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Abstract—A recent trend in Machine Learning is to aug-
ment the transparency of traditional classification models using
Granular Computing techniques. This approach has been found
particularly useful in the neural networks field since most
successful neural systems often require complex structures to
behave like universal approximators. However, there is a widely-
held view stating that, to build an interpretable classifier, one
might have to sacrifice some prediction accuracy. We want to
challenge this belief by exploring the performance of a recently
introduced granular classifier termed Fuzzy-Rough Cognitive
Networks against low-level (i.e., traditional) neural networks. The
simulation results have shown that this neural system can attain
quite competitive prediction rates while featuring a shallow,
granular architecture. As a bigger picture, this study paves the
way for conducting a more thorough evaluation of granular
versus low-level neural classifiers in the near future.

Index Terms—Fuzzy-Rough Cognitive Networks, Granular
Computing, Neural Systems, Pattern Classification.

I. INTRODUCTION

A plethora of real-world scenarios are concerned with dis-
cerning or discriminating among multiple patterns or classes of
objects. Pattern classification [1] is thus one of the most vibrant
areas within modern Artificial/Computational Intelligence. In
its canonical formulation, this problem consists of identifying
the correct category for each object under consideration from
those in a predefined set.

The literature offers a broad array of classification models
that tackle this problem from various angles [2] [3], although
many of these classifiers do not provide any inherent intro-
spection mechanism to explain how they arrived at a certain
conclusion (decision class). A notorious example is that of
Artificial Neural Networks (ANNs), which are known to be
accurate classifiers in general and yet behave as black boxes
in the sense that neither its neurons nor their connections bear
any clear meaning for the problem at hand [4].

A recent trend in the Machine Learning community to
boost the interpretability of traditional classification models
consists in their augmentation with more symbolic, human-
centric constructs, also referred to as information granules.
Granular Computing (GrC) [5] [6] [7] is a research discipline
devoted to the construction, representation and processing of
information granules. The incorporation of key GrC principles

into the design of these classification methods has given rise to
the so called granular classifiers [8] [9] [10] [11]. Despite the
promising results attained in terms of enhanced interpretability
and reduced computational cost, these granular models are
rarely compared against their numerical, traditional counterparts
on accuracy grounds. Perhaps the underlying belief is that, by
representing low-level, numerical information at a higher degree
of abstraction, the ensuing reasoning process might not prove
competitive accuracy-wise at the numerical (not granular) level.

In this paper we want to challenge this thinking by comparing
the classification performance achieved by a recently proposed
granular neural classifier, namely Fuzzy-Rough Cognitive
Networks (FRCNs) [12], against 12 well-established ANN-
based classifiers across 123 pattern classification datasets of
varying dimensionality, noise levels and incompleteness degrees.
This heterogeneity facilitated gaining a global understanding
of the performance of these classifiers on the selected datasets
by using classification accuracy as the performance metric
and avoiding parameter tuning to reduce the computational
complexity of this evaluation. All results are supported by a
statistical analysis of their significance and they point to the fact
that FRCNs are as accurate as the most successful ANN model
and certainly capable of beating most of the neural models
under consideration while retaining their ability to elucidate
their inference process driven by information granules borrowed
from Rough Set Theory (RST) [13] [14].

This paper makes the following contributions: (1) we
motivate the development of rough cognitive mapping and
showcase FRCNs as as promising realization of this concept;
(2) encouraged by the superior performance exhibited by
FRCNs in [12] with respect to classification methods from
multiple families, we hone in on their comparison to ANN-
based classifiers in a preliminary attempt to understand how
granular neural classifiers behave against their classical peers;
(3) we conduct an extensive analysis and discuss the obtained
results from a statistically sound perspective and (4) we pave
the way for a more thorough evaluation of granular vs. low-
level neural classification models in the near future.

The rest of this paper is organized as follows. Section II elab-
orates on rough cognitive mapping and Section III introduces
FRCNs as an embodiment of this concept. The experimental



design and empirical discussion comparing FRCNs to a host of
traditional and more advanced neural networks for classification
problems are unveiled in Sections IV and V, respectively.
Concluding remarks are given in Section VI.

II. ROUGH COGNITIVE MAPPING

In this section, we elaborate on the process of building and
exploiting a Rough Cognitive Network (RCN) [15], referred to
as rough cognitive mapping. This process involves three steps,
namely: 1) information granulation, 2) network construction,
and 3) network initialization and exploitation.

A. Information Granulation

The first step towards building an RCN is to generate a parti-
tion X = {X1, . . . , Xk, . . . , XK} of the universe of discourse
U according to the decision attribute d, such that each subset
Xk comprises those objects labeled with the kth decision class.
In RST [13] [14], any subset Xk ⊆ U can be approximated
by two crisp sets, which are referred to as its lower and upper
approximations and defined as ΦXk = {x ∈ U | [x]Φ ⊆ Xk}
and ΦXk = {x ∈ U | [x]Φ ∩Xk 6= ∅}, respectively.

In this classic definition, the equivalence class [x]Φ comprises
the set of objects in U that are deemed inseparable from x
according to the information contained in the attribute subset
Φ ⊆ Ψ. In presence of numerical attributes, the equivalence
relation may become too strict, so it can be replaced with a
weaker binary relation (e.g., a similarity relation).

The lower and upper approximations are used to derive the
positive, negative and boundary regions of Xk. The positive
region POS(Xk) = ΦXk contains those objects that are surely
related to Xk; the negative region NEG(Xk) = U − ΦXk

denotes those objects that are surely unrelated to Xk, while
the boundary region BND(Xk) = ΦX \ ΦXk contains
those objects that might be related to Xk. These information
granules (i.e., the three rough approximation regions) convey
valuable meaning that can be effectively exploited during the
classification of new observations.

B. Designing the Network Topology

Without loss of generality, RCNs can be defined as recur-
rent neural networks where input neurons represent rough
approximation regions, the output neurons are the decision
classes and graph edges denote causality relations among
these neurons/concepts. Therefore, once the neurons have been
determined, we can define the weight matrix according to the
following rules:
• (R1) IF Ci is Pk AND Cj is Dk THEN wij > 0
• (R2) IF Ci is Pk AND Cj is Dv 6=k THEN wij < 0
• (R3) IF Ci is Pk AND Cj is Pv 6=k THEN wij < 0
• (R4) IF Ci is Nk AND Cj is Dk THEN wij < 0

where Ci and Cj denote two neurons, Pk and Nk are the
positive and negative regions corresponding to the kth decision
class, respectively, while wij ∈ R is the causal weight between
the Ci cause neuron and the Cj effect neuron. We can derive
another rule defining the interaction between boundary regions
and decision classes since an object x ∈ BND(Xk) could be

still associated with the kth class. However, the inclusion of
this rule rarely leads to higher prediction rates in practice.

C. Network Initialization and Exploitation

To exploit the RCN given a new object x to be classified,
we compute the initial activation value for each input neuron
according to the function A : U → [0, 1] . This can be done
by using the similarity class R̄(x) associated with the target
object x as shown in Equation (1):

Pr(X|R̄(x)) =
|R̄(x) ∩Xk|
|X|

(1)

which computes the conditional probability of x being a
member of the concept X given R̄(x), where R : xRy ⇐⇒
ϕ(x, y) ≥ ξ denotes a similarity relation defined over the
distance function ϕ(x, y) and the similarity threshold ξ. Rules
R5-R7 formalize the calculation of the activation value of each
input neuron according to this principle,

• (R5) IF Ci is Pk THEN A(0)
x (Pk) = |R̄(x) ∩ POS(Xk)|

|POS(Xk)|

• (R6) IF Ci is Nk THEN A(0)
x (Nk) = |R̄(x) ∩ NEG(Xk)|

|NEG(Xk)|

• (R7) IF Ci is Bk THEN A(0)
x (Bk) = |R̄(x) ∩ BND(Xk)|

|BND(Xk)| .

Once the input neurons have been activated, we iteratively
propagate the initial conditional probability across the whole
cognitive network using Kosko’s reasoning rule [16] [17] in
Equation (2). The reader may notice that we have intentionally
suppressed the i 6= j constraint to prevent neurons from
overwriting their own initial value. This relation should not
be understood as an authentic causal trigger since an event
should not be caused by itself, although it could certainly be
influenced by its previous state.

A
(t+1)
i = f

 M∑
j=1

wjiA
(t)
j

 (2)

The updating process is performed until either the network
converges to a fixed-point attractor (equilibrium point) or a
maximum number of iterations is reached. At this point, the
output neuron (decision class) with the highest activation value
is assigned to the observation x.

III. FUZZY-ROUGH COGNITIVE NETWORKS

A pivotal issue when constructing an RCN is related to
adjusting the similarity threshold ξ. This hyperparameter
determines whether two objects are similar or not, which then
influences the construction of the similarity classes upon which
the three rough approximation regions are built. Regrettably,
small fluctuations of this threshold might lead to quite different
conclusions after performing the neural update rule. To deal
with this sensitive issue, Nápoles et al. [12] proposed the fuzzy-
rough cognitive networks, which replaces the crisp information
granules with fuzzy-rough ones.



A. Rough Granules with Soft Boundaries
Fuzzy rough sets [18] [19] allow categorizing objects into

information granules with soft boundaries, so a strict similarity
threshold is no longer required to build a similarity relation.
Next, the basis of this theory is presented.

Let X ∈ U , (X,µX(x)) be a fuzzy set and R a fuzzy
binary relation, where µX(x) and µR(y, x) are their respective
membership functions. The function µX : U → [0, 1] computes
the degree to which x ∈ U is a member of X , whereas µR :
U × U → [0, 1] quantifies the degree to which y is presumed
to be a member of X from the evidence that x is a member
of the fuzzy set X . For the sake of simplicity, R(x) is defined
by its membership function, that is, µR(x)(y) = µR(y, x).

When defining the fuzzy lower approximation, we should
consider the degree to which x is a member of Xk under the
knowledge in R. This can be measured by the truth value of the
statement ‘y ∈ R(x) implies y ∈ Xk’ under fuzzy sets R(x)
and Xk. The truth value can be computed by means of a prop-
erly defined necessity measure infy∈U I(µR(y, x), µXk

(y))
and implication function I : [0, 1] × [0, 1] → [0, 1]. In this
research, we adopt the Lukasiewicz fuzzy operators in all cases.
Equation (3) formalizes the membership function defining the
kth fuzzy lower approximation.

µR∗(Xk)(x) = min

{
µXk

(x), inf
y∈U
I(µR(y, x), µXk

(y))

}
(3)

Similarly, we can obtain a membership function for the
fuzzy upper approximation. To do so, we should gauge the
truth value of statement ‘∃y ∈ U such that x ∈ R(y)’ under
fuzzy sets R(x) and Xk. The true value of this statement
can be computed via a properly defined possibility measure
supy∈U T (µR(x, y), µXk

(y)) and conjunction function T :
[0, 1]× [0, 1]→ [0, 1]. Equation (4) formalizes the membership
function for the kth fuzzy upper approximation.

µR∗(Xk)(x) = max

{
µXk

(x), sup
y∈U
T (µR(x, y), µXk

(y))

}
(4)

Based on the fuzzy-rough approximations, we can enunciate
the membership functions associated with the fuzzy-rough
positive region as µPOS(Xk)(x) = µR∗(Xk)(x), the negative
region as µNEG(Xk)(x) = 1− µR∗(Xk)(x) and the boundary
region as µBND(Xk)(x) = µR∗(Xk)(x)− µR∗(Xk)(x).

Figure 1 displays the FRCN topology for any binary
classification problem. Observe that, unlike traditional neural
networks whose complexity depends on the number of input
attributes, the number of neurons in an FRCN is rather
determined by the number of decision classes. This shows
the advantages of hybridizing existing neural approaches with
granular paradigms towards solving complex problems.

The fuzzy-rough information granules suppress the need for
a similarity threshold hyperparameter. This implies that abrupt
transitions between classes are replaced with smoother ones,
therefore allowing an element to belong to several decision
classes with different membership grades.
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Fig. 1. Fuzzy-Rough Cognitive Network for binary classification problems.

B. Fuzzy Activation Mechanism

Aiming at activating the input neurons in an FRCN, we
use the similarity degree between the unlabeled object x and
y ∈ U as well as the membership degree of y to each fuzzy-
rough granular region. In a nutshell, the excitation of the kth
input neuron is given by the inclusion degree of the fuzzy
intersection set into the kth fuzzy-rough region.

Equations (5) and (6) mathematically formalize the calcu-
lation of the activation value of the kth positive and negative
neuron, respectively, where T2 is a t-norm and ϕ(y, x) is the
similarity degree between y and x. It should be mentioned that
the t-norm T2 could be different from the t-norm adopted to
generate the fuzzy-rough granules.

Ax(P ∗k ) =

∑
y∈U T2(ϕ(y, x), µPOS(Xk)(y))∑

y∈U µPOS(Xk)(y)
(5)

Ax(N∗k ) =

∑
y∈U T2(ϕ(y, x), µNEG(Xk)(y))∑

y∈U µNEG(Xk)(y)
(6)

Once the reasoning process is completed, the label of the
output neuron with the highest activation value is assigned to
the object x. In this scheme, ties are broken by using a nearest
neighbor approach: the model chooses the closest instance (i.e.,
an object from the universe) to the test object and returns its
corresponding decision class.

IV. EXPERIMENTAL DESIGN

We conduct several experiments in order to evaluate our
granular model (FRCN)’s prediction capabilities against those
of 12 well-established neural classifiers.

We did not undertake a parametric tuning stage for each
algorithm in each dataset for two main reasons: (i) our goal
is to characterize general performance trends in granular vs.
non-granular neural classifiers and whether an “off-the-shelf”
granular implementation with default parameter values could
perform better than or comparable to a non-granular neural
net under the same conditions when tested on 123 datasets of
diverse characteristics and (ii) to avoid the steep computational
cost entailed by parametric tuning.



A. Dataset Characterization

In our simulations, we employed 123 well-known pattern
classification datasets1 taken from the KEEL [20] and UCI
Machine Learning (ML) [21] repositories. These ML problems
exhibit different characteristics in order to make the empirical
evaluation as extensive as possible. As a summary, the number
of attributes ranges from 2 to 262, the number of decision
classes from 2 to 24, and the number of instances goes from
14 to 5,644. Likewise, there are 13 noisy and 40 imbalanced
datasets, where the imbalance ratio ranges from 5:1 to 439:1.
Missing values were imputed by calculating either the mean or
the mode depending on whether the attribute was numerical or
nominal, respectively. Numerical attributes were normalized to
the [0,1] interval before applying 10-fold cross-validation. We
used Weka 3.6.11’s normalization filter that modifies a value
x as follows: x = (x−min)/(max−min) ∗ scale + translation
and we set scale = 1 and translation = 0.

B. Benchmarking Algorithms

The neural classifiers selected for benchmarking purposes
in this study are:

1) FRCNs [12]: our granular recurrent neural network model
2) Genetic Algorithm with Neural Network (GANN) [22]:

Uses a traditional Genetic Algorithm to learn a neural
network architecture and backpropagation learning in an
individual network to evaluate its fitness.

3) Neural Network Evolutionary Programming (NNEP) [23]:
It relies on product-unit neural networks. Product-units
are based on multiplicative nodes instead of additive
ones. This model employs Evolutionary Programming to
determine the basic structure of the product-unit model
and estimate the model coefficients. It uses a softmax
transformation as the decision rule and a cross-entropy
error function.

4) Radial Basis Function Neural Network (RBFN-k) [24]:
Employs multivariable functional interpolation using
radial basis functions.

5) Decremental RBF Neural Network [24] (Decr-RBFN)
6) Evolutionary RBF Neural Networks [25] (EvRBFN): used

to automatically build an RBFNN.
7) Learning Vector Quantization (LVQ) [26]: based on the

nearest prototype classification rule.
8) Multilayer Perceptron with Backpropagation training [27]

(MLP-BP): one of the classical feedforward neural net
models.

9) Multilayer Perceptron with backpropagation training and
sigmoid hidden neurons [28] (MLP-w)

10) Multilayer Perceptron with conjugate gradient-based
training [29] (MLP-CG): a feedforward model based
on a conjugate gradient optimization approach.

11) Improved Resilient Backpropagation Plus [30] (iRProp+):
Improved Rprop, an optimization method and one of the

1The characterization of these datasets can be found at https://github.com/
rfalcon/CIVEMSA-2018-materials/blob/master/FRCN-datasets.pdf

best-performing, first-order learning methods for neural
networks.

12) Boosting Ensemble [31]: A classifier ensemble based on
nonlinear projections and boosting instead of using a
random subspace, i.e., it takes into account the instances
which have posed most difficulties to previous classifiers.

13) RBF Network (RBFNw) [32] with normalized Gaussian
radial basis function network (RBFN-w).

We used the implementations in Weka 3.6.11 [3] and KEEL
3.0 [20]. These two frameworks are free and extensible to new
algorithms, hence their increasing popularity.

As already mentioned, the default parameter values for each
model have been retained throughout the simulations, i.e., no
hyperparameter tuning was carried out. As Triguero et. al. [33]
stated, a good choice of parameters increases the algorithms’
performance over different datasets; however, a robust classifier
should produce good-enough results even when its parameters
might not have been optimized for a specific dataset. Moreover,
the goal behind our numerical simulations is to examine the
prediction capability of these neural net models, even when
no algorithm undergoes parametric tuning.

It is worth mentioning that, in the case of the FRCN method,
we employed the Heterogeneous Value Difference Metric [34]
as the standard dissimilarity function.

V. EMPIRICAL DISCUSSION

To statistically analyze the empirical results obtained in our
study, we adopted some of the nonparametric tests described
in [35] to compare the performance of two or more algorithms
on a number of datasets.

The first experiment aimed at determining the existence of
statistically significant performance differences among all the
classifiers through the Friedman two-way analysis of variances
by ranks [36]. The Friedman test is a multiple-comparison
nonparametric statistical method that detects whether at least
two of the samples in a group represent populations with
different median values or not and it also builds a ranking of
the algorithms in which the higher the number, the worse its
performance. For this test, we used the correction put forth
by Iman and Davenport [37] which is more powerful than the
Friedman test as well as their corresponding post hoc tests
[35]. Figure 2 portrays the average accuracy across all datasets
for each neural classifier considered in this study.

For this experiment, the multiple-comparison test suggests
rejecting the null hypothesis with a Friedman p-value of
1.97E-10 and Iman and Davenport’s p-value of 2.01E-178.
Both p-values are smaller than the 5% significance level,
hence advocating for the existence of statistically significant
performance differences between at least two algorithms across
all the selected datasets. Figure 3 displays the rank values
computed by the Friedman test. Notice that MLPw is the
best-ranked algorithm, FCRN came up as the runner up while
MLP-BP is the worst one.

The next step is to determine which of the pairwise com-
parisons in the group yield statistically significant differences.
Figures 4 and 5 unveil the results of three post-hoc procedures

https://github.com/rfalcon/CIVEMSA-2018-materials/blob/master/FRCN-datasets.pdf
https://github.com/rfalcon/CIVEMSA-2018-materials/blob/master/FRCN-datasets.pdf
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Fig. 3. Friedman rank for each neural network classifier

(Shaffer and Holm, respectively) and report the Friedman signed
rank test. In these figures, a horizontal thick line is drawn on
all those algorithms that do not have significant performance
differences among them (based on the matrix of adjusted p-
values by each test at a 5% significance level).

We assume that the null hypothesis can be rejected if at least
one of the adopted post-hoc procedures supports the rejection.
The results indicate that MLP-w is the best-performing classifier
in our study and that no significant performance differences
were spotted between FRCN, RBFNw, EvRBFN and NNEP,
as the null hypothesis was accepted in each of these pairwise
comparisons. Notice, however, that FRCN reports a slightly
higher accuracy but is worse ranked than MLP-w and even so
produces a similar behavior, which confirms that FRCN is a
very competitive neural classifier.

In other words, these experiments reveal that FRCNs are
capable of performing like the state-of-the-art, black box classi-
fier MLP-w adopted in the simulations. It is worth emphasizing
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Fig. 4. Statistically significant differences according to Shaffer post-hoc test

3 4 5 6 7 8 9 10 11

MLPW

FRCN

NNEP

EvRBFN

RBFNW

iRProp.

MLP.CG

GANN

RBFN.k

Ensemble

LVQ

Decr.RBFN

MLP.BP

Fig. 5. Statistically significant differences according to Holm post-hoc test

that these implementations have a high computational cost and
the main advantage of the FRCN with respect to the ANN-



based traditional models lies in its transparency. In general
terms, the FRCN classifier deserves the attention of pattern
recognition researchers owing to its competitive results and its
transparent inference process.

VI. CONCLUDING REMARKS

In this paper, we have studied the prediction power of the
FRCN algorithm against traditional (low-level) neural network
classifiers. The FRCN system uses information granules in the
form of rough sets with soft boundaries, where an exhaustive
parameterization seems to be not required. A pivotal feature that
motivated the authors to select this model in this preliminary
analysis is that the topology attached to the FRCN network
does not scale up with the number of attributes, but with the
number of decision classes. On the other hand, the fact that
the weight matrix can be defined beforehand (based on the
semantics of fuzzy-rough granules) shows the advantages of
having meaningful information constructs.

The numerical results have shown that the FRCN algorithm
is a strong neural candidate when solving pattern classification
problems. It is particularly interesting the ability of this model
to perform comparably with MLP-w (which is well-known
to be an accurate classifier) while clearly outperforming the
remaining methods adopted for comparison. Notice that the
weights in FRCNs are not optimized in any way, so it would be
reasonable to expect even higher prediction rates if we equip
this model with a supervised tuning procedure. Equally, FRCNs
could benefit from a learning algorithm capable of adjusting
the distance function to existing data. As a future work, we
intend to expand our experimental analysis with more diverse
granular models in order to empirically verify that granular
neural networks with simpler topologies do not necessarily
lead to systems with lower prediction rates.
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[30] C. Igel and M. Hüsken, “Empirical evaluation of the improved rprop
learning algorithms,” Neurocomputing, vol. 50, pp. 105–123, 2003.

[31] N. Garcı́a-Pedrajas, C. Garcı́a-Osorio, and C. Fyfe, “Nonlinear boosting
projections for ensemble construction,” Journal of Machine Learning
Research, vol. 8, no. Jan, pp. 1–33, 2007.

[32] G. Bugmann, “Normalized gaussian radial basis function networks,”
Neurocomputing, vol. 20, no. 1-3, pp. 97–110, 1998.

[33] I. Triguero, S. Garcı́a, and F. Herrera, “Self-labeled techniques for semi-
supervised learning: taxonomy, software and empirical study,” Knowledge
and Information Systems, vol. 42, no. 2, pp. 245–284, 2015.

[34] D. R. Wilson and T. R. Martinez, “Improved heterogeneous distance
functions,” Journal of Artificial Intelligence Research, 1997.

[35] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “Advanced nonpara-
metric tests for multiple comparisons in the design of experiments in
computational intelligence and data mining: Experimental analysis of
power,” Information Sciences, vol. 180, no. 10, pp. 2044–2064, 2010.

[36] D. J. Sheskin, Handbook of parametric and nonparametric statistical
procedures. crc Press, 2003.

[37] R. L. Iman and J. M. Davenport, “Approximations of the critical region
of the Friedman statistic,” Communications in Statistics-Theory and
Methods, vol. 9, no. 6, pp. 571–595, 1980.

https://doi.org/10.1007/s10462-017-9575-1
http://archive.ics.uci.edu/ml

