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Abstract

Everyday route choices made by bicyclists are known to be more difficult to explain than vehicle routes, yet prediction of these
choices is essential for guiding infrastructural investment in safe cycling.

In this paper we study how the concept of route complexity can help generate and analyze plausible choice sets in the demand
modeling process. The complexity of a given path in a graph is the minimum number of shortest paths that is required to specify
that path. Complexity is a path attribute which is considered to be important for route choice in a similar way as the number of left
turns, the number of speed bumps, distance and other. The complexity was determined for a large set of observed routes and for
routes in the generated choice sets for the corresponding origin-destination pairs. The respective distributions seem to significantly
differ so that the choice sets do not reflect the traveler preferences. This paper looks at how the observed routes compare to routes
generated by Breadth First Search Link Elimination and Double Stochastic Generation Function method.
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1. Introduction

Route choice models play an important role in many transport applications and help to understand why people travel
the way they do and to predict what they will do in the future. Route choice set generation is an essential part of route
choice modeling in order to establish the weight of several route attributes in the decision process and to predict chosen
routes in simulators. Route choice modeling for bicyclists is a topic of increasing interest as more and more people
travel by bicycle for their daily commute, leading to problems with congestion in cycling lanes and at traffic lights
as well as parking problems with bicycles. This in turn leads to traffic conflicts with both vehicles and pedestrians,
creating unsafe situations. Understanding more about how and why cyclists travel and where they deviate from the
shortest path, helps us to propose ways to improve safe cycling infrastructure and to subsequently study the effects
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of the modifications. Several attributes of a route are significant factors in the choice process: e.g. the number of left
turns, the number of speed bumps, distance, slope, scenery etc. This study investigates the use of route complexity as
an additional attribute. The complexity of a given (observed) path in a graph is the minimum number of shortest paths
that is required to specify that path in the network. It can be interpreted as the (minimum) number of intermediate
destinations that are connected by shortest subpaths. Note that complexity is a graph theoretical property and is not
related to geometric properties of the route. Complexity is a path attribute which is considered to be important for route
choice. The complexity was determined (i) for each route in a large set of routes observed by means of GPS traces
and (ii) for routes in the choice sets for the origin-destination pairs corresponding to the observed routes generated by
implementations of BFS_LE and DSCSG algorithms in the POSDAP tool[3]. The distributions of observed routes and
these two route choice generators seem to significantly differ. The complexity of the routes in the generated choice
sets of do not reflect the traveler behaviour we observed in the paths we observed by cyclists. This study looks at two
route choice generation techniques and how they compare to the observed routes taken by bicyclists.

The paper is organized as follows:Section Background briefly reviews the concept of choice set generation and
various choice set generators that are described in the literature. Section Route Complexity defines the concept of
route complexity and describes an algorithm to compute it a given route. Section Case study describes the data set
of chosen bicyclist routes, the distribution for the observed complexity and the relations between route properties.
Section Discussion shows that the distribution for route complexity in generated choice sets significantly differ from
the observed ones.

2. Background

Choice sets play a crucial role in route choice modeling and prediction. In choice set generation, the universal set U
contains all possible routes from the origin to the destination. Such a universal set can be infinitely large if it is allowed
to include cycles (hence not only graph theoretical paths but also walks).

In route based choice models, finite choice sets are established. Each route in the choice set bears a collection
of attributes (distance, number of junctions, scenery etc). A discrete choice model is used to predict the traveler’s
choice from the attributes. Most models are based on multinomial logistic regression (MNL) and correction factors
are introduced to account for correlation between overlapping routes. Model parameters and correction factors are
determined using the finite choice set.

A typical choice set faced by a cyclist can include different paths with detours from the shortest path (i) to avoid
dangerous situations such as busy highways, poor pavement conditions, unlighted cycle paths in the dark or unsafe
neighborhoods or (ii) because of personal preference for certain areas like a park, slope, signalized junctions or a
familiar path.

There are various choice set generators for the construction of a choice set.

Prato[8] provide a method called Branch and Bound, which looks for paths that satisfy the boundary conditions:
directional, temporal, similarity, loop and movement (avoiding left turns). For example with the temporal constraints,
a route with only be included if its travel time is not higher than the shortest time by a certain factor.

Rieser[10] came up with a shortest path method, called Breadth First Search Link Elimination (BFS_LE ). The
BFS_LE method first computes the least cost path from origin to destination. Then links are eliminated in a particular
order and a new shortest path is found. BFS refers to the fact that a tree of networks is considered and in each network a
shortest path is determined using the A* algorithm. The tree is constructed by consecutively eliminating each element
from the shortest path such that each recursively generated network differs in exactly one edge from the parent network
in the recursion.

The Double Stochastic Generation Function method (DSCSG ) described by Nielsen[7] for public transportation
by Bovy[2] produces heterogeneous routes because both the cost and parameters used in the cost function for the
links are drawn from a probability function. A possible difficulty of this method is the high computational cost,
however Hood[5] show DSCSG to be faster than the BFS_LE proposed by Rieser[10]. Halldorsdottir[4] show that
DSCSG has a high coverage level of replicating routes taken by bicyclists and that it performs well up to 10 kilometer.
Furthermore Bovy[2] state that the method guarantees, with high probability, that attractive routes are in the choice
set, while unattractive routes are not. In order to generate realistic predictions, the distribution for each route attribute
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in the choice set needs to comply with the corresponding distribution found in observed sets. This requirement is
investigated for the route complexity.

3. Route Complexity

The complexity of a given path in a graph is the minimum number of Basic Path Components (BPC) in the decom-
position of the path where a basic path component is defined as either a least cost path or a non-least cost edge. A
non-least cost edge is an edge e whose edges are connected by a path having a lower cost than the cost to traverse
e. Figure 1 shows the minimum decomposition for a sample path p in a graph having complexity c(p) = 3. The ex-
ample shows that multiple decompositions do exist for path p. Knapen et al. [6] define non-cyclic trips as utilitarian
and formulate the hypothesis that in utilitarian trips, individuals tend to construct their routes as a concatenation of a
small number of basic path components. Utilitarian trips have a purpose different from the fun of driving. They are
driven with the intention to perform an activity at the destination location. Knapen et al. [6] present Algorithm 3.1 to
determine the complexity of a path (i.e. the minimum number of basic path components). In algorithm 3.1 we have

Algorithm 3.1 Algorithm to determine the size of the minimum decomposition of a path into basic path components

Input Graph G, Edge costs ¢, P = (vg, vi, ..., V;) containing no non-least-cost edges
start < 0
k1 > k is the minimum decomposition size

while P(v,,, v;) is not a least cost path do
> Find the first vertex v; in P(vyy, vi) such that le(Vgar, V) < ¢c(PWgiar, V)
vj « findFirstJoinVertex(P, vyqr)
k—k+1.
Vstart <~ Vj-1-

return k

a graph G with positive edge costs ¢ and a path P = (vg, vy, ..., v;) with no non-least-cost edges. Variable start is the
index of the first vertex in a basic path component. Variable & is the minimum decomposition size. In the while loop
we look for the first vertex v; for which we can find a shorter path from v, to vertex v;; such vertices are called join
vertices because in such vertex the given path and a shortcut join (see Knapen et al. [6] for details). In a join vertex
we increment counter k by one. The predecessor of the join vertex is used to continue.

After the loop completes we can split the path at the vertex right before each join vertex, the vertex preceding a
join vertex is called the split vertex. Using this algorithm, a splitting is found at k — 1 vertices, splitting our path P into
k basic path components. Knapen et al. [6] proved that the decomposition is minimal but not necessarily unique. For
example by running the algorithm in reverse direction of the path we may find a different but minimal decomposition
by identifying fork vertices.

Basic Route Compnents
u Forward: AE, EH, HK
Backward: HK, CH, AC
G H Split Vertex Suite
{C.,D,E} and {H}

Road, Link
Chosen Path

.......... Shortcut

Figure 1. The blue continuous line visiting vertices A, B, C...I, J, K is the path followed by the traveler. Paths BF, BLI, GLI, GLK, etc represent
shortcuts to the chosen path. There are two sets of split vertices: {C,D,E} and {H}. Hence there are three basic path components (BPC). Sample
decompositions are ((A,C),(C,H),(H,K)) and (A,E),(E,H),(H,K)).
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Figure 2 is taken from Knapen et al. [6] and shows the distribution for the complexity found in several data sets for
which the majority (Belgian case) or all (Italian case) trips are car trips. This supports the hypothesis that utilitarian
trips are composed of a small number of basic path components. Note that 95% of all car trips had a complexity lower
than 6 basic path components.

nBPC Distribution: SBO2, Milano, OSM, Navteq
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Figure 2. Relative frequency distribution for the size of the minimum decomposition of paths derived from GPS recordings. The Belgian set consists
of person traces. It was map-matched using different networks and gap-filling thresholds. The Italian set consists of car traces only (recorded by
on-board-unit (OBU).

4. Case study

This study considers a trip to be utilitarian if and only if r; = dyps/dgnors < 1.08 wWhere d,ps and dgy,,, are the observed
and shortest route lengths respectively (details are found in Wardenier et al. [11]). This definition is stricter than the
one used in Knapen et al. [6].

4.1. Collecting data of bicycle movements

The Dutch 2016 FietsTelWeek (Bike Counting Week) data set ([1]) is available at
http://www.bikeprint.nl/fietstelweek/. It contains 282,796 unique trips (although the corresponding infographic
http://fietstelweek.nl/data/resultaten-fiets-telweek-bekend/ mentions 416,376 trips having a total distance of
1,786,147 kilometers). It was collected by 29,600 cyclists who voluntarily participated in a week-long survey to track
their bicycle movements using a smart-phone app in the week of 19th of September 2016. The application ran in the
background to collect the bicycle movements of all participants using the phone’s GPS and acceleration sensors. The
cyclists involved use their bike, in a way as often seen in The Netherlands, using their bike as transportation from and
to work, supermarket, school, friends, etc. For privacy reasons the resulting data was anonymized by the data provider
before making it publicly available (i) by the removal of user information to make it impossible to trace multiple trips
to a single person and (ii) by rounding of the trip departure time into one-hour bins to the nearest hour.

4.2. Route complexity in real-life GPS traces

The route complexity for the 282,796 collected by the Dutch FietsTelWeek2016 routes was computed and the distri-
bution is shown in Figure 3 (blue line).
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Figure 3. Cumulative distribution of the complexity of paths taken by bicyclists. Blue for unfiltered, red for only utilitarian trips with r; j= 1.08

For Flanders (Belgium) no detailed results for the bike counting week are made publicly available; hence, di-
rect comparison is impossible. However, the distribution for the complexity of bicycle routes in The Nether-
lands significantly differs from the distribution for complexity found in person traces for Flanders shown in Fig-
ure 2. Car mode is the prevalent mode in Flanders according to the recurrent OVG travel behaviour survey
https://mobielvlaanderen.be/ovg/ovg52-0.php. Hence most person traces consist of car trips and, as a consequence,
most trips in the sets investigated by Knapen et al. [6] are car trips. The difference may result

e from behavioral difference between car drivers an bicyclists,

e from regional behavior differences and

e from parameters chosen for the map-matching process because some map-matching algorithms fill gaps by connect-
ing positions by the shortest path.

We had no control over the map-matching process because that was performed by the FietsTelWeek organizer. Access
to raw GPS traces is required to exclude the latter possibility.

4.3. Generating route choice sets

To compare and analyze the conformance of reality, we looked at two route choice set generation methods: Double
Stochastic Generation Function (DSCSG ) by Halldorsdottir [4] and Breadth First Search Link Elimination (BFS_LE )
by Rieser. [10] and compared their output to the path complexity recorded in the Netherlands by the FietsTelWeek
data-collection. For each observed trip, the origin and destination (OD-pair) were extracted. We used an existing
implementation of both algorithms in POSDAP [3] to generate route choice sets for each OD-pair. The distribution of
the path complexity was determined for the set of predicted paths (i.e. the paths in the generated choice sets). The first
option we considered was to include the number of basic path components as extra attribute in the cost function used
in the POSDAP DSCSG algorithm, to increase the cost of predicted paths having a complexity that is improbable
according to the observed distribution. This way more routes with a lower complexity would end up in the choice set.
We did not pursue this option for this paper because of the high cost to adapt the POSDAP algorithm, but it still would
be a interesting option for future research.

We decided to run DSCSG in the same way [4] did and to post-process the generated choice sets. Only link length
(travel distance) was used in the experiment. POSDAP allows to specify a set of link specific attribute values (like
scenery, separate bike lanes etc): this was not used due to lack of data. Thus we compute the complexity for each route
in the choice set generated by POSDAP using the algorithm specified in Knapen et al. [6]. After that we adapt the
choice set, keeping in mind the idea that routes with a high number of basic path components are highly unlikely as
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Figure 4. Cumulative distributions of number of basic path components of observed bicycling routes in the Amsterdam (blue) and the number of
components in paths predicted by POSDAP ’s implementations of Double Stochastic Generation Function (DSCSG ) and Bread First Search Link
Elimination (BFS_LE )

observed in the recorded data.

As there is no agreement on the size Ny of the route choice sets, we arbitrarily state that the route choice generator
should produce Ny = 16 routes for each origin destination pair. The POSDAP software was slightly modified in
order to execute at most a given number of M = 128 iterations (instead of running for a given duration) so that it
behaves identically on different machines. For some origin destination pairs POSDAP is not able to find as many as
Ny routes in M iterations, in which case we will use all found routes. The choice sets are written to CSV files for
further processing.

5. Discussion
5.1. Run-times

In terms of performance, BFS_LE is significantly quicker than DSCSG , producing 31,000 route-choice sets in 22
minutes for a instance with 6 parallel threads, averaging to approximately 248.3 choice set per minute per instance, on
a machine with 2 Intel Xeon CPU E5440 CPU’s (4 cores/socket, 1 thread/core). DSCSG averaged to approximately
2.8 choice set per minute per instance on faster CPU’s: 2 Intel Xeon CPU E5-2660 v4 (14 cores/socket, 2 threads/core).

5.2. Route complexity in generated routes

In figure 4 we plotted the different complexity distributions of the routes observed and the choice sets generated by
Double Stochastic Generation Function (DSCSG ) and Bread First Search Link Elimination (BFS_LE ). The results
are in line with what we expected based on the nature of both algorithms. First we try to explain the distribution of
BFS_LE as follows based on the structure of network in Amsterdam. A road network is said to be dense with regard to
a set of observed routes if the average length of network links is small relative to the developed length for the observed
routes. Equivalently, a network has a high density if and only if commonly observed routes contain many links. In the
observations for Amsterdam in the fietstelweek2016 case, the network seems to be dense with regard to the set
of shortest paths associated with each observed OD-pairs. In most cases the shortest path SP(o, d) for OD-pair (o, d)
contains many links. This is shown in Figure 5 for the Amsterdam case. If the required size for the choice set for
{0, d) is smaller than the number of road links in SP(o, d), each route generated by BFS_LE is derived by finding the
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shortest path SP,, (0, d) in a modified network where exactly one link link belonging to SP(o, d) was removed. This is
easily verified in Algorithm 5.1. Line 1 specifies the recursive BFS_LE procedure. elimLinkSetsColl is a collection of
link sets. Each such link set in turn is used to eliminate links from the network. The road network density (as defined

Algorithm 5.1 BFS_LE algorithm
Require: nPathsReqd, O, D, network
function generate(elimLinksS etsColl, paths)
elimLinkS etsCollNextLevel < @
for all elimLinkS et € elimLinkS etsColl do
network.removeLinks(elimLinkS et)
sp « shortestPath(O, D)
if sp ¢ paths then
paths « paths U {sp}
if | paths | > nPathsReqd then
return
else
for all link € sp do
es « elimLinkS et U {link}
if es ¢ elimLinkS etsCollNextLevel then
elimLinkS etsCollNextLevel.add(es)

network.addLinks(elimLinkS et)
generate(elimLinkS etsCollNextLevel, paths)
elimLinkS etsColl < ()

paths < 0
GENERATE(elimLinkS etsColl, paths)

> New one found

above) severely affects the distribution for the route complexity in the choice sets generated by BFS_LE . Figure 5
shows the first part of the (fat tail) distribution for the number of links in the shortest path for each observed OD-pair.
Only 9.4% of the shortest paths contain at most 16 links. The required choice set size is 16. Hence, in 90.6% of the
cases the generated routes are derived from the shortest path by eliminating only one link (belonging to the shortest
path) from the network. In contrast to BFS_LE , DSCSG uses randomness to the cost function to generate new paths

and thus subsequently the number of links in the shortest paths has less influence.
FietsTelWeek2016: Number of links in shortest path
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Figure 5. Distribution for the number of links in the shortest path linking O to D in the observed routes. Only 9.4% consists of at most 16 links.

5.3. Coverage

To compare our routes generated with what we found in the literature, we computed coverage and behavioral consis-
tency as found in Prato[9], Halldorsdottir [4] and others. Coverage measures the percentages of the observations for
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Table 1. Coverage and Behavioral Consistency of Path Generation Techniques

Coverage
%) for Overlap Threshold
Path Generation Technique ~ 100% 90%  80% 70% Behavioral
Consistency
BFS_LE 14.17 2240 33.87 46.84 0.661
DSCSG 20.25 28.62 39.11 48.98 0.658

which the path generation technique reproduces the observation at a threshold. A path generation technique with a
higher overlap is more capable at producing at least one path that is similar to the path observed.The index of behavior
consistency measure compares a path generation method with the ideal algorithm that would show 100% overlap for
all observations, an algorithm that would replicate all observations. What we see in low values for coverage and be-
havioral consistency in table 1 is similar to what we see in the route complexity distributions in figure 4: the predicted
routes have a low conformance to reality.

6. Conclusion

There are various methods to generate route choice sets. In this paper we used two. Double Stochastic Generation
Function (DSCSG ), because it generates heterogeneous routes, performs well for trips up to a length of 10 kilometers
and puts the more attractive routes in the choice set. The problem with this kind of route choice generation is that the
generated route can be over complicated and unrealistic. Secondly we used Breadth First Search Link Elimination
(BFS_LE ) to compare runtimes and output.

This study formally defines the concept of route complexity and computes complexity distributions for both a set
of observed routes and for routes generated by the POSDAP software. The distributions are shown to significantly
differ and a technique is proposed to enhance the generated choice set w.r.t. complexity. Finally we looked at the route
complexity in BFS_LE and DSCSG and reason why they deviate from the route complexity observed in the GPS data.
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