Homocoupling defects in porphyrinoid small molecules and their effect on organic solar cell performance

Peer-reviewed author version

DOI: 10.1016/j.orgel.2019.03.012
Handle: http://hdl.handle.net/1942/28228
Homocoupling defects in porphyrinoid small molecules and their effect on organic solar cell performance

Mathias Kelchtermans, Jasper Deckers, Jeroen Brebels, Jurgen Kesters, Pieter Verstappen, Raghavendran Thiruvallur Eachambadi, Zhen Liu, Niko Van den Brande, Jean Manca, Laurence Lutsen, Dirk Vanderzande, Wouter Maes

PII: S1566-1199(19)30113-2
DOI: https://doi.org/10.1016/j.orgel.2019.03.012
Reference: ORGELE 5150

To appear in: Organic Electronics

Received Date: 17 November 2018
Revised Date: 13 February 2019
Accepted Date: 7 March 2019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Homocoupling defects in porphyrinoid small molecules and their effect on organic solar cell performance

Mathias Kelchtermans, Jasper Deckers, Jeroen Brebels, Jurgen Kesters, Pieter Verstappen, Raghavendran Thiruvallur Eachambadi, Zhen Liu, Niko Van den Brande, Jean Manca, Laurence Lutsen, Dirk Vanderzande, and Wouter Maes*

(a) UHasselt – Hasselt University, Institute for Materials Research (IMO), Design & Synthesis of Organic Semiconductors (DSOS), Agoralaan, 3590 Diepenbeek, Belgium
(b) UHasselt – Hasselt University, X-LAB, Agoralaan, 3590 Diepenbeek, Belgium
(c) Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
(d) IMEC, Associated lab IMOMEC, Wetenschapspark 1, 3590 Diepenbeek, Belgium

Corresponding author: Tel.: +32 11268312; E-mail: wouter.maes@uhasselt.be
ABSTRACT

Porphyridinoid small molecules can be used as electron donor or acceptor components in bulk heterojunction organic solar cells, which has resulted in steadily improving power conversion efficiencies. However, the effect of material purity is often neglected. In this work, a series of D1-A-π-D2-π-A-D1 conjugated chromophores based on the A2B2-meso-ethynylporphyrin core is synthesized. Different electron-donating (D1) end groups are chosen to investigate their influence on the material properties and optoelectronic characteristics. The porphyrin small molecules are tested as electron donor materials in bulk heterojunction organic solar cells in combination with PC71BM, affording an efficiency up to 4.6% under standard illumination. Furthermore, it is shown that (Glaser type) homocoupled side products are generated during the final Sonogashira cross-coupling reactions, which can be very challenging to remove, and their presence reduces solar cell performance by affecting the open-circuit voltage and fill factor.

KEYWORDS

porphyrins, conjugated small molecules, organic photovoltaics, material purity, homocoupling, Glaser
1. INTRODUCTION

Sustainable energy production remains one of the most significant challenges of modern society. A vital step was taken by the industrial and domestic commissioning of silicon-based solar cells. Nonetheless, their rigidity and considerable production costs are important drawbacks, demanding for alternative and/or complementary solar energy technologies. Solution-processed bulk heterojunction organic photovoltaics (BHJ OPVs) can be applied alongside classical solar cells, showing distinct advantages in terms of flexibility (enabling roll-to-roll processing) and semi-transparency, which allow (among others) for designer textile applications and window integration (building-integrated photovoltaics).\cite{1-5} Small molecule BHJ organic solar cells have gained particular attention over the last decade, owing to the well-defined molecular structure of the donor type small molecules, easy functionalization and reduced batch-to-batch variations as compared to their polymeric counterparts.\cite{6,7} Deviating solar cell results using polymer donor materials have traditionally been attributed to varying polymer molar masses and dispersities, inherent to the uncontrolled cross-coupling polymerization protocols used to prepare these materials.\cite{8-10} Moreover, homocoupling ‘defect’ structures have recently been identified as one of the plausible causes for batch-to-batch variations when using state of the art push-pull type conjugated polymers.\cite{11-15} Although homocoupling side reactions also occur upon performing Pd-catalyzed cross-coupling reactions in the final stages of small molecule syntheses, and their negative impact on solar cell performance has been reported,\cite{16,17} these byproducts are often readily removed upon purification, thereby reducing their importance for small molecule BHJ OPVs. Nevertheless, it was shown before that it is not always trivial to fully eliminate homocoupled impurities.\cite{16}

Inspired by the natural photosynthetic antenna systems, porphyrinoid chromophores have always been attractive candidates for solar light to energy conversion. They possess some
intrinsic properties beneficial for electronic applications, such as distinct absorptions in both the high and low wavelength region of the solar spectrum with reasonably high absorption coefficients, high thermal stability and a large \(\pi \)-conjugated system allowing for strong intermolecular interactions. Additionally, the straightforward modification of the porphyrin periphery (meso- and \(\beta \)-positions) and central core (through metalation) greatly influences their photo- and electrochemistry. Earlier success stories in the field of dye-sensitized solar cells\(^{18,19} \) have motivated researchers to implement similar materials in BHJ OPVs. Most commonly, meso-ethynyl substituted push-pull porphyrin derivatives are used, wherein the electron-rich porphyrin core is surrounded by two solubilizing aromatic units and two ethynyl moieties that prevent out-of-plane twisting to ensure a fully conjugated system.\(^{20-22} \) In the last couple of years, strong efforts were made to incorporate porphyrin derivatives as electron donor type materials in BHJ organic solar cells, resulting in outstanding power conversion efficiencies (PCEs) up to 9\%.\(^{23-26} \) These promising results inspired other researchers to fabricate ternary devices using a porphyrin and a polymer or two porphyrins as donor materials and PC\(_{71}\)BM ([6,6]-phenyl-C\(_{71}\) butyric acid methyl ester) as acceptor, leading to record efficiencies around 11\%.\(^{27,28} \) Porphyrin-based acceptor materials, on the other hand, showed rather disappointing results until Li et al. reported a porphyrin bearing four perylene diimide units affording an efficiency of 7.4\% in combination with the donor polymer PBDB-T.\(^{29} \) Despite the impressive leap forward, the best is likely still to come for porphyrin-based OPVs, for instance in combination with the novel generations of non-fullerene acceptors,\(^{30-33} \) and continuous research efforts on novel materials and devices are hence still very useful.

In the presented work, a number of advanced porphyrinoid materials with a donor-acceptor-\(\pi \)-porphyrin(donor)-\(\pi \)-acceptor-donor (D1-A-\(\pi \)-D2-\(\pi \)-A-D1) structural motif have been prepared (Figure 1). The benzo[c][1,2,5]thiadiazole acceptor unit was combined with four different electron-donating units and coupled to a central zinc-porphyrin via a Sonogashira approach.
The influence of the various electron donor units on the photophysical, electrochemical and photovoltaic features of the porphyrin molecules has been studied. As it was noticed early in this study that homocoupling occurred upon performing the final Sonogashira cross-coupling reactions, this became a particular point of attention. The occurrence and importance of homocoupling for the final device performance was analyzed and suggestions are provided to avoid these defect structures.

![Diagram of porphyrin material structure](image)

Figure 1. General D1-A-π-D2-π-A-D1 structure of the porphyrin materials studied here.

2. RESULTS AND DISCUSSION

2.1. Material synthesis and characterization

The presented porphyrin small molecules are composed of multiple known building blocks. An alkynated porphyrin core (Porph), an electron-deficient benzo[c][1,2,5]thiadiazole unit (BT) and various electron-donating units (D) – i.e. bis(4-hexylphenyl)amine (DPA), thiophene (T), 4H-dithieno[3,2-b:2’,3’-d]pyrrole (DTP) and benzo[1,2-b:4,5-b’]dithiophene (BDT) – were selected based on their established significance in organic solar cell materials.\[34-39\] Zinc was chosen as the metal center because of its simple synthetic incorporation, the additional planarization of the molecule and the ability to coordinate to pyridine, allowing morphology optimization of the BHJ photoactive layer.\[40,41\] The porphyrin core and the various electron-donating subunits were prepared according to literature procedures.\[34,39,42-44\] In the next step, several cross-coupling reactions were performed
between 4,7-dibromobenzo[c][1,2,5]thiadiazole and the (mono-functionalized) electron-donating units (Scheme 1; see SI for experimental details). At first, bis(4-hexylphenyl)amine was used to synthesize **BT-DPA** using a Buchwald-Hartwig reaction. Next, Suzuki cross-coupling with 3-(2-ethylhexyl)thiophene-2-boronic acid pinacol ester was performed to obtain **BT-T**. Finally, 1-(4H-dithieno[3,2-b:2',3'-d]pyrrol-4-yl)-2-hexyldecan-1-one (**DTP**) and 4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b']dithiophene (**BDT**) were chosen because of their stronger electron-donating characteristics to further decrease the optical gap of the final small molecules. **BT-DTP** and **BT-BDT** were prepared by Stille cross-coupling between 4,7-dibromobenzo[c][1,2,5]thiadiazole and monostannylated **DTP** or **BDT**, respectively. Moderate yields ranging from 40–60% were observed, customary for mono-cross-couplings due to formation of undesirable bis-substituted products. For **BT-DTP**, a higher yield of 81% was observed due to the addition of a two-fold excess of 4,7-dibromobenzo[c][1,2,5]thiadiazole.
Scheme 1. BT-D synthesis: i) bis(4-hexylphenyl)amine, P(t-Bu)$_3$, NaOt-Bu, Pd(OAc)$_2$, toluene, 100 °C, 20 h (43%); ii) 3-(2-ethylhexyl)thiophene-2-boronic acid pinacol ester, Na$_2$CO$_3$ (aq, 2M), Aliquat366, Pd(PPh$_3$)$_2$Cl$_2$, toluene, 70 °C, 20 h (48%); iii) 2-hexyl-1-(2-(trimethylstannyl)-4H-dithieno[3,2-b:2’,3’-d]pyrrol-4-yl)decan-1-one, Pd(PPh$_3$)$_4$, toluene, 100 °C, 20 h (81%); iv) (4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b’]dithiophen-2-yl)trimethylstannane, Pd(PPh$_3$)$_4$, toluene, 80 °C, 20 h (55%).

Particular attention was then devoted to the preparation of the final small molecules by Sonogashira cross-coupling between the A$_2$B$_2$-meso-ethynylporphyrin core (Porph) and the monobrominated push-pull moieties (Scheme 2). The reaction conditions were initially optimized for Porph-BT-DPA (Table S1). This molecule was obtained in a reasonably good yield of 70% upon using Pd$_2$(dba)$_3$ as a catalyst and PPh$_3$ as ligand in tetrahydrofuran, whereas much lower yields (around 30%) were achieved for Pd(PPh$_3$)$_4$ in toluene or Pd$_2$(dba)$_3$/AsPh$_3$ in tetrahydrofuran. The optimal reaction conditions were then applied to the other porphyrinoid small molecules, resulting in overall good yields, except for Porph-BT-T, which only gave a yield of 25% under the same conditions. Changing the solvent system to toluene:DMF (3:1) increased the yield to 67%. The final materials were unambiguously characterized by 1H NMR spectroscopy and high resolution mass spectrometry.
Scheme 2. Porph-BT-D synthesis: i) Pd$_2$(dba)$_3$, PPh$_3$, CuI, THF (toluene/DMF for BT-T), Et$_3$N, 50 °C, 20 h; Porph-BT-DPA (70%), Porph-BT-T (67%), Porph-BT-DTP (75%), Porph-BT-BDT (75%).

Because of the limited solubility of the final porphyrinoid molecules and the similar polarity of certain impurities, purification was not straightforward and great care had to be taken to get rid of undesirable (trace) impurities. For Porph-BT-BDT, after several silica gel column chromatography runs using different eluents, size exclusion chromatography (using Bio-Beads) and precipitation, the impurity that eluted almost alongside the target molecule was identified by MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization-Time of Flight) mass spectrometry as the homocoupled product (Porph)$_2$-BT-BDT, featuring two central diethynyl-linked porphyrin units (Figure 2). This type of homocoupling (Glaser coupling),
which occurs in standard Sonogashira cross-couplings due to the presence of oxygen, is far from unknown and has mostly been researched for synthetic purposes.[45-48] Nonetheless, it has not been discussed yet in the field of porphyrinoid OPV materials – except for a short note in the SI[49] – and the effect of its presence on solar cell performance has not been investigated so far (although a purposely developed ‘dimeric’ porphyrin was studied before[50]). Using the aforementioned purification steps (repetitive silica gel column and size exclusion chromatography), analytically pure Porph-BT-BDT was obtained and (Porph)_2-BT-BDT was isolated in a ratio up to 10 wt%. Low amounts of homocoupling were also found in the reaction mixtures of other porphyrin small molecules (see Figure S5-S6), but they were not isolated.

Figure 2. MALDI-TOF mass spectrum of Porph-BT-BDT after purification by silica gel column chromatography, showing the presence of the homocoupled byproduct (Porph)_2-BT-BDT.
Such a tedious purification method is obviously undesirable, considering time and cost effectiveness. Therefore, the alkyne and bromine functionalities were interchanged with the aim to simplify material purification (Scheme 3). Although Glaser coupling is not eliminated under these conditions, it will occur between two BT-BD-alkyne units instead of two porphyrin cores. Eventually, the same product, Porph-BT-BDT, was obtained without the formation of (Porph)$_2$-BT-BDT.

![Scheme 3](image)

Scheme 3. Porph-BT-BDT synthesis using interchanged functionalities: i) Pd$_2$(dba)$_3$, PPh$_3$, CuI, THF, Et$_3$N, 50 °C, 20 h (35%).

Thermogravimetric analysis (TGA) and rapid heat-cool calorimetry (RHC) were performed to investigate the thermal properties of the porphyrin chromophores (Figure S7-S8). TGA showed that the porphyrins are thermally stable (with respect to mass loss) up to 300 °C. RHC analysis, using heating and cooling rates of 500 K.min$^{-1}$, indicated that Porph-BT-DPA and Porph-BT-T show a melting trajectory, whereas no clear thermal transitions can be seen for Porph-BT-DTP and Porph-BT-BDT in the temperature interval studied.

Absorption spectra of the porphyrin small molecules in solution and thin film are shown in Figure 3. Two distinct, similarly intense absorption regions can be observed. The region between 400 and 600 nm stems from the porphyrin Soret band (S$_0$ to S$_2$ transition) and the BT-D end groups, while the region between 600 and 850 nm originates from intramolecular charge transfer between the porphyrin core and the BT-D push-pull moieties, driving the
absorption to the near-infrared (NIR) region.[51] Additionally, this driving force is connected to the electron-donating capabilities of the donor end groups. Upon going from solution to thin film, the porphyrinoid molecules exhibit a bathochromic shift of ~50 nm and an additional absorption shoulder in the NIR, indicating strong $\pi-\pi$ intermolecular interactions. The optical gaps (E_{g}^{opt}), estimated from the absorption edges in film, range from 1.5 to 1.6 eV (Table 1).

Figure 3. UV-Vis absorption spectra of the Porph-BT-D molecules in THF solution (top) and thin film (bottom).

Electrochemical material properties were investigated by cyclic voltammetry (CV; Table 1). The HOMO (highest occupied molecular orbital) energy levels are found between −5.53 and −5.08 eV, and differ due to the varying electron-donating capabilities of the donor moieties. The corresponding LUMO (lowest unoccupied molecular orbital) levels are located between
−3.52 and −3.54 eV. This results in LUMO-LUMO offsets of ~0.4 eV compared to PC\textsubscript{71}BM (LUMO = −3.91 eV under the same conditions), which allows efficient porphyrin to fullerene electron transfer. For the homocoupled species (Porph\textsubscript{2}-BT-BDT, HOMO and LUMO energy levels of −5.29 and −3.77 eV, respectively, were obtained.

Table 1. Optical and electrochemical data for the Porph-BT-D molecules.

<table>
<thead>
<tr>
<th>Porph-BT-D</th>
<th>$\lambda_{\text{max , film}}$</th>
<th>Log ε_{max}</th>
<th>E_g</th>
<th>E_{ox}</th>
<th>E_{red}</th>
<th>E_{HOMO}</th>
<th>E_{LUMO}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porph-BT-DPA</td>
<td>712</td>
<td>5.192</td>
<td>1.60</td>
<td>0.37</td>
<td>−1.44</td>
<td>1.81</td>
<td>−5.33</td>
</tr>
<tr>
<td>Porph-BT-T</td>
<td>702</td>
<td>5.330</td>
<td>1.60</td>
<td>0.12</td>
<td>−1.42</td>
<td>1.53</td>
<td>−5.08</td>
</tr>
<tr>
<td>Porph-BT-DTP</td>
<td>720</td>
<td>5.311</td>
<td>1.52</td>
<td>0.32</td>
<td>−1.43</td>
<td>1.75</td>
<td>−5.28</td>
</tr>
<tr>
<td>Porph-BT-BDT</td>
<td>740</td>
<td>5.253</td>
<td>1.54</td>
<td>0.57</td>
<td>−1.43</td>
<td>2.00</td>
<td>−5.53</td>
</tr>
<tr>
<td>(Porph\textsubscript{2}-BT-BDT</td>
<td>694</td>
<td>/</td>
<td>1.34</td>
<td>0.38</td>
<td>−1.13</td>
<td>1.51</td>
<td>−5.29</td>
</tr>
</tbody>
</table>

a Wavelength of maximum absorption at the low energy side of the spectrum. Films were prepared by drop-casting a solution of the porphyrin material onto a quartz disc. b Absorption coefficient (in THF solution) of the absorption peak at the higher wavelength side. c Optical gap, determined by the onset of the solid-state UV-Vis-NIR spectrum. d Onset potentials vs. Fe/Fe3+. e Electrochemical bandgap. f Determined from the onset of oxidation/reduction in cyclic voltammetry.

2.2. Solar cell fabrication and analysis

To investigate the photovoltaic properties of the porphyrin series, solution-processed BHJ organic solar cells were fabricated using the Porph-BT-D materials as electron donors and PC\textsubscript{71}BM as the electron acceptor in a traditional device architecture ITO/PEDOT:PSS/Porph-BT-D:PC\textsubscript{71}BM/Ca/Al. The photoactive layers were carefully optimized with respect to donor:acceptor ratio, active material and additive concentration and various annealing parameters (Tables S2–S5). J-V measurements under illumination were executed using
standard AM1.5G conditions with an intensity of 100 mW cm\(^{-2}\) and the results are summarized in Figure 4 (top) and Table 2.

The active layers based on Porph-BT-DPA:PC\(_{71}\)BM, spin-coated from chlorobenzene, gave moderate power conversion efficiencies, with a maximum of 2.1%. The optimal weight ratio of porphyrin to PC\(_{71}\)BM was found to be 1:3, whereas increasing the amount of porphyrin lowered the PCE to 1.4%. Pyridine is commonly used as a processing additive to improve film morphologies\(^{[52-54]}\) when using Zn(II)-porphyrins due to its capability to coordinate to the metal ion, limiting \(\pi-\pi\) stacking and thereby modifying the donor-acceptor interface alongside the open-circuit voltage (\(V_{oc}\)).\(^{[55]}\) However, the addition of 1 vol% pyridine to Porph-BT-DPA did not further improve the PCE. For the other three molecules, pyridine was anyway required to increase the solubility. Unfortunately, using various volume concentrations of pyridine (1 to 50 vol%, Tables S3-S4), the PCE for the solar cells based on Porph-BT-T and Porph-BT-DTP remained very low (around 1.0%; Table 2). Thermal annealing at 110 °C did not positively affect these devices. Finally, the solar cells made from Porph-BT-BDT were carefully optimized for pyridine concentration, porphyrin to PC\(_{71}\)BM weight ratio and thermal annealing (Table S5). In this case, the \(J-V\) characteristics gradually improved upon adding more pyridine, with a maximum at 15 vol% pyridine. While increasing the porphyrin to PC\(_{71}\)BM weight ratio at first seemed detrimental for the photovoltaic performance, this did lead to enhanced efficiencies upon additional thermal annealing at 110 °C. The strong increase in short-circuit current density (\(J_{sc}\)) and fill factor (FF) pushed the (maximum) PCE to 4.6% (Table 2). The external quantum efficiency (EQE) spectrum for this device showed a broad photo response from 300 up to 850 nm (Figure 4, bottom). Modest EQE values ranging from 22 to 44% were observed for the first three devices, with a characteristic dip around 600 nm, whereas the thermally annealed Porph-BT-BDT device showed a larger EQE up to 57% in the Soret region.
Table 2. Photovoltaic characteristics of the optimized BHJ organic solar cells based on Porph-BT-D:PC$_{71}$BM blends, processed from chlorobenzene.

<table>
<thead>
<tr>
<th>Porph-BT-D</th>
<th>Ratio</th>
<th>Pyridine</th>
<th>Annealing</th>
<th>V_{oc} / V</th>
<th>J_{sc} / mA cm$^{-2}$</th>
<th>FF</th>
<th>PCEa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porph-BT-DPA</td>
<td>1:3</td>
<td>/</td>
<td>/</td>
<td>0.72</td>
<td>7.48</td>
<td>0.39</td>
<td>2.11 (2.00)</td>
</tr>
<tr>
<td>Porph-BT-T</td>
<td>1:1</td>
<td>25 vol%</td>
<td>/</td>
<td>0.76</td>
<td>4.35</td>
<td>0.31</td>
<td>1.01 (0.75)</td>
</tr>
<tr>
<td>Porph-BT-DTP</td>
<td>1:1</td>
<td>45 vol%</td>
<td>/</td>
<td>0.74</td>
<td>4.57</td>
<td>0.29</td>
<td>0.98 (0.88)</td>
</tr>
<tr>
<td>Porph-BT-BDT</td>
<td>2:1</td>
<td>35 vol%</td>
<td>/</td>
<td>0.83</td>
<td>6.65</td>
<td>0.38</td>
<td>2.07 (1.91)</td>
</tr>
<tr>
<td>Porph-BT-BDT</td>
<td>2:1</td>
<td>35 vol%</td>
<td>110 °C</td>
<td>0.78</td>
<td>10.19</td>
<td>0.58</td>
<td>4.59 (4.27)</td>
</tr>
</tbody>
</table>

a Average efficiencies over at least 3 devices in brackets.

Figure 4. $J-V$ characteristics of the optimized solar cell devices prepared from the different Porph-BT-D:PC$_{71}$BM blends (top) and corresponding EQE spectra (bottom).
Single carrier devices were then made to determine the hole mobilities of the Porph-BT-D:PC_{71}BM films (Figure S18). A rather good mobility of $1.8 \times 10^{-4} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ was obtained for Porph-BT-DPA, almost two orders of magnitude larger than the values obtained for Porph-BT-T and Porph-BT-DTP. This large difference in mobility is also reflected in the J_{sc} of the devices. The hole mobilities for the single carrier devices made from Porph-BT-BDT increased from $1.7 \times 10^{-5} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ for the as-cast device to $1.9 \times 10^{-4} \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ after thermal annealing, in line with the significant increase in J_{sc} (from 6.65 to 10.19 mA cm$^{-2}$).

To gain additional insight into the different performances upon varying the electron-donating units and thermal annealing of the best devices, the morphologies of the active layers were investigated by atomic force microscopy (AFM) (Figure 5). The active layers containing either Porph-BT-DPA or Porph-BT-DTP displayed intimately mixed morphologies, with some larger particles spread throughout the layer. Intimate mixing generally facilitates the dissociation of photogenerated excitons into free electron and holes but limits charge transport, leading to higher geminate charge recombination rates, which verifies to moderate short-circuit currents and fill factors.$^{[56]}$ The AFM images of the pristine Porph-BT-T:PC_{71}BM and especially the Porph-BT-BDT:PC_{71}BM active layer exhibited a slightly more coarse phase separation. However, this is not directly reflected in their photovoltaic characteristics. After thermal annealing of the Porph-BT-BDT:PC_{71}BM active layer at 110 $^\circ$C, the phase separation increased further and small fibrillar structures appeared. These ordered features are beneficial for charge transport and may be at the origin of the improved J_{sc} and FF.$^{[57]}$ Furthermore, thermally induced aggregation or ordering is known to yield an increase of the effective HOMO level of the polymer and a corresponding red-shift of the onset of the charge transfer band, and therefore of a reduction of the V_{oc}.$^{[58]}$
Figure 5. AFM height images (2 µm x 2 µm) of the optimized solar cell devices prepared from a) Porph-BT-DPA, b) Porph-BT-T, c) Porph-BT-DTP, d) Porph-BT-BDT, e) Porph-BT-BDT with thermal annealing at 110 °C, f) Porph-BT-BDT + 1 wt% (Porph)$_2$-BT-BDT, g) Porph-BT-BDT + 5 wt% (Porph)$_2$-BT-BDT, h) Porph-BT-BDT + 10 wt% (Porph)$_2$-BT-BDT.

The promising device performances during the pyridine optimization for the Porph-BT-BDT device led to extensive optimization efforts (Table S5), requiring a lot of material. For this reason, different porphyrin batches were prepared, which were eventually all tested using the optimal processing conditions (Table S6). Remarkably, fairly large differences in photovoltaic performance were observed, going from PCE of 3.6 to 4.6%, for (supposed to be) an identical donor material. As mentioned in the introduction, minor amounts of (homocoupled)
Impurities can have a considerable impact on the OPV device characteristics.\textsuperscript{[\text{14}-17]} As a consequence, leftover trace amounts of (Porph)\textsubscript{2}-BT-BDT are likely to cause variations in the performance of our devices. To investigate the influence of the presence of the homocoupled side product in a more systematic manner, a series of devices were prepared (using the optimal processing conditions) to which increasing amounts of (Porph)\textsubscript{2}-BT-BDT were added (Table 3, S7, Figure S16-S17). Adding 1 wt\% of (Porph)\textsubscript{2}-BT-BDT already had a significant effect on the photovoltaic performance. A large drop in FF was observed, indicating a morphological cause, but also the V_{oc} decreased slightly. Surprisingly, the J_{sc} initially increased slightly. Further increase of the homocoupling content to 5 and 10 wt\% reduced the overall PCE to 3.8 and 3.4\%, respectively.

Table 3. Photovoltaic characteristics for optimized Porph-BT-BDT:PC\textsubscript{71}BM solar cells (annealed at 110 °C) upon gradual addition of the homocoupled side product (Porph)\textsubscript{2}-BT-BDT to the active layer blend.

<table>
<thead>
<tr>
<th>(Porph)\textsubscript{2}-BT-BDT</th>
<th>V_{oc} / V</th>
<th>J_{sc} / mA cm-2</th>
<th>FF</th>
<th>PCEa</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>0.78</td>
<td>10.19</td>
<td>0.58</td>
<td>4.59 (4.27)</td>
</tr>
<tr>
<td>1 wt%</td>
<td>0.76</td>
<td>10.92</td>
<td>0.49</td>
<td>4.08 (3.97)</td>
</tr>
<tr>
<td>5 wt%</td>
<td>0.76</td>
<td>10.47</td>
<td>0.48</td>
<td>3.84 (3.80)</td>
</tr>
<tr>
<td>10 wt%</td>
<td>0.74</td>
<td>10.21</td>
<td>0.45</td>
<td>3.39 (3.35)</td>
</tr>
</tbody>
</table>

aAverage efficiencies over at least 3 devices in brackets.

The hole mobility for the optimized blend dropped one order of magnitude after addition of 10 wt\% (Porph)\textsubscript{2}-BT-BDT. Surprisingly, the decreased hole mobility did not negatively affect the J_{sc}. This might possibly be related to the intermediate LUMO level of the homocoupled species (Table 1), which then serves as a cascade to facilitate charge transfer to PC\textsubscript{71}BM.\textsuperscript{[\text{28}]}
As discussed above, the AFM images of the optimized active layer based on Porph-BT-BDT showed the most coarse structure and small fibrillar structures beneficial for charge transport. Upon adding 1% of (Porph)$_2$-BT-BDT, the surface morphology already notably changed to a more finely dispersed blend (Figure 5). This trend continues upon further increasing the amount of homocoupling, explaining the gradual drop in fill factor.

3. CONCLUSIONS

In conclusion, four new porphyrin small molecules with a D1-A-π-D2-π-A-D1 built-up were successfully synthesized. The moderately electron-deficient benzothiadiazole moiety was chosen as the acceptor unit in combination with different donor units to provide materials with optical gaps ranging from 1.52 to 1.60 eV in film. Although the studied materials do not show the best solar cell results in the field, the notable (negative) effect of homocoupled side products originating from the applied (Sonogashira) synthetic protocol was disclosed in this work. The emergence of these side products seems to be underestimated so far. Although the present system seems to be rather tolerant to these impurities (as compared to other polymer and small molecule materials previously investigated$^{[14-17]}$), it remains an important point of attention for future endeavors on porphyrin-based photovoltaic systems. Moreover, it is likely to be of relevance to related fields employing similar materials as well, such as organic photodetectors.$^{[59]}$ Care should therefore be taken when employing these types of cross-coupling reactions and a next step might be the search for new catalyst systems that eliminate the formation of homocoupling entirely.

Acknowledgements

This work was supported by the Research Program of the Research Foundation – Flanders (FWO) (postdoctoral fellowships J.K. and P.V). M.K. and J.B. acknowledge the former
Agency for Innovation by Science and Technology in Flanders (IWT; now FWO-SB) for their PhD grants. The authors are also grateful to H. Penxten for the CV measurements.

Appendix A. Supplementary data

Supplementary data related to this article can be found at

References

HIGHLIGHTS

- Efforts to increase our understanding of the effect of homocoupling on photovoltaic performance are presented
- D-A-π-A-D conjugated chromophores based on an A₂B₂-meso-ethynylporphyrin core are synthesized
- Power conversion efficiencies up to 4.6% are achieved
- The presence of (Glaser type) homocoupled side products mainly reduces the open-circuit voltage and fill factor