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Dear Editor,

Please, find attached a manuscript entitled ‘Mitochondrial DNA content in blood and carbon load in 
airway macrophages. A longitudinal study in elderly subjects’, which we would like to submit for 
publication in Environment International.

Mitochondria have been shown to be sensitive to environmental insults, which are considered to 
play a central role on the axis of oxidative stress, inflammation, and cellular energy production.  
During a one-year follow-up period, we studied, in a quasi-experimental design, subacute changes in 
blood mitochondrial DNA (mtDNA) content of healthy old volunteers with contrasting exposures by 
moving to high (Milan) and low (Northern Sweden) polluted European spots. The blood mtDNA 
content was inversely associated with the internal exposure marker, carbon load in airway 
macrophages. Moreover, the changes of airway carbon load was in response to 5-day ambient NO2 
concentrations.

Our findings demonstrate that changes in personal exposure parallels mitochondrial function and 
that higher exposure compromises the function of the mitochondria within 5 days.  Therefore, we 
believe that our manuscript merits publication in a leading scientific journal, such as Environment 
International.

For your information, we have uploaded as supplemental file a manuscript on the same participants, 
which describes the recruitment in more detail and made reference to in our paper.

We hope you find our manuscript interesting and we look forward hearing from you. 

Sincerely yours, 

Tim Nawrot     Yang Bai Benoit Nemery
On behalf of all authors



Highlights 

 Personal exposure to air pollution was assessed by external and internal markers.

 Repeated measures over 1-year and changing places to contrast exposures

 Carbon load in airway macrophages was associated with ambient NO2 over a 5-day period.

 Decreased blood mitochondrial DNA content in response to higher airway carbon load.
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22 Abstract

23 Background: Mitochondria are sensitive to air pollutants due to their lack of repair capacity. Changes 

24 in mitochondrial DNA copy number (mtDNAcn) or content is a proxy of mitochondrial damage and 

25 has been associated with recent exposure to air pollution. Inhaled particulate matter (PM) is 

26 phagocytosed by airway macrophages (AMs), and black carbon of the phagocytosed PM measured in 

27 AM (AM BC) reflects personal pollution exposure.   

28 Objectives: The present study investigated the relation between the internal marker AM BC and 

29 ambient NO2 concentration and examined the associations of mtDNAcn with NO2 and AM BC.

30 Methods: A panel of 20 healthy retired participants (10 couples) living in Belgium underwent 

31 repeated assessments of health and air pollution exposure at 11 time points over one year. We 

32 increased exposure contrast temporarily by moving participants for 10 days to Milan, Italy (high 

33 exposure) and to Vindeln, Sweden (low exposure). Personal exposure to NO2 was measured during 5 

34 consecutive days prior to each assessment time point. The amount of BC was assessed by image 

35 analysis in AMs retrieved from induced sputum collected at 7 time points. Blood mtDNAcn was 

36 determined by qPCR at each time point. Associations between AM BC and NO2, and of mtDNAcn with 

37 NO2 and AM BC were estimated using linear mixed effect models adjusted for covariates and 

38 potential confounders.  

39 Results: Mean concentrations of 5-day average NO2 were higher in Milan (64 µg/m3) and lower in 

40 Vindeln (4 µg/m3) than Belgium (26 µg/m3). Each 10 µg/m3 increment in NO2 exposure during the last 

41 5 days was associated with 0.07 µm² (95% CI: 0.001 to 0.012) increase in median area of AM BC. A 10 

42 µg/m3 increase in NO2 was associated with 3.9% (95% CI: 2.2 to 5.5%) decrease in mtDNAcn. 

43 Consistently, each 1 µm2 increment in median area of AM BC was associated with 24.8% (95% CI: 6.8 

44 to 39.3%) decrease in mtDNAcn. 

45 Conclusion: In this quasi-experimental setting involving moving persons to places with high and low 

46 ambient air pollution, we found changes in AM BC according to ambient air pollution levels measured 
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47 during the previous 5 days. Both higher ambient NO2 and the internal lung BC load, paralleled 

48 mitochondrial compromises as exemplified by lower mtDNA content. 

49 Keywords: Mitochondrial DNA copy number, black carbon, airway macrophages, nitrogen dioxide
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50 1. Introduction

51 Combustion-derived black carbon (BC), which serves as a surrogate for traffic-related particles, has 

52 been identified as a major risk factor for air pollution-triggered adverse health outcomes, particularly 

53 in vulnerable populations including the elderly (Brook et al., 2010; Ostro et al., 2015; Samoli et al., 

54 2016). Recent exposure to BC is likely linked to inflammation through the generation of reactive 

55 oxygen species (ROS) and oxidative stress (Hou et al., 2013; Lin et al., 2015; Zhong et al., 2016). The 

56 abnormal signaling triggers an adaptive response through an overproduction of mitochondria, a 

57 major source of ROS (Malik and Czajka, 2013; Michel et al., 2012). The excess ROS can, in turn, 

58 damage the mitochondrial DNA (mtDNA) resulting in chronic inflammation (Malik and Czajka, 2013). 

59 The number of mitochondria in a cell varies from hundreds to a few thousands, each of which carries 

60 2 to 10 copies of mtDNA (Malik and Czajka, 2013; Wei and Lee, 2002). The mtDNA copy number 

61 (mtDNAcn), measured as a ratio of mtDNA to nuclear DNA, is correlated with the size and number of 

62 mitochondria, which can change due to environmental stressors (Lee and Wei, 2005). Blood or tissue 

63 mtDNAcn has been shown to correlate with exposure to ambient particulate matter (PM) (Hou et al., 

64 2010) and BC (Hou et al., 2013; Zhong et al., 2016), both in occupational settings (Hou et al., 2013, 

65 2010) and due to prenatal exposure (Janssen et al., 2012; Rosa et al., 2017). These findings suggest 

66 that mtDNAcn, reflecting mitochondrial dysfunction, may serve as a marker to represent a biological 

67 effect along the pathway of PM-induced health effects. 

68 Li et al. (2003) illustrated that the uptake of environmental ultrafine particles in phagocytes could 

69 induce major structural damage in mitochondria and, therefore, might contribute to oxidative stress. 

70 Fossil fuel exhaust is the primary source of ultrafine carbonaceous particles that form environmental 

71 PM. Carbonaceous PM can be inhaled and deposited along the respiratory tract in a size-dependent 

72 manner (Saxena et al., 2008). These particles are phagocytosed by airway macrophages (AMs) and 

73 retained in the cytoplasm, which can be visualized with microscopy (Bai et al., 2015). In adults, the 

74 area of phagocytosed black carbon in AM (AM BC) reflects the past PM exposure.  However, the 
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75 relevant exposure window that influences the carbon in AM is not established. Both long-term (Belli 

76 et al., 2016; Jacobs et al., 2010) and short-term (Belli et al., 2016; Nwokoro et al., 2012) exposure 

77 windows have been reported so far. 

78 We conducted a panel study with semi-controlled exposure to both high and low levels of air 

79 pollution that differed widely from the subject’s residence. With this design, we sought to examine 

80 how the AM BC reflects the change in ambient air pollution and to investigate whether blood 

81 mitochondrial DNA content is associated with air pollution exposures. 

82 2. Methods

83 2.1. Study design

84 As described in detail in another article (Scheers et al. submitted for publication, see supplementary 

85 material for review). We designed a panel study including a quasi-experimental design with 

86 successive “medium-high-medium-low-medium” air pollution levels. To achieve such exposure 

87 contrast both temporally and spatially, we included 20 healthy elderly (10 couples) who lived in 

88 Flanders, Belgium, representing an intermediate level of pollution (annual average PM10: 20 – 30 

89 µm/m3). This study ran from September 2013 to September 2014, during which two 10-day group 

90 trips were organized, one from October 6 to 17, 2013 to Milan, Italy, representing high exposure 

91 (annual average PM10: 40 – 50 µm/m3) and the other one from June 1 to 12, 2014 to Vindeln, 

92 Sweden, representing low exposure (annual average PM10 < 10 µm/m3) (EEA 2012) (Figure 1). During 

93 the trips, the study subjects were encouraged to do outdoor touristic activities in the urban area in 

94 Milan and in the rural nature in Vindeln.

95 During the whole study, we collected data over 11 measurement time points for multiple health 

96 endpoints and exposures, with sputum induction being performed on 7 time points (Figure 1). All the 

97 clinical measurements were performed at the University Hospital in Leuven, the Ospedale Maggiore 

98 in Milan, or Umeå University in Umeå (50 km from Vindeln). 
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99  

100 Figure 1.  Timeline of the study. Health assessments were performed in Leuven (L1 to L7), in Milan 

101 (M1 and M2), and in Vindeln (S1 and S2). All variables were measured in 20 subjects on 11 time 

102 points, except for sputum induction, which was performed on 7 time points.

103        Sputum induction was performed together with other measurements.

104        Sputum induction was performed in Leuven within three days after return from the trip. 

105

106 2.2. Subjects

107 We recruited a convenience sample of healthy elderly man-woman couples. Enrolment required 

108 each candidate to attend an interview including a questionnaire on general health and 

109 sociodemographic characteristics, and a physical examination to ensure that the candidate 

110 participants were in good general health. Inclusion criteria included an age range from about 60 to 

111 about 75, retired or available to travel during the study period, fluent in Dutch, being non-smokers 

112 (or having quit at least one year), and with each partner fulfilling the inclusion criteria. Exclusion 

113 criteria were a history of serious cardiovascular disease or cancer, and other diseases that could 

114 interfere with the health measurement, as well as mobility problems or unstable mental health that 

115 would prevent the subject from full participation. Eventually, we selected 10 male-female healthy 

116 retired couples aged 58 to 76 years old at recruitment. All subjects were given detailed oral and 

117 written information on the study and gave written informed consent. This study was approved by the 

118 Ethical Committee of KU Leuven (S55482). 
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121 2.3. AM Carbon quantification

122 2.3.1. Induced sputum

123 Spirometry was performed according to standard guidelines (Miller et al., 2005) using an EasyOne 

124 spirometer (ndd Medical Technologies, Inc., MA, USA). Forced vital capacity (FVC) and forced 

125 expiratory volume in one second (FEV1) were recorded. Subjects with post-bronchodilator FEV1 ≥ 80% 

126 underwent sputum induction according to a standard protocol (Pizzichini et al., 1996). Nebulized 

127 saline (3, 4, and 5%) was administered through De Vilbiss nebuliser (Ultra-Neb 2000 model 200HI) in 

128 3 sequential 7-minute inhalation periods. Lung function was measured before each inhalation period 

129 for the detection of clinically significant bronchoconstriction. Induced sputum was processed within 2 

130 hours after induction. Briefly, the sputum plugs were selected and weighed.  A volume of Hanks’ 

131 balanced salt solution containing 0.1% dithiothreitol (Sigma, St Louis, MO, USA) and 3% bovine serum 

132 albumin (Sigma) of four times the weight was added. Portions were agitated with a vortex, placed on 

133 a bench rocker for 5 minutes, filtered through a 70 μm Falcon cell strainer, and centrifuged at 1500 

134 rpm for 10 minutes. The sputum supernatant was removed and stored at -80 ˚C for cytokine analysis 

135 (not reported here). The cell pellet was resuspended in 1000 μl phosphate-buffered saline. A total 

136 nonsquamous cell count was performed in a hemocytometer and expressed as millions per milliliter 

137 of selected induced sputum. The proportion of salivary squamous cells was noted and cell viability 

138 was determined by trypan blue exclusion method. Cytospins were prepared by cytocentrifuging 

139 (Shandon Scientific, Techgen, Zellik, Belgium) 15,000 cells onto glass slides and stained with Diff-Quik 

140 (Medion Diagnostics, Düdingen, Germany).

141 2.3.2. Image analysis

142 Twenty subjects attended for sputum induction in all sessions, except session M2 at which 14 

143 subjects attended. Due to inappropriate storage (n = 10) and failure to produce adequate sputum (n 

144 = 28), we obtained 96 samples in total. Among the 96 samples, only 63 contained a sufficient number 

145 of AMs (≥ 50) for assessing carbon load. 
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146 The area of carbon in AM was determined as previously described (Jacobs et al., 2010). Briefly, digital 

147 images of 50 randomly selected AM from each cytospin slide were obtained at ×100 magnification. 

148 Color images were converted to 32-bit black and white images using ImageJ (National Institutes of 

149 Health, USA). Automatic “threshold” command and freehand selection were combined to select the 

150 black particles that were within the cell. The software generated a number of pixels which were 

151 converted to an area in micrometers squared (for our analysis: 146 pixels = 10 µm at ×100 

152 magnification). The median area (µm2) from 50 AM in each sputum sample was calculated and used 

153 for the statistical analyses. 

154 2.4. Mitochondrial DNA content

155 Genomic DNA was isolated from buffy coat of venous blood stored in EDTA tubes using the QIAamp® 

156 DNA minikit (Qiagen GmbH, Hilden, Germany). The yield (ng/μL) and purity ratios (A260/280 and 

157 A260/230) of the extracted DNA were determined with the NanoDrop spectrophotometer (2000c, 

158 Thermo Scientific). The mtDNA content was determined using a quantitative real-time PCR (qPCR) 

159 assay by taking the ratio of two mitochondrial gene copy numbers (MTF3212/R3319 and MT-ND1) to 

160 two single-copy nuclear reference genes (RPLP0 and ACTB) as previously described (Janssen et al., 

161 2012). Base software (Biogazelle, Zwijnaarde, BE) was used to normalize data and correct for run-to-

162 run differences.

163 2.5. Environmental pollution data

164 Personal exposure to environmental NO2 was monitored using Radiello diffusive samplers (Sigma-

165 Aldrich, Bellefonte, PA, USA). Sampling period was defined as 5 days prior to each health assessment 

166 day in Leuven and to the second health assessment day in Milan and Vindeln. The subjects wore the 

167 clip-on device moving around during the day, while at night, the sampler was placed next to the bed. 

168 After each sampling period, the samplers were collected and sent to the laboratory of the 

169 Fondazione Salvatore Maugeri (Padova, Italy) for calculating the exposure to NO2. NO2 exposure was 

170 expressed as the average concentration (µg/m3) over 5 days (Gerboles et al. 2000).
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171 Meteorological data including daily mean temperature and relative humidity during sampling periods 

172 were obtained from the local meteorological websites for Belgium (Meteo België. 2016), Milan (Il 

173 Meteo. 2016), and Umeå (Weather Underground. 2016).   

174 2.6. Statistical analysis

175 The mtDNAcn was natural log-transformed to better approximate a normal distribution. For 

176 comparisons of means, and proportions we applied Student’s t-test, Mann-Whitney test, and the chi-

177 square-statistic. The associations of AM BC with NO2, and of mtDNAcn with NO2 and AM BC were 

178 analyzed using linear mixed-effect models with random intercept for each subject to account for the 

179 repeated measures design of the study. Previous research showed that AM BC is positively 

180 associated with white blood cells (WBC) (Jacobs et al., 2010). Besides, the mtDNAcn might be 

181 affected by the contents of WBC and platelets (Knez et al., 2015). To investigate the associations 

182 between mtDNAcn and exposures, we adjusted the models for age, sex, and WBC. In sensitivity 

183 analyses, first we added the platelet-lymphocyte ratio to the mtDNAcn models to account for 

184 potential changes in blood composition, and second we excluded all subjects reporting having a cold 

185 at the moment of blood sampling. For the association between AM BC and NO2, we included all 20 

186 subjects. For the associations between mtDNAcn and exposures, we excluded one observation with 

187 an outlier mtDNAcn, and one subject was excluded from all time points because he started using 

188 corticosteroids during the follow-up. Since the dependent variable (mtDNAcn) was natural-log 

189 transformed, the resulting regression coefficients and their 95% confidence intervals (CI) were 

190 transformed to [exp(β)-1]×100. This transformation allows interpreting the coefficient as the 

191 percentage of increase in mtDNAcn.

192 All statistical analyses were performed using IBM SPSS version 24 (Armonk, NY, USA) or SAS 9.4 

193 software (SAS Institute Inc., Cary, NC, USA).
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196 3. Results

197 3.1. Characteristics of participants

198 Ten male-female couples, 20 subjects in total, started the study in September 2013 and completed 

199 the study in September 2014, without dropout nor missed measurement period. Their baseline 

200 characteristics are shown in Table 1. 

201 Table 1 Description of the study population at baseline (N = 20) †

Characteristics All subjects

N = 20

Men

N = 10

Women  

N = 10

P-value ‡

Age, years 65 (58 – 76) 68 (58 – 76) 64 (59 – 70) 0.29

BMI, kg/m2 24.3 (18.9 – 29.4) 25.2 (18.9 – 29.4) 23.5 (19.2 – 29.1) 0.73

Smoking status, n (%) 0.66 #

  Never/former 10/10 4/6 6/4 

AM BC at L1 (µm2)* 0.346 (0.314) 0.348 (0.368) 0.340 (0.113) 0.64 §

202 AM BC, carbon load in airway macrophages.

203 † All values are median (range) except for * mean (SD).

204 ‡ P-value for Student t-test comparing males to females except for # Fisher exact test and § Mann-

205 Whitney test.

206

207 3.2. 5-day average NO2 

208 Personal 5-day average NO2 levels are presented in Figure 2. We obtained the highest and lowest 

209 levels of NO2 in Milan and Vindeln, respectively, being significantly different (p < 0.001) from the 

210 exposure at their residence in Belgium. We observed minor variations (coefficient of variation ranged 

211 from 18 to 38%) in NO2 among the Leuven measurements (Figure 2). 
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213 Figure 2 Median (IQR) of 5-day average NO2 concentrations (n = 6 – 10, depending on the period). L1 

214 to L7 were measured in Leuven, Belgium. M and S were measured in Milan, Italy and Vindeln, 

215 Sweden, respectively. 

216

217 3.3. Carbon load in AMs

218 The individual success rate of sputum induction varied from 0 to 100%, yielding a mean (SD) success 

219 rate 72.9 (26.1) % for individuals. In comparison, the success rate at each time point varied from 

220 62.5% to 87.5%, yielding a mean (SD) success rate 76.0 (9.0) %. 

221 AM BC varied greatly (coefficient of variation ranged from 40 to 117%) throughout the study period 

222 (Figure 3). AM BC was 0.54 (95% CI: 0.15 to 0.93) µm2 higher immediately after the trip to Milan (M2) 

223 than the first measurement in Leuven (L1) and remained somewhat higher but not significantly at L3, 

224 12 weeks later. Immediately after the trip to Sweden (S2), AM BC was unchanged compared to the 

225 previous time point (L5) and underwent a minor nonsignificant decrease 12 weeks later (L7). 

226 Comparing AM BC measured in Leuven, none of the following measurements (L3 – 7) statistically 

227 differed from L1. No statistically significant differences in AM BC were detected between any two 
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228 Leuven measurements, except for L3 and L7, when AM BC at L7 was 0.48 (95% CI: 0.13 to 0.84) µm2 

229 lower than L3 (Figure 3).

230 We found significant associations between the indices of external exposure (5-day NO2) and internal 

231 exposure (AM BC): each 10 µg/m3 increase in 5-day average NO2 was associated with an increase in 

232 AM BC of 0.07 (95% CI: 0.001 to 0.012) µm2.
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234 Figure 3 Median with IQR area of carbon load in airway macrophages on each average day of 

235 measurement. Bars and dots represent the IQR and median values, respectively. The red bar and 

236 green bar represent the period staying in Milan (Italy) and Vindeln (Sweden), respectively. L1 to L7 

237 were measured in Leuven, Belgium (no measurements for L2 and L6). M and S were measured in 

238 Leuven within 3 days after returning from Milan and Vindeln, respectively (n = 5 – 14, depending on 

239 the period). 

240

241 3.4. Blood mtDNA copy number

242 Compared with baseline levels in Belgium the blood mtDNAcn decreased significantly during the stay 

243 in Milan (M1 versus L1, -23.7%; 95% CI: -40.8 to -12.0%, Figure 4). After the return to Belgium the 
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244 mtDNAcn (L2 to L5) was restored partially but was still lower than L1. Moving to a lower exposure 

245 area in Sweden was accompanied by a minor non-significant increase in mtDNAcn (S1 and S2), but a 

246 further increment in mtDNAcn was observed upon return in Belgium after 10 days in Sweden, 

247 resulting in higher levels [L6, 19.4% (95% CI: 4.1 to 34.8%); L7, 16.7% (95% CI: 1.4 to 32.1%)] than the 

248 baseline L1 (Figure 4).  
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250 Figure 4 mtDNA copy number in blood on each average day of measurement. Bars and dots 

251 represent the IQR and median values, respectively. L1 to L7 were measured in Leuven, Belgium. M 

252 was measured in Milan, Italy. S was measured in Vindeln, Sweden.
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254 3.5. Blood mitochondrial DNA content in association with external and internal exposure

255 The associations between mtDNAcn and both external and internal exposures to air pollution are 

256 presented in Table 3. Results shown are those obtained by models adjusted for temperature, sex, 

257 age, and WBC. 

258 Blood mtDNAcn was inversely associated with both 5-day average NO2 and AM BC. For example, 

259 mtDNAcn was 3.9% (95% CI: 2.2 to 5.5%) lower for each 10 µg/m3 increment in 5-day average NO2, 
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260 and 24.8% (95% CI: 6.8 to 39.3%) lower for each 1 µm2 increase in AM BC, indicating a reduction in 

261 mtDNAcn with increasing air pollution exposure (Table 2). 

262 To test the robustness of our results, we further adjusted for platelet/leukocytes ratios. This 

263 additional adjustment did not substantially change estimates between the original model (Table 2). 

264 Furthermore, excluding the observations of persons reporting having a cold did not alter the 

265 reported associations (Table 2). 

266 Table 2 Adjusted #  relative changes (%) with their 95% CI in mtDNA for a 10 µg/m3 increase in 5-day 

267 cumulative NO2 and for a 1 µm2 increase in median area of AM BC.

Number of 

observations

Adj I # Adj II# Adj I# excluding individuals with 

cold§ 

NO2† 204 -3.9 (-5.5, -2.2)*** -3.7 (-5.3, -2.1)*** -3.3 (-5.0, -1.5)**

AM BC 54 -24.8(-39.3, -6.8)* -22.3 (-36.7, -4.5)* -22.7 (-37.6, -4.3)* 

268 AM BC, carbon load in airway macrophages.

269 * p < 0.05, ** p < 0.01, *** p < 0.0001

270 # Adj I: adjusted for sex, age, and white blood cells; Adj II: adjusted for Adj I and platelet/lymphocyte 

271 and platelet/neutrophil. 

272 † Models additionally adjusted for temperature.

273 § Number of observations for NO2 was 177 and for AM BC was 51.

274

275 4. Discussion

276 Changes induced by air pollution include oxidative stress, inflammation, and altered cellular energy 

277 production.  Mitochondria have been shown to be sensitive to environmental insults and are 

278 considered to play a central role on the axis of oxidative stress, inflammation and cellular energy 
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279 production.  During a 1-year follow-up period, we studied subacute changes in blood mtDNA content 

280 of healthy older volunteers semi-experimentally exposed to contrasting exposures by moving to high 

281 and low polluted spots. The airway carbon load changed rapidly after a brief increase in pollutant 

282 exposure and was inversely associated with blood mtDNA content.

283 4.1. AM BC as an internal exposure marker

284 The present study builds on prior epidemiologic studies that have revealed the relation between AM 

285 BC and particulate pollutants. Increased AM BC area was reported to be associated with residentially 

286 modeled annual average PM10 (Kulkarni et al., 2006) and 6-month average PM10 (Jacobs et al. 2010). 

287 However, in another study that compared AM BC content in London cyclists and non-cyclist, 

288 Nwokoro et al. (2012) found that increased AM BC in cyclists was only associated with ambient BC 

289 during commuting time, reflective of recent past exposure. A recent study added new findings to the 

290 reflection of exposure timing of AM BC, which indicated AM BC content was associated with not only 

291 3-month but also 1-week monitored indoor PM2.5 (Belli et al., 2016). These inconsistent results 

292 suggest that the time window of exposure reflected by AM BC remains ill-defined. 

293 Here, we observed an immediate increase in AM carbon load after the trip to Milan and possibly a 

294 delayed decrease in AM carbon load after the trip to Sweden. These results suggest that: 1) clearing 

295 particles may take more time than uptake of particles; 2) the two mechanisms, clearance and uptake, 

296 interact thus resulting in a delay in responding to environmental change. However, AM BC content 

297 measured in Leuven at later time points did not statistically differ from the measurement at L1 

298 (Figure 3). These results are compatible with an independent panel study that we performed among 

299 healthy young subjects from various countries (Bai et al., submitted for publication). In that study, we 

300 found that AM BC reflects the average PM10 exposure of the past year, and that AM BC decays with 

301 an initial half-life of about 53 days when moving from a high pollution level to a moderate pollution 

302 level, whereas in the Belgian residents, we observed a steady status of AM BC. Taken together, it 
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303 seems that AM BC is rapidly sensitive (a few days) to even a briefly increased exposure and is only 

304 slowly sensitive (a few weeks) to decreased exposure.

305 4.2. Associations between exposures and mtDNAcn

306 In our quasi-experimental design the blood mtDNA content, a measure of mitochondrial function, 

307 paralleled the AM carbon load. These findings in elderly are in agreement with those in two birth 

308 cohorts indicating that higher prenatal exposure to NO2 (Clemente et al., 2015) or particulate air 

309 pollution (Janssen et al., 2012) during the last trimester of pregnancy was associated with lower 

310 placental mtDNAcn. 

311 On the contrary, in a study of 675 elderly individuals, every standard deviation (SD) increase in 5-day 

312 BC moving average was found to be associated with 0.12 SD increase in blood mitochondrial DNA 

313 content (Zhong et al., 2016).  In a study of 166 elderly, monthly averaged residential exposure to 

314 PM2.5 was associated with higher mtDNAcn while annual average residential exposure to PM2.5 was 

315 associated with lower mtDNAcn (Pieters et al., 2015). Taken together, the above mentioned findings 

316 suggest that exposure windows and concentrations, and studied tissues, are important to regulate 

317 the PM-associated formation of ROS and inflammation. Hou and coworkers showed that finer 

318 particles, EC (Hou et al., 2013) and PM1 (Hou et al., 2010), resulted in greater changes in mtDNAcn 

319 than larger particles. Along similar lines, our study indicated that AM BC was associated with a 

320 greater effect in mtDNAcn than external NO2 (IQR change in exposure being associated with -15.0% 

321 vs -7.2% change in mtDNAcn, respectively).

322 The discrepancy in the results of mtDNA content, as to direction and effect-size, can be explained by 

323 the dynamic nature of mtDNA. Mitochondrial DNA fluctuates under the influence of age, ethnicity, 

324 tissue investigated, but most importantly depends on oxidative stress level, cell antioxidant capacity, 

325 type of environmental factor, and dose of exposure (Castegna et al., 2015; Shaughnessy et al., 2014). 

326 The current hypothesis is that mild oxidative stress may stimulate mtDNA copy number synthesis and 

327 abundance as a compensatory mechanism, while escalating oxidative stress levels may result in 
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328 decreased or no synthesis due to severe oxidative damage in cells (Lee and Wei, 2005). Taken this 

329 hypothesis into account, we suggest that a cumulative exposure to high concentrations of NO2 and 

330 BC leads to clearance of cells with highly damaged or dysfunctional mitochondria. Similarly, the 

331 relative mtDNA content was increased in the lung tissues of light smokers but significantly decreased 

332 in heavy smokers (Lee et al., 1998).

333 4.3. Strengths and limitations

334 The major strength of our study is its design. We took the advantage of the geographical variation in 

335 air pollution in different regions in Europe and deliberately exposed the participants to a wide range 

336 of air pollution levels. This design gave us the opportunity to examine the exposure-response 

337 relationship over a wide exposure range. In addition, we measured personal exposure to NO2 using 

338 clip-on devices thus allowing a positive relation to be detected between AM BC content and personal 

339 measured NO2. This finding is in agreement with the relation between AM BC and external ambient 

340 BC concentration reported in prior studies (Bai et al., 2015; Nwokoro et al., 2012). Our study 

341 contributes to accumulating evidence to show the feasibility of using AM BC as an internal marker for 

342 personal exposure assessment. 

343 This study also has limitations. Firstly, the sample size (n = 20) was small. Although we performed 11 

344 times health measurements, some observations were excluded from analysis because some 

345 measurements, for example induced sputum, were not obtained at all time points, mainly due to 

346 technical limitations. On the other hand, we obtained a unique dataset including 1-year follow-up of 

347 volunteers with on average 11 measurements of mtDNA content and 7 measurements of AM BC per 

348 volunteer. Secondly, although the use of personal diffusive samplers provided information on 

349 individual NO2 exposure, the concentrations of NO2 were averaged over 5 days and we could not 

350 differentiate daily concentrations. Therefore, it is not possible to study whether the observed effects 

351 were caused by the most recent exposure or by cumulative past exposure. 
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353 5. Conclusion 

354 In a panel of 20 elderly subjects, we showed that average past 5-day average NO2 exposure was 

355 positively associated with BC content in airway macrophages. By use of these personal markers of 

356 exposure, within a semi-experimental setting, we showed that blood mtDNA content was inversely 

357 associated with external 5-day average NO2 exposure and internal AM BC content. These findings 

358 suggest that 1) internal AM BC is an effective exposure marker to study the PM-effects relations, and 

359 2) blood mtDNA content is a proxy to indicate mitochondrial damage induced by recent 

360 environmental exposures.
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Key Points

Question: What is the influence of moving persons to varying levels of ambient air pollution on 

arterial carotid stiffness and other indicators of cardiovascular health?

Findings: In a panel study with 10 male-female couples of healthy elderly volunteers, we found 

significant associations between 7-days exposure to air pollution and arterial stiffness, e.g. a 4.4% 

decrease in compliance for a 10 µg/m³ increment in PM10. 

Meaning: Our experiment shows that short to medium-term exposure to elevated or decreased 

levels of air pollution affects arterial stiffness in elderly people.

Abstract

Importance: Exposure to air pollution is associated with cardiovascular disease. Health outcomes 

associated with temporal changes in exposure may inform on health benefits of permanent 

decreases of air pollution levels.

Objective: To evaluate acute and subacute effects of deliberate exposure to varying levels of ambient 

air pollution on several indicators of cardiovascular health.

Design: In a panel study, we repeatedly measured cardiovascular health endpoints and personal 

exposure to air pollution over one year in 20 persons at home and during two ten-day periods in 

locations with higher and lower exposure levels. 

Setting: Between September 2013 and September 2014 participants underwent measurements on 

seven occasions in Leuven, Belgium (intermediate level of air pollution) and twice during each 10-day 

stay in Milan (Italy; high pollution) and Vindeln (Sweden; low pollution).

Participants: Twenty nonsmoking healthy volunteers (10 male-female couples, aged 59-75 years).

Exposure: Exposure to PM10, PM2.5, black carbon, and NO2 was measured at the individual level.

Main outcomes and measures: Blood pressure, carotid arterial stiffness, 

Results: Compared with Leuven (BE), exposure to pollutants was higher in Milan (IT) and lower in 

Vindeln (Se), with the highest contrast found for NO2 (… µg/m3 vs …µg/m3 and … mg/m3, 
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respectively) We found strong associations between 7-days exposure to air pollution and arterial 

stiffness, e.g. a 4.7% (95% confidence interval (CI): -6.9;-2.5%; P<0.001) decrease in compliance for 

each 10 µg/m³ increment in PM10 (adjusted for covariates). Young’s elastic modulus and pulse 

wave velocity, both direct measures of stiffness, were positively associated with personal 

exposure to NO2. No relations were found with plasma CRP and white blood cells.

Conclusions and relevance: Our intervention study demonstrates that short/medium term 

exposure to air pollution results in changes in carotid arterial stiffness among elderly 

population. 

Key words (3-5): particulate matter; black carbon; epidemiology; carotid arterial stiffness
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Introduction

Ambient air pollution is an important cause of respiratory and cardiovascular morbidity and 

mortality.1,2 It has been abundantly demonstrated that short-term exposure to air pollution (hours to 

a few days of exposure) can trigger acute events such as myocardial infarctions, 3,4 whereas long-

term exposure (after several years of exposure) has been linked to both the onset of acute events 

and the development of chronic diseases.5,6 In addition to epidemiological research, controlled-

exposure studies in animals and humans have provided insight into possible physiological pathways 

underlying the relationship between inhalation of pollutants and cardiovascular and respiratory 

health. These pathways have been reviewed recently.7-9

In this study, we aimed to combine the advantages of epidemiological and experimental studies, by 

deliberately moving a panel of study volunteers for several days to locations with contrasting levels 

of air pollution.  We quantified several health-related endpoints that have been identified as 

intermediate steps between exposure and disease: systemic oxidative stress and inflammation,10,11 

endothelial function,10,12, arterial stiffness,13 and coagulation.14 

We hypothesized that a decrease or increase of air pollution exposure, compared to the participants’  

place of residence, during one to two weeks would be associated with detectable subacute and 

reversible changes in biomarkers of cardiovascular health.
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Methods

Study design and participants

We conducted a panel study during one year in healthy elderly volunteers and measured multiple 

health endpoints and personal exposure to air pollution in locations with widely differing ambient air 

pollution levels. From September 2013 to September 2014, we collected data over 11 measurement 

periods: every five to ten weeks in Leuven, Belgium (seven episodes); twice during a 10-day stay in 

Milan, Italy (one halfway and one at the end of the stay); twice during a similar 10-day stay in Vindeln 

(a rural area near Umeå, northern Sweden) (see Figure 5). These locations are representative for the 

highest (Milan, >50 µg/m³) and lowest (Vindeln, <10 µg/m³) yearly averages in PM10 that can be 

found in Europe, with intermediate values for Leuven (30 µg/m³)15-17. To limit differences in 

temperature between the two study trips, we stayed in Milan in autumn (October 2013) and in 

Vindeln in summer (June 2014).18 Clinical measurements were performed in adequate study rooms at 

the UZ Leuven, the Ospedale Maggiore in Milan, and Umeå University. We collected blood in EDTA 

and heparin tubes for blood cell counts and measurement of plasma C-reactive protein (CRP), 

respectively. At baseline, plasma levels of cholesterol and glucose were also determined in fasted 

blood samples. Plasma samples from heparin tubes were kept frozen at -80°C for subsequent analysis 

of plasma CRP, cholesterol and glucose levels at the UZ Leuven laboratory (Tina-quant CRP latex 

assay, Roche, Vilvoorde, Belgium).

Our study panel consisted of 20 healthy retired persons. We invited people attending lectures for 

retired people in Leuven, as well as friends and acquaintances of the parents of the doctoral 

researcher (HS) to participate in the study. After screening (by BN) of approximately 51 volunteers, 

we retained 10 male-female couples with both partners fulfilling the inclusion criteria for age 

(approx. 60-75 years), smoking habits (having never-smoked or having quit smoking at least one year 
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before the start of the study),  good general physical and mental health, willing and available to 

travel during the study period. We excluded persons with mobility problems; a history of 

cardiovascular disease (except uncomplicated hypertension), cancer, or other diseases that could 

interfere with the measurements or would represent a risk during travel. We included couples 

because this reduced the accommodation costs during the travel periods. All participants were given 

detailed oral and written information on the study and gave written informed consent. The study 

was approved by the Ethical Committee of KU Leuven (S55482).  

Collection of environmental data

Participants lived in or close to Leuven or Mechelen (maximum distance between the residences was 

45 km) and we estimated their daily residential exposure to PM10, PM2.5, black carbon (BC) and NO2 

using interpolated values in 4 by 4 km grids, based on the Belgian telemetric air quality network.19. In 

Milan, we used the online database of the Regional Agency for the Protection of the Environment in 

Lombardy (ARPA Lombardia) and averaged values from the different monitoring stations in Milan to 

estimate exposure to the same pollutants.20 In Vindeln, we averaged data from the nearest 

measurement stations in Umeå, Skellefteå and Strömsund to estimate regional levels of PM10, PM2.5, 

and NO2.21 BC was not measured by any of these monitoring stations.

In addition, we sampled outdoor concentration of pollutants by using two portable laser-operated 

aerosol mass analysers: an Aerocet 53 (Met One Instruments Inc, Grants Pass, OR, USA) for PM10 and 

PM2.5, and a microAeth Model AE51 (AethLabs, San Francisco, CA, USA) to measure BC concentration. 

Because our own BC results correlated well with those from central monitoring stations on the same 
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day (in Leuven or Milan, N = 57 days, Pearson’s r = 0.76, p<0.001), we used our own measurements 

for Vindeln to fill the gap in the BC dataset from the Swedish monitoring stations.

Finally, personal exposure to NO2 was measured using Radiello diffusive samplers (Sigma-Aldrich, 

Bellefonte, PA, USA). Six to 10 study volunteers wore the clip-on device during six days prior to each 

health assessment day in Leuven or to the last health assessment day in Milan and Vindeln. After the 

sampling period, samplers were sent to the lab of the Fondazione Salvatore Maugeri (Padova, Italy) 

for quantification of average exposure to NO2.

Daily temperature and relative humidity during the study period were obtained from local 

meteorological websites for Belgium22 and Milan23 and an international website for Umeå.24

Cardiovascular measurements

We measured blood pressure and carotid arterial stiffness at each study moment including nine 

measurement occasions in Belgium, two in Milan and two in Sweden. Endothelial function was 

measured once during each trip (on day 9 or 10) and in Belgium only in control periods immediately 

before and after trips, resulting in six time points with endothelial function assessments (see Figure 

5).

Blood pressure

Systolic (SBP) and diastolic blood pressure (DBP) were measured according to guidelines of the 

European Society of Hypertension,25 with an automated device (Stabilograph, Stolberg, Germany). 

After the subject had rested for at least 5 minutes, blood pressure was measured five times 
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consecutively in sitting position. We used the average of the last two measurements for analyses, 

and we calculated pulse pressure (ΔP) as average SBP minus DBP, and mean arterial pressure as DBP 

+ ΔP/3.

Carotid arterial stiffness & endothelial function

We measured carotid arterial stiffness by using an ultrasound device with automatic boundary 

detection software in RF-mode (MyLabOne, Esaote Benelux, Maastricht, The Netherlands) according 

to previously reported protocols.26 Participants were at rest for 10 minutes in a supine position 

before starting the measurements. All measurements were performed by the same trained 

investigator (LC) by longitudinal scanning of a 1 cm segment of the right common carotid artery at 1 

cm proximally to the dilatation of the carotid bulb visualizing the lumen-intima and media-adventitia 

interfaces of the far arterial wall.  Carotid intima-media thickness (CIMT) was determined under 

three different angles; i.e. 90, 130 and 180 degrees.

We averaged diastolic artery diameter (D) and systolic increase in diameter (ΔD) over three 

consecutive ultrasound measurements, each spanning eight cardiac cycles. We subsequently used D 

and ΔD to calculate four parameters related to arterial stiffness, as described in two standard 

papers.27,28 Carotid distensibility (DC) and compliance (CC) coefficients are inversely related to 

arterial stiffness, and pulse wave velocity (PWV) is a direct measure of arterial stiffness. Young's 

Elastic Modulus (YEM) combines measures of arterial wall elasticity with intima media thickness 

(IMT). Intra-observer coefficients of variation ranged from 5.2% to 10.1% for the different stiffness 

parameters, indicating good reproducibility of measurements.13

Reactive hyperemia index (RHI), which is a measure for endothelial function was assessed using the 

EndoPAT 2000 device (Itamar Medical, Israel). Measurements were performed according to the 

manufacturer’s instructions. Briefly, the subjects rested in supine position for a minimum of 20 
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minutes before measurements. Each recording consisted of 5 minutes of baseline measurement, 5 

minutes of occlusion measurement, and 5 minutes postocclusion measurement (hyperemic period). 

Occlusion of the brachial artery was performed on the nondominant upper arm. The occlusion 

pressure was at least 60 mmHg above the systolic blood pressure (minimally 200 mmHg, and 

maximally 300 mmHg).

Covariates

Information on smoking status (never or former), medication use for hypertension, and having a cold 

was obtained by face-to-face interviews. Since physical activity, alcohol consumption, and perceived 

mental health were assumed to differ between the home situation and a 10-day trip abroad, we 

aimed to correct for these variables.

During seven days preceding each health assessment day, study subjects recorded their average 

physical activity duration (PAD), by wearing a SenseWear Pro Armband (BodyMedia, Inc., Pittsburgh, 

PA), a validated multisensory activity monitor combining a triaxial accelerometer with different 

sensors.29 Weekly consumed grams of alcohol were calculated based on self-reported alcohol use, 

which was scored during one week at baseline, on trips abroad, and at the end of the study. 

Perceived mental health was assessed at the start of each health assessment. Participants filled in 

the Positive and Negative Affect Schedule (PANAS), which comprises a positive (PA) and a negative 

mood scale (NA) based on 10 items each on instantaneous mental condition. 30 

Data management and analysis

Data management and statistical analyses were performed in SAS 9.4 (SAS Institute, Cary, NC, USA). 

We investigated associations between health parameters and exposure to air pollution by using 
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linear mixed models, accounting for the repeated-measures design of the study. We evaluated 

different lag structures for the exposure variables: ‘acute’ effects of air pollution were estimated by 

using lag day 0 (exposure on the day of measurement), and ‘subacute’ effects by calculating the 

average of lag days 0 to 6 (referred to as ‘av06’), corresponding to the duration of exposure with the 

Radiello NO2 sampler. We performed sensitivity analyses with different lag structures for the 

subacute exposure (av02 and av04). Age at baseline, sex, date of the examination, ambient 

temperature, relative humidity, heart rate, mean arterial pressure, having a cold, medication use 

(BP), and smoking status were included in all models. We tested the assumption of normal 

distribution of the error terms by visual inspection of the Q-Q plots of residuals. For PWV, DC, CC, 

YEM, white blood cells (WBC) and differential WBC counts, this assumption was only met after log10-

transformation. Therefore, results for these outcomes are presented as % change, whereas 

parameter estimates of all other analyses are unit changes. 
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Results

Ten male-female couples started the study in September 2013, and all participants completed the 

study in September 2014, without any dropout or missed measurement episode for any participant. 

Table 2 summarizes the main characteristics of the study population at baseline. No differences were 

observed between males and females, except for body height and DBP, which were both higher in 

males than in females. Five female volunteers took medication for blood pressure during the whole 

study period, one male started taking medication after period L2 (figure 1).

Individual exposure levels to PM10, PM2.5, NO2 and BC are presented in Figure 6. Personal exposure to 

NO2 and ambient levels of BC were clearly highest in Milan and lowest in Vindeln with intermediate 

values for Leuven (Belgium). Average concentrations of PM10, PM2.5 and NO2 (monitoring stations) 

did not differ between Leuven and Vindeln. Standard deviations (SD) were smaller in Milan and 

Sweden because the exposure window was more uniform in time and space than in Leuven.  Plasma 

CRP levels were related with air pollution exposure in the crude models, but this association 

disappeared in the adjusted models, due to the influence of the covariate ‘having a cold’.

The adjusted associations of blood pressure and carotid arterial stiffness with ambient 

concentrations of PM10, PM2.5, BC and NO2 are presented in Table 3. Crude individual data and 

unadjusted coefficients can be found in the supplement. Changes in blood pressure variables were 

not related to changes in pollutant concentrations, regardless of the time window. We detected no 

short-term associations (lag0) between pollutant concentrations and indicators of arterial stiffness, 

except a 2.0% (95% CI -3.5;-0.4%) decrease in CC for a 10 µg/m³ increase in PM10, and a similar 

association with PM2.5. In contrast, we found robust effects of subacute exposure (av06 lag structure) 

to air pollution on all measures of arterial stiffness. These associations were strongest for PM10 and 
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PM2.5 [e.g. a 4.7 (-6.9;-2.5%) decrease in CC for a 10 µg/m³ increment in PM10]. Analyses with 

different lag structures (av04 and av02) produced very similar results (see supplement).

Endothelial function, by use of the EndoPAT, was positively associated with both 24h and 7 days 

averages of exposure to different pollutants, e.g. RHI was 0.36 (95% CI 0.19;0.54) points higher for a 

10 µg/m³ increment in PM10 (av06), indicating an improvement in endothelial function with 

increasing air pollution exposure (Table 3). Similarly, when using a binary RHI outcome variable with 

1.67 as the cut-off value, the risk for having endothelial dysfunction decreased with increasing 

pollutant concentrations (results not shown). 

Discussion

In a quasi-experimental study, we deliberately exposed 20 study volunteers to the range of ambient 

pollution levels that can be found in Europe by moving them over Europe, and investigated the 

association between their exposure to air pollution and relevant intermediate cardiovascular 

endpoints. We found that changes in the vascular function of the carotid artery parallels personal 

exposure to one week ambient air pollution. Young’s elastic modulus and pulse wave velocity, both 

direct measures of stiffness, were positively associated with personal exposure to NO2, while the 

distensibility and compliance coefficient, both measures of elasticity, were inversely associated with 

NO2.

Arterial stiffness and reduced elasticity, as measured here by different parameters, were consistently 

associated with higher exposure to ambient air pollution. Young’s elastic modulus and pulse wave 

velocity, both direct measures of stiffness31, were positively associated with personal exposure, while 
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the distensibility and compliance coefficient, both measures of elasticity,32 were negatively 

associated with one week personal exposure contrast. The mechanisms responsible for the increase 

in stiffness and air pollution remain to be elucidated but most likely increase in inflammation and 

changes in cardiac autonomic function, as observed in studies on heart rate variability, can explain 

the inverse association between arterial distensibility and air pollution exposure. Arterial stiffness is 

an important determinant of increased blood pressure and pulse pressure, and therefore a risk factor 

of events such as myocardial infarction and stroke.27,33,34 Since acute effects of air pollution on 

myocardial infarction and stroke have repeatedly been demonstrated,1,2,4,35 our results provide a 

plausible biological mechanism for this trigger effect. Similar associations between short-term air 

pollution exposure and arterial stiffness were found in recent intervention and epidemiological 

studies.13,36-38 The small changes that we found are not clinically relevant for an individual, but the 

entire population is exposed to air pollution, including more vulnerable individuals. Small average 

effects may reflect substantial changes in the most susceptible portion of the population.39-41 

Moreover, the effects were considerably larger for the 7-days averaged pollutant concentrations 

than for one-day values, indicating that medium-term exposure increases the detrimental effect of 

air pollution.

We found no evidence of systemic inflammation, quantified as concentrations plasma CRP.  Either by 

a release of inflammatory cytokines into the circulation, or by direct translocation of particles 

through the lung-blood barrier into the circulation,8 systemic inflammation is held responsible for 

noxious processes such as endothelial dysfunction, development of atherosclerosis, reduced HRV, 

coagulation, and thrombosis.7-9 However, in general, controlled-exposure studies at relatively low 

exposure levels in healthy humans, such as the present study, did not demonstrate robust 

inflammatory responses.7 
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We had intended to assess relations between blood cell parameters and air pollution exposure. 

Hematocrit was negatively associated with air pollution (data not shown). However, it proved 

impossible to make confident comparisons between counts of erythrocytes, leukocytes or platelets 

obtained in the three locations, because these analyses were made with different devices in the 

three laboratories, thus leading to systematic errors that we could not reliably correct. When only 

the measurements made in Leuven were considered, no significant associations were observed for 

hematologic parameters. 

When we designed the study, we selected the study locations based on their annual PM averages. 

We expected to find ambient PM10 concentrations as low as 10 µg/m³ in rural Sweden and as high as 

50 µg/m³ in Milan during several days in a row. However, PM concentrations obtained from central 

monitoring stations were highly variable during both stays, resulting in average one-week exposures 

higher than expected in Vindeln (av06 PM of 19.8 µg/m³ in S1) and lower than expected in Milan 

(av06 PM of 30.6 µg/m³ in M2) (Figure 6)..15,16 Nevertheless, such differences between locations were 

bigger for BC and NO2 concentrations obtained from both, monitoring stations and personal 

exposure. This may be explained by the fact that BC and NO2 aretypical traffic-related pollutants 

with much more spatial variation in ambient concentration than PM.48 

Our longitudinal study includes 11 health assessment episodes during one year in a panel of 20 

healthy elderly volunteers, without any missing measurements, drop-out or important changes in 

health status. Moreover, we used a large battery of objective health and exposure measurements, 

including personal exposure measures of NO2. This strongly increased the statistical power of the 

analyses, allowing us to find subtle, but significant changes in cardiovascular health parameters 

related to changes in air pollution in only 20 subjects. Although our quasi-experimental design has 
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clear benefits compared with a pure observational study, some limitations must be mentioned. A 10-

day group travel abroad is very different from the common home situation in many aspects that can 

confound the association between biological endpoints and exposure to air pollution. Including PAD, 

steps, alcohol use, PA and NA in our models did not produce substantially different results. We still 

may have overlooked other, real confounders of the associations found. However, when we totally 

excluded a possible “trip effect” by analyzing only Leuven data or by just comparing Milan to Sweden 

results, the parameter estimates were still similar to those when we analyzed the whole dataset.

Contrary to our hypothesis, RHI was positively associated with pollutant concentration, and the risk 

of having endothelial dysfunction was lower with increasing air pollution. The effect was strongest 

for the 7-days averaged concentrations. This result was unexpected, since endothelial dysfunction, a 

marker of atherosclerotic processes,41 has repeatedly been associated with increased air pollution 

exposure levels.7,9,10,12 

Endothelial function was measured six times in this study, and the highest average and median value 

were recorded in Milan (session M2), which had also the highest levels of air pollution. 

Measurements in Milan took place between 16:00h and 20:00h, whereas those in Leuven were 

always between 8:00h and 12:00h, and those in Vindeln were spread over the whole day. There are 

indications that endothelial function sustains a circadian rhythm, with a lower RHI in the morning.42 

Moreover, the same authors question the suitability of EndoPAT to measure endothelial function in 

small panels, such as in our study42 Whatever the case may be, when removing the M2 results from 

the analysis, no positive or negative association between any of the pollutants and endothelial 

function could be detected. Therefore, our results on endothelial function and air pollution exposure 

must be interpreted with care.
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Public health relevance

The changes we found in carotid arterial stiffness and hematology, in relation to exposure to air 

pollution, were small and probably of little clinical relevance for the healthy individual study 

participants. However, since ambient air pollution is ubiquitous, the whole population is exposed, 

including more susceptible subgroups such as children, patients with preexisting diseases, and 

elderly.49 As a consequence, small individual risks result in a large global burden. Moreover, the time 

window of exposure in our study was relatively short. Many people living in urban environments are 

continuously exposed to much higher levels of air pollution.50 Long-term exposure to air pollution 

induces pathophysiological processes, eventually causing cardiovascular events and chronic diseases. 

Thus, it increases the risk for mortality to an even greater extent than the triggering effect of short-

term exposures.2,7  

Overall, 3.7 million deaths and 3.1% of disability-adjusted life years (DALY) worldwide are attributed 

to air pollution, placing it in the top 10 of risk factors.51 In our study, we found that decreases in air 

pollution exposure, compared to the ‘normal’ level of exposure, were associated with reduced 

arterial stiffness and improved elasticity. Our result is in line with follow-up analyses of the Harvard 

Six Cities cohort study, showing a reduction in mortality risk in association with a decrease in ambient 

PM concentration.52,53 These observations demonstrate that measures leading to a reduction in 

exposure to air pollution are likely to have beneficial public health effects.

Conclusion

In a panel study of  healthy elderly moved to different places to contrast exposure representative for 

different ambient air pollution levels typical for Europe, we found evidence for subacute effects of 
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exposure to PM, BC and NO2 on carotid stiffness. In this susceptible group, improved air quality 

results within 7 days in higher elasticity of the common carotid artery.
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Figure legends
Figure 5. Timeline of the study. L1 to L7: health assessment periods in Leuven; M1-2: stay in Milan; S1-

2: stay in Sweden. All variables mentioned in the text were measured in 20 study volunteers in all 11 

periods, except for endothelial function (only L1, M2, L2, L5, S2, and L6, indicated with *) and plasma 

levels of cholesterol and glucose (only L1, baseline).

Figure 6. Personal exposure to PM10, PM2.5, BC and NO2 during the study period. All symbols and error 

bars represent means with SD obtained from values averaged over one week preceding the day of 

health assessment (‘av06’ lag structure). Circles indicate data from central monitoring stations, 

squares are own measurements (NO2: Radiello device; BC: Aethlab device). N=20 for each data point, 

except Radiello NO2 (N=6 to 18, depending on the period).
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Tables
Table 2. Baseline characteristics of the study participants.a 

Characteristic All participants 
(N=20)

Males (N=10) Females 
(N=10)

P-valueb

Age, y 65 (58-76) 68 (58-76) 64 (59-70) 0.29
Height, m 1.71 (1.58-1.96) 1.76 (1.69-

1.96)
1.66 (1.58-

1.71)
<0.001

Body-mass index, kg/m² 24.3 (18.9-29.4) 25.2 (18.9-
29.4)

23.5 (19.2-
29.1)

0.73

Smoking status, No. (%)
  Former 10 (50%) 6 (60%) 4 (40%)
  Never 10 (50%) 4 (40%) 6 (60%) 0.66

Blood pressure, mm Hg
  Systolic 132 (109-165) 133 (113-165) 127 (109-155) 0.53
  Diastolic 80 (65-105) 85 (67-105) 76 (65-89) 0.06
Plasma cholesterol, mg/dLc

  Total 206 (144-282) 206 (160-238) 207 (144-282) 0.72
  LDL 133 (57-212) 133 (93-150) 130 (57-212) 0.91
Plasma glucose, mg/dLc 99 (86-131) 100 (88-131) 99 (86-112) 0.37
Medication for hypertension, 
No. (%) 6 (30%)d 1 (10%)d 5 (50%) 0.14

aAll values are medians (range).
bP-value for t-test comparing males to females (except smoking status and medication use: Fisher 
exact test).
cMeasured in fasted blood samples.
dOne male study subject started taking medication during the course of the study (after period M2).
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Table 3. Adjusteda,b changes (95% CI) in blood pressure , markers of arterial stiffness associated with a 

10 µg/m³ increase in PM10 or NO2, a 5 µg/m³ increase in PM2.5 or a 1 µg/m³ increase in BC. 

Acute effects 
(lag0)

PM10 PM2.5 BC NO2 (stations) NO2 
(personal 
sampler)

  Systolic BP, mm 
Hg a

-0.16 (-
1.47;1.14)

0.11 (-
0.57;0.78)

-0.02 (-
0.99;0.94)

-1.02 (-
2.11;0.06)

n/a

  Diastolic BP, 
mm Hg a

-0.47 (-
1.34;0.40)

-0.15 (-
0.61;0.30)

-0.02 (-
0.72;0.69)

-0.39 (-
1.12;0.34)

n/a

  Pulse pressure, 
mm Hg a

0.26 (-
0.67;1.19)

0.25 (-
0.23;0.73)

-0.04 (-
0.73;0.65)

-0.66 (-
1.44;0.12)

n/a

  PWV, % b 0.7 (-0.1;1.6) 0.4 (0.0;0.9)* 0.3 (-0.3;0.9) 0.3 (-0.5;1.0) n/a
  Distensibility of 
the carotid 
artery, % b

-1.5 (-3.2;0.3) -0.9 (-1.8;0.0)* -0.7 (-2.0;0.6) -0.6 (-2.1;0.9)
n/a

  Compliance of 
the carotid 
artery, % b

-2.0 (-3.5;-
0.4)*

-1.1 (-1.9;-
0.3)* -0.8 (-2.0;0.3) -1.0 (-2.3;0.3)

n/a

  Young elastic 
modulus, % b 1.2 (-0.8;3.2) 1.0 (0.0;2.0) 0.8 (-0.7;2.2) 0.5 (-1.2;2.1) n/a

  RHI b 0.20 
(0.10;0.30)**

0.19 
(0.06;0.32)*

1.67 
(0.76;2.57)**

0.12 
(0.03;0.21)*

n/a

Subacute effects 
(av06)

PM10 PM2.5 BC NO2 (stations) NO2 
(personal 
sampler)

  Systolic BP, mm 
Hg a

0.23 (-
1.8;2.26)

0.25 (-
0.66;1.15)

-0.12 (-
1.57;1.34)

-1.28 (-2.53;-
0.04)

-0.14 (-
1.10;0.81)

  Diastolic BP, 
mm Hg a

-0.90 (-
2.23;0.43)

-0.24 (-
0.85;0.37)

-0.17 (-
1.17;0.82)

-0.78 (-
1.65;0.10)

-0.28 (-
0.95;0.39)

  Pulse pressure, 
mm Hg a

1.11 (-
0.36;2.59)

0.47 (-
0.17;1.11)

0.03 (-
1.00;1.06)

-0.55 (-
1.44;0.34)

0.11 (-
0.58;0.79)

  PWV, % b

2.0 (0.8;3.3)** 0.9 (0.4;1.5)** 0.9 (-0.1;1.9) 0.7 (-0.1;1.6)
0.6 

(0.0;1.3)*

  Distensibility of 
the carotid     
artery, % b

-4.6 (-7;-
2.2)**

-2.1 (-3.3;-
1.0)**

-2.4 (-4.3;-
0.4)*

-1.8 (-3.4;-
0.1)*

-1.3 (-
2.5;0.0)

  Compliance of 
the carotid 
artery, % b

-4.7 (-6.9;-
2.5)**

-2.1 (-3.2;-
1.1)**

-2.5 (-4.3;-
0.7)*

-2.0 (-3.5;-
0.5)*

-1.4 (-2.6;-
0.3)*

  Young elastic 
modulus, % b 3.8 (0.8;6.9)* 1.9 (0.5;3.3)* 2.3 (0.2;4.5)* 1.5 (-0.4;3.5)

1.4 
(0.0;2.8)

  RHI b 0.36 
(0.19;0.54)**

0.20 
(0.08;0.31)**

0.27 
(0.12;0.42)**

0.19 
(0.09;0.30)**

0.07 (-
0.02;0.15)

For all results, N=218 (11 time points), except for RHI, where N = 118 (6 time points). 
Statistically significant results are highlighted in bold. * P<0.05; ** P<0.01; *** P<0.001 
n/a: not applicable as personal sampling was based on passive sampler integrating exposure during 6 
days
aAdjusted for age at baseline, sex, HR, smoking status, having a cold, medication use for blood 
pressure, date, temperature, relative humidity.
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bAdditionally adjusted for arterial pressure.
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Figure 1
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Figure 2
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