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Abstract
When developing optimisation algorithms, the focus often lies on ob-

taining an algorithm that is able to outperform other existing algorithms
for some performance measure. It is not common practice to question
the reasons for possible performance differences observed. These types of
questions relate to evaluating the impact of the various heuristic parame-
ters and often remain unanswered. In this paper, the focus is on gaining
insight in the behaviour of a heuristic algorithm by investigating how the
various elements operating within the algorithm correlate with perfor-
mance, obtaining indications of which combinations work well and which
do not, and how all these effects are influenced by the specific problem in-
stance the algorithm is solving. We consider two approaches for analysing
algorithm parameters and components — functional analysis of variance
and multilevel regression analysis — and study the benefits of using both
approaches jointly. We present the results of a combined methodology
that is able to provide more insights than when the two approaches are
used separately. The illustrative case studies in this paper analyse a Large
Neighbourhood Search algorithm applied to the Vehicle Routing Problem
with Time Windows and an Iterated Local Search algorithm for the Un-
related Parallel Machine Scheduling Problem with Sequence-dependent
Setup Times.
Keywords: Functional Analysis of Variance fANOVA Multilevel
Regression Algorithm Performance Vehicle Routing Problem
with Time Windows Large Neighbourhood Search Iterated Lo-
cal Search Unrelated Parallel Machine Scheduling Problem

1 Introduction

Experimentation on heuristic algorithms commonly entails the computational
testing of an algorithm on some benchmark problem set and comparing re-
sults against those of known algorithms. The objective is to be better than
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the competing algorithms for some performance measure (e.g., solution quality
or running time). Such an approach for evaluating algorithms does not ex-
plain, however, ‘why’ one method achieves better results than other ones [17].
Which algorithm elements (i.e., parameter or components) contribute more or
less to a good performing algorithm? Are there specific combinations of ele-
ments that work well or not? Or is the observed superior performance due to a
more efficient implementation of the algorithm? These kind of questions often
remain unanswered when following a competitive evaluation methodology. Nev-
ertheless, such insights are necessary to truly understand algorithm behaviour
[20, 34].

The choice of a suitable configuration for a heuristic algorithm is a task that
in the past often entailed a trial-and-error approach and relied on researchers’ ex-
perience [10]. Automated algorithm configurators, such as ParamILS [21], irace
[26], Sequential Model-based Algorithm Configuration (SMAC) [18] and GGA
[1], replace the manual effort with the computational power of machines and
provide (a set of) well-performing parameter setting(s)1. These methods have
proven to result in better-performing heuristic algorithms [32, 35]. However,
they often do not provide any further information about, for example, which
algorithm elements contribute most to performance. Recently, methodologies
have been proposed for evaluating heuristic algorithms that go a step further
and aim for a more profound understanding of the heuristic elements’ impact on
performance [2, 7, 9, 13, 19, 20, 30]. Similarly, the influence of problem instance
characteristics has been investigated to identify the strengths and weaknesses
of heuristic algorithms across large and diverse sets of problem instances [38].
Instance characteristics are employed in empirical hardness models [25] to pre-
dict how much time a given algorithm (e.g., CPLEX) requires to solve a given
problem instance. In this research, we consider two model-based methodolo-
gies [9, 20] and investigate for a particular application scenario whether both
approaches deliver consistent insights. More importantly, we look into possible
opportunities for a complementary use of both methodologies. Our focus there-
fore lies on answering the following questions. How can both methodologies be
formulated in a combined methodology and what is the added value of jointly
applying both approaches? And are the insights obtained from the analysis
results of both approaches consistent or are there any differences observed?

The investigated methodologies are functional analysis of variance (fANOVA)
[20] and multilevel regression [9]. fANOVA quantifies the relative importance
of the algorithm elements and their interactions according to the amount of
variance in the performance data they explain, giving an indication of which
effects are most important to performance. The multilevel regression method-
ology explicitly separates the performance impact of algorithm elements and
problem instances. It is focused on quantifying the relationship between algo-
rithm elements and performance and how this relationship is moderated by the
characteristics of a specific problem instance.

Each methodology has its own advantages. fANOVA does not rely on sta-
tistical assumptions, such as normality and homoscedasticity, that are required

1We interpret a parameter setting as a set of values and included operators.
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by multilevel regression models. It is also computationally cheaper than the
multilevel regression model approach for our given case study. The multilevel
regression model, on the other hand, offers a more detailed analysis of the al-
gorithm, since it can investigate algorithm element effects for a specific setting
of the other elements and a specific problem instance. Moreover, the interpre-
tation of effects in fANOVA is carried out through variance percentages and
visual inspection of plots. The latter might be difficult for interaction effects.
The interpretation of the regression analysis is based on quantified effects, and
plots are merely used to support and visualise interpretation. The regression
analysis also provides a statistical significance test to indicate whether there
really is a link between the values chosen for a specific algorithm parameter and
the obtained performance, or whether any observed relationships are likely due
to chance.

In this paper, we combine both methodologies by relying on the importance
analysis provided by fANOVA to formulate a proper regression model for the
multilevel methodology. This prevents an overly complex regression model with
many variable (interactions) that contribute little to performance. This regres-
sion model can then be used for a more detailed analysis of the important effects
and for confirmatory analyses with hypotheses testing. Both approaches and
their combination are assessed by means of two case studies. The first one tests a
number of configurations for a Large Neighbourhood Search (LNS) algorithm on
a number of problem instances for the Vehicle Routing Problem with Time Win-
dows (VRPTW). The second considers an Iterated Local Search (ILS) method
for the unrelated parallel machine scheduling problem with sequence-dependent
setup times (UPMSP).

The paper is organized as follows. The methodologies of fANOVA and mul-
tilevel regression analysis are introduced in section 2, along with the proposed
combination of the two approaches. The two case studies and analysis results
are presented in section 3 and 4. Finally, conclusions and future work are given
in section 5.

2 fANOVA and Multilevel Regression Models

2.1 fANOVA

The fANOVA method proposed in [20] is an approach for analysing the impor-
tance of algorithm elements on performance using a random forest prediction
model and the functional analysis of variance [16]. In this paper, we use the im-
plementation provided at https://github.com/frank-hutter/fanova 2. The
approach studies the contribution of every single element and every element
interaction on the performance of the algorithm. In particular, given a data set
of performance values of different algorithm parameter settings on a number of
problem instances, fANOVA first builds a random forest-based prediction model

2A newer implementation is recently introduced at https://github.com/automl/fanova.
The two versions give similar analysis results. The reason why we use this old version is
because it runs much faster in our experience, probably due to the different underlying choices
of programming languages used in each version.
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to predict the average performance of every algorithm parameter setting over
the entire problem instance space. Afterwards, functional analysis of variance
[16] is applied on the prediction model to decompose the overall algorithm per-
formance variance into additive components, each one corresponds to a subset
of the algorithm elements. The ratio between the variance associated with each
component and the overall performance variance is used as an indicator of the
importance of the corresponding algorithm parameter subset. For example, the
following shows a part of the output of a fANOVA on the Large Neighbourhood
Search algorithm used in our study in Section 3 for a Vehicle Routing Problem
with Time Windows problem instance set:

Sum of fractions for main effects 75.10%

Sum of fractions for pairwise interaction effects 6.26%

72.62% due to main effect: repair

1.72% due to main effect: destroy

1.60% due to interaction: repair x destroy

The interpretation of the first two lines is that 75.10% of the algorithm
performance variance can be explained by single elements, and 6.26% by the
interactions of every pair of algorithm elements. The remaining 18.64% is ex-
plained by higher-order (≥3) interactions and error inherent in the model. The
third line indicates that the repair component is the most important element,
as the component itself can explain a huge part (72.62%) of the overall algo-
rithm performance variance. The other component destroy and their pairwise
interaction repair and destroy are less important. The details of the algorithm
and those elements will be further described in section 3.

In addition to the value indicating the importance of each algorithm element
subset, fANOVA also provides some insights on which regions are good and bad
(with a degree of uncertainty) for each element inside the subset through a
marginal plot. Given a specific value for each algorithm element in the subset,
the corresponding marginal prediction value is the average performance value
of the algorithm over the entire configuration space associated with all elements
not belonging to the subset. A marginal plot shows the mean and the vari-
ance of the marginal prediction values given by the random forest’s individual
trees. Figure 1 shows the marginal plot of repair. This categorical element has a
domain of three values: Greedy, Regret2 and GreedyRegret2, each of which is as-
sociated with a boxplot in Figure 1. The boxplot for Greedy, for example, shows
the mean and the variance of the average algorithm performance values over the
entire problem instance space of all algorithm parameter settings having repair
= Greedy. The plot implies that Regret2 is the best choice for the element repair.

Although fANOVA generally focuses on analysing the importance of algo-
rithm elements, it can also be used to study the interaction between elements
and problem instance features — as we do in our case study — by adding those
features into the prediction model of fANOVA. The features are treated exactly
in the same way as the algorithm elements. It must be noted that such an
integration can only be valid if the features are independent. In other words,
instance features might be correlated, but their values in the problem instance
set under study must be arbitrarily chosen. In our case study, instances are gen-
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Figure 1: fANOVA’s marginal plot for the main effect of parameter repair.

erated by randomly sampling values from all features’ domains, which satisfies
this independency requirement.

2.2 Multilevel Regression

The multilevel methodology proposed by Corstjens et al. [9] is an approach
for analysing the relationships between algorithm elements, problem instance
characteristics and algorithm performance using a multilevel regression (MLR)
model. The approach studies how the performance measure will change when
modifying an element from one value to another and how this change is in-
fluenced by the problem instance the algorithm is solving. Unlike fANOVA,
regression models do not focus on the variance in the data that is explained
by each of the investigated variables, but on estimating the variable coefficients
[28]. More precisely, regression is applied to describe the relationship between
a response variable and variables that explain the response, the explanatory
variables. This relationship is formulated mathematically in a regression model
which describes how the response value will change when an explanatory vari-
able changes with some value [29]. For every calculated coefficient estimate a
confidence interval is provided to indicate whether the estimated performance
change by some parameter value is significantly different from zero or not. If
not, the observed impact is likely due to chance.

Furthermore, the multilevel aspect of the methodology enables to efficiently
study how effects vary by group by relying on multilevel models[11]. Within the
context of heuristic experimentation it is possible to identify a multilevel struc-
ture when experimenting with different parameter settings on a single problem
instance of some combinatorial optimisation problem. Any observed differences
in performance can then be attributed to the algorithm elements and not the
problem instance. To expose the influence of the problem instance, such a mul-
tilevel structure is then determined for multiple problem instances. It can then
be analysed how the performance impact of the various elements changes when
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considering different problem instances. It enables answering questions like
”Does a heuristic operator work equally well on instances with a few customers
and instances with many customers? When service time is long on average, is it
better to lower the cooling rate within simulated annealing or increase it? ...”[9].

Given a data set of performance values of different algorithm parameter set-
tings on different problem instances, a multilevel regression model is formulated
to predict the average expected performance for a particular parameter set-
ting and problem instance. Note that the interpretation of predictions between
fANOVA and MLR differs. Evaluating a specific parameter by fixing it at dif-
ferent values, fANOVA predicts an average performance for every value taking
into account all values of all other algorithm parameters over the entire instance
space. MLR, on the other hand, predicts for each value the average performance
given a fixed setting of the other parameters and considering a specific problem
instance. The regression model therefore enables a more detailed analysis of
parameter effects.

The multilevel regression model is an extension of a classical regression model
in which the coefficients have their own probability model, being the second,
higher level. It has accompanying parameters which are the predictors at this
second level [14]. A possible formulation of a multilevel regression model —
using the same example as in section 2.1 — is given in equations (1) to (3) where
three algorithm parameters are considered (equation (1)) and three problem
instance characteristics operating at the problem, i.e., group, level (equations(2)
and (3)).

Yi = αj[i] + β1j[i]Greedyi + β2j[i]Regret2i + β3j[i]Randomi + εi (1)

αj = µα0 + µα1 customersj + µα2 demandj + µα3 servicetimej + ηαj (2)

βkj = µβk0 + µβk1 customersj + µβk2 demandj + µβk3 servicetimej + ηβkj (3)

where

i ∈ I scenario, a combination of a specific problem instance with a spe-
cific parameter setting

j ∈ J problem instance

j[i] index variable to code problem instance membership (j[i] = j),
e.g., j[90] = 5 means the 90th scenario solves problem instance 5

Yi objective function value of scenario i

Greedyi algorithm element in scenario i

customersj problem instance characteristic in problem instance j

αj varying regression intercept, representing the solution quality given
problem instance j when all algorithm elements are set equal to 0

βkj represents the varying effect of algorithm parameter k on Y given
scenario i and problem instance j
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µ0 represents a mean problem effect

µ1,2,3 represent the effect of the problem-level predictors on the varying
algorithm element effects

ηj error at the problem instance level and is assumed to be ∼ N(0,σ2)

εi error at the parameter setting level and is assumed to be ∼ N(0,σ2
e)

Equation (1) represents the lowest level where the objective function value
for scenario i is observed, with a scenario defined as the combination of a spe-
cific problem instance with a specific parameter setting. The objective function
value observed is hypothesised to depend on the values that are set for the var-
ious heuristic parameters, as indicated by the variables Greedyi, Regret2i and
Randomi, and with the β coefficients representing the performance impact of
each parameter. Equations (2) and (3) represent the problem level and define
how the effects in equation (1) (i.e., the β’s) are moderated by the problem
instance characteristics, represented by the variables customersj , demandj and
servicetimej . With this model we can learn the impact a single algorithm pa-
rameter has on performance and how it is influenced by the problem instance
characteristics.

In the next subsection we explore the complementary use of fANOVA and
multilevel regression.

2.3 A Combined Methodology

We propose a methodology that combines the use of fANOVA and multilevel
regression analysis. The idea is to use the ranking of effects fANOVA provides
to formulate a multilevel regression model that includes only the most impor-
tant effects. The search for a suitable regression model that includes all relevant
variables can often be a cumbersome task [14]. The more variables and variable
interactions are included, the more complex the model becomes and the more ar-
duous it is to interpret the estimated effects. The challenge thus lies in deciding
which explanatory variables and interactions to include in the model. fANOVA
can provide assistance with this issue. Since the analysis gives a ranking on the
importance of effects, a regression model could then be formulated based on
this ranking in order to prevent an overly complex model with many variables.
The regression analysis can then more easily focus on these important effects. A
regression model that is less complex in terms of fewer variables and variable in-
teractions included also implies time savings when fitting the model to the data.

The regression analysis facilitates a more detailed analysis since it provides
effect estimates for a particular parameter setting and problem instance, while
the fANOVA analysis estimates marginal performance for a particular param-
eter value by averaging over all other parameters and problem instance char-
acteristics. Furthermore, the multilevel regression adds contribution on the
importance analysis by calculating confidence intervals for each of the effects.
This indicates which effects are actually statistically significant and which are
likely due to chance. Finally, since regression models assume specific functional
forms — linear or nonlinear (exponential, logarithmic, . . . ) —, it has the ability
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to extrapolate results, unlike the random forest prediction model fANOVA uses
which has an upper and lower bound for predicted values. Nonetheless, caution
is advised when extrapolating results to regions in the configuration or problem
instance space where there is no data to support them as the assumed trend
does not necessarily hold for out-of-sample ranges [14].

In the next section, a case study is performed that explores how parame-
ters relate to performance, and how problem instance characteristics possibly
influence performance impact of parameters. We compare the findings of both
fANOVA and multilevel regression analysis and aim to show their consistency.
This will lead to the conclusion that a fANOVA is suited to serve as an ex-
ploratory analysis, exposing correlations between input factors (parameters and
problem instance characteristics) and performance. However, the next step is
looking to explain the patterns that are observed in consecutive experiments
with hypothesis testing and theory formulation. The latter entails a confirma-
tory analysis that cannot be performed with fANOVA, but for which we rely on
parametric regression models [22].

3 Case study 1: a large neighbourhood search
algorithm for the vehicle routing problem with
time windows

3.1 Description

In a first case study, we solve instances of the vehicle routing problem with
time windows using a large neighbourhood search (LNS) algorithm. Our im-
plementation of this algorithm is a simplification of the well-known Adaptive
Large Neighbourhood Search (ALNS) metaheuristic developed by Pisinger and
Ropke [33] that is able to solve multiple variants of the vehicle routing problem,
among which the VRPTW. The algorithm iteratively destroys and repairs the
current solution, each time randomly selecting a destroy and repair operator
from a set of operators. The more an operator has contributed to finding a
better solution, the greater the probability it will be chosen in future iterations.
This process is repeated until some stopping criterion is met. This algorithm
was chosen because of its popularity and effectives in VRP literature. The
multitude of parameters it contains also makes it a suitable research subject
for parameter analysis. However, a simplification is performed to reduce the
number of parameters to investigate as it is usually better to start small when
planning experiments [24]. Furthermore, we currently focus on establishing the
methodology to evaluate heuristic methods rather than concentrating our at-
tention on the many parameters ALNS has. Therefore, a less elaborate version
of the heuristic method is preferred. The LNS algorithm in this paper does not
adjust the probabilities for selecting repair and destroy operators every itera-
tion based on their performance, but keeps them fixed and equal throughout the
search process. We also consider fewer operators, more specifically three destroy
operators — random, worst and related removal — and two repair operators —
greedy and regret-2. The pseudocode is provided in Algorithm 1.
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The LNS algorithm is run on a data set consisting of 4000 different combi-
nations of problem instances and parameter settings3. Benchmarks, such as the
Solomon [39] instances, were not chosen due to concerns of overfitting and lack
of information on the probability distributions for the problem instance charac-
teristics. This implies that any results found are not necessarily generalisable to
instances not observed in the sample [4]. Hence, a heuristic algorithm perform-
ing well on a benchmark problem set might not perform well on other instances
[3]. The data set was generated according to a two-phase sampling scheme as
applied in [9]. First, 200 instances for the vehicle routing problem with time
windows (VRPTW) were generated by drawing random values for the problem
instance characteristics listed in Table 1. For each of the generated problem
instances 20 parameter setting variants were defined again by drawing random
values for each of the algorithm parameters listed in Table 2. The algorithm was
run for each of the 4000 scenarios and returned a total cost measure indicating
the total distance travelled by all vehicles to provide service to all customers in
the problem.

Two independent data sets of 4000 observations were created. One for
fANOVA and one for the multilevel regression analysis. The motivation is to
prevent overfitting analysis findings to a single data set. Searching for a model
that is the best fit for a single data set might risk fitting noise in the data —
patterns present in the sample but not in the population — and might result in
a model which performs poorly on other data points from the same population.
A fitted model should be able to make accurate predictions for new data points
instead of only the data points used to learn the model [12]. Furthermore, a
second data set also allows to gain more confidence on the effects that appear
relevant in the first data set and to detect possible false positives. The lat-
ter implies that a variable (interaction) might show to have a contribution to
performance in the sample data, while it does not in the population. Using a
second sample reduces the risk of having false positives [37]. For these reasons,
the multilevel regression analysis is performed using new sample data.

3.2 Analysis results

First, fANOVA is applied on the given algorithm performance data set. Then,
a multilevel regression model is formulated based on the importance analysis
provided by fANOVA. As will be discussed, the conclusions of both approaches
are consistent. However, not all effects taken from fANOVA are statistically
significant according to the multilevel regression model.

3Increasing sample size will increase precision of the estimates, meaning their confidence
intervals become narrower. Effects that are already significant will only become more signifi-
cant. Whether or not an increased sample size will contribute much to the analysis is difficult
to judge. As sample size increases, even the smallest effects become significant, but that
does not make them important [41]. In our case, a larger sample size did not alter analysis
conclusions other than adding more precision. It did require substantially more time to fit
the regression models, so we assessed the current sample size of 4000 scenarios to sufficiently
represent the major variations in performance and to be practical in terms of time to fit the
regression model.
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Algorithm 1 Large Neighbourhood Search

Input: Problem instance j, Parameter setting θ
Output: Best found solution xbest

Initialization: initial solution x constructed by regret-2 heuristic
Stage 1: Vehicle Minimisation

1: repeat
2: Remove one route from x
3: Schedule removed customers into remaining routes (as in Stage 2)
4: until 20% of maximum run time met

Stage 2: Minimisation of total distance covered
5: repeat
6: select destroy and repair methods d ∈ Ω− and r ∈ Ω+ at random
7: xcandidate = r(d(x))

8: if xcandidate is accepted then x = xcandidate end if
9: if c(xtemporary) < c(xbest)) then xbest = xcandidate end if

10: until maximum run time met

Table 1: Characteristics of the VRPTW instances

Characteristic Type Value ranges

Customers Integer U[25, 400]
Demand per customer Integer U[10,50]
Service time per customer Integer TRIA(min,max)

min∼U[10,30]
max∼U[30,50]

Time window width per customer Integer TRIA[min,max]
min∼U[20,50]
max∼U[50,80]

maximum running time Integer TRIA(60,1800)

Only the characteristics used in the analysis are listed. A full
list of all characteristics is given in Table 7 in the Appendix.

Table 2: Parameters of the Large Neighbourhood Search algorithm

Parameter Type Value ranges

random seed Integer U[1, 1000000]
determinism parameter Integer U[1, 100]
noise parameter Continuous U[0, 1]
cooling rate Continuous U[0.01,0.99]
start temperature

Continuous U[0.01,1]
control parameter

destroy operators Categorical

Random, Worst, Related,
RandomWorst, RandomRelated,
WorstRelated, RandomWorstRelated

repair operators Categorical
Greedy, Regret2,
GreedyRegret2

3.2.1 fANOVA analysis results

First, the cost is normalised on an instance-basis since the range of the cost
values returned by the algorithm can vary among different instances.

pcj =
(f cj −minc′∈Cj , f

c′

j )

(maxc′∈Cj , f
c′
j −minc′∈Cj , f

c′
j )

(4)

where f cj and pcj are the original and normalised cost values of parameter setting
c on problem instance j, and Cj is the set of all parameter settings that have
been run on instance j.

The output generated by fANOVA, for the entire problem instance set, is as
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follows.

Sum of fractions for main effects 60.56%

Sum of fractions for pairwise interaction effects 16.54%

53.03% due to main effect: repair

4.73% due to interaction: repair x customers

4.36% due to interaction: repair x destroy

3.52% due to main effect: customers

3.05% due to interaction: destroy

2.96% due to interaction: destroy x customers

... (remaining effects: < 1%)

Since we want to focus on important effects, only the ones with contribution
percentage values higher than 1% are listed. At this threshold 71.65% (of the
77.4% covered by fANOVA) of the variance in performance is explained. A lower
cut-off value would add little and only increase regression model complexity. For
example, a cut-off point at 0.5% only increases the overall explained variance to
72.19%. On the other hand, a cut-off at, say 5%, would only explain about 50%
of the performance variance and result in an uninformative regression model
that only included the repair operators.

The marginal plot for each effect is given in Figure 2. Since we are only
interested in the algorithm parameters and their interactions with the problem
instance features, the main effect customers is omitted.

The single parameter repair explains a huge part (53.03%) of the total algo-
rithm performance variance, indicating that this parameter plays the most im-
portant role in the performance of the algorithm. Figure 2a shows that Greedy
is clearly the worst choice for the parameter repair. The algorithm achieves
the best overall performance with Regret2 as the only repair operator, although
GreedyRegret2 comes quite close. How the impact of the chosen repair opera-
tor(s) changes given different problem instance sizes is explained in Figure 2b.
We can see that the disadvantage of using the repair operator Greedy becomes
more pronounced as the number of customers increases, especially when the
number of customers is larger or equal to 50. The performance difference be-
tween the two repair operators Regret2 and GreedyRegret2 only starts to become
visible when the number of customers reaches 200.

The second categorical algorithm parameter, destroy, has much less impor-
tance than repair. For this parameter, the choice of values, sorted in increasing
order of marginal normalized cost values — i.e., from good to bad performance
—, is as follows: RandomRelated, RandomWorstRelated, Random, WorstRe-
lated, RandomWorst, Related, Worst. The influence of different problem in-
stance sizes on the impact of the chosen destroy operator(s) is depicted in Figure
2d, but this marginal plot is difficult to interpret visually.

The final marginal plot (Figure 2e) shows the interaction between the two
categorical parameters and indicates consistency with the main effect obser-
vations: Greedy is always the worst choice, despite its combination with any
destroy operator; and the choice of Regret2 generally offers better performance
than GreedyRegret2, although not very clear. Moreover, among all combinations
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of repair and destroy operators, using Regret2 as a repair operator combined
with the destroy operator Random is predicted to perform best.

(a) repair (b) repair x customers

(c) destroy (d) destroy x customers

(e) repair x destroy

Figure 2: Marginal plots of main and pairwise interaction effects of fANOVA.

3.2.2 Multilevel Regression analysis results

Based on the fANOVA output, a multilevel regression model is fitted. An im-
portant aspect is that the statistical assumptions of independence, normality
and homoscedasticity typically underlying regression models are fulfilled. Anal-
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ysis of the residuals for a linear model revealed the presence of heteroscedasticy
(i.e., increasing error variance). It is common to remedy this issue by applying a
variance-stabilising transformation which results in a non-linear model[28]. We
empirically found a suitable model after taking the reciprocal transformation4

of the response variable and the cube root5 of the centred problem instance
characteristic Customers. Further details on variable transformations can be
found in, for example, [28]. The resulting model in equations (5)-(7) describes
a non-linear relationship between the performance measure and the algorithm
elements explaining it. The R script is provided in Appendix.

Note that, contrary to fANOVA, the regression model includes a binary
or dummy variable for each possible combination of repair operators and each
combination of destroy operators for which the impact on performance can be
studied. So instead of one repair and one destroy variable, the regression model
has respectively three and seven variables. Perfect multicollinearity prevents
the inclusion of all repair and destroy dummies, and therefore, one repair and
one destroy operator configuration are chosen as a baseline. In both cases, it is
the configuration including all repair or destroy operators. So the estimates for
Greedy and Regret2 represent the change in total cost when switching from using
both repair operators (GreedyRegret2 ) to using only one of both. The estimates
for Random, RandomRelated, and so on represent the change in total cost when
switching from using all three destroy operators (RandomWorstRelated) to a
configuration with less destroy operators.

1

Yi
=αj[i] + β1j[i]Greedyi + β2j[i]Regret2i + β3j[i]Randomi + · · ·+

β8j[i]RandomRelatedi + β9j[i]Greedyi ×Randomi + · · ·+
β20j[i]Regret2i ×RandomRelatedi + εi

(5)

αj = µα0 + µα1Customers
1
3
j + ηαj (6)

βzj = µβz0 + µβz1 Customers
1
3
j + ηβzj (7)

All operator effects are modelled as varying effects depending on the prob-
lem instance characteristic Customers, as indicated by the output of fANOVA.
Table 3 lists all significant effects. An effect estimate is significantly different
from zero if its 95% confidence interval [l-95% CI, u-95% CI] does not include
zero. The complete regression table is given in Table 8 in Appendix. In the
following paragraphs we show how to interpret the significant effects.

Figure 3 shows the predicted objective function values for all repair and de-
stroy operator configurations, all other variables fixed at their average value.
Panel (a) displays the effect of switching to Greedy while panel (b) shows the
impact of switching to Regret2. These predictions show that using Regret2 as

4When the observations are all positive continuous values, the logarithmic transformation
is typically applied [14]. However, the residual plot of the log-transformed values still shows
increasing error variance, but not for the inverse values.

5Since the problem instance characteristic Customers is a centred variable, it has both
positive and negative values. This excludes the logarithmic and square root transformations
since they would delete the negative values. The cube root transformation has the advantage
of being able to deal with negative values and is therefore chosen.
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Table 3: Regression table of significant effectsa

Variable Estimate Est.Error l-95% CI u-95% CI

Interceptb,c 4, 151.65 128.11 3, 899.79 4, 398.53
Greedy −133.46 5.48 −144.15 −122.90
Regret2 16.98 3.66 9.78 24.18
Random 21.28 3.47 14.27 28.06
Worst −11.32 3.69 −18.62 −3.98
Related −60.46 4.70 −69.83 −51.33
RandomWorst 9.20 3.66 1.91 16.30
WorstRelated −13.92 3.56 −20.97 −6.96

Customers
1
3 −453.86 29.99 −513.62 −396.08

Greedy × Random −88.45 7.90 −103.98 −72.62
Greedy × Worst −89.67 8.87 −107.18 −72.35
Greedy × Related 68.31 6.76 55.07 81.35
Greedy × RandomWorst −95.71 7.61 −110.70 −80.76
Greedy × RandomRelated 15.19 5.74 3.96 26.44

Greedy × Customers
1
3 −16.51 1.23 −18.89 −14.11

Regret2 × Customers
1
3 2.91 0.81 1.35 4.49

Random × Customers
1
3 3.84 0.77 2.35 5.35

Related × Customers
1
3 −9.73 1.05 −11.80 −7.70

RandomWorst × Customers
1
3 1.59 0.82 0.02 3.21

Greedy × Random × Customers
1
3 −15.83 1.76 −19.25 −12.36

Greedy × Related × Customers
1
3 10.56 1.54 7.50 13.53

Greedy × RandomWorst × Customers
1
3 −11.61 1.68 −14.87 −8.36

Greedy × WorstRelated × Customers
1
3 3.13 1.45 0.25 5.94

a Since the reciprocal transformation of the response variable returned very small values, causing dif-
ficulties in the sampling procedure of the brms package, all transformed (response) values were mul-
tiplied by 100 000 000.

b The effects of Greedy & Regret-2 and Random, Worst & Related, the reference levels for the repair
and destroy operator dummies, are accounted for in the Intercept.

c The Intercept value is backtransformed to the original scale through division by 100 000 000 and
taking the inverse of the resulting value.

the sole repair operator is expected to give the best performance results for all
destroy operators it is combined with, while relying only on greedy repair is ex-
pected to give the worst results for all destroy operator combinations. It is also
observed that the relative performance of the destroy operators per individual
repair operator differs. The way a solution is destroyed has an impact on how
good Greedy or Regret2 is at repairing this solution. Greedy seems to have more
difficulty in repairing a solution from which customers were removed randomly
while Regret2 is better able to cope with such a situation. Regret2, however, ap-
pears to find it more difficult to repair a solution from which related customers
were removed — with relatedness interpreted in terms of distance as in Pisinger
and Ropke [33]. These insights, confirming the analysis of Corstjens et al. [9],
spark a new research challenge to discover why certain operator combinations
perform (relatively) different.

The previous results are valid for an average instance having 211 customers.
We can investigate how these observations are affected when considering in-
stances of different sizes. This is the aforementioned group effect — or problem
instance effect in our case — on the performance impact of the operators. The
marginal effects are obtained by taking the first derivative of the regression equa-
tion. For example, the marginal impact on performance for Greedy combined
with all destroy operators is derived as follows.
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Figure 3: Predicted total cost for an average problem instance (211 customers).
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The more customers, the more negative the impact becomes. Including, for
example, the significant interaction effect of Greedy with Random, the estimated
impact is expressed as in equations (12) and (13).
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The problem instance size influence on the interaction effect is interpreted
as follows: The combination greedy and random tends to perform increasingly
worse than the combination of greedy with all destroy operators as more and
more customers have to be served. Figures 4 and 5 show the marginal effect
of Greedy and Regret2 for the smallest (a) and largest (b) instance size for all
destroy operator combinations. Similarly, the influence of Customers on the
effect of switching from RandomWorstRelated to any other (set of) destroy op-
erator(s) can be investigated. Figures 6 and 7 show the marginal effects of the
destroy operators for a problem instance with (a) 25 and (b) 400 customers.
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Figure 4: Marginal effect of Greedy for (a) 25 and (b) 400 customers.
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Figure 5: Marginal effect of Regret-2 for (a) 25 and (b) 400 customers.

Summarising the observations, regression results suggest to avoid relying
only on greedy repair, as this is expected to give the worst results in all consid-
ered conditions. Concerning the sole use of regret-2, different conclusions are
drawn for smaller and larger instances, due to the significant influence of the
number of customers an instance has to serve. On the smallest instances, no
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Figure 6: Marginal effect of destroy operators (with GreedyRegret2 or Regret2 )
for (a) 25 and (b) 400 customers.
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Figure 7: Marginal effect of destroy operators (with Greedy) for (a) 25 and (b)
400 customers.

significant improvement is observed over using both repair operators. Further-
more, most of the performance differences between the various destroy operator
configurations cannot be distinguished from each other as well, meaning the
choice of destroy operators is irrelevant for these problem instance sizes. Only
the combination with worst removal is indicated to perform significantly worse
than the scenario with all destroy operators. On the larger instances, perfor-
mance differences are more pronounced. The threshold problem instance size
at which it becomes beneficial to use regret-2 alone — i.e., where the effect
of Regret2 turns significantly positive because the 95% confidence interval no
longer includes zero — is around 186 customers. Regret-2 performs significantly
better for all destroy operator combinations, but the combination with related
removal is not recommended, since it has the smallest expected performance
improvement. Random removal is the preferred combination.

The analysis also led to the observation that random removal and related re-
moval perform relatively different given the repair operator they are combined

17



with. Random removal is predicted to perform better than related removal
when using the regret-2 repair operator, but the opposite is observed when us-
ing the greedy repair operator. It shows that new questions might come out of
an (exploratory) analysis like the one performed in this paper. In [8] a detailed
analysis of the destroy and repair process is performed to explain why random
performs better than related removal given the use of regret-2.

3.2.3 Discussion

Comparing the regression analysis to the findings of fANOVA, conclusions are
consistent. On the larger problem instances, both approaches find that using
regret-2 alone combined with random removal is expected to perform best. For
the smaller problem instances, there is consistency in that there is no clear per-
formance difference between using either regret-2 alone or together with greedy.
Concerning the destroy operators, the regression analysis cannot identify any
(combination of) destroy operator(s) as the preferred one to use since their per-
formances cannot be distinguished from each other. This is also observed in the
marginal plot Destroy x Customers provided by fANOVA, as there is no clear
difference in performance between destroy operators on different problem sizes.
Therefore, results are again consistent in both analyses.

Furthermore, the observations on the problem instance size influence in both
analysis are deducted from different effects. In the fANOVA results, the 2-way
interaction between operator(s) and Customers is considered an important ef-
fect. The multilevel regression analysis, however, also analyses the 3-way in-
teractions between repair and destroy operators and Customers. The observed
consistencies do make the regression analysis more robust, since these findings
are confirmed by a methodology (fANOVA) which does not rely on the statis-
tical assumptions of independence, normality and homoscedasticity of the error
terms.

In addition, the regression model facilitates a more detailed analysis, since
it provides effect estimates for a particular parameter setting and problem in-
stance, while fANOVA estimates marginal performance for a particular param-
eter value by averaging over all other parameters and problem instance char-
acteristics. The regression results are able to identify for each combination of
repair and destroy operators an instance size interval for which a significant
difference in performance is expected. For example, combined with both repair
operators Random is expected to outperform Worst for 134 customers or more,
Related for 125 customers or more, RandomWorst for 214 customers or more,
WorstRelated for 166 customers or more, RandomRelated for 209 customers or
more, and RandomWorstRelated for 173 customers or more.

Finally, the formulated regression model would have been different if fANOVA
had not been performed in advance. We would have fitted a multilevel regression
model including all algorithm parameters and components and all problem-level
predictors, since there would have been no prior knowledge on which elements
have an important or significant impact on performance. Furthermore, parame-
ter interactions would have been included as well. In short, this more extensive
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model would have had to estimate substantially more effects than the simpler
model based on fANOVA. A possible extensive model was fitted (see Table 9
in Appendix) to illustrate our case. What we observed was that the exten-
sive model is much more time-consuming while not necessarily bringing more
information into the analysis:

• First of all, the time required to fit the model is almost twice as long
for the extended model (about 44 hours) compared to the simple model
(about 22 hours plus 3.5 hours for the fANOVA analysis). Then, compar-
ing the significant effects of both models, it is observed that the majority
of effects are significant in both models. One effect appears to be no longer
significant in the larger model. This can be because of collinearity issues
arising when including more and more variables in a regression model,
which may cause variance estimates of coefficients to be inflated, thereby
possibly incorrectly showing non-significance of effects. This appears to
be the case for the mentioned effect when calculating its variance inflation
factor (VIF)[15]. Furthermore, no large value changes are observed when
comparing the significant effect estimates from both models. This shows
that the simple model does not lack any important variable which might
bias the effect estimates, an issue known in statistics as “omitted variable
bias” [40].

• Studying the predictive influence of every problem instance characteristic
in the extended model, it can be concluded that the problem instance size
is the most influential problem instance characteristic, as changing this
factor leads to large changes in the total cost values. The other prob-
lem instance characteristics show influence as well for particular operator
combinations, but the performance change they bring about is of much
smaller magnitude than is the case for varying problem instance size val-
ues. Therefore, fANOVA understandably denoted the problem instance
size as the most important problem characteristic. Furthermore, the pre-
dictions for varying problem instance sizes are almost the same in both
models, so the larger model does not provide additional information that
alters these predictions. In conclusion, we believe the regression model
based on fANOVA is a sufficiently detailed model that provides insight
into the effects related to the largest shifts in algorithm performance.

4 Case study 2: an iterated local search algo-
rithm for the unrelated parallel machine schedul-
ing problem

4.1 Description

A second case study is found in [36] who solve instances of the unrelated paral-
lel machine scheduling problem with sequence-dependent setup times (UPMSP)
using four stochastic local search methods, namely iterated local search [27],
simulated annealing [23], late acceptance hill climbing [5] and step counting hill
climbing [6]. The problem entails scheduling a set of jobs on a set of machines
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Algorithm 2 Iterated Local Search

Input: Initial solution x, p0, pmax, rnamax, itermax
Output: Best found solution xbest

1: xbest ← x ← RNA(x,rnamax)
2: i← 0
3: p← p0
4: pmax ← p0 × pmax
5: while time limit is not reached do
6: for j ← 1 to p do

7: x ← generate neighbour x’ using a random neighbourhood k, x
′
∈ Nk(x)

8: end for
9: x← RNA(x,rnamax)

10: if f(x) < f(xbest) then

11: xbest ← x
12: i ← 0
13: p← p0
14: else
15: x← xbest

16: i← i+ 1
17: end if
18: if i ≤ itermax then
19: i ← 0
20: p← p+ p0
21: if p > pmax then p← p0 end if
22: end if
23: end while

such that the completion time of all jobs (i.e., the makespan) is minimised.
Each job is characterised by a processing time per machine, with the setup time
between two jobs being both sequence and machine-dependent. It is a highly
relevant variant of the machine scheduling problem for production lines with
heterogeneous machines [36].

Among the four local search methods implemented, the iterated local search
and the simulated annealing algorithms have the most parameters. Since sim-
ulated annealing is already incorporated in LNS, we will analyse the iterated
local search algorithm. The general idea of the algorithm is as follows. Start-
ing from an initial solution, perturbations are applied, followed by a descent
method with a random non-ascendant (RNA) method. The RNA only accepts
improvements or different solutions with the same makespan. Four neighbour-
hood structures are considered to explore the search space. Each neighbourhood
reschedules one or multiple jobs according to some logic. Two parameters —
policy and main machine — determine whether this search is diversified or in-
tensified. The pseudocode is provided in Algorithm 2 (taken from [36]) and
the algorithm parameters and neighbourhoods are listed in Table 4. Detailed
information on the algorithm is provided in [36]. We allow the same time limit
as in [36], using the PassMark software benchmark [31] to account for different
hardware configurations.

In [42], there are 1640 benchmark instances generated based on 164 combi-
nations of problem characteristic values (10 instances per combination). Since
we run multiple parameter settings per instance, each combination of problem
characteristic values is already replicated a number of times in the experimental
design. Therefore, we limit the instance set to 164 instances by taking one ran-
dom instance from each combination. Collecting performance data on all 1640
instances would be not computationally realistic. The problem instance charac-
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Table 4: Parameters of the Iterated Local Search algorithm

Parameter Type Value ranges

p0 Integer U[1,100]
pmax Integer U[1, 10]
rnamax Integer U[100000,10000000]
itermax Integer U[1,10000]
policy Categorical U[regular,intensification]
main machine Categorical U[random,makespan]

neighbourhoods Categorical

Shift, Switch, TaskMove, Swap
ShiftSwitch, ShiftTaskMove, ShiftSwap,
SwitchTaskMove, SwitchSwap, TaskMoveSwap
ShiftSwitchTaskMove, ShiftSwitchSwap,
ShiftTaskMoveSwap, SwitchTaskMoveSwap,
ShiftSwitchTaskMoveSwap

teristics are listed in Table 5. Similar to the VRPTW case study, two data sets
were created for both analyses, each containing 82 instances. For each problem
instance 40 parameter settings were generated, resulting in 3280 observations
per data set.

Table 5: Characteristics of the UPSMP instances

Characteristic Type Values

Jobs Categorical [6,8,10,12,50,100,150,200,250]
Machines Categorical [2,3,4,5,10,15,20,25,30]
Setup time Integer U[1, s] with s ∈ [9,49,99,124]
Processing time Integer U[1, 99]

4.2 Analysis results

4.2.1 fANOVA analysis results

The output generated by fANOVA, using the same normalisation of the perfor-
mance measure as in the VRPTW case study, is as follows.

Sum of fractions for main effects 97.35%

Sum of fractions for pairwise interaction effects 1.58%

96.86% due to main effect: neighbourhoods

0.50% due to interaction: neighbourhoods x jobs

0.45% due to interaction: neighbourhoods x machines

... (remaining effects: < 0.4%)

The single parameter neighbourhoods explains almost all performance vari-
ance in ILS and, therefore, the choice of neighbourhood is of key importance.
All other effects have a contribution well below 1%. The marginal plot for neigh-
bourhoods is shown in Figure 8a. Shift, Switch and ShiftSwitch are clearly the
worst neighbourhood choices. The combinations that include both TaskMove
and Swap achieve the best makespan results.

4.2.2 Multilevel Regression analysis results

fANOVA clearly indicates the choice of neighbourhood(s) to represent almost
all variance in algorithm performance. Consequently, a multilevel regression
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(a) neighbourhoods

(b) neighbourhoods x jobs

(c) neighbourhoods x machines

Figure 8: Marginal plots of main and pairwise interaction effects of fANOVA.

with only the neighbourhood variables could be fitted. Yet, one of our inter-
ests is analysing problem instance influence on parameter or component effects.
Therefore, we would like to include some problem instance characteristics in the
regression model. fANOVA lists the interactions of number of jobs and machines
with the neighbourhoods as the the second and third most important effect, ex-
plaining respectively 0.50% and 0.45% of the variance in performance. Their
marginal plots are shown in Figure 8b and 8c, although it is not easy to intepret
results visually due to the large number of neighbourhoods and the overlap be-
tween their average performance plotted. We include these two characteristics in
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the multilevel regression. The log-linear regression model formulated in equa-
tions (14)-(16) accounts for 97.81% of the performance variance according to
fANOVA. Table 6 lists the significant effects and the complete regression table
(Table 10) can be found in Appendix.

log Yi =αj[i] + β1j[i]Shifti + β2j[i]Switchi + β3j[i]TaskMovei

+ · · ·+ β8j[i]SwitchTaskMovei + β9j[i]SwitchSwapi

+ · · ·+ β14j[i]SwitchTaskMoveSwapi + εi

(14)

αj = µα0 + µα1 Jobsj + µα2Machinesj + ηαj (15)

βzj = µβz0 + µβz1 Jobsj + µβz2 Machinesj + ηβzj (16)

Table 6: Regression table of significant effectsa

Variable Estimate Est.Error l-95% CI u-95% CI

Interceptb 4.51 0.05 4.41 4.60
Shift 1.63 0.03 1.57 1.70
Switch 1.64 0.03 1.57 1.71
TaskMove 0.13 0.02 0.09 0.16
Swap 0.44 0.03 0.38 0.49
ShiftSwitch 1.63 0.03 1.57 1.70
ShiftTaskMove 0.08 0.02 0.05 0.11
ShiftSwap 0.43 0.03 0.37 0.48
SwitchTaskMove 0.07 0.01 0.05 0.10
SwitchSwap 0.44 0.03 0.38 0.49
TaskMoveSwap 0.03 0.01 0.01 0.06
ShiftSwitchTaskMove 0.08 0.01 0.05 0.11
ShiftSwitchSwap 0.43 0.03 0.38 0.48
ShiftTaskMoveSwap 0.03 0.01 0.01 0.05
Jobs 0.01 0.001 0.01 0.01
Machines −0.07 0.01 −0.08 −0.06
Shift × Machines 0.06 0.004 0.06 0.07
Switch × Machines 0.06 0.004 0.05 0.07
TaskMove × Machines 0.005 0.002 0.0002 0.01
Swap × Jobs −0.003 0.0004 −0.004 −0.002
Swap × Machines 0.02 0.004 0.02 0.03
ShiftSwitch × Machines 0.06 0.005 0.06 0.07
ShiftTaskMove × Jobs 0.001 0.0003 0.0001 0.001
ShiftSwap × Jobs −0.003 0.0004 −0.004 −0.002
ShiftSwap × Machines 0.02 0.004 0.02 0.03
SwitchTaskMove × Jobs 0.001 0.0002 0.0004 0.001
SwitchSwap × Jobs −0.003 0.0004 −0.004 −0.002
SwitchSwap × Machines 0.02 0.004 0.02 0.03
ShiftSwitchSwap × Jobs −0.003 0.0004 −0.004 −0.002
ShiftSwitchSwap × Machines 0.02 0.003 0.02 0.03
ShiftTaskMoveSwap × Machines 0.004 0.001 0.001 0.01

a The effect of Shift, Switch, Task Move & Swap, the reference level for the neighbourhood
dummies, is accounted for in the Intercept.

b The Intercept value is backtransformed to the original scale taking the exponent e4.51 =
90.92.

The results for an average problem instance (i.e., 88 jobs to schedule over
14 machines) indicate that a configuration using all four neighbourhoods — the
baseline neighbourhood configuration — is never significantly outperformed by
a scenario with less neighbourhoods. The configuration SwitchTaskMoveSwap
is the only one that does not perform significantly worse. All configurations
without TaskMove perform substantially worse. Furthermore, consistent with
the fANOVA results, using Shift or Switch alone or together should be avoided
as they lead to the largest expected deterioration in total makespan compared
to ShiftSwitchTaskMoveSwap. The configuration Swap, ShiftSwap, SwitchSwap
and ShiftSwitchSwap perform similarly, additionally indicating that the neigh-
bourhoods shift and switch contribute little to nothing. The marginal effects in
Figure 9 shows these observations. The neighbourhoods TaskMove and Swap
seem to reinforce each other. These two neighbourhoods reschedule jobs from
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one machine to another one, while shift and switch make moves in a job sequence
for a single machine. The contribution of the latter to minimising makespan
appears to be minor. This raises the question under what conditions reschedul-
ing within a single machine has a worthwhile contribution since the two best
performing configurations SwitchTaskMoveSwap and ShiftSwitchTaskMoveSwap
have at least one neighbourhood operating within one machine.

0

100

200

300

400

S
h

if
t

S
w

it
c
h

T
a

s
k
M

o
ve

S
w

a
p

S
h

if
tS

w
it
c
h

S
h

if
tT

a
s
k
M

o
ve

S
h

if
tS

w
a

p

S
w

it
c
h

T
a

s
k
M

o
ve

S
w

it
c
h

S
w

a
p

T
a

s
k
M

o
ve

S
w

a
p

S
h

if
tS

w
it
c
h

T
a

s
k
M

o
ve

S
h

if
tS

w
it
c
h

S
w

a
p

S
h

if
tT

a
s
k
M

o
ve

S
w

a
p

S
w

it
c
h

T
a

s
k
M

o
ve

S
w

a
p

Neighbourhood

M
a

rg
in

a
l 
E

ff
e

c
t

Figure 9: Marginal effect neighbourhoods for an average problem instance.

Investigating the problem instance influence, it is observed that neighbour-
hood combinations including Swap but excluding TaskMove are positively in-
fluenced by the number of jobs to schedule, ceteris paribus. On problem in-
stances with 200 jobs or more, the performance of these neighbourhood com-
binations can no longer be distinguished from the performance of ShiftSwitch-
TaskMoveSwap. So, as more and more jobs have to be scheduled, Swap surpasses
TaskMove and becomes the most important neighbourhood structure. In this
case, using Swap alone would suffice to obtain the best performance results. Ex-
trapolating this positive influence, Swap is expected to significantly outperform
ShiftSwitchTaskMoveSwap for instances with 290 jobs or more.

Finally, the number of machines available to schedule jobs on negatively in-
fluences the performance of nine neighbourhood combinations. When there are
only 2 machines available, the performance of most combinations cannot be dis-
tinguished — except Shift, Switch and ShiftSwitch that remain the worst choices
overall. When an increasing number of machines are available for scheduling
jobs, differences become more clear.

In short, improvements to makespan are primarily achieved by rescheduling
jobs across multiple machines rather than single machines. When scheduling
less than 200 jobs, moving a random job to a different machine (i.e., task move
neighbourhood) is most beneficial to performance, while swapping two random
jobs between two machines (i.e. swap neighbourhood) is most beneficial when
having to schedule 200 jobs or more.
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(b) 250 jobs

Figure 10: Marginal effect of neighbourhoods for (a) 6 and (b) 250 jobs.
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Figure 11: Marginal effect of neighbourhoods for (a) 2 and (b) 30 machines.

4.2.3 Discussion

Both fANOVA and MLR agree on the findings for an average problem instance.
The positive influence of the number of jobs on the combinations with Swap,
but without TaskMove is also observed in both analyses. MLR, however, in-
dicates for job sizes ≤ 200 that there no longer is a significant difference with
ShiftSwitchTaskMoveSwap, while this is not clear in Figure 8b, which suggests
the latter still performs better on average. Regarding the influence of machines,
both analyses show it has a minor influence.

Without the fANOVA, a regression model that includes all algorithm ele-
ments and problem instance characteristics would have been fitted. Finding a
stable extended model proved to be very difficult, as we still got convergence
warnings after fitting such an extended model for 113 hours. In comparison,
the fANOVA required 35 minutes to finish and the regression model based on
fANOVA fitted in 5.5 hours without any issue. Once again, it shows the effi-
ciency gain of the combined methodology. Although the convergence warnings
prohibit us to interpret the regression estimates for the extended model and
are therefore not reported, we do know that the VIFs for many terms are a lot
higher. For example, the variable Shift has a VIF of 1.74 in the simple model,
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while it is 5.28 in the extended model, implying there is a lot more collinearity
and thus instability in the estimates of the extended model.

5 Conclusion

In this paper, we have presented the complementary use of two approaches
for analysing performance of heuristic algorithms with multiple parameters and
components: fANOVA [19] and multilevel regression (MLR) [9]. The analysis
results provided by fANOVA are useful when formulating a proper regression
model in MLR since it leads to a more concise regression model with fewer input
variables. MLR, on the other hand, provides a more detailed analysis of the ef-
fects of algorithm elements and enables confirmatory analyses to be performed.
The two methodologies are applied on different data sets drawn from the same
algorithm parameter and problem characteristic distributions, thereby avoiding
an “overfitting” of the findings. Experimental results of two case studies per-
formed on a vehicle routing and a variant of a machine scheduling problem have
shown that the MLR can help to give additional insights on the analysis results
provided by fANOVA.

We believe that the line of research introduced in this paper makes a use-
ful contribution towards the engineering cycle of developing optimization al-
gorithms. fANOVA is available as a Python package provided by the authors
of the method, and the multilevel regression needs to be implemented manu-
ally at the moment. Future work includes making the combination of the two
approaches more ready to use, i.e., the addition and the interpretation of the
multilevel regression into fANOVA should be automated.
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Appendix

1 library(brms)

2
3 Data <- read.table ("./Results_9000_scenarios_test_data.csv", header=T, sep=",")

4
5 #variable transformations

6 Data$c.cust_numb <- scale(Data$customer_number , center = TRUE , scale = FALSE)

7 Data$c.cust_numb_cbrt <- sign(Data$c.cust_numb)*abs(Data$c.cust_numb)**(1/3)

8 total_cost_inverse <- (1/Data$total_cost)*100000000

9
10 M1 <- brm(total_cost_inverse ~ Greedy + Regret2 + Random + Worst + Related + RandomWorst + WorstRelated +

RandomRelated + Greedy:Random + Greedy:Worst + Greedy:Related + Greedy:RandomWorst +

Greedy:WorstRelated + Greedy:RandomRelated +

11 Regret2:Random + Regret2:Worst + Regret2:Related + Regret2:RandomWorst + Regret2:

WorstRelated + Regret2:RandomRelated +

12 c.cust_numb_cbrt +

13 Greedy:c.cust_numb_cbrt +

14 Regret2:c.cust_numb_cbrt +

15 Random:c.cust_numb_cbrt +

16 Worst:c.cust_numb_cbrt +

17 Related:c.cust_numb_cbrt +

18 RandomWorst:c.cust_numb_cbrt +

19 WorstRelated:c.cust_numb_cbrt +

20 RandomRelated:c.cust_numb_cbrt +

21 Greedy:Random:c.cust_numb_cbrt +

22 Greedy:Worst:c.cust_numb_cbrt +

23 Greedy:Related:c.cust_numb_cbrt +

24 Greedy:RandomWorst:c.cust_numb_cbrt +

25 Greedy:WorstRelated:c.cust_numb_cbrt +

26 Greedy:RandomRelated:c.cust_numb_cbrt +

27 Regret2:Random:c.cust_numb_cbrt +

28 Regret2:Worst:c.cust_numb_cbrt +

29 Regret2:Related:c.cust_numb_cbrt +

30 Regret2:RandomWorst:c.cust_numb_cbrt +

31 Regret2:WorstRelated:c.cust_numb_cbrt +

32 Regret2:RandomRelated:c.cust_numb_cbrt +

33 (1 + Greedy + Regret2 + Random + Worst + Related + RandomWorst + WorstRelated +

34 RandomRelated + Greedy:Random + Greedy:Worst + Greedy:Related + Greedy:RandomWorst

+ Greedy:WorstRelated + Greedy:RandomRelated +

35 Regret2:Random + Regret2:Worst + Regret2:Related + Regret2:RandomWorst + Regret2:

WorstRelated + Regret2:RandomRelated|problem), data= Data ,

36 control = list(max_treedepth = 15), chains = 4,warmup = 1000, iter = 4000, cores =4)

Table 7: Problem Instance Characteristics

Characteristic Type Value ranges

number of customers Integer U[25, 400]
vehicle capacity Integer 150
x/y-coordinates Integer U[0,500]
customer demand Integer U[10,50]
Service time Integer TRIA(min,max)

min∼U[10,30]
max∼U[30,50]

time window depot Integer Start = 0; End = 900
time window customer
- time window centre Integer U[0 + travel time, 900 - travel time - service time]
- time window width Integer TRIA[min,max]

min∼U[20,50]
max∼U[50,80]

- start Centre - 0.5*width
- end Centre + 0.5*width
Maximum running time Integer TRIA(60,1800)
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Table 8: Regression table VRPTW-LNS

Variable Estimate Est.Error l-95% CI u-95% CI

Intercept 4, 151.65 128.11 3, 899.79 4, 398.53
Greedy −133.46 5.48 −144.15 −122.90
Regret2 16.98 3.66 9.78 24.18
Random 21.28 3.47 14.27 28.06
Worst −11.32 3.69 −18.62 −3.98
Related −60.46 4.70 −69.83 −51.33
RandomWorst 9.20 3.66 1.91 16.30
WorstRelated −13.92 3.56 −20.97 −6.96
RandomRelated 2.50 3.56 −4.46 9.55

Customers
1
3 −453.86 29.99 −513.62 −396.08

Greedy × Random −88.45 7.90 −103.98 −72.62
Greedy × Worst −89.67 8.87 −107.18 −72.35
Greedy × Related 68.31 6.76 55.07 81.35
Greedy × RandomWorst −95.71 7.61 −110.70 −80.76
Greedy × WorstRelated 5.65 6.39 −6.70 18.42
Greedy × RandomRelated 15.19 5.74 3.96 26.44
Regret2 × Random −8.77 5.06 −18.68 1.43
Regret2 × Worst 2.32 5.22 −7.96 12.43
Regret2 × Related −5.04 5.54 −15.91 5.86
Regret2 × RandomWorst −3.68 5.14 −13.65 6.61
Regret2 × WorstRelated −2.14 5.01 −11.93 7.85
Regret2 × RandomRelated −0.65 5.14 −10.71 9.39

Greedy × Customers
1
3 −16.51 1.23 −18.89 −14.11

Regret2 × Customers
1
3 2.91 0.81 1.35 4.49

Random × Customers
1
3 3.84 0.77 2.35 5.35

Worst × Customers
1
3 0.58 0.82 −1.03 2.20

Related × Customers
1
3 −9.73 1.05 −11.80 −7.70

RandomWorst × Customers
1
3 1.59 0.82 0.02 3.21

WorstRelated × Customers
1
3 −1.26 0.80 −2.81 0.34

RandomRelated × Customers
1
3 0.79 0.78 −0.73 2.31

Greedy × Random × Customers
1
3 −15.83 1.76 −19.25 −12.36

Greedy × Worst × Customers
1
3 −3.20 1.96 −7.03 0.60

Greedy × Related × Customers
1
3 10.56 1.54 7.50 13.53

Greedy × RandomWorst × Customers
1
3 −11.61 1.68 −14.87 −8.36

Greedy × WorstRelated × Customers
1
3 3.13 1.45 0.25 5.94

Greedy × RandomRelated × Customers
1
3 2.01 1.27 −0.49 4.48

Regret2 × Random × Customers
1
3 −2.06 1.14 −4.31 0.16

Regret2 × Worst × Customers
1
3 −1.25 1.16 −3.51 1.03

Regret2 × Related × Customers
1
3 −1.77 1.25 −4.19 0.66

Regret2 × RandomWorst × Customers
1
3 −1.19 1.15 −3.45 1.02

Regret2 × WorstRelated × Customers
1
3 −0.37 1.13 −2.56 1.84

Regret2 × RandomRelated × Customers
1
3 −1.24 1.14 −3.48 0.95

a The effects of Regret-2 & Greedy and Random, Worst & Related, the reference levels for the repair and destroy
operator dummies, are accounted for in the Intercept.
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Table 9: Regression table large model VRPTW-LNS

Variable Estimate Est.Error l-95% CI u-95% CI

Intercept 4, 155.43 127.41 3, 901.56 4, 402.79
Greedy −134.86 5.28 −145.22 −124.59
Regret2 17.19 3.62 9.93 24.22
Random 20.76 3.46 13.92 27.58
Worst −11.20 3.63 −18.36 −4.13
Related −60.37 4.40 −68.99 −51.79
RandomWorst 9.94 3.67 2.74 17.01
WorstRelated −13.64 3.56 −20.64 −6.73
RandomRelated 2.67 3.49 −4.17 9.56
Cooling rate 2.14 2.24 −2.23 6.59
Start temp ctrl param −2.45 2.11 −6.59 1.75
Noise param −10.51 3.41 −17.08 −3.79
Determinism param 0.10 0.05 −0.003 0.21

Customers
1
3 −460.22 29.13 −516.48 −403.65

Avg demand 311.17 134.11 54.63 578.72
Avg service time −52.64 30.16 −112.13 6.94
Avg time window width 43.59 20.86 1.25 83.80
Runtime 27.54 23.19 −19.01 72.27
Greedy × Random −84.60 7.79 −100.09 −69.34
Greedy × Worst −86.67 8.43 −103.29 −70.35
Greedy × Related 69.73 6.78 56.50 82.87
Greedy × RandomWorst −92.14 7.44 −106.74 −77.80
Greedy × WorstRelated 6.41 6.22 −5.56 18.75
Greedy × RandomRelated 17.86 5.66 6.87 29.00
Regret2 × Random −9.39 5.08 −19.30 0.69
Regret2 × Worst −0.41 5.19 −10.64 9.78
Regret2 × Related −7.11 5.42 −17.59 3.52
Regret2 × RandomWorst −3.29 5.18 −13.52 6.97
Regret2 × WorstRelated −2.87 5.00 −12.66 7.21
Regret2 × RandomRelated −1.50 5.09 −11.45 8.60
Random × Determinism param −0.06 0.08 −0.21 0.09
Worst × Determinism param −0.20 0.08 −0.36 −0.04
Related × Determinism param −0.48 0.08 −0.64 −0.32
RandomWorst × Determinism param −0.06 0.08 −0.22 0.09
WorstRelated × Determinism param −0.10 0.07 −0.25 0.05
RandomRelated × Determinism param −0.03 0.07 −0.18 0.11
Greedy × Noise param −22.22 5.20 −32.55 −12.00
Regret2 × Noise param −3.13 4.71 −12.28 6.05

Greedy × Customers
1
3 −16.40 1.18 −18.72 −14.08

Greedy × Avg demand 3.41 5.29 −6.98 13.76
Greedy × Avg service time 1.91 1.28 −0.59 4.40
Greedy × Avg time window width −2.30 0.82 −3.89 −0.69
Greedy × Runtime 0.41 0.99 −1.55 2.33

Regret2 × Customers
1
3 3.00 0.81 1.43 4.57

Regret2 × Avg demand −0.59 3.86 −8.36 6.87
Regret2 × Avg service time −0.86 0.89 −2.60 0.87
Regret2 × Avg time window width 0.40 0.56 −0.70 1.49
Regret2 × Runtime −0.02 0.67 −1.35 1.26

Random × Customers
1
3 3.78 0.76 2.27 5.25

Random × Avg demand −1.20 3.42 −7.96 5.40
Random × Avg service time 0.29 0.85 −1.38 1.98
Random × Avg time window width −0.07 0.55 −1.15 0.99
Random × Runtime −0.28 0.63 −1.53 0.96

Worst × Customers
1
3 0.46 0.83 −1.20 2.10

Worst × Avg demand −0.65 3.33 −7.29 5.86
Worst × Avg service time −0.24 0.90 −1.99 1.54
Worst × Avg time window width −0.45 0.57 −1.56 0.66
Worst × Runtime 0.49 0.72 −0.95 1.90

Related × Customers
1
3 −9.83 1.01 −11.82 −7.85

Related × Avg demand −0.24 4.27 −8.67 8.15
Related × Avg service time 0.48 1.07 −1.64 2.59
Related × Avg time window width −2.43 0.72 −3.84 −1.02
Related × Runtime 2.64 0.82 1.02 4.21

RandomWorst × Customers
1
3 1.53 0.82 −0.07 3.11

RandomWorst × Avg demand 0.62 3.89 −7.05 8.29
RandomWorst × Avg service time −0.77 0.93 −2.58 1.05
RandomWorst × Avg time window width 0.36 0.57 −0.75 1.47
RandomWorst × Runtime 0.02 0.68 −1.32 1.33

WorstRelated × Customers
1
3 −1.24 0.79 −2.80 0.33

WorstRelated × Avg demand 3.96 3.25 −2.38 10.29
WorstRelated × Avg service time 0.55 0.86 −1.17 2.23
WorstRelated × Avg time window width −0.29 0.53 −1.29 0.74
WorstRelated × Runtime 0.70 0.69 −0.64 2.06

RandomRelated × Customers
1
3 0.79 0.79 −0.77 2.33

RandomRelated × Avg demand −0.30 3.48 −7.10 6.43
RandomRelated × Avg service time −0.26 0.85 −1.92 1.42
RandomRelated × Avg time window width −0.56 0.55 −1.63 0.51
RandomRelated × Runtime 1.00 0.67 −0.33 2.31

Cooling rate × Customers
1
3 −0.70 0.50 −1.68 0.27

Cooling rate × Avg demand −0.18 2.37 −4.80 4.53
Cooling rate × Avg service time −0.29 0.56 −1.37 0.81
Cooling rate × Avg time window width −0.72 0.36 −1.42 −0.02
Cooling rate × Runtime −0.83 0.42 −1.64 −0.01

Start temp ctrl param × Customers
1
3 −0.54 0.48 −1.48 0.39

Start temp ctrl param × Avg demand 0.02 2.23 −4.32 4.39
Start temp ctrl param × Avg service time 1.03 0.52 −0.003 2.03
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Start temp ctrl param × Avg time window width −0.19 0.35 −0.86 0.49
Start temp ctrl param × Runtime −0.17 0.40 −0.96 0.61

Determinism param × Customers
1
3 −0.0003 0.01 −0.01 0.01

Determinism param × Avg demand 0.02 0.02 −0.03 0.06
Determinism param × Avg service time −0.001 0.01 −0.01 0.01
Determinism param × Avg time window width 0.001 0.004 −0.01 0.01
Determinism param × Runtime −0.01 0.004 −0.01 0.002

Noise param × Customers
1
3 −1.20 0.50 −2.18 −0.20

Noise param × Avg demand 0.27 2.32 −4.28 4.83
Noise param × Avg service time −0.71 0.54 −1.78 0.36
Noise param × Avg time window width −0.62 0.35 −1.31 0.08
Noise param × Runtime 0.89 0.41 0.08 1.68

Greedy × Random × Customers
1
3 −15.25 1.72 −18.55 −11.86

Greedy × Random × Avg demand −2.10 8.59 −18.77 15.04
Greedy × Random × Avg service time 0.61 1.93 −3.18 4.44
Greedy × Random × Avg time window width −1.30 1.19 −3.64 1.06
Greedy × Random × Runtime 3.43 1.46 0.58 6.34

Greedy × Worst × Customers
1
3 −2.62 1.95 −6.39 1.23

Greedy × Worst × Avg demand −1.55 8.70 −18.66 15.49
Greedy × Worst × Avg service time 1.76 2.01 −2.20 5.68
Greedy × Worst × Avg time window width −1.45 1.35 −4.10 1.20
Greedy × Worst × Runtime 3.00 1.65 −0.28 6.24

Greedy × Related × Customers
1
3 10.38 1.54 7.35 13.43

Greedy × Related × Avg demand 10.60 7.09 −3.15 24.54
Greedy × Related × Avg service time −1.34 1.64 −4.57 1.90
Greedy × Related × Avg time window width 2.79 1.12 0.59 4.96
Greedy × Related × Runtime −1.05 1.32 −3.61 1.57

Greedy × RandomWorst × Customers
1
3 −10.93 1.69 −14.26 −7.62

Greedy × RandomWorst × Avg demand 0.80 7.70 −14.09 15.89
Greedy × RandomWorst × Avg service time 3.09 1.81 −0.49 6.61
Greedy × RandomWorst × Avg time window width −1.52 1.14 −3.76 0.74
Greedy × RandomWorst × Runtime 2.51 1.37 −0.15 5.19

Greedy × WorstRelated × Customers
1
3 2.92 1.42 0.09 5.67

Greedy × WorstRelated × Avg demand 6.12 6.62 −6.90 19.12
Greedy × WorstRelated × Avg service time −1.04 1.54 −4.10 2.03
Greedy × WorstRelated × Avg time window width 0.49 0.98 −1.43 2.41
Greedy × WorstRelated × Runtime 0.50 1.24 −1.94 2.91

Greedy × RandomRelated × Customers
1
3 1.86 1.25 −0.53 4.35

Greedy × RandomRelated × Avg demand −0.65 5.67 −11.78 10.50
Greedy × RandomRelated × Avg service time 0.32 1.34 −2.30 2.95
Greedy × RandomRelated × Avg time window width 0.65 0.86 −1.02 2.34
Greedy × RandomRelated × Runtime −1.33 1.08 −3.42 0.78

Regret2 × Random × Customers
1
3 −2.14 1.12 −4.31 0.10

Regret2 × Random × Avg demand 1.06 5.56 −9.82 12.02
Regret2 × Random × Avg service time 0.57 1.24 −1.84 3.00
Regret2 × Random × Avg time window width −0.03 0.79 −1.59 1.54
Regret2 × Random × Runtime 0.62 0.93 −1.20 2.42

Regret2 × Worst × Customers
1
3 −1.80 1.17 −4.12 0.54

Regret2 × Worst × Avg demand 2.41 5.23 −7.67 12.74
Regret2 × Worst × Avg service time 0.54 1.27 −1.92 3.03
Regret2 × Worst × Avg time window width −0.05 0.85 −1.72 1.62
Regret2 × Worst × Runtime −0.59 0.97 −2.47 1.33

Regret2 × Related × Customers
1
3 −1.64 1.22 −4.02 0.77

Regret2 × Related × Avg demand 2.88 5.72 −8.37 14.13
Regret2 × Related × Avg service time −0.06 1.37 −2.75 2.64
Regret2 × Related × Avg time window width 0.35 0.86 −1.35 2.03
Regret2 × Related × Runtime −1.23 0.99 −3.18 0.70

Regret2 × RandomWorst × Customers
1
3 −1.22 1.15 −3.48 1.05

Regret2 × RandomWorst × Avg demand −1.90 5.75 −12.99 9.55
Regret2 × RandomWorst × Avg service time 1.72 1.27 −0.77 4.26
Regret2 × RandomWorst × Avg time window width −0.40 0.79 −1.93 1.20
Regret2 × RandomWorst × Runtime −0.39 0.93 −2.19 1.45

Regret2 × WorstRelated × Customers
1
3 −0.79 1.12 −3.00 1.42

Regret2 × WorstRelated × Avg demand 2.40 5.22 −7.70 12.67
Regret2 × WorstRelated × Avg service time −0.34 1.23 −2.73 2.10
Regret2 × WorstRelated × Avg time window width −0.03 0.78 −1.57 1.50
Regret2 × WorstRelated × Runtime −0.53 0.92 −2.34 1.28

Regret2 × RandomRelated × Customers
1
3 −1.13 1.13 −3.31 1.09

Regret2 × RandomRelated × Avg demand −0.50 5.51 −11.25 10.30
Regret2 × RandomRelated × Avg service time 0.63 1.23 −1.76 3.06
Regret2 × RandomRelated × Avg time window width 0.55 0.82 −1.05 2.16
Regret2 × RandomRelated × Runtime −0.75 0.95 −2.62 1.16
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Table 10: Regression table UPMSP-ILS

Variable Estimate Est.Error l-95% CI u-95% CI

Intercept 4.51 0.05 4.41 4.60
Shift 1.63 0.03 1.57 1.70
Switch 1.64 0.03 1.57 1.71
TaskMove 0.13 0.02 0.09 0.16
Swap 0.44 0.03 0.38 0.49
ShiftSwitch 1.63 0.03 1.57 1.70
ShiftTaskMove 0.08 0.02 0.05 0.11
ShiftSwap 0.43 0.03 0.37 0.48
SwitchTaskMove 0.07 0.01 0.05 0.10
SwitchSwap 0.44 0.03 0.38 0.49
TaskMoveSwap 0.03 0.01 0.01 0.06
ShiftSwitchTaskMove 0.08 0.01 0.05 0.11
ShiftSwitchSwap 0.43 0.03 0.38 0.48
ShiftTaskMoveSwap 0.03 0.01 0.01 0.05
SwitchTaskMoveSwap 0.01 0.01 −0.01 0.04
Jobs 0.01 0.001 0.01 0.01
Machines −0.07 0.01 −0.08 −0.06
Shift × Jobs −0.0005 0.001 −0.002 0.001
Shift × Machines 0.06 0.004 0.06 0.07
Switch × Jobs −0.0003 0.001 −0.001 0.001
Switch × Machines 0.06 0.004 0.05 0.07
TaskMove × Jobs 0.0004 0.0003 −0.0001 0.001
TaskMove × Machines 0.005 0.002 0.0002 0.01
Swap × Jobs −0.003 0.0004 −0.004 −0.002
Swap × Machines 0.02 0.004 0.02 0.03
ShiftSwitch × Jobs −0.0005 0.001 −0.002 0.001
ShiftSwitch × Machines 0.06 0.005 0.06 0.07
ShiftTaskMove × Jobs 0.001 0.0003 0.0001 0.001
ShiftTaskMove × Machines 0.001 0.002 −0.003 0.01
ShiftSwap × Jobs −0.003 0.0004 −0.004 −0.002
ShiftSwap × Machines 0.02 0.004 0.02 0.03
SwitchTaskMove × Jobs 0.001 0.0002 0.0004 0.001
SwitchTaskMove × Machines −0.001 0.002 −0.005 0.002
SwitchSwap × Jobs −0.003 0.0004 −0.004 −0.002
SwitchSwap × Machines 0.02 0.004 0.02 0.03
TaskMoveSwap × Jobs 0.0002 0.0002 −0.0001 0.001
TaskMoveSwap × Machines 0.0003 0.001 −0.003 0.003
ShiftSwitchTaskMove × Jobs 0.0004 0.0002 −0.0000 0.001
ShiftSwitchTaskMove × Machines 0.001 0.002 −0.003 0.005
ShiftSwitchSwap × Jobs −0.003 0.0004 −0.004 −0.002
ShiftSwitchSwap × Machines 0.02 0.003 0.02 0.03
ShiftTaskMoveSwap × Jobs −0.0002 0.0002 −0.001 0.0001
ShiftTaskMoveSwap × Machines 0.004 0.001 0.001 0.01
SwitchTaskMoveSwap × Jobs 0.0001 0.0002 −0.0002 0.0005
SwitchTaskMoveSwap × Machines −0.001 0.001 −0.004 0.002

a The effect of Shift, Switch, Task Move & Swap, the reference level for the neighbourhood dummies, is accounted
for in the Intercept.
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