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Abstract 

As an eco-friendly and convenient transportation mode, mobile internet-based 

carpooling has achieved mushroom growth in many cities in recent years. Theoretical 

studies have verified that ridesharing is not only beneficial to drivers and passengers 

but particularly to the environment. Nevertheless, the exact impact of ridesharing on 

energy consumption and exhaust emission has been barely explored based on real 

carpooling data. In this study, using massive mobile internet based carpooling data 

offered by DiDi Company, a trip-specific model was initially proposed to study the 

intrinsic mechanism of carpooling services and then estimate the fuel savings of 

individual carpooling trip. According to the estimation results, delicacy subsidy 

strategies under the Personal Carbon Trading scheme were suggested to guarantee the 

moderation and equity in promoting carpooling services. The developed methodology 

was further tested in the case city of Beijing and associated results showed that 

ridesharing could be a feeder for public transit to support the commuting demands of 

workers living in suburban. More importantly, the fuel savings of ridesharing are 

considerable, every trip saving 1.23 liters on average, and the carbon subsidies are 

moderate, per trip reaching ¥5.38 with the strictest subsidy ceiling. From the spatial-

temporal perspective, the Chaoyang district and the daily peak-hour period generate the 

largest number of both ridesharing orders and fuel savings. All the results demonstrate 

that the trip-specific model has the advantages of delicacy, reliability and accuracy, 

which could facilitate the estimation on the trip-specific fuel savings and the 

formulation of carpooling promotion strategies.  
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1. Introduction 

1.1 Problem statement 



Private car use accounts for the largest part of kilometers traveled across all travel 

modes in cities, e.g. more than 88% in Beijing (Zhang et al., 2017), making it one of 

the most important contributors to air pollution (Lau et al., 2008). Worldwide a variety 

of policy measures have been adopted to promote eco-friendly travel modes (e.g. public 

transport, biking and walking) and to discourage car usage (e.g. through parking 

charges and driving restrictions based on plate numbers). However, there are still 

numerous road users who are car-dependent, either by personal choices or being 

constrained by public transit circumstances (Mcintosh et al., 2014; Stiglic et al., 2018). 

Addressing the car-dependency and its related pollution problem has proved to be a 

challenging task for cities. 

Ridesharing (carpooling and vanpooling), as a travel means of being more flexible 

than transit and less expensive than traditional car ownership, has been recognized as 

one of the solutions in mitigating the car-dependency problem. Carpools can consist of 

as few as two people, while vanpools carry six to fifteen commuters, with a van 

typically provided though a government- or employer-sponsored program (Cetin and 

Deakin, 2017). Studies have demonstrated that ridesharing plays an important role in 

reducing travel costs, fuel consumption, carbon emission, and traffic congestion 

(Morency, 2007; Caulfield, 2009; Minett and Pierce, 2010; Chan and Shaheen, 2012; 

Bachmann et al., 2018). It is not only beneficial to drivers and passengers but 

particularly to the environment. The International Energy Agency (2005) estimated that 

carpooling can reduce the number of kilometers traveled by 12.5%. This reduction will 

result a 7.7% reduction in fuel use, if one person was to be added to each commute. 

Another research conducted by Minett and Pearce (2011) shows that ridesharing service 

has a positive influence on cities’ transportation energy consumption with at least 

saving 1.7–3.5 million liters of gasoline per year in San Francisco. 

Nevertheless, despite the importance of ridesharing in addressing the most 

pressing transport problems, this travel mode is still not sufficiently used in practice. 

Focusing on the car owners, three major factors could underline the low ridesharing 

rate (Delhomme and Gheorghiu, 2016). The first is related to personal negative 

perception and attitudes towards public transport and ridesharing. The car owners who 

are reluctant to share their trips with strangers usually have highly preference to the 

comfort and convenience by driving alone and are more concerned about the personal 

privacy. At the same time, they express less positive views towards the other means of 

transportation and are less aware of transportation environment issues. The second 

factor lies in the traditional ride-matching systems that are not effective in linking 

drivers and passengers in terms of both travel time and travel routes, due to the lack of 

a database of sufficiently large numbers of participants as well as a dynamic efficient 

ride-matching algorithm (Wang, 2011). This makes it a challenge in finding appropriate 

carpooling partners to share their travel without jeopardizing the comfort and 

convenience that private travel would bring. The third factor is related to policy 

measures. In order to boost carpooling, a number of measures have been proposed 



worldwide, including financial incentives attributed to carpooling parking charges 

(Kingham et al., 2001; Vanoutrive et al. 2012) or directly allocated to carpooling trips 

(Delhomme and Gheorghiu, 2016). Alongside, the commonly-adopted policy, 

particularly in western industrialized countries, is High Occupancy Vehicle (HOV) 

lanes, which aim to improve travel time reliability and safety for passenger vehicles 

with or beyond required occupancy (e.g. two or three occupants). Nevertheless, both 

theoretical and empirical studies have shown that the supposed benefits of HOV lanes 

are often difficult to achieve (Wang, 2011), and the small travel time savings generated 

from the lanes do not provide a statistically significant carpooling incentive (Kwon and 

Varaiya, 2008). In sum, there is still a lack of consensus for the effective measures that 

best boost carpooling, particularly in developing countries, calling for further 

investigation into the methodologies that can assist governments in designing more 

efficient measures to promote the carpooling demand, which is of vital significance for 

the mitigation of environmental pollutants and the sustainable development of urban 

traffic. 

With the rapid development of the mobile internet, location-based services (LBS) 

as well as the cloud computing technologies, the online carpooling systems have been 

built, accommodating more advanced ride-matching mechanism with on-demand and 

dynamic characteristics. The new systems provide an automated dynamic process of 

ride-matching (routing, scheduling and pricing) in real-time between drivers and 

passengers during very short time-windows or even on-route. They have lifted the 

traditional carpooling services to a significantly high level, attracting a growing number 

of people, particularly office workers, to find suitable carpoolers to travel along 

(Delhomme and Gheorghiu, 2016). This leads to increasing potential of carpooling as 

a practically effective travel alternative for car-dependents. Accordingly, massive raw 

data specific to very single carpooling trip recorded by online carpooling system offer 

us the possibility to conduct more delicate management. Thus, along with the technical 

development of carpooling services, if a data-driven methodology can be found that 

assists governments in designing more effective policy measures to further boost the 

growing carpooling demand, especially in cities with a population of a few million and 

a high car ownership rate (e.g. in dozens of world cities), the potential application and 

value of this approach will be immense. Especially they include: (1) promoting 

carpooling as a widely adopted travel alternative for current car-dependents particularly 

for car-commuters, and (2) reducing the number of single occupant vehicle users and 

thus mitigating a series of transport problems e.g. parking, congestion, energy 

consumption and emission. Considering the in transport sector financial incentive is 

easily accepted by people and frequently adopted by authorities, we would focus on 

formulating more reasonable and delicacy subsidy policy based on empirical carpooling 

data in this work.  

1.2 Literature review 

1.2.1 The related state-of-art of carpooling services 



Carpooling can be conceptualized as an operation process where two or more 

people, with common or similar itineraries and schedules, share the use of a privately 

owned car for a trip (or part of a trip), and the passengers contribute to the driver’s 

expenses (Ciari, 2012; Lu and Quadrifoglio, 2019). Both the drivers and the passenger(s) 

are considered as carpoolers. While conventional carpooling is not a new idea instituted 

temporarily during World War II to save fuel and resurrected in the 1970s to reduce air 

pollution emissions, traffic congestion, and energy consumption (Cetin and Deakin, 

2017), the rapid development of transportation network companies (such as DiDi in 

China and Uber in America) have made the new carpooling services based on mobile 

internet popular again in many countries, especially in China. Therefore, many scholars 

have begun to revisit this old question. 

Firstly, there is a rich of literature focusing on improving the operation mechanism 

of carpooling. Some scholars developed dynamic ride-matching algorithms by 

modelling the carpooling process as an optimization problem (Agatz et al., 2011; Amey, 

2011; Herbawi and Weber, 2012; Stiglic et al., 2015). In these studies, the commonly-

used optimal objective functions are to minimize the overall path length (Agatz et al., 

2011; Stiglic et al., 2015), whereas Herbawi and Weber (2012) also considered 

additional objectives including minimizing the overall travel time and maximizing the 

number of ride-matches. On the other hand, Kamar and Horvitz (2009) and Wang et al. 

(2015) proposed heuristic approaches to explore the ridesharing formation process. In 

practice, a few matching agencies (e.g. DiDi company) have recently implemented the 

dynamic ride-matching algorithms in their smartphone-based application systems. The 

new systems provide an automated dynamic process of ride-matching in real-time 

between drivers and passengers. They satisfy on-demand requests and ensure that the 

carpooling participants would still be serviced even if their travel needs change 

unexpectedly (Levofsky and Greenberg, 2001). Apart from the analysis on matching 

algorithms and carpooling processes, there are also some studies conducting profound 

research on carpooling service pricing (Kamar and Horvitz, 2009; Kleiner et al., 2011; 

Nourinejad, 2016), retrieving and analyzing carpooling travel patterns (Cyndi et al., 

2012; Xiao et al., 2016; Yongqi et al., 2018), and carpooling service management 

strategies (Wang, 2011; Vanoutrive et al., 2012; Delhomme and Gheorghiu, 2016).  

1.2.2 Environmental impact of carpooling trips 

Compared to the optimization and management carpooling services, the impact of 

online ridesharing on energy consumption and exhaust emission, however, has received 

less attention. The following work can represent the state-of-the-art of this line of 

research. Caulfield (2009) estimated the environmental benefits of ridesharing in terms 

of the reduction in both emission and vehicle kilometers travelled. The data from the 

2006 Census of Ireland and the COPERT41 model were used to estimate the CO2 

                                                      
1   COPERT 4 is a software program which is developed as a European tool for the calculation of emissions from 
the road transport sector (Gkatzoflias et al., 2006). 



emission saved by ridesharing. Jacobson and King (2009a) estimated the fuel savings 

that could be resulted from a predicted level of increases in ridesharing in the US. The 

authors considered the influence of incremental weight carried by each vehicle (in 

picking-up or dropping-off extra passengers during the trip) on carpooling’s fuel 

consumptions. Guidotti et al. (2017) forecasted the potential economic and 

environmental impact of carpooling in Pisa and Florence, considering the number of 

private cars sold and the estimated carpooling usage rate. These three aforementioned 

studies focused on potential carpooling participants and conducted macroscopic 

analysis using traditional survey data, which only conducted a rough estimate for 

carpooling fuel using and were not true representative of the actual carpooling market. 

Recently, Yu et al. (2017) employed raw carpooling trip data to evaluate the direct 

environmental benefits of ridesharing as well as the indirect ones induced by possible 

car users’ behavior changes, by means of life cycle analysis (LCA) and input-output 

(IO) analysis approaches, respectively. However, their work still only focused on the 

total energy savings and emission reductions achieved by the total carpooling trips, 

without examining the potential distinctions among each single trips, which is 

necessary to propose more effective and delicate promotion measures for carpooling 

services. 

1.2.3 Subsidy policy making for transport sector 

The financial incentive measures, such as target subsidies on public transport and 

tax exemption for electric vehicles, have been adopted by traffic authorities in 

worldwide countries to promote green traffic modes and reduce the carbon emission. 

For the same purpose, the subsidies strategy for promoting carpooling services has also 

been proposed by many scholars (Vanoutrive et al. 2012; Delhomme and Gheorghiu, 

2016). However, the decision-makers could face two complex issues when seeking to 

make it more effective.  

One is how to find the appropriate level of subsidies. Although carpooling can 

reduce the vehicle kilometers of travel, it is still the car-oriented traffic mode with lower 

occupancy comparing to the public transport. Wang (2011) argued that carpool 

subsidies can lead to unintended consequences such as the private cars’ overuse and 

worse traffic congestion, while subsidizing transit and bicycles benefits the society 

more at less cost. Vanoutrive et al. (2012) agreed that carpooling as a commuting 

alternative can reduce the number of single occupant vehicle (SOV) users, however, 

they also emphasized the promotion of carpooling must not result in increased urban 

sprawl or lower levels of public transport or bicycle use. Therefore, it should be 

deliberate and moderate to determine the level of carpooling subsidies. On the other 

hand, how to allocate the subsidies among carpoolers fairly could be another challenge. 

The undifferentiated subsidies for the entirety or some segments of population have 

frequently been applied in many cities. Many scholars presented their worry about the 

equity of this kind of subsidy distribution (Iseki, 2016; Wang and Zhang, 2016; Guzman 

and Oviedo, 2018). To conduct more specific and equitable subsidy distribution, Yu et 



al. (2018) proposed a performance-based method constructed through data 

envelopment analysis to help governments allocate subsidies to individual offshore 

ferry routes, which is more easily implemented than the current policy. Fan et al. (2016) 

calculated the cost-effective carbon subsidy for hybrid electric vehicles based on a 

personal carbon trading (PCT) model using the Chinese market as the case study. Their 

sensitivity analyses showed that the change of fuel efficiency would have a distinct 

impact on the equilibrium carbon price and the cost-effective carbon subsidy. As a new 

market-oriented policy, PCT has been suggested as an effective measure in the 

transportation sector to influence travel choices and reduce emission at the individual 

level (Harwatt et al., 2011; McNamara and Caulfield, 2013; Li et al., 2016). Particularly, 

Aziz et al. (2015) argued that PCT studies in transportation sector were more 

representative and practicable considering that over 95% of the carbon was converted 

into CO2 when fossil fuels are consumed by private transportation. Li et al. (2017) 

further indicated that the PCT scheme was more capable of providing abatement 

certainties in transportation. Similarly, under the PCT scheme, it becomes possible to 

convert the trip-specific fuel savings into carbon allowance and then allocate them 

fairly among carpoolers. 

To address the above-mentioned limitations with respect to the development of 

more advanced methods to evaluate the impact of carpooling on energy consumption 

and exhaust emission as well as to design more effective policy measures based on the 

specific estimation results to assist governments in boosting carpooling, we will in this 

study propose a trip-specific model based on empirical carpooling data. Compared to 

the existing methods, the proposed technique will make significant contributions in the 

following aspects. (1) From the trip-specific perspective, the model estimates the fuel 

consumption of each single carpooling trip and its corresponding driving-alone trip (i.e. 

a trip if carpooling services are not available and both the driver and passengers would 

drive alone). The difference of the fuel consumption values of these two trips is used 

as the ceiling of the fuel savings for the specific trip. (2) In the process of calculating 

the fuel consumption, the specific path length and the impact of passengers’ weight on 

fuel economy under various vehicle occupancy scenarios are initially taken into account. 

The model also distinguishes between secondary ridesharing trips (i.e. trips with two 

groups of passengers) and ordinary ridesharing trips (i.e. trips with only one group of 

passengers) based on the positional elements of carpooling participants. The former 

trips are more complex due to more kinds of vehicle occupancy scenarios, which are 

firstly divided into four saddle-sharing patterns in accordance with the carpooling 

service mechanism. (3) To develop more effective subsidy measures, the moderate-

promotion and equitable-allocation two incentive principles are proposed. We take the 

socially acceptable subsidies for electric vehicles as the ceiling of the carpooling 

subsidies to embody the principle of moderate-promotion, and take every single 

carpooling trip’s fuel savings as the measures of carbon subsidies amount based on the 

scheme of Personal Carbon Trading to guarantee fairness. According to the cost-

effective method, a series of possible carpooling subsidies to promote carpooling 



services are presented with various pricing scenarios. (4) We also present the trip-

specific method to calculate the impact of carpooling trips on fuel consumption of 

potential public transport users, which extends the application of proposed model to 

areas with different traffic statuses. The operation features of public transit are clarified 

and used to modify the traveling distance of carpooling. (5) By taking Beijing as the 

case city, the spatial-temporal distribution of energy savings of carpooling trips will be 

analyzed, and the pricing scenarios of the proposed subsidies will be discussed. 

The rest of this paper is organized as follows. Section 2 describes the carpooling 

trip data, while Section 3 details the methodology of fuel saving estimation and subsidy 

strategy designing. The proposed method is tested in the case city of Beijing and the 

derived results are analyzed in Section 4. Finally, Section 5 ends this paper with major 

conclusion as well as discussion for future research. 

2. Dataset and preliminary analysis 

The carpooling trip data consists of a group of randomly sampled and anonymized 

carpooling order records obtained from a smartphone-based ridesharing application 

system named DiDi Hitch (DiDi, 2018), developed by DiDi Company. DiDi is the 

largest ride-hailing service company in China and one of the largest on-demand ride 

sourcing service platforms in the world (Shih, 2015). There are two types of carpooling 

dataset originally collected by DiDi Hitch, namely driver dataset and passenger dataset.  

The driver dataset is comprised of detailed information on the origin and 

destination of drivers including a series of trip distances, as well as the trips timestamp. 

In the process of carpooling services, four types of trip distances are recorded in Fig.1. 

The order distance 
Od  (heavy arrow lines) denotes the trip distance of the passengers, 

i.e. the actual part of the carpooling service. The beginning distance 
Bd  and ending 

distance 
Ed  (solid arrow lines) are the driver’s traveling distance from his/her origin to 

the picking up location of the passenger, and from the passenger getting off location to 

his/her destination, respectively. Besides, the route distance 
Rd  (dotted arrow lines) 

represents the length of a driver’s original trip route that he or she would have taken if 

driving alone. Note that all the traveling distances are the length of the optimal routes 

offered in real time by the AMAP (an online picture-based navigation program 

embedded in the DiDi Hitch)，whose estimation is relatively accurate and will be 

directly utilized in this study. Unfortunately, this data need to be uploaded by drivers 

proactively, but some drivers could forget or dislike to upload it, which causes some 

drivers’ data missing randomly. The passenger dataset focuses on passengers including 

the number of passengers as well as their trips’ origin and destination. But in term of 

trip distance information, there is only the order distances in this dataset. This type of 

data is uploaded automatically and totally. 

These two datasets are linked through the ID (identification) of the carpooling 

orders. Each record in the combined dataset represents a carpooling trip and its related 

information includes the ID of the trip, the number of the passengers, the origin and 



destination locations as well as timestamp of both the drivers and passengers, and the 

four types of trip distances. The locations are in the form of coordinates of latitude and 

longitude. 

 

Fig.1 The travel pattern and recorded distance on one basic carpooling trip 

The dataset used here contains records of 2,057,421 ridesharing orders including 

both the complete drive data and passenger data in December 2107 in Beijing. The 

sample ridesharing orders are fulfilled by 268,815 drivers, carrying about 2.57 million 

passengers and traveling 46 million kilometers, more than going around the earth 1100 

times. During the 31 days of December 2017, only 3.3% of drivers undertook over one 

carpooling order per day on average, which implied the carpooling trips may be just the 

rigid demand for most carpooling drivers and they do not consider serving passengers 

as a job. Even without passengers, they would still fulfill commuting by cars. 

Furthermore, it was noted from Fig.2 that the morning (7:00-9:00) and evening 

(17:00-19:00) traffic peak hours have significant impact on the distribution of the 

number of hourly orders. The orders among the rush hours account for 32% of the total 

orders throughout the day, which is much higher than the proportion of 20% for taxi 

trips during the same rush hour period (Yongqi et al., 2018). It demonstrates that 

ridesharing services play an important role in commuting travel. Moreover, from Fig.3, 

it was also observed that the order distances reach the peak of between 16 and 18 km, 

with the average as approximately 22 km and more than 85% of the distances being 

longer than 10 km. The order distances are much longer than the average distances of 

trips conducted by taxis or urban rail transit which are 9.9 km and 13.3 km respectively 

(BTI, 2016), but they are close to the average riding distance of suburban railways or 

city express (Rahman and Balijepalli, 2016). This implies that ridesharing services 

mainly satisfy the demand of mid- and long-distance trips and particularly make up the 

current shortage of suburban railway systems in Beijing. 
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Fig.2 The carpooling orders hourly distribution in December 

 

Fig.3 The carpooling orders distance distribution in December 

3. Methodology 

3.1 Determinants of carpooling fuel savings 

Carpooling users may prefer to travel by cars even with higher expenditure, either 

because they pursue more convenience and comfort during the travel, or due to the fact 

that the cheaper public transport resources are unavailable for them. Therefore, the 

passengers’ alternative travel modes would frequently shift to taxis or private cars if 

the ridesharing services are not available. In fact, most of the relevant studies analyzed 

carpooling’s travel patterns and energy consumption by comparing the ridesharing trips 

with passengers using individual-service taxis or driving private cars alone (Jacobson 

and McLay, 2006; Jacobson and King, 2009 a, b; Cyndi et al., 2012; Xiao et al., 2016). 

On the other hand, the carpooling subsidy object should exclude the carpoolers who are 

potential green-passengers to guarantee the priority development of public transport or 

slow traffic. Therefore, the carpooling fuel savings estimation and carpooling 

encouragement policy making mainly focus on the potential car-users in this work. 

When regarding all carpoolers as potential car-users, in fact, what we estimated is the 
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upper limits of carpooling’s fuel savings. Specifically, the fuel saving FS  in one 

particular carpooling trip can be defined as Eq.1, where HFC  and RFC  denote the fuel 

consumption of the hypothetic travel H  by private cars and the fuel consumption 

during the ridesharing trip R  in the real case, respectively. The fuel saving ratio FSR

is defined as the ratio between FS  and RFC . 

H RFS FC FC   ,    RFSR FS FC        (1) 

In general, carpooling travel can save energy consumption by increasing the 

number of passengers per vehicle and reducing the number of vehicle kilometers 

needed to realize the desired passengers’ trips. However, carpooling also increases the 

weight carried by each vehicle, and requires additional detour to pick-up the passengers, 

both of which increase fuel consumption. Jacobson and McLay (2006) and Jacobson 

and King (2009 a) stated that there exists a linear relationship between a change in 

vehicle weight and the corresponding change in fuel economy, FE  (measured by the 

fuel consumption per hundred kilometer traveled) for that vehicle. Thus, the 

determinants of ridesharing on energy consumption are the fuel economy and person-

kilometer traveled (PKT). Based on the two determinants and the specific carpooling 

trip dataset, a fuel consumption model is proposed in Eq.2. The subscript VOS  

represents the set of different vehicle occupancy scenarios which include the deadhead 

status of drivers (no-passenger travel status), carpooling status with different number 

of passenger groups, and passengers driving-alone status if ridesharing services are not 

available. The three scenarios are represented with the capital letters D , C  and P , 

respectively, forming the scenario set  = ,  , VOS D C P  . Considering the weight 

contributed by the additional passengers with different vehicle occupancy scenarios, 

the vehicle fuel economy  VOSFE  would be eroded to varying degrees, and the travel path 

length  VOSPL  should be in one-to-one correspondence with the change of  VOSFE . 

Consequently, the quantity of the total fuel consumption FC  during one trip is the sum 

of the fuel consumption in each vehicle occupancy scenario, which is further derived 

from the product of the specific fuel economy of the vehicle and the kilometers traveled 

in the corresponding scenario. 

  VOS VOS
FC FE PL          (2) 

For obtaining the amount of fuel savings for one carpooling trip, the fuel 

consumption RFC  for the ridesharing trip in a real case and HFC  for the corresponding 

driving-alone trip under a hypothetical scenario (without carpooling service) are 

calculated according to Eq.3 and Eq.4. Thereinto, the newly introduced subscript i  

represents the sequence of the orders in which the driver has picked-up different groups 

of passengers. If 1i , it means a driver takes more than one carpooling orders during 

one trip, namely multiple group passenger saddle-sharing in carpooling trips. In 

particular, when =2i , 
1

R

C
PL  and 

2

R

C
PL are the paths length of the first group of passengers 

and the second group of passengers during carpooling trip respectively, while 
1

H

P
PL  and 

2

H

P
PL  are the paths length of the first group of passengers and the second group of 

javascript:void(0);
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passengers when passengers driving alone. Note that there may be several passengers 

placing one carpooling order, who are acquainted with each other and have similar 

origin and destination. The definitions of other subscripts D , C  and P  all stem from 

the set of VOS  and have been illustrated above. 

    
R R R

D D Ci Ci
FC FE PL FE PL        (3) 

   
H H H

D D Pi Pi
FC FE PL FE PL

       (4) 

Two groups of data are needed to estimate fuel consumption: (1) real ridesharing 

travel data describing the itineraries of the carpooling trips, as introduced in Section 2; 

(2) passengers’ weight data and corresponding fuel economy data retrieved from 

publicly available statistics, which characterize the average weight of each passenger 

in a vehicle and its impact on fuel economy. Under different vehicle occupancy 

scenarios, values of fuel economy can be estimated by searching the public data from 

“Notice on the accounting of average fuel consumption of Chinese passenger vehicle 

enterprises” released by Ministry of industry and information technology of China. The 

fuel economy of passenger cars produced during 2013~2015 is respectively 7.33, 7.22 

and 7.04l/100km2 , the average of which is adopted as the value of FE , which is 

7.20l/100km. Moreover, a parameter is defined to measure the number of additional 

gallons that are required to travel 100 miles for each additional pound, thus quantifying 

the linear relationship between a change in vehicle weight and the corresponding 

change in fuel consumption for that vehicle The value of this parameter for each vehicle 

was 48.70 10WFR    gal/100miles/lbs, reported by the US Environmental Protection 

Agency for model year 2015 vehicles (EPA, 2016). According to the user-portraits in 

carpooling travel survey reports, internet-based carpooling participants were mainly 

white-collar workers, whose ages distribute between 25-35 and sex ratio was in 

proximity to 1:13. Furthermore, in the reference to the “Beijing National Physique 

Monitoring Communique in 2014” (GASC, 2015), the male and female average weight 

was approximate 75.5 and 58.9 kilograms respectively. All the above statistical data 

are supposed to remain unchanged in 2017. Hence, each additional passenger taking 

part in a carpooling trip would increase the weight of that car by 67.2kg. In this study, 

0.3024WFR   l/100km/person is employed after unit conversion.  

3.2 Calculation of path length  

The calculation of travel path length with different vehicle occupancy scenarios is 

based on the operating mechanism of mobile internet-based carpooling services. In the 

operation process, the potential drivers and passengers of ridesharing need to first issue 

their itineraries on the carpooling application. The system then automatically matches 

the drivers and passengers with similar itineraries, and provides a series of carpooling 

selections for the participants. The highly matched carpooling trips will be 

                                                      
2 http://www.miit.gov.cn/n1146290/n4388791/c6080976/content.html 
3 http://www.xinhuanet.com/fortune/2016-06/01/c_1118971732.htm 



recommended to passengers first. If the drivers and passengers all agree on the plan, 

they make a deal and the passengers pay the trip fare once the carpooling trip has been 

realized. Of course, the trip fare is much lower than that of taxis or other types of online 

ride-hailing services. Throughout the course of carpooling travel, the carpooling service 

system plays a role as infomediary to achieve on-demand double-side matching. On the 

one hand, carpooling drivers offer passengers transport services while pursuing utility 

maximization, i.e. making the most profit at the least cost of extra time and other 

expenses. On the other hand, carpooling passengers usually take an initiative position 

in the supplier-customer relationship owing to the implicit customer-oriented service 

principle, in which drivers show great detour flexibility in order to pick-up and drop-

off passengers. 

In contrast with traditional ridesharing, detour flexibility is one of the important 

features for internet-based carpooling services. Detour is the increase in trip distances 

and time duration that drivers are willing to take in order to pick-up and drop-off 

passengers, and detour flexibility is the willingness of drivers to make a detour in order 

to have passengers for carpooling. Yongqi Dong et al. (2018) indicated that since 

internet-based ridesharing drivers are paid, they could detour further to pick-up or drop-

off passengers than traditional hitchhike drivers. Considering the bucking effect of 

detour on carpooling’s fuel savings, it is of great importance to clarify the specific 

detour distance on every carpooling trip. The concrete implication of traveling distances 

in ordinary carpooling travel record has been illustrated in section 2. In accordance with 

Fig.1, the detour distance in this trip can be determined in Eq.5, consisting of the driver’ 

actual travel distance subtracted by the theoretical travel distance. 

D B O E Rd d d d d            (5) 

When a driver only receives one single order, i.e. the situation shown in Fig.1, the 

length of the travel paths with different vehicle occupancy scenarios can be computed 

based on Eq.6. In particular, the driving-alone distance of the passenger is equal to 

his/her ordered carpooling distance, as shown in the last formula of this equation. 

R

D B EPL d d     R

C OPL d    H

D RPL d    H

P OPL d      (6) 

Furthermore, if time limits do not constrain drivers, they may be able to 

successively provide rides to multiple groups of passengers during one single trip 

(Hosni et al., 2014). To calculate the travel distance in the multiple group case, the 

commonly adopted method is to classify the trips into different categories, and compute 

the travel distance for each category. The most relevant work includes the following 

two studies. Morency (2007) classified carpooling trips according to positional 

elements, i.e. the relative positions of the origin and destination of different passenger 

orders during one trip. Furuhata et al. (2013) further extended the previous research by 

analyzing how these different trip categories influence rideshare matching in general. 

The authors divided ridesharing trips into four patterns (Identical Ridesharing, 



Inclusive Ridesharing, Partial Ridesharing and Detour Ridesharing). Nevertheless, the 

partial ridesharing pattern (the passengers’ trips are partially served by drivers and the 

drivers only providing passengers a carpooling service in the drivers’ own routine trips 

rather than considering passengers’ origins and destinations) does not exist in the 

current internet based carpooling services. Moreover, the proposed patterns failed to 

consider the scenario where the routes of two ridesharing orders are overlapping. To 

overcome the problems, in this study we will develop the new ridesharing patterns 

based on the actual process of the online ridesharing services according to the following 

three steps. 

In the first step, to calculate the path length in the fuel consumption model, two 

assumptions are proposed based on the carpooling matching mechanism, customer-

oriented service principles, and actual carpooling data: (1) drivers are willing to make 

a detour in order to accommodate the entire trips of the passengers. That is, passengers 

would be just picked-up at their origin and dropped-off at their own destination, and (2) 

all drivers are rational. If there are multiple orders during one carpooling trip, drivers 

will pick up the appropriate group of passengers according to their route own first to 

minimize the detour distance in the carpooling trip. 

In the second step, the drivers and corresponding passenger groups as well as the 

positional elements are defined as follows. Let A  as a driver, and the numbers 1 and 2 

as the first and second orders (groups) of passengers, respectively. The driver and the 

two groups of passengers have their own origin and destination. Define Orii and Desi 

(i=1, 2) as the origin and destination and Ui and Vi (i=1, 2) as the picking-up and 

dropping-off locations for the two passenger groups, respectively. According to the 

Assumption 1, the passengers’ origins are very close to their picking-up locations, i.e. 

Orii =Ui; the same is true for the destination and dropping-off locations, i.e. Desi =Vi. 

The saddle-sharing paths formed by the driver A  and the two group of passengers are 

denoted as ( ,1)P A  and ( ,2)P A , respectively. 

In the third step, based on the above assumptions and variable definitions, the 

ridesharing trips are classified into four patterns as illustrated in Fig. 4. In the following, 

we describe four patterns by schematic diagrams and explain the calculation of the path 

length. 

 Identical paths (pattern 1): both the origin and destination of the two groups of 

passengers are identical, namely 
1 2=U U  and 

1 2 =V V . All the identical trips are 

implemented through saddle-sharing, and the calculation of the path length is 

equivalent to the formula in Eq.6 for the basic condition. 

 Inclusive paths (pattern 2): the path of the group 2 is totally covered by the path 

of the passengers group 1, i.e. 
2 2,  ( ,1)U V P A . There are three types of vehicle occupancy 

scenarios during the trip. The path length R

DPL  for the driver’s deadhead status is up to 

the origin of the group 1, and the path length
 1,2

R

CPL  (the paths length when drivers carry 



the first and second group of passengers at the same time) for the saddle-sharing of the 

two groups is equal to the travel distance of the group 2. According to carpooling 

matching mechanism, the path length 
1

R

CPL  in which only the group 1 takes carpooling 

is the difference in the travel distances between the group 1 and group 2. H

DPL  is the 

same as the one in the previous case, which is 
1Rd , namely the route distance in the first 

carpooling orders. 

 Overlapping paths (pattern 3): a part of the path between the group 1 and group 

2 is overlapping, i.e. 
2 1 1 2( ,1) , ( ,2) ; ( ,2) , ( ,1)   U P A V P A U P A V P A . Four types of 

vehicle occupancy scenarios are generated during this trip. The path length R

DPL  is 

determined by the origin of the group 1 and the destination of the group 2. Due to the 

lack of travel distance data that directly describe the path length of the overlapping trip, 

i.e. 
1,2

R

CPL (or 
1,2Od , namely the order distance under saddle-sharing scenarios), this 

variable is estimated based on the average of the two groups’ own order distances 
1Od

and 
2Od multiplied by the ratios 

1,2


O
/

1O
 and 

1,2


O
/

2O
 respectively. 

1,2


O
 is the travel 

duration of the overlapping trip, while 
1O
 and 

2O
. are the total travel time of each of 

the two groups. The path length 
1

R

CPL  and 
2

R

CPL  are the difference between the two 

groups’ own order distances and saddle-sharing distance 
1,2Od , respectively. H

DPL  takes 

the longer one between 
1Rd  and 

2Rd , which is closer to the path length when drivers 

traveling alone without passengers. 

 Distinct paths (pattern 4): there is no overlapping between the paths of the two 

passenger groups, i.e. ( ,1) ( ,2)= P A P A . However, they share the same carpooling 

driver’s trip. In fact, it is entirely separated carpooling orders accomplished by the same 

driver, and the calculation of the travel path length is analogous to that for the basic 

scenario of one driver with one group of passengers as described in Eq.6 other than the 

deadhead distance 
1-2d  between 

1  V  and 
2U , which happened when drivers seek the 

second group of passengers without the first group. The deadhead distance can be 

estimated by the product of straight-line distance from 
1  V  to 

2U  and corresponding 

adjustment coefficient. 

All the above-described four patterns can be distinguished and extracted from the 

carpooling trip data based on the timestamp and location sequences by which 

passengers get on or off the cars. Traditional matching agencies do not take these 

patterns into account, and they accomplish the matching process via proximity rather 

than exact locations. The positional deviations of locations between drivers and 

passengers as well as between different groups of passengers cause difficulties for 

drivers to make instantaneous decisions. This leads to less carpooling trips 

accomplished, since the additional detour time and travel costs incurred by the drivers 

are usually not paid by the passengers. However, with the advent of LBS , mobile 

technologies and GPS positioning, it becomes possible for the matching systems to 

timely and accurately know the exact positions of drivers and passengers (Levofsky 

Greenberg, 2001), generating much better matches in terms of both time and locations. 

This leads to more passengers and drivers participating in the carpooling services. In 



this paper, we only consider the most common case where a driver can offer rides to a 

maximum of two orders of passengers. Nevertheless, for the infrequent situations where 

more orders are served, the same principles can be applied as well. From the angle of 

practical application, the estimation of carpooling fuel savings was conducted based on 

a data-driven method. Except for the carpooling trips information, the other data are all 

available for public. Therefore, it is easy for carpooling companies or authorities to 

know the specific fuel savings of individual carpooling trip by this model. In addition, 

it should be noted that there is a potential deviation for using the order distance of 

passenger group 1 as actual order distance when the passenger group 2 cancel the order 

temporarily and the driver has went off the initial navigation route. However, the chance 

that a driver can receive the second order in one trip is very small and the DiDi service 

platform will punish the persons who have canceled the second-trip carpooling order 

through the negative reputation records. Therefore, the potential deviation about the 

path length would be very small and can be negligible in this study. 

Ridesharing patterns Ridesharing diagrams and path lengths calculation 
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Fig.4 The positional elements of ridesharing patterns 

3.3 Carpooling subsidy policy under personal carbon trading schemes 

Through summarizing the previous studies about subsidy policy making in 

transport sector, two principles are proposed here to make more effective carpooling 

promotion measures. The first one, so-called moderate-promotion, is that the 

facilitation of carpooling should not result in increased urban sprawl or decreased usage 

rates of mass transit or other eco-friendly travel modes (e.g. biking and walking). The 

second, equitable-allocation, refers to subsidies allocation should be according to the 

environmental contributions from trip-specific perspective. According to above two 

incentive principles, the carbon-pricing under PCT was integrated into the calculation 

of travel costs to stimulate driving-alone passengers to participant in carpooling 

services. Considering the cost of both carbon permits and fuel consumption, the subsidy 

scheme is designed based on the cost-effective method, which has been widely adopted 

in the field of energy management. The typical examples using the cost-effective 

method include the optimal subsidies on a stove exchange program to reduce air 

pollution from wood combustion in southern Chile (Gómez et al., 2014), on promoting 

hybrid electric vehicles in the Chinese market (Fan et al., 2016), and on encouraging 

efficient room air conditioners in China (Guo et al. 2017). Based on this method, for a 

carpooling trip, the total cost of the carpooling users during the entire trip is denoted in 

the left side of Eq. 7, and the cost of these users when driving-alone is in the right. The 

cost-effective subsidy balancing the cost of the carpooling travel and single occupant 

travel meets the following conditions described in Eq.8. In these two equations, CF  is 

the fare of carpooling services directly determined by the carpooling network platform, 

and CS  is the carpooling subsidy that needs to be derived.   denotes the carbon 

emission rate of gasoline and   refers to the initial carbon allowance; both parameters 

are allocated to every vehicle owner on a per capita basis. Moreover, 
1P -

4P represent a 

set of prices, including the carbon trading price ( 1P ), fuel price (
2P ), private car 

purchase price (
3P ), and parking charge price (

4P ). Furthermore, SL is the service life 

of private cars and expressed in driving kilometers; while 
3

H

PPL P SL  is estimated as the 

depreciable cost for one trip conducted using a private car. Considering the moderate-

promotion principle, the travel cost of carpooling should be higher than the fare by 

public transport (e.g. buses or subways), and the carpooling subsidy should be inferior 

to that for the public modes. This can be automatically guaranteed by the ultra-low 



ticket prices and huge subsidies for public transit in many cities, e.g. in Beijing. 

Furthermore, we take the socially acceptable subsidy EVS  for EVs (electric vehicles) as 

the ceiling of the carpooling subsidies in practice in order to avoid the derived results 

leading to more car-oriented development and obstructing the development of green 

transport. 

1 1 2 3 4( ) + ( )
H

R H H H P

D P P

PL
FC FC P CF CS FC P FC P P P

SL
                (7) 

1 2 3 4      
H

H P

P

PL
CS CF FS P FC P P P CS EVS

SL
           (8) 

Conducting delicate subsidies based on the trip-specific cost and emission 

abatement are supposed to effectively appeal to potential carpoolers and avoid 

inequitable  allocation of subsidies among all carpooling trips. Note that the taxi fare 

(e.g. the average price as ¥30 for the riding distance of 10km in Beijing) is generally 

much higher than that of carpooling services in the real world, and thus taxis are not 

used as the comparable mode on the cost-effective method. Furthermore, the 

carpooling subsidy should be only made and paid to the potential car users to avoid 

reducing the split share of mass transit or other more eco-friendly means of 

transportation. However, it is hard to at present to survey the original travel modes of 

every carpooler. For facilitating the application, we can take the vehicle owners as the 

provisional incentive object at the beginning since the information of private vehicle’s 

ownership is easier to gain. The car owners here refer to the carpooling users who have 

their own private cars, including both drivers and passengers who account for 77% of 

the current carpooling users according to the phone-based survey by Yu et al. (2017). 

3.4 Estimation on carpooling fuel savings for potential public transport users 

Although most of carpoolers would prefer to commute by private car or taxi, part 

of them have to use public transport in practice, especially in developing countries, 

considering the lower car ownership and the availability of public transportation 

systems. To expand the application of proposed model and consider various scenarios 

of travel mode transfers, the method to calculate the impact of every single carpooling 

trips on fuel consumption of potential public transport users was provided in the 

following. 

 ;   H R H R

B B M MFS FC FC FS FC FC          (9) 

+   ;   +
i i i i

H H B B H H M M

B D D P P M D D P P

i i

FC FE PL FE PL FC FE PL FE PL          (10) 

According to the modeling process above, we still take the difference between the 

fuel consumption by taking bus H

BFC  (by taking metro H

MFC ) and the fuel consumption 

during the ridesharing trip RFC as the fuel savings BFS ( MFS ). And the fuel economy 

coefficient and associated path length remain the two determinations of fuel 

consumption, shown in Eq.10. Due to lack of specific bus or metro route for every 



carpooling passenger, we take the modified order distance during carpooling trips as 

the path length traveled by public transport, considering two adjustment factors, detour 

conversion coefficients 
B , 

M , and distance to stations
BSd ,

MSd , shown in Eq.11. The 

public transport system with fixed traveling routes may cause a detour comparing to 

flexible driving lines of cars. So, we take the ratio between the non-linear coefficient of 

bus network
BNL  (or metro network

MNL ) and the non-linear coefficient of road network 

RNL  as the conversion coefficient. For the bus or metro network, the non-linear 

coefficient is defined as the average ratio of operating route length to the Euclidean 

distance between origin station and destination station, while for the carpooling, we 

take the mean value of travel distance of every trip divided by associated Euclidean 

distance as its non-linear coefficient based on the empirical data. On the other hand, the 

public transport cannot provide door to door services like cars, thus users frequently 

need to go to the stations by walk or other modes, which can increase or reduce the 

original path length. Moreover, the potential walking distances to bus are different from 

the ones to metro stations. Yang et al. (2017) argued that the walking distance when 

using public transport could be simulated by gamma distribution, and the average 

walking distance to/from bus station and metro station is 0.73 km and 1.21 km, 

respectively, based on the survey sample in Beijing. 

= ( )  ;    ( )  ;    
i i

B S H

P B O BS P M O MS D RPL d d PL d d PL d          (11) 

=   ;   B B R M M RNL NL NL NL          (12) 

4.  Results 

4.1 Characteristics of fuel savings 

4.1.1 Number of different types of carpooling trips 

According to the trip-specific fuel saving estimation model presented in Section 3, 

every trip’s fuel savings can be calculated. In this case study, we take the trips made 

during December, 2017 in Beijing (about 2 million orders in total) as the experimental 

data to present the basic statistical characteristics and spatial-temporal distribution 

patterns of the carpooling fuel savings. 

According to the internal mechanism of carpooling services, there could be 

considerable differences of fuel savings between the common ridesharing trips that 

convey one group of passengers in one trip (one-trip-multi-passengers, for short OTMP) 

and the four types of saddle-sharing trips that serve two groups of passengers in one 

trip (one-trip-multi-passengers, for short OTMP). Thus, it is important to distinguish 

the different types of ridesharing travel based on the raw trip data. Two steps were taken 

for this purpose. The first step is to examine if only one group of passengers (OTOP) is 

present in a driver’s trip record, or if two groups of passengers (OTMP) share the same 

trip of the driver. In the second step, if the trip is an OTMP, the sequence of the 

departure and arrival time and locations of the two carpooling orders as well as their 

relationship is analyzed, and the trip is further distinguished among the patterns of 

identical, inclusive, overlapping and distinct orders. Once the type of the trip is 



identified, the absolute fuel saving (FS) and fuel saving ratio (FSR) of the trip is 

computed based on Eq.1 to Eq.6 as well as the formulas described in Fig.4. The number 

of the ridesharing trips as well as the average fuel using, savings and saving ratios in 

each type were listed in Table 1. 

Over all the carpooling trips in the carpooling data, about 95% of the trips only 

serve one group of passengers, leading to OTOP as the main ridesharing travel type. 

The types of overlapping orders (OTMPOL) and inclusive orders (OTMPIS) account 

for 3.6% and 1.4% of the total trips, respectively, being the major categories of the 

OTMP trips. For the remaining types of OTMP, the number of distinct orders 

(OTMPDT) is less than 500, and that of identical orders (OTMPID) is zero. These two 

types of trips were thus ignored in the following analysis. 

Tab.1 Different carpooling pattern and average energy consumption in December 

Pattern number Fuel using (liter 

per trip) 

Fuel savings  

(liter per trip) 

Saving ratio 

OTOP 1851245 2.52 1.17 46.43% 

OTMPOL 73559 3.44 2.36 68.60% 

OTMPIS 28937 2.94 2.45 83.33% 

OTMPDT <500 / / / 

OTMPID 0 / / / 

4.1.2 Frequency distributions of fuel savings 

In terms of the fuel savings, all the 1,953,741 carpooling trips (including OTOP, 

OTMPOL and OTMPIS) saved 2.41 million liters gasoline in total. All the three types 

of trips had considerable reduction in fuel consumption, with the average fuel savings 

(FS) from OTOP, OTMPOL and OTMPIS as 1.17, 2.36 and 2.45 (liters) and fuel saving 

ratios (FSR) as 46.43%, 68.60% and 83.33%, respectively. The fuel savings of 

OTMPOL and OTMPIS are both more than double of OTOP’s fuel savings, reflecting 

the huge superiority of secondary ridesharing travel in energy savings. Moreover, there 

are also differences between OTMPOL and OTMPIS, with the deviations in the average 

fuel savings and saving ratios as 0.09 liters and 15%, respectively. This suggests that 

OTMPIS is more efficient than OTMPOL in fuel savings. Further investigation reveals 

that, the average driving-alone distances of drivers in both cases of OTMPIS and 

OTMPOL are almost equal (i.e. 29km), but the actual average travel distance of 

OTMPIS trips is 37km, much less than that for the OTMPOL trips (i.e. 45km), which 

show there is more detour in OTMPOL trips to reduce the fuel savings. 

The Fig.5 describes the detailed frequency distributions of FS and FSR for the 

three types of trips, respectively, and large differences were observed. Firstly, the 

distributions of both FS and FSR are more centralized for OTOP, and the tail of the 

OTMPOL or OTMPIS curve is longer than that of OTOP, with the fuel savings at 90th 

-100th percentiles from OTOP spreading over 2.5-11.5 liters while those of OTMPOL 

and OTMPIS spanning 4.5-17 liters and 4.5-16 liters respectively. Secondly, there is a 



gap in the fuel savings’ peak values between OTOP and OTMPOL/OTMPIS (See 

Fig.5a), where the peak for OTOP is between 0.5-1 liters accounting for 29.5% of all 

the OTOP orders, while the value for OTMPOL or OTMPIS is 1.5-2 liters making up 

18% of all the corresponding trips. Similar peak gaps also exist in the distributions of 

FSR (See Fig.5b), demonstrating again that OTMPOL and OTMPIS are more efficient 

in energy savings. Both the above-observed differences demonstrate the importance of 

distinguishing the different types of carpooling trips and computing the fuel savings of 

the trips separately. Finally, it was noticed from Fig.5 (a) that, there exist a few negative 

fuel saving values particularly for OTOP, suggesting that the corresponding trips 

consume more fuel than the driving-alone cases. Further investigation reveals that, the 

average detour distance of the OTOP trips with the negative values is 13.49 km, nearly 

twice of the trips with positive saving values. This implies that inefficient route 

matching algorithms could be the main reason causing the abnormal phenomenon of 

fuel wastage for ridesharing travel. 

 

(a)                                                                                (b) 

Fig.5 Frequency distribution of fuel savings (a) and fuel saving ratios (b) 

4.1.3 Temporal and trip distance characteristics of fuel savings 

Fig.6 shows the temporal distributions of carpooling fuel savings, indicating that 

the savings of OPOT reach peaks in the morning and evening rush hours, respectively. 

This is analogous to the hourly distribution of the number of carpooling orders depicted 

in Fig.2. In contrast, the saving distributions of OTMPIS and OTMPOL fluctuate over 

varied hours of the day, independent of the traffic conditions. The underlying reason 

could be that carpooling participants during rush hours are more constrained by the time 

needed to wait and take the second group of passengers, thus leading to OPOT as the 

most common type during commuting time. 

The trip distance characteristics of the fuel savings are illustrated in fig.7, showing 

that the peak saving values of both OTOP and OTMPIS are at the distance of 20-24 km. 

In comparison, the distribution of OTMPOL is flatter, but its long-distance trips 

conserve more energy. Fig.8 further reveals the positive linear correlation between the 

trip distances and associate fuel savings for the three types of trips, and variations exist 

in the specific slopes and R-Square values, which are 0.059 and 0.811 for OTOP, 0.061 

and 0.507 for OTMPOL, and 0.104 and 0.822, for OTMPIS, respectively. These three 
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distributions indicate that, for trips with equal order distances, OTMPOL and OTMPIS  

trips save more fuel than OTOP on average, and the advantage becomes more obvious 

when the trip distances increasing. Thus, it is of more importance to encourage residents 

to accept secondary ridesharing and take long-distance carpooling when public transit 

is unavailable. In addition, the distribution of OTMPOL with lower R-Square value is 

more dispersed and has some exceptional dots. For the lower dots, as we mentioned 

above, OTMPOL trips having larger detour distance on average may cause considerable 

reduction on fuel savings and then make some trips with long distance yet have small 

amounts of fuel savings. As for the higher dots, namely those OTMPOL trips with short 

distance but large amounts of fuel savings, may be due to the situation that some well-

matched routines among carpooling participants saved plenty of fuels beyond the 

average level. 

 

Fig.6 Hourly fuel savings distribution in December  

 

Fig.7 Fuel savings distribution in trip distance 
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Fig.8 Relation between order distance and fuel savings for each carpooling trip 

 

4.1.4 Origin and destination distributions of fuel savings 

The origin and destination distributions of both the number of carpooling orders 

and the amount of fuel savings are examined among all district of Beijing. The total 

carpooling trip flows between and within the districts are portrayed in the circular 

Sankey diagram in Fig.9 (a). The proportion of the inter-district trips is overwhelmingly 

up to 70%, consistent with the long average distance of carpooling trips (i.e. 22km). 

For the majority of the districts, the amounts of generating and attracting ridesharing 

trips are balanced, but the numbers of the total carpooling trips differ. The Chaoyang 

district located in the city center accommodates the largest inflows and outflows of 

carpooling travel, accounting for a quarter of all the trips, presenting the largest 

ridesharing user base in Beijing. Moreover, Chaoyang is the largest destination of 

carpooling services from Haidian (if trips within districts are not considered) and 

Haidian also attracts the maximum ridesharing trips from Chaoyang, indicating the tight 

connection between two areas in terms of carpooling. Three districts at the suburb of 

the city, including Daxing, Tongzhou and Changping, each undertake over 300,000 

ridesharing trips, indicating a high level of travel demand. In comparison, the districts 

further away from the city center (i.e. outer-suburbs), including Miyun, Huairou, 

Pinggu, Yanqing and Mentougou, namely the ‘Suburbs’ in Fig.9 (a), witness less 

ridesharing trips. This could be due to the overall lower level of travel demand as well 

as the overlong distance to the city center. 

Similarly, the distributions of ridesharing fuel savings between and within districts 

are also uneven, as shown in Fig.9 (b). It should be noted that we only drawn the key 

flows whose fuel savings are over 5000 liters for better presentation. Trips related to 

Chaoyang conserve the largest amount of fuel savings, which is about one million liters, 

e.g. five times the total savings produced from the five outer-suburb districts. 



Nevertheless, although these outer-suburb districts undertake less carpooling trips, due 

to the longer distances of the trips, these areas save more energy than districts in the 

suburb of the city, e.g. Dongcheng, Xicheng and Shijingshan. Moreover, among the 

fuel savings of inter-district trips, the savings between Chaoyang and Haidian are 

dominant, but the savings between Chaoyang or Haidian and other districts in the inner 

urban areas also account for a large part. 

 

(a) OD distribution of total carpooling orders in December 



 

(b) Fuel savings distribution among districts and within district 

  

(c) OD distribution of carpooling orders during morning peak hours 
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(d) Fuel savings distribution during morning peak hours 

  

(e) OD distribution of carpooling orders during evening peak hours 
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(f) Fuel savings distribution during evening peak hours 

Fig.9 The distribution of order numbers and fuel savings in total month and during peak hours 

4.1.5 Commuting attributes of fuel savings 

To explore the commuting attributes of carpooling travel and fuel savings, trip 

records during the morning and evening peak hours (7:00-9:00 and 17:00-19:00 

respectively) are extracted. The OD distributions of the trips are visualized in Fig.9 (c) 

and (e), while the fuel saving maps only with the key flows over 1000 liters in Fig.9 (d) 

and (f), respectively. In December 2017, there are 21 workdays, leading to the total 

rushing hours as 84. In Fig.9 (c) and (e), it is noted that, for most of the districts during 

the morning rush hours, the amounts of generating and attracting trips are not balanced 

any more. If not considering the intra-districts carpooling trips, the ratio between 

carpooling trips generation and attraction is respectively 62% in Chaoyang and 46% in 

Haidian. In contrast, the suburb and outer-suburb areas generate more carpooling trips, 

the proportion accounting for their inter-district trips even over 70% in Changping, 

Tongzhou, Fangshan and Mentougou. Regarding the trips during the evening rush 

hours, they exhibit exactly opposite OD distribution patterns to the ones in the morning 

rush hours. This fully embodies the phenomenon of home-work location separation in 

Beijing, in which Chaoyang and Haidian provide more job opportunities while the 

suburb and outer-suburb areas accommodate more homes. This leads to the travel 

connection during rush hours between Chaoyang and Haidian not being the strongest 

one any more, while the OD pairs of Chaoyang-Tongzhou or Haidian-Changping 

dominate the carpooling commuting travel. Furthermore, to verify the important role of 
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carpooling service in commute, we collected and ranked the quantity of employment in 

each district of Beijing from the Beijing Statistical Yearbook in 20177. At the same 

time, we also ranked the number of carpooling trips to each district within morning rush 

hours and then explored the specific relationships between these two rankings. It should 

be noted that we excluded the suburban districts and the inner districts including 

Dongcheng and Xicheng from the rankings since their special locations (outermost and 

innermost of cities) presumably cause the local commuters’ traveling distance unfitting 

for (over or under) the required carpooling service distance. Analysis results showed 

that there is an obvious linear relationship between local employment and carpooling 

trips within peak hours (R-Square up to 0.837), proving commuting was an important 

driver for carpooling trips when the driving distance is suitable for travel mode. 

In the aspect of fuel savings, about 23% of the total savings are derived from the 

peak hour period. Moreover, there are also variations in fuel savings among different 

pairs of districts as shown in Fig.9 (d) and (f), with the common home-work location 

pairs of Chaoyang-Tongzhou and Haidian-Changping presenting the largest amounts 

of savings (i.e. 6% and 4% of total fuel savings during peak hours respectively). It is 

interesting to find some of northern outer-suburb areas, like Yanqing, Huairou and 

Miyun, have more fuel savings during evening peak hours than morning peak hours, 

yet with similar carpooling orders. According to the spatial distribution of carpooling 

trips, presumably because the relative looser commuting time allows more workers to 

offer secondary carpooling services during evening peak hours, which can cause a 

higher proportion of commuters from northern outer-suburb areas shared their 

carpooling trips with more than one groups of passengers after work and then save more 

energy. 

4.2 Scenarios of carpooling subsidies 

The settings of the parameters in making carbon subsidies are as follows. 

Regarding the carbon trading price 
1  P , different values have been adopted in the 

literature. For instance, 
1P  was set between ¥50 and ¥2500 per ton of CO2 (Bristow et 

al., 2010), in the assessment of whether the different prices in this range were critical 

to the acceptability of PCT in the survey. In Raux et al. (2015), 
1  P  was set as 

approximately ¥1, ¥3, ¥5, or ¥7 per liter of gasoline to represent various trade-off 

scenarios for the survey participants. At present, the carbon price under the system of 

Corporate Carbon Trading (CCT) in China is at a lower level than it is in developed 

countries. For example, the highest carbon price is only ¥51.58 per ton of CO2 on 

February 16th, 2018 in Beijing4, equivalent to approximate ¥0.15 per liter of gasoline if 

one liter of gasoline combustion generates 3kg CO2. Combining the existing literatures 

with the future development trend in China, the four prices of ¥0.5, ¥1, ¥3, ¥5 per liter 

of gasoline are taken as the feasible carbon pricing levels in this study. In terms of the 

fuel price
2P , the average price (gasoline, 92#) in 2017 in Beijing5 is adopted, which is 

¥6.5. With respect to the depreciable cost, the average private car price 
3P  is set as 

                                                      
4 http://www.tanjiaoyi.com/article-23842-1.html 
5 http://www.chyxx.com/industry/201711/586283.html 



¥155,0006 with the corresponding usage life about 0.3 million kilometers. For the 

parking charge
4P , it is set based on a round commuting trip between home and work 

locations for a typical white-collar worker. In the light of the concept of “Parking 

necessarily paid” in Beijing, the parking charge is ¥150~¥450 per month in residential 

areas and ¥10~¥30 per day in working places. Thus, the range of 
4P  for one trip is 

specified between ¥7.5 and ¥22.5. Lastly, for the electric vehicle subsidy EVS , the 

subsidies in 2017 in Beijing7 are respective ¥20000, ¥36000, ¥44000, depending on the 

different categories of endurance mileages of the vehicles. Assuming the service life of 

EVs is 0.15 million kilometers, so the subsidies on EVS  are about ¥0.13, ¥0.24, ¥0.29 

per kilometer. In fact, the government needs to pay more implicitly since the payable 

vehicle purchase tax is exempted for electric vehicles. A summary of all the above-

described parameters and their corresponding settings is given in Table 2.  

Tab.2 Parameters used in the carpooling subsidy model 

Parameters Definition Value 

1P  Carbon trading price ¥0.5, ¥1, ¥3, ¥5/ liter 

2P  Gasoline price ¥6.5 

3P  Average private cars price ¥155,000 

4P  Parking charge ¥7.5- ¥22.5 

SL  Average service life of private cars 300000 kilometers 

EVS  Electric vehicle subsidy ¥0.13, ¥0.24, ¥0.29/km 

CS  Carpooling subsidy / 

Based on all the parameters, a series of subsidies only for OTOP trips, represented 

with ¥/km (Yuan per person-kilometer traveled), were derived under the diverse carbon 

prices and parking charges. The average of the subsidies is ranged from 0.09 ¥/km to 

0.5 ¥/km, as presented in Tab.3. Note that the average subsidy is reckoned after 

excluding the negative values (See Eq.8) that represent that the cost of carpooling 

services is too low to require extra incentives. Furthermore, taking the relatively mature 

subsidy policy of 0.13 ¥/km - 0.29 ¥/km for electric vehicles as the constraint condition, 

the feasibility evaluation is conducted and visualized by the gradation of the 

background color in Tab.3. The darker the color, the lower the carpooling subsidy is. 

When the carpooling subsidies increase from the bottom right to the top left, the color 

changes from darkness to lightness. When the carbon price is 0.5 ¥ and parking charge 

is 15 ¥ or when these two variables are 3 ¥ and 20 ¥, respectively, the subsidy for 

carpooling is 0.13 ¥/km, which just meets the strictest ceiling limit. Considering carbon 

price still at a lower level in China, we took the former scenario as an example and the 

associated frequency distribution of all the carpooling subsidies was described in Fig.10. 

The average value of the carpooling subsidies is 5.38 ¥ and 90% of the passengers can 

gain subsidies of 0-10 ¥. Excluding the negative values, the sum of the subsidies reaches 

                                                      
6 http://www.chyxx.com/industry/201711/580313.html 
7 http://www.bjcz.gov.cn/zwxx/tztg/t20160414_602511.htm 



7 million ¥ in December, which is much less than the fiscal subsidies on bus that is 8.37 

billion ¥ in the entire year of 2015 in Beijing8.  

Tab.3 Carpooling subsidies under different pricing scenarios 

Carpooling subsidy (¥/km) 
Carbon price (¥) 

5.0 3.0 1.0 0.5 

Parking 

charge (¥) 

7.5 0.50 0.43 0.36 0.34 

10.0 0.41 0.34 0.27 0.24 

15.0 0.27 0.21 0.15 0.13 

20.0 0.18 0.13 0.09 0.09 

22.5 0.15 0.11 0.10 0.10 

 

 

Fig.10 Frequency distribution of carpooling subsidies when 1=0.5P  and 4 =15P  

According to Fan et al. (2016), a certain amount of trial and error would help find 

the rational level of subsidies. However, these trial and error procedures would incur 

high administrative costs as the carpooling services standards change. Therefore, the 

calculated carpooling subsidy level could be taken as the benchmark for policy making 

and subsidy allocation. A series of feasible subsidies are made under various pricing 

scenarios, which can be selectively adopted by authorities combined local conditions. 

With the prerequisite of moderate-promotion for carpooling services, these funds will 

be able to effectively boost private car users to take carpooling, thus reduce fuel using 

and carbon emission from road traffic. 

4.3 Carpooling’s fuel savings considering all alternative traffic modes 

As for the people who used to take public transport including bus and metro, the 

impact of shifting to carpooling on fuel consumptions was also estimated based on Eq.9 

to Eq.12. The detour conversion coefficients of bus and metro are taken 1.2 and 1.0, 

                                                      
8 http://www.jt12345.com/article-45451-1.html 
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respectively, according to the traffic network structure in Beijing. For measuring the 

fuel using with carbon emission, the fuel economy of bus and metro is adopted as 1.6 

liter/person•km and 0.4 liter/person•km, referring to the emission factors of various 

traffic tools in Beijing estimated by Yang et al. (2017). Without the specific information 

about positional relationship between carpoolers and public transport stations, it is 

assumed the origin points of carpoolers distributes uniformly around the stations. Hence, 

the impact of walking distances in every direction to stations on the path length by bus 

or metro would be canceled each other out, which is neglected in this case study. By 

dividing carpooling trips into common carpooling trip (OTOP) and two kinds of 

secondary carpooling trips (OTMPOL and OTMPIS), the distributions of average fuel 

savings (or wastes) for potential bus users and metro users are shown in Fig.11. 

Evidently, the environment benefits of carpooling services are sharply shrank and 

even turn into bad side comparing to the green transport tools with high passenger 

capacity. Only about 50% carpooling trips of former bus users and 10% carpooling trips 

of former metro users can still save fuel, and with a tiny quantity. Similarly, the 

distributions of OTOP are more centralized, however, the gaps in the fuel savings’ peak 

values between OTOP and OTMPOL/OTMPIS are not observable any more. For 

carpoolers used to take metro, the secondary carpooling patterns even cause more fuel 

wastes than OTOP trips, which may be due to the fuel consumption of cars are more 

sensitive to the increase of passengers. 

 

(a)                                                                              (b) 

Fig.11 Distribution of carpooling fuel savings for potential bus users (a) and metro users (b) 

According to the results of 1063 app-based questionnaires about carpoolers in 

Beijing conducted by DiDi company (see Fig.12), only 3.4% of respondents would 

cancel their trips if ridesharing is not available, which proves that the emerging 

carpooling services basically have not triggered extra travel demand. Moreover, 47.5% 

of carpoolers surveyed used to be green travelers, most of whom would take public 

transport including metro and bus, and 45.1% was car-dependent, in which the ride-

haling services have been an important alternative for conventional taxi. All above 

numbers indicate that carpooling services not only effectively alleviate operation 

pressure of public transport, but also reduce the driving distance and fuel using form 

private car or taxi. The trip-specific model is adopted to calculate the fuel consumption 

of all travel modes, shown in Table 4. 
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Fig.12 Survey results on carpoolers’ alternative travel modes without carpooling services 

Obviously, the carpoolers who used to be car-users contribute most of fuel savings 

due to sharing free saddles, who should be the key target group to promote carpooling 

services. Meanwhile, the public transport modes and the slow traffic present a huge 

advantage of energy utilization. If carpoolers’ original travel modes are in line with 

these survey results, comparing to the assumption that all carpoolers are potential car-

users, the average fuel saving of one carpooling trip would be reduced to 0.32 l, and the 

quantity of subsidies only focusing on car-owners would be less than ¥600 thousand in 

December, 2017. 

Tab.4 Potential fuel using of original travel modes and actual fuel saving 

Travel modes Car or taxi Bus Metro Walk or bike 

Trips (103) 927.8 438.2 440.3 98.8 

Fuel using (103 l) 1515.2 189.3 47.3 0 

Fuel saving (103 l) 1087.1 1.5 -183.6 -245.2 

4.4 Advantages of the trip-specific model  

Built on the massive real ridesharing data, the trip-specific model proposed in this 

work has the advantages of delicacy, reliability and accuracy in estimating fuel savings 

and designing promotion strategies, which can be utilized by worldwide decision-

makers for better managing the carpooling industries. First, the delicacy is manifest by 

the fact that the energy saving calculation and carpooling promotion subsidizing are 

based on individual trips rather than aggregation over all the trips. It is important to 

focus on each individual trips since the numerical volatility across the trips is drastic in 

both fuel savings and subsidies. Taking the OTOP trips as an example, while the 

average of all the fuel savings is 1.17l, the averages of the savings over 0-10th 

percentiles and 90-100th percentiles of the trips are 0.13l and 3.05l, respectively, with 

the latter value being 20 times the former one. Moreover, the standard deviation and 

the variation coefficient of the fuel savings are 0.87l and 74%. Similar levels of 

volatility are also observed among the individual subsidies. Only with the trip-specific 

model, can optimal promotion policy be put into practice that are more objective, trip 

sensitive, and unbiased to carpoolers. 
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The second advantage is reliability, which is stemmed from the data source and 

model building process. The data include the actual carpooling trip records and the 

authoritative statistical data; both types of data are collected in the same or similar 

periods. The distances of the carpooling trips are estimated by online navigation 

applications, leading to the estimated results very close to the length of the actual routes. 

In terms of the model building process, the carpooling trips are divided into the types 

of OTOP and four additional patterns of OTMPs; each type has its own distinct 

frequency distributions and specific computation methods for fuel savings. This 

guarantees the reliability of this model. Moreover, by taking the subsidies on electric 

vehicles as the cap, a series of reasonable pricing scenarios built on the cost-effective 

method can be more socially acceptable. 

The previously described two advantages of delicacy and reliability would 

inevitably lead to the third advantage of this model, i.e. accuracy. The fuel savings of 

every trip, which are estimated by the sum of the products between the route length and 

the corresponding fuel economy under diverse vehicle occupancy scenarios, have 

considered all the significant factors influencing the fuel usage. Particularly, a 

comprehensive method has been developed for the route length calculation of each 

pattern of the OTMP trips, as shown in Fig.4. 

Last but not least, although we take carpooling trips within Beijing in China as 

case study, the trip-specific fuel savings estimation model and associated quantitative 

carbon subsidies measures proposed are of universal significance. Firstly, the mobile 

internet based carpooling services offered by DiDi Company have similar operation 

mechanism that is on-demand, real-time and location-based to the other worldwide 

transportation network companies. All these ridesharing platforms can record the 

specific itineraries of carpooling participants, which can be extracted to accurately 

estimate the fuel savings. Secondly, the financial incentive has been adopted 

extensively by authorities to promote green transportation, and considerable scholars 

argued that PCT is an effective measure in the transportation sector to reduce emission. 

The quantitative carbon subsidies based on PCT scheme have a solid base to be easily 

implemented and accord with the prevailing trend of urban sustainable development. 

Thirdly, the capability of estimating the carpooling’s fuel savings for all alternative 

traffic modes makes this model more comprehensive, which can be applied to different 

urban conditions with different split rates of travel modes. Thus, this methodology 

proposed in this study can be adopted as a reference by the other countries’ decision-

makers considering their local conditions. 

Comparing the performance between this model and the existing online or 

traditional off-line carpooling fuel saving computation methods, Tab.5 lists a set of key 

indexes regarding the aspects of delicacy, reliability and accuracy. From this table, the 

differences are noted and the innovation and stringency of the model proposed in this 

study are demonstrated.  



 
Tab.5 The comparison of trip-specific models with previous works 

Works 

Delicacy Reliability Accuracy Typical results (per trip) 

Trip-

specific 

Aggregate 

analysis 
Data source Model principle Influence factors Route length 

Average Distance 

traveled 

Average fuel 

savings  

Caulfield 

(2009) 
 √ Census data COPERT 4 

VKT and factors 

in software 
RP survey 9.75 km 1.25 l 

Jacobson 

and King 

(2009a) 

 √ 

publicly 

available 

statistics 

Difference between 

driving-alone and 

ridesharing 

VKT, PKT,FE General survey 15.88 km 3.5-3.8 l 

Bruck et 

al. (2017) 
 √ 

Shifts data from 

a pilot case  
VKT×FE VKT 

Shortest paths for 

direct-route and 

tree-route 

/ 0.93 l 

Guidotti et 

al. (2017) 
 √ 

publicly 

available 

statistics 

VKT×FE VKT 
Navigation 

distances 
8.16 km 0.49 l 

Yu et al. 

(2017) 
 √ 

Raw data and 

statistical data 

Direct impact: LCA 

Indirect impact: IO 

PKT, Travel 

mode share  

Residential trip 

survey 
17.70 km 5.02 l 

This paper 

(2018) 
√  

Raw data and 

statistical data 

Trips-specific 

models considering 

saddle-sharing trips 

VKT, PKT,FE 
Reprocessing 

navigation distances 
22.50 km 1.23 l 



5. Conclusion and discussion 

The potential of fuel savings and other advantages from increased ridesharing in 

noncommercial passenger vehicles has been theoretically proved (Noland et al., 2006; 

Chan and Shaheen, 2012), which is regarded as one of the mitigation roadmaps for 

cities to control energy consumption and reduce pollutions emission of urban traffic. 

However, practically the energy savings can be offset by the demand to travel additional 

distances to pick-up passengers. This raise a further demand for deeply investigating 

the exact carpooling travel mechanism and its associated fuel-saving patterns. On the 

other hand, there is still a lack of effective measures to promote carpooling to the car-

dependent people. Therefore, it is necessary to assist governments in designing more 

efficient carpooling strategies to mitigate the congestions and pollutions of urban road 

traffic. Owing to the emergence of internet-based carpooling services and big data 

technologies, it becomes possible to study energy consumption from individual points 

of views and implement delicate promotion measures with lower costs. Based on the 

massive carpooling trip data provided by the largest ridesharing service platform in 

China, this study has unraveled the internal mechanism of mobile internet based 

carpooling trips and the distribution of carpooling trips and fuel savings. Particularly, it 

has developed a trip-specific model for fuel saving estimation and carpooling subsidy 

designing for carbon emission reduction. In comparison with the existing methods, the 

model proposed in this paper has the advantages of delicacy, reliability and accuracy; 

based on this model a number of important findings have been made as follows. 

(1) On average, the fuel savings of a carpooling trip is 1.23 liters, accounting for 

47% of the fuel consumed when passengers drive alone, and the annual fuel savings 

reach 36 million liters. There is a positive relationship between the amount of fuel 

savings and the number of passenger groups as well as the travel distances of the trips. 

It is thus of much significance to encourage current carpoolers to accept secondary 

ridesharing and take long-distance carpooling, which can reduce more energy 

consumption and make the promotion subsidies more effective.  

(2) The common carpooling trips with one group of passengers are the main 

ridesharing travel type, accounting for 95% of all the trips; the remaining 5% belongs 

to saddle-sharing patterns mainly including the overlapping orders and inclusive orders. 

The average fuel savings of a one-trip-multi-passengers trip are more than double those 

of a one-trip-one-passengers trip, reflecting the huge superiority of secondary 

ridesharing travel in energy savings. Moreover, one of the saddle-sharing patterns, 

“inclusive” orders, is more efficient in fuel savings than the other, “overlapping” orders. 

In addition, the fuel saving frequency distributions of secondary carpooling trips are 

flatter with longer tails (See Fig. 5), demonstrating larger variations in fuel savings 

among the trips and embodying the necessity of extracting each individual secondary 

carpooling trip and managing them separately. Furthermore, the fluctuation of the 

saddle-sharing trips over various hours of the day (See Fig. 6) suggests that the saddle-

sharing trips happen more frequently for non-commuting trips than for commuting trips. 



(3) In the majority districts of Beijing, the amounts of generating and attracting 

ridesharing trips are balanced, but the numbers of the total carpooling trips differ. The 

Chaoyang district in downtown has the largest number of carpooling orders and 

generates the largest amount of fuel savings. The further a district is from the city center, 

the less the number of carpooling orders, and the smaller the amount of fuel savings. In 

addition, the separation of the common home and work locations reflected from the 

carpooling trips is clearly demonstrated, and the trips during the morning and evening 

peak hours exhibit converse origin-destination distribution patterns between these home 

and work locations. The carpooling trips during rush hours contribute about 23% of the 

total fuel savings.  

(4) Under a set of diverse carbon prices and parking charges, the average of the 

derived subsidies is distributed from 0.09 ¥/km to 0.5 ¥/km. In particular, when the 

subsidy meets the strictest ceiling limit of 0.13 ¥/km, the average subsidy per trip is 

¥5.38 and the annual subsidy sums up as ¥157 million, which is much lower than the 

practical fiscal subsidies for public transport in Beijing. With the prerequisite of 

moderate development for carpooling services, these funds could effectively encourage 

more original car users to participate in carpooling in a fair way. 

(5) When compared to green transport with high passenger capacity, the previous 

environment benefits of carpooling is sharply shrank and even turned into bad side. 

Beyond 90% carpooling trips would waste fuel in contrast to taking metro. Moreover, 

nearly half of carpoolers surveyed was car-dependent, in which the ride-haling services 

have developed to be an important alternative for conventional taxis. If the estimation 

of carpooling fuel savings consider all alternative traffic modes, the average fuel saving 

would be down to 0.32 l per trip, and the quantity of subsidies only focusing on car-

owners would be less than ¥600 thousand. 

(6) The number of carpooling orders during rush hours accounts for 30% of the 

total orders throughout the day, demonstrating the commuting features of the 

ridesharing trips. The average distance of ridesharing trips is approximately 22 

kilometers and more than 85% of the trips are longer than 10 kilometers, suggesting 

that the ridesharing mode mainly serves mid- and long-distance trips. This may make 

up the current shortage of railway systems in the suburbs of Beijing. 

This study can be regarded as a starting point with respect to the research and 

management on internet-based carpooling services and fuel savings. On the one hand, 

several limitations of this study should be considered. Firstly, although the carbon 

subsides could attract more car owners to be carpoolers, the supply/demand 

relationships in the market could be complicatedly associated with the other potential 

influencing factors, including insurance availability (Shaheen et al. 2016), trust and 

reputation (Salamanis et al. 2018), ride-matching efficiency (Furuhata et al. 2013), and 

so on. To achieve this industry's sustainable development, the authorities should make 

a distinction between social and economic regulations in moving forward. Cetin and 

Deakin (2017) argued that economic regulations such as fare controls and entry 

restrictions were not necessary for ride shares, while social regulations regarding safety 



and environmental performance are crucial to a healthy ridesharing industry. The 

government also should start collecting data on carpooling and make them available. 

This may help the insurance market react accordingly by adjusting prices to match risks 

in the carpool scenario (Wang, 2011). Additionally, some specific campaigns should be 

initiated and emphasize the environmental benefits from carpooling and the 

environmental threat human facing to arouse people's awareness of environmental 

protection. According to the findings of Delhomme and Gheorghiu (2016), the 

environmental attitudes of passengers play an important role in the decision to use 

carpooling. Secondly, there still is some difference between the navigation route and 

actual travel route in carpooling trips, especially in secondary carpooling trips. If the 

trajectory data of carpooling cars is provided, we can conduct more accurate estimation 

on fuel savings. Thirdly, it would better to validate the results of estimation on 

carpooling fuel savings by some practical experiments. Owning to the operational 

complexity, the validation study is beyond the scope of this study and suggested for the 

implementation stage in the next step. 

On the other hand, there are more work lying ahead in the future development of 

the proposed method. Firstly, it is interesting to divide the carpooling trips into non-

commuting as well as commuting trips and to study their impact on fuel savings 

separately. Secondly, in terms of promotion policy, the exact allocation of subsidies 

among the different groups of passengers still need to be investigated. Thirdly, some 

literatures argued that extreme weather, such as very high or low temperatures and 

heavy rainfall would reduce public transport ridership (Zhou et al., 2017; Miao et al., 

2019). These original mass transit users may shift to taking more comfortable travel 

modes like carpooling. Actually, according to the annual data in 2017 from DiDi 

Company, the number of carpooling orders will have a slight increase (about 10%) in 

summer or winter mainly because of the impact of the unpleasant weather. We can seek 

to study the specific impact of weather on carpooling services by combining the 

carpooling data with associated weather data in following work. Lastly, at present, DiDi 

Company focus on introducing new energy vehicles into carpooling service and the 

total amount will be increased to 1 million over the next 5 years (DiDi, 2017). The fuel 

savings of the trips realized with the new energy vehicles, along with the optimal 

carpooling management policy, will be further explored based on the approach 

developed in this study. 
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