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Abstract

A new general class of exponentiated sinh Cauchy regression models for location, scale and

shape parameters is introduced and studied. It may be applied to censored data and used more

effectively in survival analysis when compared with the usual models. For censored data, we employ

a frequentist analysis for the parameters of the proposed model. Further, for different parameter

settings, sample sizes and censoring percentages, various simulations are performed. The extended

regression model is very useful for the analysis of real data and could give more adequate fits than

other special regression models.

Keywords: Exponentiated sinh Cauchy regression model; diagnostics analysis; GAMLSS; survival

analysis.

1 Introduction

The Weibull, log-normal, log-logistic and Birnbaum-Saunders regression models are usually applied in

science and engineering to model lifetime data for which linear functions of unknown parameters are
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adapted to explain the phenomena under study. However, it is well-known that several phenomena are

not always in agreement with the usual model due to lack of asymmetry, bimodality or the presence

of heavily and lightly tailed distributions. In order to deal with this problem, some proposals have

been made in literature with more flexible classes of distributions. We work with the exponentiated

sinh Cauchy distribution because of its great flexility to fit asymmetric and bimodal data.

A large number of new distributions to extend well-known distributions and to provide flexibility in

modeling data has being investigated in the last years. In this context, Gupta et al. (1998) pioneered

a generalization of the standard exponential distribution called the exponentiated exponential (Exp-

E) distribution. The exponentiated class of distributions (Gupta and Kundu, 2001) has cumulative

distribution function (cdf) given by

F (t) = G(t)τ , (1)

where G(t) represents the baseline cdf and α > 0 denotes the shape parameter. By differentiating (1),

the corresponding probability density function (pdf) becomes

f(x) = τG(t)τ−1g(t), (2)

where g(t) denotes the baseline pdf.

For modeling a lifetime T > 0, Ramires et al. (2016) used the log-sinh Cauchy (LSC) distribu-

tion for the baseline in (2) by defining the four-parameter exponentiated log-sinh Cauchy (ELSC)

distribution, whose pdf (for t > 0) is given by

f(t;µ, σ, ν, τ) =
τν

t σ π

cosh
(
log(t)−µ

σ

)
[
ν2 sinh2

(
log(t)−µ

σ

)
+ 1
] {1

2
+

1

π
arctan

[
ν sinh

(
log(t)− µ

σ

)]}τ−1

, (3)

where µ ∈ R and σ > 0 are the location and scale parameters, respectively, ν > 0 is the symmetry

parameter, which characterizes the bimodality of the distribution, and τ > 0 is the skewness para-

meter. The distribution of the logarithm Y = log(T ) is called the exponentiated sinh Cauchy (ESC)

distribution, whose cdf (for y ∈ R) is given by

F (y;µ, σ, ν, τ) =

{
1

2
+

1

π
arctan

[
ν sinh

(
y − µ

σ

)]}τ

. (4)

The pdf and survival function corresponding to (4) are given by

f(y;µ, σ, ν, τ) =
τν

σ π

cosh
(y−µ

σ

)[
ν2 sinh2(y−µ

σ ) + 1
] {1

2
+

1

π
arctan

[
ν sinh

(
y − µ

σ

)]}τ−1

(5)

and

S(y;µ, σ, ν, τ) =
(2π)τ −

{
π + 2arctan

[
ν sinh

(y−µ
σ

)]}τ
(2π)τ

, (6)

respectively. The ESC distribution (5) was first introduced by Cooray (2013) to modeling symmetric,

right and left skewed and bimodal data sets. For τ = 1, the sinh Cauchy (SC) distribution is just a

special case of (5).
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In this paper, we propose a general class of regression models, where the mean, dispersion, asym-

metry and bimodal parameters vary across observations through regression structures, assuming that

the model errors follow the ESC distribution, which may be a useful alternative for modeling the four

existing types of failure rate functions. The inferential component is carried out using the asymptotic

distribution of the maximum likelihood estimators (MLEs). We also present methodologies to detect

influential subjects with censored data and residual analysis for the proposed model. The script used

to fit the ESC model, which is implemented in the R software environment (R Core Team, 2015), is

given in the Appendix.

The sections are organized as follows. In Section 2, we derive a power series for the quantile

function (qf) and give explicit expressions for the moments. We propose an ESC regression model

for modeling simultaneously the location, scale, bimodality and asymmetry parameters for censored

data and discuss inferential issues in Section 3. Section 4 contains some Monte Carlo simultaneously

on the finite sample behavior of the MLEs. In Section 5, we assess the behavior of the MLEs of the

parameters in the ESC regression model when it is poorly specified. In Section 6, we discuss some

diagnostic measures for three perturbation schemes, case-deletion and generalized leverage method.

The residuals from a fitted model using the martingale residual and martingale-type residual are also

presented in this section. Applications to two real data sets are addressed in Section 7 to illustrate

the flexibility of the proposed class of regression models for censored and uncensored data. Finally,

Section 8 offers some conclusions.

2 Properties of the standardized ESC distribution

In this section, we study some properties of the standard ESC random variable defined by Z =

(Y − µ)/σ. The density function of Z (for z ∈ R) reduces to

f(z; ν, τ) = τ gSC(z)GSC(z)
τ−1 =

τν

π

cosh (z)

ν2 sinh2(z) + 1

{
1

2
+

1

π
arctan

[
ν sinh(z)

]}τ−1

, (7)

where GSC(z) and gSC(z) denote the cdf and pdf of standard SC distribution given by

GSC(z) =

{
1

2
+

1

π
arctan [ν sinh (z)]

}
and gSC(z) =

ν

π

cosh (z)

ν2 sinh2(z) + 1
, (8)

respectively.

Plots of the density function (7) for selected parameter values are displayed in Figure 1. Equation

(7) for the standardized ESC distribution will be used in Section 3.1 to specify the error distribution

of the proposed regression model.

2.1 Expansion of the quantile function

Inverting F (y) = u in (4) gives the qf of Y

Y = QY (u) = µ+ σ arcsinh

{
1

ν
tan

[
π
(
u1/τ − 0.5

)]}
. (9)
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Figure 1: Plots of the density function (7) for some values of τ : (a) ν = 0.3; (b) ν = 0.8.

The qf QZ(u) of Z, which has the standardized ESC density function (7), can be obtained from

(9) with µ = 0 and σ = 1. The qf of the standardized SC distribution, say QSC(u), also follows (9)

with µ = 0 and σ = τ = 1 and it will be used to demonstrate some properties of Z in the following

sections.

We can use (9) for simulating ESC or standardized ESC random variables by setting u as a uniform

random variable in the interval (0, 1). The qf is widely used to determine some mathematical properties

like moments, generating function, Galton’s skewness and Moors’s kurtosis. Recently, Ortega et al.

(2016) used the qf to demonstrate some properties of the log-odds Birnbaum-Saunders model and

Cordeiro et al. (2016) presented those for the generalized odd half-Cauchy family.

Next, we derive a power series for the qf of Z. Expanding (9) in Mathematica in a power series,

considering µ = 0 and σ = 1, we have

QZ(u) =
∞∑
k=0

ck (u
1/τ − 0.5)2k+1,

where ck = bk
(2k+1)!

(
π
ν

)2k+1
and b0 = 1, b1 = 2ν2 − 1, b2 = 16ν4 − 20ν2 + 9, b3 = 272ν6 − 616ν4 +

630ν2 − 225, b4 = 7936ν8 − 28160ν6 + 48384ν4 − 37800ν2 + 11025, . . .

By expanding the binomial term, the last equation reduces to

QZ(u) =

∞∑
k=0

∞∑
j=0

(−1)2k+1−j uj/τ

22k+1−j

(
2k + 1

j

)
ck.

Finally, changing
∑∞

k=0

∑∞
j=0 by

∑∞
j=0

∑∞
k=j , we obtain

QZ(u) =
∞∑
j=0

pj u
j/τ , (10)

where the coefficients

pj =

∞∑
k=j

(−0.5)2k+1−j

(
2k + 1

j

)
ck (11)

can be determined using e.g. Mathematica, Maple, R and Sage.
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2.2 Moments

Let µ′
s = E(Zs) be the sth ordinary moment of Z with pdf (7). We have

µ′
s = τ

∫ ∞

−∞
zs gSC(z)GSC(z)

τ−1dz = τ

∫ 1

0
QSC(u)

s uτ−1du.

Replacing QSC(u) (eq. (10) when τ = 1) in the last equation, we obtain

µ′
n = τ

∫ 1

0

 ∞∑
j=0

pj u
j

s

uτ−1du. (12)

Henceforth, we use an equation by Gradshteyn and Ryzhik (2007) for a power series raised to a

positive integer n ( ∞∑
i=0

ai u
i

)n

=
∞∑
i=0

bn,i u
i, (13)

where the coefficients bn,i (for i = 1, 2, . . .) are easily determined from the recurrence equation

bn,i = (i a0)
−1

i∑
m=1

[m (n+ 1)− i] am bn,i−m,

and bn,0 = an0 . The coefficient bn,i can be determined numerically from the quantities a0, . . . , ai.

Based on equation (13), equation (12) can be rewritten as

µ′
n = τ

∞∑
j=0

es,j

∫ 1

0
uj+τ−1du =

∞∑
j=0

τ

τ + j
es,j , (14)

where es,j =
1

j p0

∑j
m=1[m(s+ 1)− j] pm es,j−m, es,0 = ps0, and p0 and pm are obtained by (11).

The skewness and kurtosis measures can be calculated from the ordinary moments using well-

known relationships. Plots of the skewness and kurtosis of Z are displayed in Figures 2 and 3 for

selected values of τ as functions of ν and for selected values of ν as functions of τ , respectively.

3 The ESC regression model

In many practical applications, the lifetimes are affected by explanatory variables such as blood pres-

sure, weight, cholesterol level and many others. Parametric models for estimating univariate survival

functions and for the censored data regression problems are widely used. When the parametric models

provide good fits to lifetime data, they tend to provide more precise estimates for the quantities of in-

terest because these estimates are based on fewer parameters. Recently, several regression models have

been proposed in literature by considering the class of location models. For example, Hashimoto et al.

(2012) proposed the log-Burr XII regression model for grouped survival data, Ortega et al. (2013) pre-

sented the log-beta Weibull regression model for predicting recurrence of prostate cancer, Ortega et al.

(2015) studied a power series beta Weibull regression model for predicting breast carcinoma, etc.
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Figure 2: Skewness of the ESC distribution: (a) Function of ν for some values of τ . (b) Function of τ

for some values of ν.
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Figure 3: Kurtosis of the ESC distribution: (a) Function of ν for some values of τ . (b) Function of τ

for some values of ν.

A disadvantage of the class of location model is that the variance, skewness, bimodality, kurtosis

and other parameters can not be modelled explicitly in terms of explanatory variables but implicitly

through their dependence on the location parameter. As an alternative, the generalized additive

models for location, scale and shape (GAMLSS) (Rigby and Stasinopouls, 2005), where the systematic

part of the model is expanded to allow not only the location but all the parameters of the conditional

distribution of Y to be modelled as parametric functions of explanatory variables, become widely used.

In this sense, we introduce the ESC regression model following the GAMLSS set-up.

3.1 Definition

Let θT = (µ, σ, ν, τ) denote the vector of parameters of the pdf (5). We consider that independent

observations yi conditional on θi (for i = 1, . . . , n), with pdf f(yi;θi), where θi
T = (µi, σi, νi, τi) is a

parameter vector related to the response variable.

Based on the ELSC distribution, we propose a linear regression model linking the response variable
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yi and the explanatory variable by

yi = µi + σi zi, i = 1, . . . , n, (15)

where the random error zi follows the density function f(zi; νi, τi) given by (7) and Zi = (Yi − µi)/σi.

We define the parameter vector θ using appropriate link functions as

θ =


µ

σ

ν

τ

 =


g1(X1β1)

g2(X2β2)

g3(X3β3)

g4(X4β4)

 or θi =


µi

σi

νi

τi

 =


g1(β01 + x1[i, 2]β11 + . . .+ x1[i, p1 + 1]βp11)

g2(β02 + x2[i, 2]β12 + . . .+ x2[i, p2 + 1]βp22)

g3(β03 + x3[i, 2]β13 + . . .+ x3[i, p3 + 1]βp33)

g4(β04 + x4[i, 2]β14 + . . .+ x4[i, p4 + 1]βp44)

 , (16)

where pk denotes the number of explanatory variables related to the kth parameter, g1(·) is an injective

and twice continuously differentiable function, gk(·) (for k = 2, 3, 4,) is a known positive continuously

differentiable function containing values of the explanatory variables, βk = (β0k, β1k, . . . , βpkk)
T is a

parameter vector of length (pk + 1), Xk is a known model matrix of order n × (pk + 1) and xk[i, pk]

are the elements of the matrix Xk. The total number of parameters to be estimated is given by

p = p1 + p2 + p3 + p4+4. Note that we assume that four parameters µi, σi, νi and τi vary across

observations through regression structures. For the following sections, we shall consider the identity

link function for g1(·) and the logarithmic link function for gk(·) (for k = 2, 3, 4,).

The sinh Cauchy (SC) regression model is obtained as a special case of (15) when τi = 1. The class

of location is obtained when p2 = p3 = p4 = 0. For p3 = p4 = 0, p1 ̸= 0 and p2 ̸= 0, we also obtain the

regression model with heteroscedastic errors, which can be used as an alternative to transformation

of the response variable. However, the choice of parameters to be modeled by explanatory variables

will depend on the data set.

3.2 Estimation

Consider a sample of n-independent observations, where each random response is defined by yi =

min[log(ti), log(ci)]. We assume non-informative censoring and that the observed lifetimes and censor-

ing times are independent. Let F and C be the sets of individuals for which yi is the log-lifetime or log-

censoring, respectively. The total log-likelihood function for the model parameters θ = (µ,σ,ν, τ )T

from model (15) is given by l(θ) =
∑

i∈F log f(yi;θi)+
∑

i∈C logS(yi;θi), where f(yi;θi) is the density

function in (5) and S(yi;θi) is the survival function in (6). The log-likelihood function for θ reduces

to

l(θ) = −
∑
i∈F

log
[
1 + ν2i sinh2(zi)

]
+
∑
i∈F

log cosh(zi) +
∑
i∈F

(τi − 1) log

{
1

2
+

1

π
arctan[νi sinh(zi)]

}
+
∑
i∈F

log(τiνi)−
∑
i∈F

log(σiπ) +
∑
i∈C

log

(
1−

{
1

2
+

1

π
arctan

[
νi sinh (zi)

]}τi)
. (17)

The MLE θ̂ of the vector θT = (µ, σ, ν, τ) of unknown parameters can be evaluated by maximizing

the log-likelihood (17) numerically in the GAMLSS package of the R software. The advantage of

using this package is that we can adopt many maximization methods, which will depend only on the

current fitted model. When there are no explanatory variables or censored observations, we can use
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the gamlssML function for fitting (17) using a non-linear maximization algorithm. In the presence

of censored observations, the additional package gamlss.cens is required to determine numerically

the observed information of the likelihood function referring to the censored observations. The max-

imization procedures used in the presence of censored data are the generalizations of the Rigby and

Stasinopoulos (RS) and Cole and Green (CG) algorithms. All methods and algorithms are described

by Rigby and Stasinopouls (2005) and Stasinopoulos and Rigby (2007) and available in the GAMLSS

package. The RS algorithm requires the first order derivatives of the logarithm of the density function

(5) given in the above equations, and the second order derivatives. The RS method, different from

the CG algorithm, does not use the cross derivatives, and thus it is faster for larger data sets.

An important consideration in the statistical analysis in regression models is the assumption that

all observations have equal variances. The non-compliance with this assumption affects the efficiency

of the estimates of the parameters. In particular, we now consider the test of homogeneity of variances

for the ESC regression model based on the asymptotic distribution of the parameters. Under standard

regularity conditions, the asymptotic distribution of (θ̂−θ) isNp(0, I(θ)
−1), where I(θ) is the expected

information matrix. The multivariate normal Np(0, L̈(θ̂)
−1) distribution can be used to construct

approximate confidence intervals for the individual parameters, where L̈(θ̂) is the observed information

matrix. Following (16), we generalize the scale parameter σ as σ = g2(X2β2), where Xi2 is a matrix

of explanatory variable values. For example, consider a matrix X2 (n × 2) with the first column of

ones corresponding to β02, and the second column with the values of x1 corresponding to β12. We

can test the homogeneity of variances between the levels (or ranges) of x1 by testing the hypotheses

H0 : β12 = 0 against Ha : β12 ̸= 0, where the Wald statistic is given by T = β̂12/
√

L̈(θ̂)−1
β12

∼ t(n−p−1),

and L̈(θ̂)−1
β12

is the (p1 + 2, p1 + 2) element of the observed information matrix. Analogously, we can

provide the same tests of hypotheses for the parameters µ, ν and τ .

4 Simulation Study

We conduct two Monte Carlo simulation studies to assess the finite sample behavior of the MLEs of

the parameters for different sample sizes “n” and censoring percentages “κ”. In the first simulation,

we consider the location model in (15), where µi = β01 + β11xi, σi = σ, νi = ν and τi = τ . In the

second simulation, we consider the GAMLSS model in (15) by modeling the parameters using the

explanatory variable xi, namely: µi = β01 + β11xi, σi = exp(β02 + β12xi), νi = exp(β03 + β13xi) and

τi = exp(β04 + β14xi).

In the two simulations, the sample sizes are generated by taking n = 50 and 100. The log-lifetimes

denoted by log(T1), . . . , log(Tn) are generated from the ESC distribution using the qf (9), where the

parameter vectors were fixed and evaluated using the explanatory variable xi generated from a uniform

(0, 1) distribution. The censoring times, denoted by C1, . . . , Cn, are randomly generated for censoring

percentages κ = 0.0, 0.1 and 0.3, respectively.

The lifetimes considered in each fit are evaluated as min[log(Ci), log(Ti)]. For each configuration of

n and κ, all results are obtained from 2,000 Monte Carlo replications and the simulations are carried

out using the R programming language. For each replication, a random sample of size n is drawn

from the ESC regression model (15) for survival censored data and the optim algorithm is used for
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maximizing the total log-likelihood function (17).

4.1 Location simulation

For the location model, the true parameter values used in the data-generating process are µi = 1+3xi,

σ = 3, ν = 0.2 and τ = 2. For each fit, the average estimates (AEs), biases and means squared errors

(MSEs) are evaluated. The results are given in Table 1.

Table 1: The AEs, biases and MSEs based on 2,000 simulations for the location ESC regression model

when β01=1, β11=3, σ = 3, ν = 0.2 and τ = 2, for n=50 and 100 for censoring percentages κ = 0.0,

0.1 and 0.3.
n = 50 n = 100

κ Parameter AE Bias MSE Parameter AE Bias MSE

0.0 β0 1.326 0.326 2.920 β0 1.185 0.185 1.033

β1 2.978 -0.022 5.968 β1 3.044 0.044 2.117

σ 2.628 -0.372 0.280 σ 2.704 -0.296 0.152

ν 0.164 -0.036 0.007 ν 0.171 -0.029 0.003

τ 2.053 0.053 0.200 τ 2.063 0.063 0.102

0.1 β0 1.324 0.324 3.365 β0 1.039 0.039 1.248

β1 3.036 0.036 6.402 β1 3.414 0.414 3.029

σ 2.732 -0.268 0.222 σ 2.817 -0.183 0.123

ν 0.169 -0.031 0.006 ν 0.174 -0.026 0.003

τ 2.187 0.187 0.269 τ 2.188 0.188 0.143

0.3 β0 2.511 1.511 7.315 β0 0.986 -0.014 1.564

β1 1.111 -1.889 12.032 β1 3.450 0.450 3.121

σ 3.024 0.024 0.332 σ 3.142 0.142 0.185

ν 0.189 -0.011 0.024 ν 0.194 -0.006 0.004

τ 2.553 0.553 1.590 τ 2.523 0.523 0.429

The estimated survival functions are displayed in Figure 4 by considering the AEs given in Table

1 for n = 100, and considering the maximum and minimum values of the generated xi variable.
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Figure 4: Some ESC survival functions at the true parameter values and at the AEs obtained in Table

1, considering n = 100 for the maximum and minimum of xi when: (a) κ=0 ; (b) κ=0.1; (c) κ=0.3.
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4.2 GAMLSS simulation

For the GAMLSS, the true parameter values used in the data-generating process are µi = 0.5 + 6xi,

σi = exp(1.5 + 0.6xi), νi = exp(−3.5 + 3xi) and τi = exp(0.2 + 0.9xi). For each fit, the AEs, biases

and MSEs are reported in Table 2.

Table 2: The AEs, biases and MSEs based on 2,000 simulations of the ESC regression model when

β01=0.5, β11=6, β02 = 1.5, β12 = 0.6, β03 = −3.5, β13 = 3, β04 = 0.2 and β14 = 0.9, for n=50 and 100

and under censoring percentages κ = 0.0, 0.1 and 0.3.
n = 50 n = 100

κ Parameter AE Bias MSE Parameter AE Bias MSE

0.0 β01 0.547 0.047 5.845 β01 0.471 -0.029 2.647

β11 7.041 1.041 29.142 β11 6.756 0.756 13.629

β02 1.375 -0.125 0.072 β02 1.414 -0.086 0.030

β12 0.587 -0.013 0.186 β12 0.571 -0.029 0.089

β03 -4.058 -0.558 1.336 β03 -3.861 -0.361 0.536

β13 3.490 0.490 2.414 β13 3.273 0.273 1.061

β04 0.220 0.020 0.135 β04 0.228 0.028 0.061

β14 0.908 0.008 0.456 β14 0.895 -0.005 0.211

0.1 β01 0.505 0.005 5.676 β01 0.546 0.046 2.632

β11 6.903 0.903 28.215 β11 6.664 0.664 16.902

β02 1.388 -0.112 0.064 β02 1.446 -0.054 0.025

β12 0.656 0.056 0.218 β12 0.597 -0.003 0.098

β03 -4.018 -0.518 1.171 β03 -3.797 -0.297 0.457

β13 3.479 0.479 2.578 β13 3.248 0.248 0.969

β04 0.265 0.065 0.132 β04 0.309 0.109 0.063

β14 0.975 0.075 0.494 β14 0.865 -0.035 0.211

0.3 β01 0.889 0.389 7.340 β01 0.636 0.136 3.020

β11 6.381 0.381 21.376 β11 6.319 0.319 9.264

β02 1.450 -0.050 0.092 β02 1.482 -0.018 0.040

β12 0.718 0.118 0.307 β12 0.753 0.153 0.183

β03 -3.939 -0.439 1.576 β03 -3.807 -0.307 0.640

β13 3.499 0.499 3.137 β13 3.478 0.478 1.580

β04 0.510 0.310 0.272 β04 0.508 0.308 0.155

β14 0.789 -0.111 0.511 β14 0.790 -0.110 0.206

The estimated survival functions are displayed in Figure 5 and the AEs are listed in Table 2 for

n = 100, and considering the maximum and minimum values of the generated xi variable.

The results of the Monte Carlo study in Tables 1 and 2 indicate that the MSEs of the MLEs of the

parameters decay toward zero when the sample size increases, as expected under first-order asymptotic

theory. Note that the results of the GAMLSS simulation, presented in Table 2, should be interpreted

by peers due to the fit of βik influences the fit of βjk. If n increases, the AEs tend to be closer to

the true parameter values. This fact supports that the asymptotic normal distribution provides an

adequate approximation to the finite sample distribution of the MLEs. The normal approximation

can oftentimes be improved by using bias adjustments to these estimators. In general, for the ESC
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Figure 5: Some ESC survival functions at the true parameter values and at the AEs obtained in Table

2, considering n = 100 for the maximum and minimum of xi when: (a) κ=0 ; (b) κ=0.1; (c) κ=0.3.

regression models, the variances and MSEs increase when the censoring percentage increases. This

fact can be noted in Figures 4 and 5.

5 Study of model misspecification

To assess the behavior of the MLEs of the parameters in the ESC regression model when it is poorly

specified, we carry out a Monte Carlo simulation study based on 1, 000 replications using the GAMLSS.

The logarithms of the lifetime data are generated from the log-Weibull (y, µ, σ) and normal (y, µ, σ)

heteroscedastic regression models (traditional models used in the survival analysis) for selected pa-

rameters µ = β01 + β11 x1 and σ = exp(β02 + β12 x1), where the covariate xi is generated from a

binomial (n,0.5)distribution. The censored indicators are generated randomly by fixing the censoring

percentage. We consider the configuration with sample size n = 100, β01 = 4.5, β11 = 1.5, β02 = −1.5,

β12 = 1.5 and censoring percentages of ρ = 0%, 10% and 30% to generate the samples. We fit the

ESC regression model to each generated data set. The results of this study are given in Table 3, where

we can note that an increasing in censoring percentage in general implies an increasing in the MSEs.

There is a small sample bias in the estimation of the parameters of this regression model. Hence, it

can provide consistent MLEs even when the data are generated from a different model.

Table 3: Mean estimates and MSEs (in parentheses) of the MLEs of the parameters in the log-Weibull

and normal heteroscedastic regression models.

log-Weibull normal

Parameter ρ = 0% ρ = 10% ρ = 30% ρ = 0% ρ = 10% ρ = 30%

β01 4.510(0.005) 4.526(0.006) 4.553(0.009) 4.452(0.006) 4.467(0.006) 44.488(0.006)

β11 1.569(0.087) 1.611(0.101) 1.701(0.123) 1.385(0.076) 1.427(0.079) 1.482(0.080)

β02 -1.905(0.224) -1.838(0.275) -1.734(0.209) -1.744(0.086) -1.687(0.072) -1.545(0.025)

β12 1.498(0.041) 1.494(0.043) 1.514(0.047) 1.496(0.029) 1.505(0.029) 1.503(0.033)

ν 1.207(-) 1.271(-) 1.280(-) 1.084(-) 1.122(-) 1.150(-)

τ 0.608(-) 0.637(-) 0.733(-) 1.309(-) 1.339(-) 1.490(-)
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6 Sensitivity and residual analysis

Since regression models are sensitive to the underlying model assumptions, performing a sensitivity

analysis is strongly advisable. Cook (1986) used this idea to motivate the assessment of influence anal-

ysis. He suggested that more confidence can be put in a model, which is relatively stable under small

modifications. The best known perturbation schemes are based on case-deletion (Cook and Weisberg,

1982), in which the effects of completely removing cases from the analysis are studied.

6.1 Global influence

A first tool to perform sensitivity analyses, as stated before, is by means of global influence starting

from case-deletion. Case-deletion is a common approach to study the effect of dropping the ith case

from the data set. The case-deletion model for model (15) is given by

yl = µl + σl zl, l = 1, . . . , n, l ̸= i, (18)

where the random error Zl has a density function f(zl; νl, τl) given in (7). Of course, not always the

explanatory variables will be modeling all parameters. For example, if we consider the class of location

in (18), the case-deletion model reduces to

yl = µl + σ zl, l = 1, . . . , n, l ̸= i,

where the random error Zl has the density function f(zl; ν, τ).

In the following, a quantity with subscript “(i)” means the original quantity with the ith case

deleted. For model (18), the log-likelihood function of θ is denoted by l(i)(θ). Let θ̂
T

(i) = (µ̂T
(i), σ̂

T
(i), ν̂

T
(i),

τ̂T
(i)) be the MLE of µ, σ, ν and τ from l(i)(θ). To assess the influence of the ith case on the MLE

θ̂
T
= (µ̂T , σ̂T , ν̂T , τ̂T ), the basic idea is to compare the difference between θ̂(i) and θ̂. If deletion of

a case seriously influences the estimates, for example changing the inference, more attention should

be given to that case. Hence, if θ̂(i) is far from θ̂, then the ith case is regarded as an influential

observation. A first measure of the global influence is defined as the standardized norm of (θ̂(i) − θ̂),

known as the generalized Cook distance, defined by

GDi(θ) = (θ̂(i) − θ̂)T [−L̈(θ̂)](θ̂(i) − θ̂).

Another alternative is to assess values GDi(µ), GDi(σ), GDi(ν) and GDi(τ ), which reveal the

impact of the ith observation on the estimates of µ, σ, ν and τ , respectively. Another popular measure

of the difference between θ̂(i) and θ̂ is the likelihood distance defined by

LDi(θ) = 2
[
l(θ̂)− l(θ̂(i))

]
.

6.2 Local influence

Cook (1986) suggested to give weights to the observations instead of removing them. Local influence

calculation can be carried out for model (15). If likelihood displacement LD(ω) = 2{l(θ̂) − l(θ̂ω)}
is used, where θ̂ω denotes the MLE under the perturbed model, the normal curvature for θ in the
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direction d, ∥d∥ = 1, is given by Cd(θ) = 2|dT∆T L̈−1
θθ ∆d|, where ∆ is a p× n matrix that depends

on the perturbation scheme, whose elements are given by ∆vi = ∂2l(θ|ω)/∂θv∂ωi, i = 1, . . . , n and

v = 1, . . . , p, evaluated at θ̂ and ω0, and ω0 is the no perturbation vector. We can also calculate

normal curvatures Cd(µ), Cd(σ), Cd(ν) and Cd(τ ) to perform various index plots, for instance,

the index plot of dmax, the eigenvector corresponding to Cdmax , the largest eigenvalue of the matrix

B = −∆T L̈−1
θθ ∆ and the index plots of Cdi

(µ), Cdi
(σ), Cdi

(ν) and Cdi
(τ ), named the total local

influence (Lesaffre and Verbeke, 1998), where di denotes an n× 1 vector of zeros with one at the ith

position. Thus, the curvature in the direction di takes the form Ci = 2|∆T
i L̈

−1
θθ ∆i|, where ∆T

i denotes

the ith row of ∆. It is usual to point out those cases such that Ci ≥ 2C̄, where C̄ = 1
n

∑n
i=1Ci. In

some situations, the information of the matrix B may be contained not only in the first eigenvalue,

then an alternative influence measure for the ith observation is Ui =
n1∑
k=1

λke
2
ki, where {(λk, ek)|k =

1, . . . , n} are the eigenvalue-eigenvector pairs of B with λ1 ≥ · · · ≥ λn1 ≥ λn1+1 = · · · = λn = 0 and

{ek = (ek1, . . . , ekn)
T } is the associated orthonormal basis. Zhu et al. (2007) studied the influence

measure ui systematically under a case-weight perturbation. Thus, this influence measure expresses

local sensitivity to the log-likelihood of the perturbations.

Next, we obtain under model (15) and log-likelihood function (17), for three perturbation schemes,

the matrix

∆ = (∆vi)p×n =

(
∂2l(θ|ω)

∂θv∂ωi

)
p×n

, v = 1, . . . , p and i = 1, . . . , n.

6.2.1 Case-weight perturbation

Consider the vector of weights ω = (ω1, . . . , ωn)
T , where 0 ≤ ωi ≤ 1. A perturbed log-likelihood

function, allowing different weights for different observations, can be defined in the form l(θ|ω) =∑
i∈F wi log f(yi)+

∑
i∈C wi logS(yi). Also, let w0 = (1, . . . , 1)T be the vector of no perturbation such

that l(θ|w0) = l(θ). In this case, the log-likelihood function takes the form

l(θ|ω) =
∑
i∈F

ωi

[
− log di + (τi − 1) log(hi) + log cosh(zi) + log(τiνi)− log(σiπ)

]
+
∑
i∈C

ωi log [1− hτii ] ,

where hi = 0.5+π−1 arctan[νi sinh(zi)] and di =
[
1 + ν2i sinh2(zi)

]
. The matrix ∆ = (∆T

µ,∆T
σ, ∆T

ν ,

∆T
τ )

T can be calculated numerically.

6.2.2 Response perturbation

Since the values of yi have different variances, they require a scaling of the perturbation vector ω

by an estimator of the standard deviation of yi. We shall consider that each yi is perturbed as

yiw = yi + ωi Sy, where Sy is a scale factor that may be estimated by the standard deviation of y and

ωi ∈ R. Then, the perturbed log-likelihood function becomes

l(θ) =
∑
i∈F

[
− log d∗i + log cosh(z∗i ) + (τi − 1) log (h∗i ) + log(τiνi)− log(σiπ)

]
+
∑
i∈C

log (1− h∗i
τi) ,

where h∗i = 0.5 + π−1 arctan[νi sinh(z
∗
i )], d

∗
i =

[
1 + ν2i sinh2(z∗i )

]
and z∗i = (yi + ωi Sy − µi)/σi. The

matrix ∆ = (∆T
µ,∆T

σ,∆T
ν ,∆

T
τ )

T can be calculated numerically.
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6.2.3 Explanatory variable perturbation

We consider an additive perturbation on a particular continuous explanatory variable, namely x1[i, t],

by setting x1[i, tω] = x1[i, t] + ωiSx, where Sx is a scaled factor, ωi ∈ R. Note that the explanatory

variable x1[i, t] is related only to the location parameter µ. However, this perturbation scheme can be

extended by considering different numbers of explanatory variables for different parameters.

This perturbation scheme leads to the perturbed log-likelihood function

l(θ) =
∑
i∈F

[
− log d⋆i + log cosh(z⋆i ) + (τi − 1) log (h⋆i ) + log(τiνi)− log(σiπ)

]
+
∑
i∈C

log (1− h⋆i
τi) ,

where h⋆i = 0.5 + π−1 arctan[νi sinh(z
⋆
i )], d⋆i =

[
1 + ν2i sinh2(z⋆i )

]
, z⋆i = (yi − µ⋆

i )/σi and µ⋆
i =

β01 + β11x1[i, 2], . . . , βt1(x1[i, t] + ωi Sx . . . , βp11x1[p1, 1]). The matrix ∆ = (∆T
µ,∆T

σ,∆T
ν ,∆

T
τ )

T can

be calculated numerically.

6.3 Residual Analysis

In order to study departures from the error assumption and the presence of outliers, we consider the

martingale residual proposed by Barlow and Prentice (1998) and the transformation of this residual.

More details may be found in Ortega et al. (2003).

The martingale residuals, recommended in counting processes, are defined by rMi = δi+log[S(yi; β̂)],

where δi = 0, 1 denotes a censored and uncensored observation, respectively, and S(yi; β̂) denotes the

survival function of Y discussed in Section 1. Recently, several authors have studied the martingale

residual for some regression models. Silva et al. (2008) proposed using the martingale residual for the

log-Burr XII regression model considering censored data, Cancho et al. (2009) studied the residuals

for the log-exponentiated-Weibull regression model with cure rate, Ortega et al. (2014) derived the

martingale residual for the odd Weibull regression models for censored data, among others.

This residual was introduced in the counting process (Fleming and Harrington, 1991) and can be

expressed in the ESC regression models as

rMi =

 1− τ̂i log(2π) + log
[
(2π)τ̂i −

{
π + 2arctan[ν̂i sinh(ẑi)]

}τ̂i] if i ∈ F

−τ̂i log(2π) + log
[
(2π)τ̂i −

{
π + 2arctan[ν̂i sinh(ẑi)]

}τ̂i] if i ∈ C,
(19)

where ẑi = (yi − µ̂i)/σ̂i, µi = β̂01 + . . . + x1[i, p1 + 1]β̂p11, σi = exp(β̂02 + . . . + x2[i, p2 + 1]β̂p22),

νi = exp(β̂03 + . . . + x3[i, p3 + 1]β̂p33) and τi = exp(β̂04 + . . . + x4[i, p4 + 1]β̂p44). In fact, rMi ranges

from a maximum value +1 and minimum value −∞. A disadvantage of the martingale residual is that

the distribution of rMi is markedly skewed, and so it fails to have similar properties to those of the

normal distribution. Suitable transformations to achieve a more normal shaped form would be more

appropriate for residual analysis.

Another possibility is to use a transformation of the martingale residual based on the deviance

residuals for the Cox model in the case of no time-dependent covariates (Therneau et al., 1990). We

shall use this transformation of the martingale residual in order to have a new residual symmetrically

distributed around zero. A more extensive examination of this residual is given by Leiva et al. (2007)
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and Ortega et al. (2008). Thus, a martingale-type residual for the ESC regression model can be

expressed as

rDi = sign(rMi)
{
− 2
[
rMi + δi log(δi − rMi)

]}1/2
,

where rMi is defined in equation (19) for i ∈ F (δi = 1) or i ∈ C (δi = 0).

For uncensored data, we can use the diagnostic tools in the gamlss package. The first technique

consists in the normalized randomized quantile residuals (Dunn and Smyth, 1996) given by r̂i =

Φ−1(ui), where Φ−1(·) is the inverse cdf of a standard normal variate and ui = F (yi|θ̂i).

The second technique already known in the literature is the normal probability plot with envelope.

Atkinson (1985) suggested the construction of envelopes to enable better interpretation of the normal

probability plots of the residuals. Such envelopes are simulated confidence bands that contain the

residuals, such that if the model is well fitted, the majority of points will be within these bands and

randomly distributed. The construction of the confidence bands follows the steps:

• Fit the proposed model, we evaluate the normalized randomized quantile residuals r̂i;

• Simulate k samples of size n of the response variable using the fitted model;

• For each sample, we compute the residuals r̂ij , j = 1, 2, . . . , k and i = 1, 2, . . . , n;

• Arrange each group of n residuals in rising order to obtain r̂(i)j ;

• For each i, obtain the minimum and maximum r̂(i)j , namely:

r(i)I = min{r(i)j : 1 ≤ j ≤ k} and r(i)S = max{r(i)j : 1 ≤ j ≤ k} ;

• Include the minimum and maximum together with the values of r̂i against the expected per-

centiles of the standard normal distribution.

The minimum and maximum values of r̂(i)j define the envelope. If the model under study is correct,

the observed values of r̂i should be inside the bands and distributed randomly.

7 Applications

In this section, we provide two applications to real data to illustrate the flexibility of the ESC regression

model. The computations are performed using the gamlss subroutine in the R software and the script

is described in the Appendix. For the first data set, we prove empirically the flexibility of the new

regression model when all parameters are modeled by explanatory variables (complete model). For

the second data set, we present an application, where the scale and skewness parameters are modeled

by explanatory variables. For both applications we provide the goodness-of-fit statistics Akaike infor-

mation criterion (AIC) and Bayesian information criterion (BIC). The computational codes for the

applications in subsections 7.1 and 7.2 are available available on the Web at http://goo.gl/zANZuz

and http://goo.gl/ZBf8R8, respectively.
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7.1 Shrimp data

Consider the data on biometric measurements in shrimps of farfantepenaeus brasiliensis species. These

data were obtained from three regions of the Rio Grande do Norte state in Brazil, for which the

objective was to relate the weights of the shrimps in each region. The importance of characterizing

the weights of shrimps per region is discussed by Pinheiro (2008).

To exemplify the new propose, we consider the full sample (n = 120), where the response variable

ti represents the ith shrimp weight in grams and the three groups of region are defined by dummy

variables: Baia formosa (xi1 = 0 and xi2 = 0), Diogo Lopes (xi1 = 1 and xi2 = 0) and Touros (xi1 = 0

and xi2 = 1). Let the random variable yi = log(ti) have the ESC distribution (5). As a preliminary

analysis, we note that the explanatory variable region affects the location, scale, bimodality and

asymmetry parameters. This fact can easily be observed in Figure 6.
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Figure 6: The empirical density of Y in the different regions.

Next, we present results by fitting the model

yi = µi + σizi,

where zi has density function (7) and the model parameters are defined by

µi = β01 + β11xi1 + β21xi2, σi = exp(β02 + β12xi1 + β22xi2),

νi = exp(β03 + β13xi1 + β23xi2) and τi = exp(β04 + β14xi1 + β24xi2).

Table 4 provides the MLEs, their approximate standard errors and p-values, all quantities obtained

from the fitted ESC regression model. The values of the goodness-of-fit statistics are AIC = 142.9

and BIC = 176.3. The results in Table 4 reveal that the explanatory variable region should be used

to model the location, scale, bimodality and skewness parameters at the 5% level. Therefore, we can

conclude that for each region, the weights of shrimps have different forms (bimodal and unimodal),

different location scales and asymmetry, and then they can not be fitted only with a location model.

7.1.1 Global influence analysis

Here, we compute the case deletion measures GDi(θ) and LDi(θ) for the shrimp data. The results of

such influence measure index plots are displayed in Figure 7. We may note that the 62th observation

is a possible influential observation.
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Table 4: MLEs of the parameters and their approximate standard errors from the fitted ESC regression

model to the shrimp data.

Parameter Estimate SE p-value Parameter Estimate SE p-value

β01 2.721 0.034 <0.001 β03 -2.616 0.613 <0.001

β11 -1.163 0.398 0.004 β13 2.059 0.777 0.009

β21 0.594 0.091 <0.001 β23 2.425 0.754 0.001

β02 -2.235 0.175 <0.001 β04 -0.189 0.232 0.416

β12 1.223 0.387 0.002 β14 0.655 0.713 0.360

β22 -0.057 0.495 0.908 β24 -1.165 0.595 0.052
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Figure 7: Index plots for θ: (a) GDi(θ) (Generalized Cook’s Distance) and (b) LDi(θ) (Likelihood

Distance).

7.1.2 Local influence analysis

In this section, we perform the local influence analysis for the shrimp data using the ESC regression

model.

Case-weight perturbation

By applying the local influence methodology, where the case-weight perturbation is used, the four

largest eigenvalues of the matrix B are 1.65, 1.64, 1.26 and 1.12. Figure 8 displays the index plots of

the Ui measure and the total influence Ci. These plots reveal that the 62th observation also appears

as possible influential observation.

Response perturbation

Next, the influence of perturbations in the observed times is analyzed. Here, we adopt the Ui

measure instead of dmax because the first eight eigenvalues are large. Figure 9 displays the index plot

of the Ui measure and the total local influence Ci.

Under the sensitivity analysis, we note that the 62th observation once more appears as a possible

influential point. In fact, this shrimp has the largest weight for Diogo Lopes region, being very different

from the other measurements. The shrimps detected as possible influential observations in Figure 9

represent the measurements y105 = 2.89 and y107 = 2.88 of the Touro region. Combining with the

plots of Figure 6, we can note that these two shrimps stabilize the growth of the density.
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Figure 8: Index plots for θ (case-weight perturbation): (a) dmax and (b) total local influence.
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Figure 9: Index plots for θ (response perturbation): (a) dmax and (b) total local influence.

7.1.3 Residual analysis

In order to detect possible outlying observations as well as departures from the assumptions made for

the ESC regression model, we present in Figure 10 the index plot as well as the normal probability

plot with generated confidence band for the quantile residual. Note that the quantile residual seems

to follow approximately a normal distribution, thus indicating a suitable fitted model. Note that the

observations detected in the influence analysis are not detected in the residual analysis.

In order to assess whether the model fits the data appropriately, the empirical cdf and estimated

cdf of the ESC regression model are plotted in Figure 11 for different regions. We conclude that the

Exp-ESC regression model provides a very good fit to the shrimp data.

7.2 Entomology data

In the second application, we take a data set from a study carried out at the Department of Ento-

mology of the Luiz de Queiroz School of Agriculture, University of São Paulo. Such study aims to

assess the longevity of the mediterranean fruit fly (ceratitis capitata), which is considered a pest in

agriculture. Instead of using an insecticide, Silva et al. (2013) conducted a study using small portions

of food containing substances extracted from a tree called “neem”. The experiment was completely

randomized with eleven treatments, consisting of different extracts of the neem tree at concentrations
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Figure 10: (a) Index plot of the quantile residuals for the shrimp data. (b) Normal probability plot

with envelope for the quantile residuals from the fitted ESC regression model to the shrimp data.
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Figure 11: Estimated cumulative fitted values from the ESC fitted model to the shrimp data.

of 39, 225 and 888 ppm, where the response variable is the lifetime of the adult flies in days after

exposure to the treatments. The experimental period was set at 51 days, so that the numbers of

larvae that survived beyond this period are considered as censored observations. From the results of

the experiment, these eleven treatments are allocated into two groups, namely:

• Group 1: Control 1 (deionized water); Control 2 (acetone - 5%); aqueous extract of seeds (AES)

(39 ppm); AES (225 ppm); AES (888 ppm); methanol extract of leaves (MEL) (225 ppm); MEL

(888 ppm); and dichloromethane extract of branches (DMB) (39 ppm).

• Group 2: MEL (39 ppm); DMB (225ppm) and DMB (888 ppm).

Let ti be the lifetime of ceratitis capitata adults in days, δi the censoring indicator and xi1 the

dummy variable indicating the groups (0=group 1 and 1=group 2). In a preliminary analysis, we note

that only the scale and skewness parameters require explanatory variables. Next, we present results

by fitting the model

yi = β01 + σi zi,
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where zi, for i = 1, . . . , 172, has density function f(zi; ν, τi) given by (7) and the model parameters

are given by

µi = β01, σi = exp(β02 + β12xi1), νi = exp(β03) and τi = exp(β04 + β14xi1).

Table 5 provides the MLEs, their approximate standard errors and p-values obtained from the

fitted ESC regression model. We can conclude that the explanatory variable group should be used to

model the scale and skewness parameters at the 1% level. The goodness-of-fit statistics obtained are

AIC = 309.3 and BIC = 328.2. Recently, Cordeiro et al. (2015) fitted the log-generalized Weibull-

log-logistic (LGW-LL) to these data and obtained the statistics AIC = 341 and BIC = 357. We

conclude that the ESC regression model provides a good fit to these data.

Table 5: MLEs of the parameters and their approximate standard errors from the fitted ESC regression

model to the entomology data.

Parameter Estimate SE p-value Parameter Estimate SE p-value

β01 3.013 0.024 <0.001 β03 1.218 0.112 <0.001

β02 -0.012 0.119 0.913 β04 0.100 0.085 0.242

β12 -0.895 0.234 <0.001 β14 -0.893 0.175 <0.001

7.2.1 Global influence analysis

Here, we compute the case deletion measures GDi(θ) and LDi(θ) for the entomology data. The results

of such influence measure index plots are displayed in Figure 12. Based on these plots, we note that

the cases 92 and 133 are possibly influential observations.
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Figure 12: Index plots for θ: (a) GDi(θ) (Generalized Cook’s Distance) and (b) LDi(θ) (Likelihood

Distance).

7.2.2 Local influence analysis

Case-weight perturbation
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By applying the local influence methodology, where case-weight perturbation is applied, we obtain

Cdmax = 1.15 as the maximum curvature. Figure 13 display the index plots of the eigenvector cor-

responding to dmax and the total influence Ci. We may conclude that the observations 145 and 157

present larger influence.

(a) (b)

0 50 100 150

−0
.2

−0
.1

0.
0

0.
1

Index

dm
ax

0 50 100 150

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Index
C

i

145 157

Figure 13: Index plots for θ (case-weight perturbation): (a) dmax and (b) total local influence.

Response perturbation

The influence of perturbing the observed response Y will be analyzed. The value for the maximum

curvature obtained is Cdmax = 10.41. Figure 14 display the index plots for dmax and total local

influence Ci. We may conclude that the observations 96 and 153 are possible influential points.
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Figure 14: Index plots for θ (response perturbation): (a) dmax and (b) total local influence.

The global influential analysis indicates that the observations 92 and 133 are possible influential.

The 92th observation has the large lifetime of the group 2 and the 133th observation has the smallest

lifetime of the group 1. Under the local influential analysis (case-weight perturbation), the observations

145 and 157 are detected and they represent the smallest lifetimes of the group 2 with lifetimes

t145 = t157 = 1. Finally, with the local influential analysis (response perturbation), the detected

observations 96th and 153th are the intermediary measures of the group 2.
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7.2.3 Residual analysis

In order to detect possible outliers as well as departures from the assumptions made for the ESC

regression model, we present in Figure 15 the normal probability plot with generated confidence band

and the index plot for the martingale-type residual. By analyzing these plots, the asymmetry is

observed. However, there is no indication of departures from the assumptions made for the model as

well as the presence of outlying observations.
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Figure 15: (a) Normal probability plot with envelope for the martingale-type residual rDi from the

fitted ESC regression model to the entomology data. (b) Index plot of the martingale-type residual

rDi for the entomology data.

Finally, in order to assess if the model is appropriate, the empirical and estimated survival functions

of the ESC regression model are plotted in Figure 16 for the different groups. We may conclude from

the plots that the ESC regression model provides a suitable fit to the entomology data.
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Figure 16: Estimated and empirical survival functions for the entomology data.

8 Conclusions

In this paper, we propose a general class of exponentiated sinh Cauchy (ESC) regression models,

where the mean, dispersion, skewness and bimodal parameters vary across observations through re-
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gression structures. The former class of regression models is very suitable for modeling censored and

uncensored lifetime data. The proposed model serves as an important extension to several existing

regression models and could be a valuable addition to the literature. We use the GAMLSS script in

the R package to obtain the maximum likelihood estimates and perform asymptotic tests for the model

parameters based on the asymptotic distribution of the estimates. We offer some interesting insights,

especially regarding model checking, and provide applications of influence diagnostics (global, local

and total influence) in the proposed class of regression models with censored data. We also discuss

the adequacy of the regression models via martingale-type and quantile residuals. Several simulation

studies are performed for different parameter settings, sample sizes and censoring percentages. More-

over, the usefulness of the model is also illustrated through the analysis of real data sets. Finally, the

proposed algorithm for estimating the parameters in the probability density, cumulative distribution

and quantile functions has been coded and implemented in the GAMLLS script available in the paper.

Appendix: Script for the ESC regression model

Here, we provide a brief discussion of the script for the ESC regression model implemented in the

GAMLSS R package. The first step to run the codes is load the gamlss and gamlss.cens packages

as well as the ESC model codes. After loading the codes, the pdf, cdf and qf will be available to be

used. It is also available the function to generate random values having the ESC distribution.

In the example below, we present two ways to obtain the MLEs of the model parameters for un-

censored and censored data. For both models, m1 and m2, we are modeling all parameters with the

explanatory variable X. After fitting the selected models, we can access the goodness-of-fit statis-

tics. Finally, the codes to access the residual analysis, for uncensored and censored, respectively, are

reported.

library(gamlss); library(gamlss.cens); source("https://goo.gl/DxWFB6")

dESC(y,mu ,sigma ,nu,tau) #pdf

pESC(q,mu,sigma ,nu ,tau) #cdf

qESC(p,mu ,sigma ,nu,tau) #qf

rESC(n,mu ,sigma ,nu,tau) #sample

m1=gamlss(y∼X, sigma.fo=∼X, nu.fo=∼X,tau.fo=∼X,family="ESC")
m2=gamlss(Surv(y,delta)∼X,sigma.fo=∼X, nu.fo=∼X,tau.fo=∼X,family="ESC")
AIC(m1); BIC(m1)

#Residual analysis

plot(m1$residuals ,ylim=c(-3,3),ylab="Quantile residuals")

rm=delta+log(1-pESC(y,m2$mu.fv,m2$sigma.fv,m2$nu.fv,m2$tau.fv))

rd=sign(rm)*(-2*(rm+log(delta -rm)))∧(0.5)

plot(rd,ylab="Martingale -type residual",pch=16,ylim=c(-3,3))
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