a numerical tech-
nique like finite element method (FEM). By discretising the 
area of interest into small elements, an approximation of the 
correct values can be determined. However, this raises the 
following problem, the ill-posed problem of the EIT, equa-
tion (2) will have an infinite number of possible solutions if 
it is not provided with boundary conditions [7], [8]. In EIT 
the FEM technique is used to find the relationship between 
the developed potential differences in the area of interest 
and the current that is injected. This relationship is mathe-
matically described as the Jacobian (𝐽𝐽), represented by equa-
tion (3). Based on the Geselowitz’s sensitivity theorem 
(Geselowitz et al, 1971) a sensitivity method for fast calcu-
lation of the sensitivity map is provided. The theorem pro-
vided an implementation of impedance sensitivity of a four-
point measurement. 
                           
                            𝐽𝐽 = ∮ ∇𝛷𝛷𝑠𝑠 ∙ ∇𝛷𝛷𝑑𝑑𝑑𝑑(𝛺𝛺) 

𝛺𝛺                             (3) 

In this equation (3) 𝛷𝛷𝑠𝑠 and 𝛷𝛷𝑑𝑑 stand respectively for the for-
ward solution regarding the potential distribution for a spe-
cific source and the forwards solution for the adjoint source. 
In essence the forward model tries to find the relation be-
tween the injected current matrix (𝐶𝐶) and the potential value 
matrix (𝛷𝛷) found at the electrodes. This relationship is es-
tablished through the transformation matrix (𝐾𝐾(𝜎𝜎) ). So 
based on equation (4), the forward solver has to find a solu-
tion for the potential value matrix (𝛷𝛷). 
 
                             [𝛷𝛷] = [𝐾𝐾(𝜎𝜎)]−1[𝐶𝐶]                             (4) 
 
The inverse solver, in contrary to the forward solver, tries to 
find the conductivity distribution matrix (𝜎𝜎) when the cur-
rent matrix (𝐶𝐶) and potential value matrix (𝛷𝛷) are known. 
The goal is to find the minimal difference between the sim-
ulated potential values (𝛷𝛷) and the boundary data vector 
(∆𝑉𝑉). This is done by finding the least square solution of the 
function that is represented in equation (5). 

            𝑠𝑠 = 1
2
‖𝑉𝑉𝑚𝑚 − 𝑓𝑓‖2 = 1

2
(𝑉𝑉𝑚𝑚 − 𝑓𝑓)𝑇𝑇(𝑉𝑉𝑚𝑚 − 𝑓𝑓)            (5) 

However, equation (5) results into an ill-posed problem. To 
overcome this, a regularization method is included in the 
equation which redefines the object function 𝑠𝑠 into a well-
posed problem.  This can be described by the following gen-
eral framework, expressed by equation (6). 

                     min
𝜎𝜎
�1
2
‖𝑉𝑉𝑚𝑚 − 𝑓𝑓‖2 + 𝜆𝜆‖𝐺𝐺(𝜎𝜎)‖2�                 (6) 

Where the matrix (𝐺𝐺(𝜎𝜎)) stands for the regularization term. 
Looking at a more practical approach of the inverse problem, 
equation (6) can be solved iteratively by using the Gauss-
Newton method. So starting originally from equation (5), 
after differentiating, the general equation for EIT is found 
[6]. The algorithm starts by having an initial guess of the 
conductivity matrix (𝜎𝜎𝑘𝑘) and is updated with a conductivity 
update vector (∆𝜎𝜎) for every iteration. Using the following 
matrix (𝜎𝜎𝑘𝑘+1), the forward solver finds a new potential dis-
tribution matrix (𝛷𝛷) based on equation (4). Both voltage 
mismatch vectors (∆𝑉𝑉𝑘𝑘) and (∆𝑉𝑉𝑘𝑘+1) are compared to each 
other until a minimum is found. This results into equation 
(7), expressed in (S/m), that represents the solution for the 
conductivity distribution for every iteration 𝑘𝑘. 

     𝜎𝜎𝑘𝑘+1 = 𝜎𝜎𝑘𝑘 + �(𝐽𝐽𝑇𝑇𝐽𝐽 + 𝜆𝜆𝜆𝜆)−1(𝐽𝐽𝑇𝑇(𝑉𝑉𝑚𝑚 − 𝑓𝑓) − 𝜆𝜆𝜆𝜆𝜎𝜎)�
𝑘𝑘
     (7) 

So the inverse process works in the opposite way when com-
pared to the forward solver. This means that the inverse 
solver tries to find a solution for the conductivity distribu-
tion matrix (𝜎𝜎) when the current matrix (𝐶𝐶) and the potential 
value matrix (𝛷𝛷) are known. 
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To summarise the EIT algorithm works in the following 8 
steps: 

1. Calculate the boundary voltage values (𝑉𝑉𝑐𝑐 ) for a 
known current vector (𝐶𝐶) and an initial guess for the 
conductivity matrix (𝜎𝜎𝑘𝑘) in the first iteration. 

2. The voltage mismatch vector (∆𝑉𝑉𝑘𝑘) is calculated by 
comparing the measured voltage values (𝑉𝑉𝑚𝑚) and the 
calculated voltage values (𝑉𝑉𝑐𝑐). 

3. After finding the potential distribution matrix (𝛷𝛷) the 
Jacobian (𝐽𝐽) is calculated. 

4. The update conductivity vector (∆𝜎𝜎) can be calculated 
by using the Gauss-Newton iterative method. 

5. The conductivity matrix (𝜎𝜎𝑘𝑘+1) is regenerated by add-
ing the update conductivity vector (∆𝜎𝜎) to the previ-
ous conductivity vector (𝜎𝜎𝑘𝑘). 

6. The new conductivity matrix (𝜎𝜎𝑘𝑘+1) is used in the for-
ward solver to find a new voltage mismatch vector 
(∆𝑉𝑉𝑘𝑘). 

7. Check if the voltage mismatch vector (∆𝑉𝑉𝑘𝑘) satisfies 
the requirements of the specified threshold for the er-
ror margin. 

8. If the voltage mismatch vector (∆𝑉𝑉𝑘𝑘) meets the re-
quirements, the solution for the conductivity value 
matrix (𝜎𝜎𝑘𝑘) is found. Hence, the image can be created 
based on these conductivity values. If the criteria is 
not met, the algorithm starts back from the top until 
the pre-set threshold is minimally achieved. 

2.2 Measurement patterns In EIT there are several 
ways of measuring techniques, the boundary potential val-
ues and injecting patterns of current can be done in various 
ways. In this research, the three most common methods are 
tested: adjacent, opposite and a combination of the previous 
methods. 

Starting with the adjacent method (also known as the neigh-
bouring method or the Sheffield data collection protocol) [9]. 
In this method, the current is injected in two neighbouring 
electrodes and the voltage is measured from other succes-
sive adjacent electrode pairs. More concrete, in the first cy-
cle of measurements, the current is injected in E1-E2 and 
the voltage is measured from the electrode pairs E2-E3, E3-

E4, E4-E5, E5-E6, E6-E7, E7-E8, E8-E1. Note that elec-
trode-pair E1-E2 was excluded from voltage measurements, 
but E2-E3 and E8-E1 were not, see figure (1a). The next 
cycle of measurements is one with current injection on E2-
E3 and voltage measurements from E3-E4, …, E1-E2. After 
8 cycles of measurements, there are 56 voltage measure-
ments available [10]. 

The second one is the opposite method as proposed by Hua 
et al. With this method, the current is injected in opposed 
electrodes. So firstly, the current is injected in electrode pair 
E1-E5. For the voltage measurements, E2 is taken as the ref-
erence electrode, so voltage is measured from E2-E3, E2-
E4, E2-E5, E2-E6, E2-E7, E2-E8 and E2-E1, see figure (1b). 
Subsequently, the electrode-pair E2-E6 becomes the new 
current injecting pair and E3 the new reference electrode for 
the voltage measurements. Also here the process is repeated 
8 times, so in the end there are 56 measurements collected 
[10]. 

The third method is a combination of the two above. It will 
be addressed as the opposite driving/adjacent measuring 
method in this paper. In this method, the current will be in-
jected on opposite electrodes, but the voltage measurements 
will be performed on adjacent electrodes. This means that in 
the first cycle the current is injected in electrode pair E1-E5 
and the voltage measurements will happen from E1-E2, E2-
E3, E3-E4, E4-E5, E5-E6, E6-E7, E7-E8 and E8-E, see fig-
ure (1c).  In the next cycle, everything shift an electrode pair, 
so the current is injected in E2-E6 and the measurements 
take place on E2-E3, …, E1-E2. In the end, there is a dataset 
with 64 data points available. 

2.3 Hyperparameter selection One of the most im-
portant decisions to make when talking about the recon-
struction algorithm is the way of determining the regulari-
sation parameter, also called the hyperparameter (𝜆𝜆). This 
parameter is able to choose a ratio between the image reso-
lution and the smoothing of the data. Selecting this value 
could be done on a heuristic manner by reconstructing dif-
ferent images with each a different hyperparameter and se-
lect the best image [11]. However, this method is subjective 

Figure 1 Schematic diagram showing the principle of EIT for the first three measurement of the first cycle. 
(a) the adjacent current projection method. (b) The opposite current projection method. (c) The opposite 
driving/adjacent measuring method. 

b a c 
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and hard to reproduce [12]. A better approach for this prob-
lem is to calculate the hyperparameter based on different al-
gorithms. In the next section the four ways to calculate this 
parameter will be explained. 

The current state-of-the-art techniques to select the appro-
priate regularization hyperparameter consists out of four 
methods that are commonly used [13]. 

The first way to determine the hyperparameter (λ) is called 
the fixed noise figure (NF). The noise figure was firstly in-
troduced by Adler and Guardo and is defined as the ratio of 
the signal-to-noise-ratio (SNR) in the measurements to the 
SNR in the image, see equation (8). 

                 𝑁𝑁𝑁𝑁 =  𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚

=
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑚𝑚)
�𝑣𝑣𝑚𝑚𝑚𝑚 (𝑚𝑚)
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑆𝑆)
�𝑣𝑣𝑚𝑚𝑚𝑚 (𝑆𝑆𝑚𝑚)

                   (8) 

With the input signal 𝑚𝑚, the input noise 𝑛𝑛 and the output 
signal 𝑆𝑆. A NF value is picked and the algorithm then auto-
matically calculates the corresponding λ [14]. 

Secondly, there is the most recent method to predict the hy-
perparameter 𝜆𝜆, this method is called the image 𝑆𝑆𝑁𝑁𝑆𝑆������ [13]. 
The method determines the expected SNR in the image as a 
measure for the noise performance (NP). The SNR is deter-
mined for different targets and the average SNR over all the 
targets is the final NP metric. Once the final 𝑆𝑆𝑁𝑁𝑆𝑆������ value is 
calculated, a bisection search technique was applied to cal-
culate the value of 𝜆𝜆. 

                            𝑆𝑆𝑁𝑁𝑆𝑆������ = 1
𝑛𝑛𝑚𝑚
∑ 𝑆𝑆𝑁𝑁𝑆𝑆𝑖𝑖
𝑛𝑛𝑚𝑚
𝑖𝑖=1                             (9) 

Thirdly, the use of the L-curve approach is looked at. In this 
approach, the regularized solution is plotted parametrically 
against the corresponding residual vector. Both the values 
have to be as small as possible for an ideal hyperparameter 
value. Normally this plot has an L-shape. The value in the 
curvature of the L is the most correct value for λ, because 
this is the place where both of the values are the smallest 
[15]. Hence this point represents the best compromise be-
tween the data mismatch and the regularization parameter λ. 
This means that the L-curve displays the trade-off between 
minimizing the residual norm (‖𝑉𝑉𝑚𝑚 − 𝑓𝑓‖22) and the regular-
ization term (‖𝐺𝐺(𝜎𝜎)‖2) for a certain λ, see equation (6) [16]. 

     

 

Finally, a last method for determining the regularization pa-
rameter the Generalized Cross Validation method (GCV) is 
used. This method is based on the principle that if one ele-
ment of the dataset is left out, the GCV-function 𝐺𝐺𝐶𝐶𝑉𝑉(λ) 
should be able to predict this value, however only if the right 
value of λ is chosen [17]. 

 
                                  𝐺𝐺𝐶𝐶𝑉𝑉(𝜆𝜆) = ‖𝐾𝐾𝐾𝐾(𝜆𝜆)−𝑦𝑦‖2

2

�𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡�𝐼𝐼−𝐾𝐾𝐾𝐾(𝜆𝜆)𝐼𝐼��
2            (10) 

 
 

 
Where in equation (11) 𝐾𝐾(𝜆𝜆)𝐼𝐼  stands for a transformation 
matrix which will map the measured data (𝑦𝑦) onto the regu-
larized solution 𝑥𝑥(𝜆𝜆), i.e., 𝑥𝑥(𝜆𝜆) = 𝐾𝐾(𝜆𝜆)𝐼𝐼𝑦𝑦 [15]. 

       2.4 Prior selection Image priors are powerful tools 
to improve the quality of the reconstructed images, but it is 
important to keep in mind that they are based on probabilis-
tic assumptions. Therefore, it is possible that some priors are 
not suitable for every case and it is very important to remain 
critical [18]. The three used priors will be briefly quoted be-
low.  
 
The first prior that was used was the Laplace prior. This is a 
second order high pass filter which takes the inter-elements 
correlations in consideration by calculating the penalty term 
in a finite element model for each element and for his adja-
cent elements. On a finite element mesh, a value of -1 is as-
signed to the neighboring element, a value of 0 to the ele-
ments that do not border on the element and the element it-
self gets a value of (𝐷𝐷 + 1), where 𝐷𝐷 stands for the model 
dimension and is equal to three because of the 3D model that 
is used in this paper. The approach of this common edge 
sensitive filter makes it possible to detect edges and to make 
the reconstruction of the phantom more demarcated [18].  
 
The second and really popular prior is the Tikhonov regu-
larization parameter. The use of the regularization term can 
be seen in equation (6), by adding this term to the least 
square minimization function it becomes a well-posed ex-
pression with a unique solution for 𝜆𝜆 > 0. The Tikhonov pa-
rameter will exclude sudden variations and also smoothens 
the data. This results into a more stable problem [19]. 
 
The third prior was the Newton One Step Error Reconstruc-
tor (NOSER). This method takes one step of the Newton 
method, uses an estimated 𝜎𝜎0 and keeps it constant. These 
calculations can be done analytically. The NOSER algo-
rithm also includes a modification of the Jacobian matrix. 
This is necessary because it is ill-conditioned what means 
that it has both large and small eigenvalues. The small ei-
genvalues would, if the Jacobian matrix is inverted, become 
large eigenvalues and those will cause large errors [20]. 

Figure 2 A typical plot of the L-curve to find the most optimal 
value of λ. The values are obtained by plotting all the solutions 
over the full range of 𝜆𝜆 values. 

Figure 3 The lowest cross-validation error is the optimal solution 
for λ, this is represented by the lowest value of the GCV-function. 
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3 Materials and methods 
3.1 Cross-validation of the models Before diving 

into the development of the application, a test setup is pre-
pared to cross-validate all of the above mentioned solver, 
hyperparameter selection and prior selection. By doing this 
the reliability of the system can be evaluated. 

3.2 Test setup To do the cross-validation of the mod-
els the following test device is made. It consists of a polyme-
thyl methacrylate (PMMA) container with a height of 6.0 
mm and diameter of 5.5 cm. The sensor consists out of 8 
evenly spaced electrodes in a circular pattern fixed on a 
printed circuit board (PCB). The PCB was covered with a 
2.0 mm thick polydimethylsiloxane (PDMS) protective 
layer from which the electrodes extended.  

When placing an object with a different conductivity as the 
medium into the container, the resulting EIT image should 
show a difference in conductivity at the same place the ob-
ject is placed. For these first tests an iron object is placed 
into the container, because the metal object is more conduc-
tive then the 0.9 % NaCl medium the resulting image should 
show a higher conductivity area around the place of the 
metal object.  

3.3 Sensor setup Besides the test device a different 
setup is created to monitor the growth curve of yeast. The 
sensor contained 8 electrodes that were evenly spaced in a 
circular pattern with a radius of 1.00 cm on a PCB. In order, 
to culture the yeast, two layers of PDMS (3.0 mm) with a 
square hole (2.00 cm x 2.00 cm) were placed on top of each 
other on the PCB. To prevent leaking, the PDMS was taped 
to the PCB with double-sided tape (Tesa AG 4900, Acryl 
transfertape). Finally, a sheet of polymethyl methacrylate 

(PMMA) is placed on top of the well to eliminate any evap-
oration. 

To monitor the growth of yeast, Saccharomyces cerevisiae 
(0.02 g/ml) was used. As a culture medium a 10 % glucose 
solution was used, this supports the cell proliferation. First 
the medium was added in the sensor and afterwards the yeast 
cells were placed on top. These yeast cells will dissolve into 
the medium and subsequently will  precipitate. The meas-
urements were conducted in a temperature controlled incu-
bator, it was set at a constant temperature of 30.0 °C. The 
yeast sensor was placed in the incubator for a time span of 
24 hours, every 56 seconds a picture was taken with a cam-
era together with EIT measurements. This was done so that 
after the measurements were conducted a visual reference 
image was available to compare the eventual generated EIT 
images with. 

3.4 System instrumentation The measurements are 
performed with the MUSEIC V2.0, a low-power sensor with 
multiplexing capabilities [3]. In this research, the adjacent 
method is used with the driving electrodes included, using 
this method gives a total of 56 potential values for 8 elec-
trodes. The duration of measuring all the potential values 
and the switching of the multiplexer takes in total 56.0 s, for 
switching between the channels it takes 0.5 s and again an-
other 0.5 s for the measurement itself. Every measurement 
was done with the following parameters: a current of 5 µA, 
a frequency of 8 kHz and a gain of 70 V/V. 

To test the setup, a conductive object is placed into the con-
tainer, as a result the inverse problem should give an indica-
tion of the placement of the objects locations as a change in 
conductivity at the particular location. With the sensor con-
taining an 8 electrode setup a total of 56 measurements are 
made. These measurements, combined with a known current 
that is send into the area of interest and therefor by extend 
into the unknown medium, are the input elements that the 
inverse problem needs. The output will be a 2D image that 
represents the conductivity values in a planar surface. 

4 Results and discussion 
4.1 Validation measurements In figure (6) an over-

view is given of the measurements that are conducted with 
the test setup, here the influence of different settings in the 
mathematical model, which are described earlier, are shown. 
Overall, the reconstructed images were correct if the com-
parison is made with the placement position of the object. 
There was an anomaly visible around electrode number four, 
but since this anomaly was present in almost all different 
combinations this was probably a result of bad contact re-
sistance of the electrode number four. All the solutions re-
sulted into a good image and there was no obvious differ-
ence between the methods to calculate the hyperparameter 
(λ), this can be explained because of the large difference in 
conductivity values between the medium and the conductive 

Figure 4 A simplified overview of the test setup were the device 
is connected to a schematic representation of the impedance ana-
lyser (MUSEIC V2.0) [2]. 

Figure 5 (a) The sensor that is used to measure the growth 
curve of yeast. (b) A cross-section of the sensor. 

a b 
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object. When other measurements are conducted, where the 
conductivity values are closer together, the different meth-
ods for calculating the hyperparameter (λ) can help to de-
termine a more suitable hyperparameter value. Something 
that stands out by looking at the images is the difference in 
resolution. This is due to the different priors. For the Laplace 
prior the detection of rapid intensity changes is clearly visi-
ble in the images. When the Tikhonov prior is used in com-
bination with the Gauss-Newton method, the reconstruction 
process is stabilized and discontinuities in the image are 
smoothened. Finally, the NOSER prior is used, here a clear 
drop of resolution is visible. Because this prior alters the Ja-
cobian matrix to keep a balance between the resolution and 
the data smoothness, the low resolution is a consequence of 
the modified Jacobian matrix to find a suitable solution. 

4.2 Experimental measurements To know if it is 
even possible to detect the cellular growth of yeast the im-
pedance spectra of agar and a combination of agar and yeast 
is measured.  

The current electrodes are put on the first and second elec-
trode of the sensor while the sensing electrodes are put on 
the opposite electrodes (5 and 6), see figure (1).  

A clear difference is noticeable between them in impedance 
values, so by extension the conductivity values. After look-
ing at this result it is possible to state that it is possible to see 
the growth of the yeast cells into agar by using the EIT im-
aging technique. 

4.3 Monitoring the culture of yeast Before the 
solver can calculate the corresponding images of the meas-
ured boundary potential values, an accurate model of the 
physical setup is required. To do this the framework of EI-
DORS is used in MATLAB (MathWorks, Inc., USA), a 
compilation of algorithms that falls under the GNU Public 
License [18]. The model represents a well with a diameter 
of 1.00 cm that is filled with 0.40 cm of medium. This 3D 
model however is not the model that is used in the inverse 
problem, instead of solving this model a simplified  alterna-
tive of this model is taken. The medium, is assumed to be 
constant in the 𝑧𝑧 direction. Leaving out these variabilities 
result into a reconstruction of a 2D image. An additional dif-
ficulty when using the principle of EIT on cellular growth 
are the minimalistic changes of impedance during the pro-
cess of growing the cells. This section describes a two-way 
approach on imaging to address this problem.  

Figure 8 The 3D model used in the forward model: 
height = 0.40 cm and diameter = 1.00 cm. 
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Figure 7 Both the magnitude and phase are shown for a 1 % 
agar gel solution and a mixture of agar and yeast.  

Figure 6 Resulting images when placing a conductive object near electrode 4. The red area near this electrode 
indicates the presence of a conductive object near this electrode. The conductivity values are normalized between 
0 and 1, this is done because only an indication is needed that shows the correct position of a conductive object. 
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The first way of monitoring the cellular growth of the yeast 
cells in function of time describes an iterative process of 
generating a conductivity matrix solely based on the meas-
urements of boundary electrodes. By performing this tech-
nique only the subject under test needs to be measured, only 
the data collected from this measurement can be fed into the 
algorithm to generate the images. A disadvantage when us-
ing this technique is the small changes in the measured volt-
ages, so trying to find the optimal solution for this will be 
very difficult.  

A second approach is to take the differential measurement 
and feed this data into the EIT algorithm. By subtracting the 
measured data from a reference measurement subtle 
changes in the voltage measurements on the boundary elec-
trodes will show more distinct changes and this results into 
a more accurate image. Other advantages include the exclu-
sion of the contact impedance and errors in the electrode po-
sition. 

The results show similarities between the images when us-
ing the absolute or the differential values as an input for the 
solver. When looking at the range of conductivity the me-
dium shows a value of 3 S/m and lower, this however in 
some images include noise. The conductivity values of the 
growing yeast is between 3 and 9 S/m, this verifies the ear-
lier experiment where the impedance spectrum is taken from 
both agar and a combination of agar and yeast. These results 
showed that the yeast gives a lower resistance value than the 

medium, this by extend concludes the EIT results where the 
yeast has a higher conductivity than agar. When the mean 
value of every image is taken based on the differential 
method, the progression of the growth of yeast can be mon-
itored in function of time. In figure (9) two phases are visi-
ble in this process. First there is the proliferation phase, in 
this phase a clear increase of conductivity can be established, 
the values start close to 0.1 S/m and increase until 9 S/m. 
The second phase is the death of the yeast cells, a conse-
quence is the decrease of conductivity from 9 S/m to 1 S/m. 
Changes in the membrane potential values can be explained 
by the small volume of a cell, large surface-to-volume ratio 
and high transport capacity of proteins through the proton 
pump in the cell barrier. These things all contribute to the 
ion homeostasis in a yeast cell [21]. 

5 Conclusion The focus of this paper is to execute a 
feasibility study on how EIT imaging can help in the analy-
sis of the cell-drug interaction. This is done by using exist-
ing hardware in combination with a custom sensor and EIT 
algorithm. This results into a working miniaturised experi-
mental setup for electrical impedance tomography, a non-
invasive and contactless imaging technique. A circular sen-
sor array of 8 electrodes gives the possibility to detect cel-
lular growth at any location within this region. In addition 
to the solver a script is written to cross-validate the different 
parameters that are needed to reconstruct the most accurate 
image. A spatial reconstruction of the outline is made re-
garding the growth of yeast by using the adjacent method. 

Figure 9 (a) The EIT image at t = 0 h shows the starting point of the growing curve in function of time. The progression of the 
growth curve is show at several intervals: 0 h, 7 h, 12 h and 19 h. (b) Besides the images itself an overview of the measured voltages 
is shown for each frame. (c) Taking the mean value of each frame and plotting these values for the total time span of 20 h results 
into the following chart. A clear trend is shown during the proliferation phase followed by the phase of cell death. 

a 

b c 
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However, to this day mostly the differential method is used 
in (bio)medical applications, these results show that the cor-
rect model together with the correct parameters give com-
parable results. Nevertheless, differential measurements 
will result into much more stable measurements because of 
the elimination of electrode position errors, contact imped-
ance and also a major advantage of differential measure-
ments is the speed of reconstruction. Based on these results 
it is possible to verify the feasibility study regarding the de-
velopment of a EIT sensor to monitor cellular growth in 
function of time. 
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