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Abstract
In this paper we derive a pore-scale model for permeable biofilm formation in

a two-dimensional pore. The pore is divided in two phases: water and biofilm. The
biofilm is assumed to consist of four components: water, extracellular polymeric
substances (EPS), active bacteria, and dead bacteria. The flow of water is mod-
eled by the Stokes equation whereas a diffusion-convection equation is involved
for the transport of nutrients. At the water/biofilm interface, nutrient transport and
shear forces due to the water flux are considered. In the biofilm, the Brinkman
equation for the water flow, transport of nutrients due to diffusion and convection,
displacement of the biofilm components due to reproduction/dead of bacteria, and
production of EPS are considered. A segregated finite element algorithm is used
to solve the mathematical equations. Numerical simulations are performed based
on experimentally determined parameters. The stress coefficient is fitted to the ex-
perimental data. To identify the critical model parameters, a sensitivity analysis
is performed. The Sobol sensitivity indices of the input parameters are computed
based on uniform perturbation by ±10% of the nominal parameter values. The
sensitivity analysis confirms that the variability or uncertainty in none of the pa-
rameters should be neglected.
keywords: Biofilm · Numerical simulations · Laboratory experiments ·Microbial
enhanced oil recovery · Porosity
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List of Symbols
c Nutrient concentration
D Nutrient diffusion coefficient
d Biofilm thickness
J Nutrient flux
k Permeability
kres Bacterial decay rate coefficient
kstr Stress coefficient
kn Monod-half nutrient velocity coefficient
L Pore length
p Pressure
q Water velocity
S Tangential shear stress
T Time
u Velocity of the biomass
U Reference water velocity
W Pore width
Y Growth yield coefficient
Greek Symbols
µ Dynamic viscosity
µn Maximum rate of nutrient utilization
ν Unitary normal vector
νn Interface velocity
Φ Growth velocity potential
ρ Density
τ Unitary tangential vector
θ Volume fraction
Subscripts/superscripts
a Active bacteria
b Biofilm
d Dead bacteria
i Input
o Output
e EPS
w Water
Abbreviations
ALE Arbitrary Lagrangian Eulerian
EPS Extracellular polymeric substance
MEOR Microbial enhanced oil recovery

1 Introduction
A biofilm can be defined as an aggregation of bacteria, algae, fungi, and protozoa en-
closed in a matrix consisting of a mixture of polymeric compounds, primarily polysac-
charides, generally referred to as extracellular polymeric substance (EPS) ([33]). Biofilms
are present in many systems, with beneficial applications in some areas, for example
in medicine, food industry, and water quality ([17]). In our research, we are inter-
ested in studying the biofilm to improve the oil extraction. Microbial enhanced oil
recovery (MEOR) is an oil enhanced recovery method relying on microorganisms and
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their metabolic products to mobilize residual oil in a cost-effective and eco-friendly
manner. The particular MEOR mechanism that we are concerned with in this work
is called selective plugging. This mechanism consists of growing the bacteria in the
high permeable zones in the reservoir and thereby clogging the preferential water flow
paths. Consequently, the water will be forced to flow in new pores and more oil will
be recovered. MEOR is not yet completely understood and there is a strong need for
mathematical models to be used for improving these technologies.

The percentage of water in biofilms constitutes up to 97% ([1]). In the biofilm,
cell clusters may be separated by interstitial voids and channels, which create a char-
acteristic porous structure ([22]). The proportion of EPS in biofilms can comprise ap-
proximately 50-90% of the total organic matter ([9, 33]). Flow velocity near a biofilm
changes from a maximum in the bulk solution to zero at the bottom of the biofilm ([19]).
In different biofilms, the mechanism of nutrient transport near the biofilm surface and
within the biofilm can be dominated by convection or diffusion ([26]).

Most of the biofilm models are based on simplifying assumptions, e.g. imperme-
ability, a constant biofilm density, and accounting for diffusion but neglecting convec-
tion for transport of nutrients ([2, 10, 25]). Novel mathematical models must be built
to improve accuracy and enhance confidence in numerical results. In [18] we built
a mathematical model for MEOR including the oil-water interfacial area. Pore-scale
models are used to derive parameters and functional relationships for the core-scale
models ([32, 23, 4, 5]). In this work, we propose a pore-scale biofilm model includ-
ing a permeable biofilm, a variable biofilm density, and transport of nutrients due to
convection and diffusion.

The resulting mathematical model involves coupled partial differential equations.
Further, the biofilm-water interface location changes over time, and therefore is a free
boundary problem. Numerical methods for solving free boundary problems are an
active research field ([12, 13]). The arbitrary Lagrangian-Eulerian (ALE) method is
used to track the position of the biofilm-water interface ([8]). In biofilm and reactive
flow modeling involving free boundary, it is common to use decoupling techniques
to find a numerical solution ([2, 21, 16]). In our case, a segregated finite element
algorithm is used to solve the mathematical equations.

Due to the cost of performing laboratory experiments to accurately estimate mate-
rial parameter values, it is of great interest to perform a sensitivity study with respect
to the impact of a set of input parameters on certain model output quantities of interest.
This ensures that critical parameters are identified. Moreover, for parameters scoring
low in sensitivity estimates, less accurate parameter estimates can be justified. Global
sensitivity analysis using Sobol indices is a means of quantifying the relative impact
of a function of interest in terms of a set of varying input parameters ([28]). This is
computationally prohibitive for problems with a large number of input parametes, but
the computational cost can be significantly reduced by computing the Sobol indices
using the generalized polynomial chaos framework ([34, 29]).

In this general context, the objective of the present article is to develop and imple-
ment an accurate numerical simulator for biofilm formation.

To summarize, the new contributions of this work are:

• the development of a multidimensional, comprehensive pore-scale mathematical
model for biofilm formation,

• the inclusion of a biofilm porosity,
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• the inclusion of nutrient transport inside the biofilm due to convection and diffu-
sion, and

• the calibration of the mathematical model with the laboratory experiments.

We emphasize that the model development here is performed in close relationship
with the physical experimental observations. In particular, this is the first model that
takes into account the porous structure of biofilm. It is through the experiments that we
identify the key processes and variables that need to be considered. Accordingly, we
compute some of the parameters (but not all due to the limited experimental observa-
tions) of the mathematical model through calibration. Finally, we study the sensitivity
of the parameters in our model.

The paper is structured as follows. The pore-scale model is defined in Sec. 2, where
we introduce the basic concepts, ideas, and equations for modeling biofilms in the
pore-scale. In Sec. 3 we describe the computational algorithm to solve numerically the
model. In Sec. 4 we present different plots for some of the unknown model variables
using the best available estimates for the input parameters. We perform a sensitivity
analysis in Sec. 5 in order to detect the critical model parameters. Finally, in Sec. 6 we
present the conclusions.

2 Pore-scale model
In [32], a pore-scale model for biofilm formation considering the biofilm as imperme-
able and formed by a single species is built. In [2], a model for heterogeneous biofilm
development considering the biofilm formed by different components is built. In this
work we extend these ideas to build a model for biofilm formation which includes the
notions of porosity and permeability.

We assume the following:

(A1) The biofilm is a separate phase (as being a porous medium itself), which is mod-
eled by mass conservation and a growth potential.

(A2) The biofilm is modeled as a continuous medium consisting of four components:
water, EPS, active bacteria, and dead bacteria.

(A3) The fluid flow and nutrients are in a steady state when we compute the biofilm
growth potential and volumetric fractions at each time step.

(A4) The biofilm growth occurs in the lower substratum.

(A5) There is only one nutrient, which is mobile both in the water and biofilm.

(A6) Temperature is constant (room temperature).

(A7) The gravity effects are neglected.

(A8) The bacterial growth rate is of Monod-type and the endogenous respiration is
linear.

We comment on the assumptions. Following [2], we need (A1) in order to properly
model the dynamics of the biofilm components. The motivation for (A3) is that the
fluid mean flow and biofilm growth velocities are of orders mm/s and 10−5 mm/s, re-
spectively ([10]). Then, water and nutrient displacements due to biofilm growth are ne-
glected ([32]). We consider (A4) because a T-microchannel is used to grow the biofilm,
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where bacteria and nutrients are first injected in the vertical channel and, afterwards,
only nutrients are injected through the horizontal channel, leading to a greater growth
of bacteria on the lower substrate (where the horizontal and vertical channels con-
nect). (A5) is taken for simplicity, but the extension to other nutrients can be achieved
straightforwardly from the model equations. We consider (A6) because the experi-
ments are performed at room temperature. We consider (A7) because in the exper-
imental setting, the gravity direction is perpendicular to the plane where the biofilm
grows. (A8) is an experimental based way to model bacterial growth and death, which
is commonly used in literature. We remark that unlike in simple biofilm models, we do
not assume a constant density of the biofilm.

2.1 Geometrical settings
We consider a two-dimensional pore of length L and width W :

Ω := (0,L)× (0,W ).

The motivation for choosing this geometry is that we can approximate a porous medium
in the macro scale as a bundle of tubes ([32]). Fig. 1 shows the water and biofilm
domains and boundaries in the pore.

The boundary of the pore consists of the substrate, the inflow, and the outflow:

Γu := [0,L]×{W}, Γd := [0,L]×{0}, Γi := {0}× [0,W ], Γo := {L}× [0,W ].

Γib(t)

Γiw(t)

Γd

Γu

Γow(t)

Γob(t)x

y
Γwb(t)

(L,0)(0,0)

(0,W) (L,W)

Ωb(t)

Ωw(t)

d(x; t)

qw

qb

τ

ν

Figure 1: Schematic representation of the porous medium.

The domain of the pore consists of the biofilm and the water phase

Ωb(t) := {(x,y)|0 < x < L, 0 < y < d(x, t)},
Ωw(t) := {(x,y)|0 < x < L, d(x, t)< y <W},

where d(x, t) is the biofilm thicknesses.
The interface between the water and biofilm phases is denoted by Γwb(t), which

mathematically is given by

Γwb(t) := {(x,y)|0 < x < L, y = d(x, t)}.
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The inflow and outflow boundaries for the water domain Ωw(t) are given by

Γiw(t) := {(x,y)|x = 0, d(0, t)< y <W},
Γow(t) := {(x,y)|x = L, d(L, t)< y <W},

while the inflow and outflow boundaries for the biofilm domain Ωb(t) are given by

Γib(t) := {(x,y)|x = 0, 0 < y < d(0, t)},
Γob(t) := {(x,y)|x = L, 0 < y < d(L, t)}.

The unit normal pointing into the biofilm and the tangential vector are given by

ννν = (∂xd,−1)T/
√

1+(∂xd)2, τττ = (1,∂xd)T/
√

1+(∂xd)2.

In the next section, we define the equations for the flow, nutrients, and biofilm growth.

2.2 Equations in the water phase
The water is assumed to be incompressible. The water flow is described by the Stokes
system

∇ ·qw = 0, µ∆qw = ∇pw,

where µ is the viscosity, pw is the water pressure, and qw = (q(1)w ,q(2)w ) is the water
velocity.

In the water phase, the nutrient concentration (cw) satisfies the convection-diffusion
equation

∂tcw +∇ ·JJJw = 0, JJJw =−D∇cw +qwcw,

where D and JJJw are the nutrient diffusion coefficient and nutrient flux in water, respec-
tively.

2.3 Equations in the biofilm phase
As mentioned before, the biofilm components are: water, EPS, active bacteria, and dead
bacteria ( j = {w,e,a,d}). Let θ j(t,x) and ρ j(t,x) denote the volume fraction and the
density (relative to volume fraction) of species j at time t and position x, respectively.
The biomass and water are assumed incompressible (ρ j(t,x) = ρ j). Therefore, the
biofilm density in a given position and time is

ρ(t,x) = ∑
j

ρ jθ j(t,x).

The volume fractions are constrained to

∑
j

θ j(t,x) = 1. (1)

In the biofilm, the biomass can increase or decrease due to EPS production, bacterial
reproduction, and death of the bacteria. Let u be the velocity of the biomass. Assuming
that the biofilm growth is irrotational ([10]), we can derive the velocity field from a
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function potential Φ:
u =−∇Φ.

In [15] the Brinkman model is derived as the Darcy scale counterpart of the Stokes
model at the scale of pores, assuming that the volume of the porous media skeleton is
much smaller than the volume of the reference cell. Therefore, recalling that biofilms
are mostly water, we assume that the water content is constant (∂tθw = 0) and we de-
scribe the water flux in the biofilm by the mass conservation and the Brinkman equation

∇ ·qb = 0,
µ

θw
∇~qb−

µ

k
~qb = ∇pb,

where qb and pb are the velocity and pressure of the water in the biofilm, respectively,
and k is the permeability.

The conservation of mass for the biofilm components (l = {e,a,d}) is given by

∂t(ρlθl)+∇ · (uρlθl) = Rl (2)

where Rl are the rates on the volume fractions; these rates are discussed in more detail
below.

Inside the biofilm, the nutrients are dissolved in the water. The nutrient concentra-
tions satisfy the following convection-diffusion-reaction equations:

∂t(θwcb)+∇ ·JJJb = Rb, JJJb =−θwD∇cb +qbcb,

where cb, Rb, and JJJb are the nutrient concentration, reaction term, and flux in the
biofilm.

Following [2], summing Eq. 2 over l and using Eq. 1 and ρl are constants for all l,
we obtain an expression for the growth velocity potential

−∇
2
Φ = (1−θw)

−1
∑

l

Rl

ρl
.

2.4 Equations at the biofilm-water interface
Coupling conditions for free flow and flow in a porous media is an active research topic
and there are several works that study this problem ([3, 24, 31, 11, 35]). We assume
that the normal velocity of the interface between the biofilm and fluid is negligible
with respect to the velocity of the fluid phase ([32]). Then, we choose conditions of
continuous velocity and continuity of the normal component of the stress tensor ([11])

~qw =~qb, ννν · (µ∇~qw−1pw) = ννν · ((µ/θw)∇~qb−1pb).

Conservation of nutrients is ensured by the Rankine-Hugoniot condition:

(JJJb−JJJw) ·ννν = νn(θwcb− cw).

The nutrient concentration is assumed continuous across the interface:

θwcb = cw.
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We set the growth velocity potential at the interface to zero:

Φ = 0.

The location of the interface Γwb(t) changes in time due to the production of EPS,
active bacteria, death of the active bacteria, and shear stress produced by the water flux.
In [14], the authors write a review of modeling of biofilm systems, which includes a
summary of different detachment models. However, none of those detachment models
are given as a function of the flow velocity. To incorporate this, we follow [30] and
[32] and use the following definition for the tangential shear stress:

S = ||(1−νννννν
T )µ(∇qw +∇qT

w)ννν ||,

where the norm that we use is the maximum norm. Then, the normal velocity of the
interface is given by

νn =


[ννν ·~u]+, d =W,

ννν ·~u+ kstrS, 0 < d <W,

0, d = 0,

where ksrt is a constant for the shear stress. In the above, we ensure that the interface
does not cross the strip by taking the positive cut on the right-hand side when d =W ,
which means that only death of active bacteria would lead to the biofilm thickness to
decrease. Following [32], the evolution equation for the biofilm thickness reads as

∂td =


−
√

1+(∂xd)2[ννν ·~u]+, d =W,

−
√

1+(∂xd)2(ννν ·uuu+ kstrS), 0 < d <W,

0, d = 0.

Finally, homogeneous Neumann condition is considered for the biofilm components:

ννν ·∇θl = 0.

2.5 Boundary and initial conditions
At the inflow, we specify the pressure and nutrient concentration and we consider ho-
mogeneous Neumann condition for the growth velocity potential and volumetric frac-
tions:

pw = pi, cw = ci at Γiw,

pb = pi, cb = ci/θw, ννν ·∇Φ = ννν ·∇θl = 0 at Γib.

At the outflow, we specify the pressure and we consider Neumann conditions for the
concentrations, growth velocity potential, and volumetric fractions:

pw = po, ννν ·∇cw = 0 at Γow,

pb = po, ννν ·∇cb = ννν ·∇Φ = ννν ·∇θl = 0 at Γob.

At the lower substrate, we consider a no-flux boundary condition for the water, nutri-
ents and volumetric fractions, and homogeneous Neumann condition for the growth
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potential:

ννν ·qb = ννν ·Jb = ννν ·∇θl = ννν ·∇Φ = 0 at Γd .

At the upper substrate, we consider a no-slip boundary condition for the free flow and
no-flux for the nutrient concentration:

q(1)w = q(2)w = ννν ·Jw = 0 at Γu.

The initial pressure, nutrient concentrations, growth potential, biofilm height, and vol-
ume fractions are given.

2.6 Reaction terms
The bacteria needs to consume nutrients in order to produce EPS and for reproduction.
We model this using Monod-type functions [14]. Also, we consider a linear death rate
of bacteria. Then, we have the following reaction terms:

Rb =−µnθaρa
cb

kn + cb
,

Re = Yeµnθaρa
cb

kn + cb
,

Ra = Yaµnθaρa
cb

kn + cb
− kresθaρa,

Rd = kresθaρa,

where Ye and Ya are yield coefficients, µn is the maximum rate of nutrient utilization, kn
is the Monod half nutrient velocity coefficient, and kres is the endogenous respiration
rate.

2.7 Pore-scale model for permeable biofilm
For increasing the readability of the paper we summarize here the developed mathe-
matical model for permeable biofilm:
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Water flow:
Stokes equations ∇ ·qw = 0 µ∆qw = ∇pw Ωw(t).
Continuity velocities qw = qb Γwb(t).
Continuity stress tensor ννν · (µ∇~qw−1pw) = ννν · ((µ/θw)∇~qb−1pb) Γwb(t).
Brinkman equations ∇ ·qb = 0 (µ/θw)∇~qb− (µ/k)~qb = ∇pb Ωb(t).

Nutrient transport:
Conservation of mass ∂tcw +∇ ·JJJw = 0 Ωw(t).
Rankine-Hugoniot (JJJb−JJJw) ·ννν = νn(θwcb− cw) Γwb(t).
Continuity of nutrients θwcb = cw Γwb(t).
Conservation of mass ∂t(θwcb)+∇ ·JJJb = Rb Ωb(t).

Growth velocity potential:
Reference potential Φ = 0 Γwb(t).
Potential equation −∇2Φ = Σl(Rl/ρl)/(1−θw) uuu =−∇Φ Ωb(t).

Volume fractions:
Detached component ννν ·∇θl = 0 Γwb(t).
Conservation of mass ∂tθl +∇ · (uuuθl) = Rl/ρl Ωb(t).

Biofilm-water interface:

Biofilm thickness ∂td =


−
√

1+(∂xd)2[ννν ·~u]+, d =W,

−
√

1+(∂xd)2(ννν ·uuu+ kstrS), 0 < d <W,

0, d = 0,
Γwb(t).

Reaction terms:
Nutrient consumption Rb =−µnθaρacb/(kn + cb) Ωb(t).
Death of bacteria Rd = kresθaρa Ωb(t).
Bacterial reproduction Ra =−YaRb−Rd Ωb(t).
EPS production Re =−YeRb Ωb(t).

The aforementioned equations define the pore-scale model for permeable biofilm. This
is a coupled system of nonlinear partial differential equations with a moving interface.

We use an ALE method for tracking the biofilm-water interface ([8]). We use back-
ward Euler for the time discretization and linear Garlekin finite elements for the spatial
discretization. We split the solution process into three sub-steps. A damped version
of Newton’s method is used in each of the steps. First, we solve for the pressures and
water fluxes. Secondly, we solve for the nutrient concentration. Thereafter, we solve
for the volumetric fractions, growth potential, and biofilm thickness. We iterate be-
tween the previous steps until the error (the difference between successive values of
the solution) drops below a given tolerance. Then, we move to the next time step and
solve again until a given final time. We implement the model equations in the commer-
cial software COMSOL Multiphysics (COMSOL 5.2a, Comsol Inc, Burlington, MA,
www.comsol.com).

3 Model test
Micro model experiments under controlled conditions have been designed for allow-
ing for determination of critical input parameters for the biofilm formation. A glass
micromodel (Micronit, Netherland) a camera (VisiCam 5.0), and two syringe pumps
(NE-1000 Series, Syringe Pumps) were used to perform the experiments. We managed
to establish biofilm growth in the glass micromodel and studied the different biofilm
growth profiles varying the water flux. The micromodel used in the laboratory has a
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width of 100 µm and thickness/depth of 20 µm. Fig. 2 shows the biofilm formation
over time for a flow rate of 0.2 µl/min, which corresponds to a water velocity injection
of qi = 1.66 mm/s := U and an entry pressure of pi = 0.128 Pa. First, microbes and
nutrients were injected in the vertical channel for 24 hours at a rate of 1 µl/min. After-
wards, the vertical channel was closed for one day. Then, we started to inject nutrients
from the left channel at a rate of 0.2 µl/min. The injected nutrient concentration was
ci = 0.88 kg/m3. A detailed description of the performed experiments can be found in
[20].

Figure 2: a) T-microchannel and b) biofilm formation.

In order to compare the mathematical model with the laboratory experiments, we per-
form numerical simulations considering the same experimental input values for flux
and nutrient concentration. We study the increase of percentage of biofilm coverage
area over time. We consider a space domain of the same width of the micro channel
W = 0.1 mm and length L = 0.2 mm. Recalling that biofilms are mostly composed
by water, we set the water volume fraction in the biofilm equal to 90% (θw = 0.9).
Then, the organic matter in the biofilm is equal to 10%. We assume that initially the
biomass in the biofilm is formed only by active bacteria (θa(0,x,y) = 0.1, θe(0,x,y) =
0, and θd(0,x,y) = 0). We set the initial biofilm thickness to d(0,x) = 2.5 µm. A com-
bination between experimentally determinated parameters and values from literature
has been used for the numerical simulations, see Table 1 for details.

For calibration of the stress coefficient, we consider the experimental percentage of
biofilm area over time for four different water velocities. Fig. 3 shows the experimental
and simulated percentage of biofilm area over time. After numerical simulations, the
order of stress coefficient that best fits the data is kstr = 10−10 kg/(m2s Pa). Then, we
perform a parametric sweep of the stress coefficient in the interval [10−9,10−11] with
a step of 10−11, where we use the method of least squares. The value that best fits the
experimental data is kstr = 2.6×10−10 kg/(m2s Pa).
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Table 1: Table of model parameters for the verification study

Name Description Value Refs.
kres Bacterial decay rate 2×10−6/s [2]
µn Maximum growth rate 10−5/s [2]
kn Monod-half velocity 10−4 kg/m3 [2]
D Nutrient diffusion coefficient 1.7×10−9 m2/s [10]
ρe EPS density 1012.5 kg/m3 [10]
ρa Active bacterial density 1025 kg/m3 [10]
ρd Dead bacterial density 1025 kg/m3 [10]
Ya Active bacterial growth yield .553 [10]
Ye EPS growth yield .447 [10]
µ Water dynamic viscosity 10−3 Pa · s [6]
ρw Water density 103 kg/m3 [6]
k Biofilm permeability 10−10 m2 [7]

Figure 3: Experimental data and numerical simulations for 4 different flux conditions.

4 Numerical results
We perform numerical simulations with ci = 1×10−3 kg/m3, pi = 0.128 Pa, θw = 0.9,
and d(0,x) = 2.5 µm. We consider a smaller nutrient concentration in comparison to
the one used in the laboratory experiments to study the biofilm dynamics with nutrient
limitation. We consider a heterogeneous biofilm, where initially the biomass on the
left half side (0 < x < L/2) is formed by 60% of active bacteria and 40% of EPS and
the biomass on the right half side (L/2 < x < L) is formed by 40% of active bacteria
and 60% of EPS. The remaining input parameters are taken from Table 1 and the cali-
brated stress coefficient is kstr = 2.6×10−10 kg/(m2s Pa). In the next figures, different
numerical results at different times are shown.

Fig. 4 shows the growth velocity potential φ after 120 hours and the nutrient con-
centrations cb and cw after 360 hours respectively. The growth velocity potential is
larger on the left lower corner, as a result of the nutrient injection on the left side and
the condition of zero potential on the interface. Therefore, the biomass will grow to-
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wards the right upper corner. After 360 hours of injection of nutrients, we observe that
the nutrient concentration in the biofilm decreases from left to right, due to the con-
sumption of nutrients by the active bacteria.

Figure 4: Growth velocity potential after 120 hours (left) and nutrient concentration
after 360 hours (right).

Fig. 5 shows the magnitude and the flow direction of the water flux velocity after
360 hours respectively. In the water domain, we observe that the water flux is larger
between the wall and the interface. In the biofilm, the water flux decreases from the
interface until zero on the wall.

Fig 6 shows the total volumetric fraction after 360 hours and the biofilm height
profile over time respectively. We observe that more than 65% of the organic matter
in the biofilm is formed by EPS and dead bacteria after 360 hours. We also observe
that the biofilm height on the left side grows faster over time, due to the nutrients being
injected on the left side and also due to the larger initial active bacteria on the left half
side, leading to a faster EPS and bacterial production.

Figure 5: Magnitude (left) and direction (right) of the water flux velocity after 360
hours.
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Figure 6: Total volumetric fractions after 360 hours (left) and biofilm height profile
over time (right).

5 Sensitivity analysis
Variability in input parameters may have a significant effect on output quantities of
interest, for instance the percentage (0-100%) of biofilm area relative to the area of
the whole domain. We perform a global sensitivity analysis ([28, 29]) to quantify
the effect of variability or uncertainty in ten material parameters that are assumed to be
sensitive with respect to variation in the biofilm area after T = 50 h of nutrient injection.
The initial biofilm thickness is d(0,x) = 10 µm, the injected nutrient concentration is
ci = 0.88 kg/m3, and the entry pressure is pi = 0.128 Pa. The input parameters, their
range of variation, and total Sobol index are listed in Table 2 (see Appendix A for
details).

Table 2: Total contribution of each material parameter on the relative variability of the
biofilm area. Total effect sums to 1.38.

Parameter Symbol Range Total Sobol Index
Diffusion coefficient D [1.53, 1.87]×10−9 0.126
Monod-half velocity kn [0.9, 1.1]×10−4 0.0531
Active bacteria yield Ya [4.98, 6.08]×10−1 0.2188
Decay rate kres [1.8, 2.2]×10−6 0.0625
Maximum growth rate µn [0.9, 1.1]×10−5 0.4139
Stress kstr [2.34, 2.86]×10−10 0.1582
Permeability k [0.9, 1.1]×10−10 0.0675
Water vol. fraction θw [8.1, 9.9]×10−1 0.0952
Bacterial density ρa [0.9225, 1.1275]×103 0.0924
EPS density ρe [0.91125, 1.11375]×103 0.0926

Due to interaction between the parameters and the fact that the total contribution
from a given parameter also involves all combinations of this parameter together with
the other parameters, the sum of the relative total contribution from the parameters ex-
ceeds 1. The relative variability contribution from each parameter is significant for the
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parameter ranges investigated. The maximum growth rate stands out as more important
than the others with respect to total variability, but none of them should be discarded
based on this numerical sensitivity study alone. The true value of each of the ten pa-
rameters should be estimated with sufficient accuracy to lead to a reliable estimate of
the biofilm area.

All previous plots are the result of the parameter values, initial conditions, and
input values. The concept of growing a biofilm in the laboratory seems uncomplicated.
Nevertheless, the biofilm formation takes up to two weeks and it is very sensitive to
the surrounding conditions (e.g., the substrate surface and light conditions). As a result
of limitations in the laboratory, we could not estimate all model parameters from the
experiments. Then, it is necessary to improve the growth techniques and develop new
measurement strategies to give better estimates of the parameters and, in turn, validate
the model assumptions.

6 Conclusions
In this work, a pore-scale model for biofilm formation is built considering the biofilm
as a porous medium. To our knowledge, the present work is the first study consid-
ering a permeable biofilm in a strip geometry. The stress coefficient kstr = 2.6×
10−10 kg/(m2s Pa) is selected to match the experimental results. A sensitivity anal-
ysis is performed. The sensitivity analysis confirms that the variability or uncertainty
in none of the 10 studied parameters should be neglected. In the numerical simulations,
we observe a reduction of the biofilm height as the water flux velocity increases. For
high flow rates we must consider the effects of the flow inside the biofilm, which affect
the transport of nutrients and, therefore, influence the biofilm thickness.
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Appendix A: Sensitivity analysis method
In this Appendix, we describe the theory behind the performed sensitivity analysis.
The variation is assumed uniform in the sense that each parameter varies within a range
where all values are equally likely. The sensitivity analysis relies on the Hoeffding or
Sobol decomposition of the quantity of interest, here denoted q, as a series expansion
in subsets of the n input parameters yyy = (y1, ...,yn),

q(yyy) = q{ /0}+
n

∑
i=1

q{i}(yi)+
n

∑
i=1, j>i

q{i, j}(yi,y j)+ . . .+q{1,...,n}(yyy).

The Sobol decomposition terms are defined recursively as integrals over subsets of the
range of yyy, denoted YYY . We introduce a uniform weight function w(yyy) = w1(y1)...wn(yn)
with wi = 1/(max(yi)−min(yi)) and the subscript notation∼ i to denote all parameters
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except parameter i. The decomposition terms are then determined by

q{ /0} =
∫
YYY

q(yyy)w(yyy)dyyy,

q{i}(yi) =
∫

YYY∼i

q(yyy)w∼i(yyy∼i)dyyy∼i−q{ /0}, 1≤ i≤ n,

q{i, j}(yi,y j) =
∫

YYY∼i, j

q(yyy)w∼i, j(yyy∼i, j)dyyy∼i, j−q{i}(yi)−q{ j}(y j)−q{ /0}, 1≤ i < j ≤ n

and so on for higher-order terms.
The Sobol index for the s-parameter combination {yi1 ,yi2 , ...,yis} is given by

S{i1,...,is} =
1

Var(q)

∫
YYY i1 ,...,is

(q{i1,...,is}(yi1 , ...,yis))
2wi1(yi1)...wis(yis)dyi1 . . .dyis .

The total variability of variable i is obtained by summing over all subsets of parameters
including parameter i, which yields the total Sobol index for parameter i,

S{i} = ∑
i∈I

Si. (3)

In this work, the Sobol decomposition terms are computed from a generalized polyno-
mial chaos expansion in Legendre polynomials ([29]), where the expansion coefficients
are obtained from sparse quadrature rules using the Smolyak algorithm ([27]). This
quadrature rule is very sparse but assumes high regularity on the quantity of interest as
a function of the input parameters.
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