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Abstract The cross ratio function (CRF) is a commonly used tool to describe
local dependence between two correlated variables. Being a ratio of conditional
hazards, the CRF can be rewritten in terms of (first and second derivatives of)
the survival copula of these variables. Bernstein estimators for (the derivatives
of) this survival copula are used to define a nonparametric estimator of the
cross ratio and asymptotic normality thereof is established. We consider sim-
ulations to study the finite sample performance of our estimator for copulas
with different types of local dependency. A real dataset is used to investigate
the dependence between food expenditure and net income. The estimated CRF
reveals that families with a low net income relative to the mean net income will
spend less money to buy food compared to families with larger net incomes.
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This dependence, however, disappears when the net income is large compared
to the mean income.

Keywords Asymptotic distribution · Bernstein estimation · Copula · Cross
ratio function · Hazard rate
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1 Introduction

To analyse familial tendency in disease incidence, Clayton (1978) defined the
cross ratio function

θ(t1, t2) =
λ(t1 | T2 = t2)

λ(t1 | T2 > t2)
(1)

where, for a pair (T1, T2) of absolutely continuous variables, e.g., infection
times in infectious disease epidemiology, failure times in survival analysis, or
lifetimes in reliability theory, λ(· | T2 = t2) and λ(· | T2 > t2) are the condi-
tional hazard rate functions for T1 given T2 = t2 and T2 > t2 respectively. The
function θ(t1, t2) is symmetric in the sense that it is also equal to the ratio of
the hazard of T2 at t2 given T1 = t1, to the hazard of T2 at t2 given T1 > t1.
Independence between T1 and T2 corresponds to θ(t1, t2) ≡ 1 and positive
association corresponds to θ(t1, t2) > 1. See also Oakes (1982, 1986, 1989) for
a further discussion thereon and for details on semiparametric inference.

In the disease incidence context considered in Clayton (1978), T1 is the
time at which the son experiences the disease of interest and T2 the time at
which the father experiences this disease. Clayton (1978) considers the case
θ(t1, t2) ≡ θ + 1, for which θ = 0 corresponds to independence and θ > 0
implies positive association. In terms of copulas (see Section 2), this model
corresponds to the bivariate Clayton copula Cθ(u, v) = (u−θ + v−θ − 1)−1/θ,
θ ≥ 0.

Nowadays the cross ratio function is a commonly used measure to describe
local dependence between correlated failure times (Section 4.1.4 in Duchateau
and Janssen, 2008; Section 6.4 in Wienke, 2010). Classical measures of de-
pendence are global measures (e.g., Kendall’s tau). The cross ratio function,
being a local dependence measure, can however detect association characteris-
tics that cannot be captured by any global dependence measure. In this context
it is interesting to note that the cross ratio can be rewritten in terms of a local
version of Kendall’s τ , has a local odds ratio interpretation, and that it can
be used as a diagnostic tool for testing independence; see Oakes (1982, 1989)
and Section 4.2.6 in Duchateau and Janssen (2008) for details.

The cross ratio has been estimated parametrically by Nan et al. (2006) us-
ing a partition of the sample space in rectangular regions with edges parallel to
the variable axes, while assuming the cross ratio to be constant in each rect-
angular region. Time-varying cross ratios have been estimated using copula
models, thereby making strong assumptions about the functional form of the
bivariate copula (see, e.g., Li and Lin, 2006; Li et al., 2008). Hu et al. (2011)
considered a parametric polynomial model for the log-transformed cross ratio
function applied to right-censored bivariate survival data and using a pseudo-
partial likelihood approach. Hsu and Prentice (1996) proposed a crude non-
parametric estimator for the cross ratio function for which the performance
was explored in the constant Clayton setting. Several authors considered the
cross ratio function in the context of diagnostics to assess the frailty distri-
bution or copula function used to describe dependence in bivariate survival
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data. Viswanathan and Manatunga (2001) used a kernel smoothing approach
to have an implicit estimator, and Chen and Bandeen-Roche (2005) considered
an empirical estimator based on binning of the survival time space producing a
piecewise constant estimator, in both cases relying on the Archimedean copula
model family. Glidden (2007) implicitly proposed a non-parametric estimator
for the cross ratio function, albeit that the estimator is of little practical use
due to its rough behavior. More specifically, he defined residuals for pairwise
dependence diagnostics, depending on an estimator for the cross ratio func-
tion, and used these residuals to do model checking for both frailty and copula
models.

In this paper, we propose a smooth nonparametric Bernstein based esti-
mator for the cross ratio function without relying on a parametric functional
form or specific family of copula functions. In Section 2 we rewrite the condi-
tional hazards defining the cross ratio function in terms of the survival copula,
describing the dependence between T1 and T2, and its partial derivatives. Us-
ing Bernstein estimators for the survival copula and its derivatives, we obtain
Bernstein based estimators for the conditional hazards and a nonparametric
estimator for the cross ratio function θ(t1, t2). The reason for using a Bern-
stein copula-based estimator for the cross ratio function is motivated from
the results in the papers by Sancetta and Satchell (2004), Leblanc (2012),
Janssen et al. (2012, 2014, 2016) and Bouezmarni et al. (2009, 2013). Simula-
tions in these papers show that, compared to its nonparametric competitors
(including kernel estimators), Bernstein based estimators for the copula and
copula derivatives are superior. These papers also show that, compared to
standard kernel estimators, the asymptotic variance of Bernstein estimators
has smaller order and that the bias is uniform, i.e., Bernstein estimators do not
show boundary effects. The asymptotic normality of the Bernstein estimator
for λ(t1 | T2 = t2) is studied in detail in Section 3. In Section 4 the asymp-
totic behavior of this estimator is compared to that of existing nonparametric
competitors. In Section 5 we study the asymptotic normality of the Bernstein
based cross ratio estimator defined in (7) of Section 2. Given the symmetry of
θ(t1, t2), a corresponding estimator should preserve this property. We therefore
include an interesting asymptotic normality result for a symmetrized version
of the estimator (7). Efficient computational formulas are given in Section 6
which are important for the simulation study described in Section 7 and the
real data example presented in Section 8. Proofs are given in the Appendix.

2 The estimator

Let (T1, T2) be a random pair of variables (T1 ≥ 0, T2 ≥ 0) with absolutely
continuous marginal distribution functions F1 and F2 and density functions f1
and f2. Denote the marginal survival functions by S1 = 1−F1 and S2 = 1−F2.
According to Sklar’s theorem (Sklar 1959; Nelsen 2006), there exists a unique
copula function C that links the joint survival function of (T1, T2) to the
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marginal survival functions, i.e.,

S(t1, t2) = P (T1 > t1, T2 > t2) = C[S1(t1), S2(t2)]

or, since S1 and S2 are continuous

C(u1, u2) = S[S−11 (u1), S−12 (u2)]

with S−11 and S−12 the inverses of S1 and S2. The conditional hazard rate
functions appearing in expression (1) for θ(t1, t2) can be expressed in terms of
the copula C and its derivatives C(1) and C(2), where, for i = 1, 2,

C(i)(u1, u2) =
∂

∂ui
C(u1, u2).

Indeed it is easily verified that with S(i)(t1, t2) =
∂

∂ti
S(t1, t2) for i = 1, 2, we

have:

λ(t1 | T2 = t2) = lim
∆→0

1

∆
P (t1 < T1 ≤ t1 +∆ | T1 > t1, T2 = t2)

=
− ∂

∂t1
S(2)(t1, t2)

S(2)(t1, t2)
=
− ∂

∂t1
C(2)[S1(t1), S2(t2)]

C(2)[S1(t1), S2(t2)]
, (2)

λ(t1 | T2 > t2) = lim
∆→0

1

∆
P (t1 < T1 ≤ t1 +∆ | T1 > t1, T2 > t2)

=
− ∂

∂t1
S(t1, t2)

S(t1, t2)
=
− ∂

∂t1
C[S1(t1), S2(t2)]

C[S1(t1), S2(t2)]
. (3)

Nonparametric estimation of these two quantities will be done by first con-
structing nonparametric estimators for the corresponding cumulative hazard
functions

Λ(t1 | T2 = t2) =

t1∫
0

−dsC(2)[S1(s), S2(t2)]

C(2)[S1(s), S2(t2)]
, (4)

Λ(t1 | T2 > t2) =

t1∫
0

−dsC[S1(s), S2(t2)]

C[S1(s), S2(t2)]
, (5)

followed by kernel smoothing.
Suppose now that (T11, T21), . . . , (T1n, T2n) is a random sample from (T1, T2).

As an estimator for the copula function C(u1, u2) we will use the Bernstein
estimator. In Janssen et al. (2012), the Bernstein estimator is defined as

Cm,n(u1, u2) =

m∑
k=0

m∑
`=0

Cn

(
k

m
,
`

m

)
Pm,k(u1)Pm,`(u2)
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with, for k = 0, 1, . . . ,m and 0 ≤ u ≤ 1,

Pm,k(u) =

(
m
k

)
uk(1− u)m−k

representing binomial probabilities. The natural number m is called the order
and we typically assume that m → ∞ as n → ∞. Cn is the empirical copula
given by

Cn(u1, u2) = Sn[S−11n (u1), S−12n (u2)],

where, with I the indicator function,

Sn(t1, t2) =
1

n

n∑
i=1

I(T1i > t1, T2i > t2),

S1n(t1) =
1

n

n∑
i=1

I(T1i > t1),

S2n(t2) =
1

n

n∑
i=1

I(T2i > t2).

The Bernstein estimator for C(2)(u1, u2) needed in (4) is defined as

C(2)
m,n(u1, u2) =

∂

∂u2
Cm,n(u1, u2).

Therefore, with S1n(s−) the left hand limit of S1n at s, appropriate estimators
for the quantities in (4) and (5) are

Λ̂m(t1 | T2 = t2) =

t1∫
0

−dsC(2)
m,n[S1n(s), S2n(t2)]

C
(2)
m,n[S1n(s−), S2n(t2)]

, (6)

Λ̂m(t1 | T2 > t2) =

t1∫
0

−dsCm,n[S1n(s), S2n(t2)]

Cm,n[S1n(s−), S2n(t2)]
,

and by smoothing with a given probability density kernel K0 and a bandwidth
sequence bn → 0, we obtain estimators for λ(t1 | T2 = t2) and λ(t1 | T2 > t2):

λ̂m(t1 | T2 = t2) =
1

bn

∞∫
0

K0

(
t1 − s
bn

)
Λ̂m(ds | T2 = t2)

=
1

bn

∞∫
0

K0

(
t1 − s
bn

)
−dsC(2)

m,n[S1n(s), S2n(t2)]

C
(2)
m,n[S1n(s−), S2n(t2)]

,

λ̂m(t1 | T2 > t2) =
1

bn

∞∫
0

K0

(
t1 − s
bn

)
Λ̂m(ds | T2 > t2)

=
1

bn

∞∫
0

K0

(
t1 − s
bn

)
−dsCm,n[S1n(s), S2n(t2)]

Cm,n[S1n(s−), S2n(t2)]
.
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Finally, the proposed estimator for the cross ratio function θ(t1, t2) in (1) is
given by

θ̂m(t1, t2) =
λ̂m(t1 | T2 = t2)

λ̂m(t1 | T2 > t2)
. (7)

In Section 3 we deal with the asymptotic normality for the numerator in (7)
which is a Bernstein based estimator for the conditional hazard rate function
λ(t1 | T2 = t2). From this result and using our considerations in Section 4
on the order behavior of the denominator in (7) we obtain the asymptotic

normality of θ̂m(t1, t2).

3 Asymptotic normality of the conditional hazard rate function
estimator

The function λ(t1 | T2 = t2) given in (2) has a more familiar interpretation. It
is indeed easily checked that

C(2)[S1(t1), S2(t2)] = P (T1 > t1 | T2 = t2) = 1− Ft2(t1) = St2(t1)

where Ft2(t1) = P (T1 ≤ t1 | T2 = t2) is the conditional distribution function
of T1 given T2 = t2. Similarly,

∂

∂t1
C(2)[S1(t1), S2(t2)] = −ft2(t1)

where ft2(t1) is the conditional density function of T1 given T2 = t2. Note
that we use throughout Ft2(t1) and ft2(t1) as shorthand notation for the more
common notation FT1|T2

(t1 | t2) and fT1|T2
(t1 | t2) respectively. Hence,

λ(t1 | T2 = t2) =
ft2(t1)

1− Ft2(t1)
.

Furthermore,

C(2)
m,n[S1n(t1), S2n(t2)] = 1− F̂t2(t1)

and

dt1C
(2)
m,n[S1n(t1), S2n(t2)] = −dF̂t2(t1)

where F̂t2(t1) is precisely the Bernstein estimator studied in Janssen et al.
(2016). Hence, expression (6) can be written as

Λ̂m(t1 | T2 = t2) =

t1∫
0

dF̂t2(s)

1− F̂t2(s−)
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and

λ̂m(t1 | T2 = t2) =
1

bn

∞∫
0

K0

(
t1 − s
bn

)
dF̂t2(s)

1− F̂t2(s−)
.

Theorem 1. Assume that the following conditions hold.

(a) The copula C has 4th order partial derivatives in (0, 1)2.
(b) f1(t1) is twice continuously differentiable in an open neighborhood U of t1

and
∂4

∂3u∂v
C(u, v) exists and is continuous on (u, v) ∈ S1(U)× (0, 1).

(c) K0 is a continuous probability density function of bounded variation with
bounded support [−L,L], K0(−L) = K0(L) = 0 and

µ1(K0) =

L∫
−L

tK0(t)dt = 0.

(d) The order m and the bandwidth bn satisfy the relations, for n→∞,

n1/2m−5/4b
−1/2
n → 0

n−1/2m5/6b
−1/2
n (lnn)1/2(ln lnn)1/2 → 0

nm−1/2b5n → C1 ≥ 0,

where C1 is some finite constant.

Then, for all (t1, t2) such that 0 < F1(t1) < 1, 0 < F2(t2) < 1, 0 < Ft2(t1) < 1,

(nm−1/2bn)1/2[λ̂m(t1 | T2 = t2)− λ(t1 | T2 = t2)]

d→ N

(
β(t1, t2);

‖K0‖2

2
√
πF2(t2)(1− F2(t2))

λ(t1 | T2 = t2)

1− Ft2(t1)

)
,

where

β(t1, t2) =
1

2
C

1/2
1 λ′′(t1 | T2 = t2)µ2(K0), (8)

‖K0‖2 =

∫
K2

0 (t)dt and µ2(K0) =
∫
t2K0(t)dt.

The reader is referred to the Appendix for the proof of Theorem 1.

4 Discussion on Theorem 1

In this section we discuss several aspects of the estimator in Theorem 1: a
comparison with other nonparametric estimators for the conditional hazard
function (Section 4.1), a remark on the boundary effect (Section 4.2), a com-
parison of the required assumptions (Section 4.3) and an expression for the
mean squared error (Section 4.4).



Nonparametric estimation of the cross ratio function 9

4.1 Nonparametric estimators for the conditional hazard function

There are several results in the literature dealing with nonparametric estima-
tion of the conditional hazard rate function based on complete or censored
data. References can be found in Van Keilegom and Veraverbeke (2001) and
Spierdijk (2008). These two papers are also representative for the two typi-
cal methods of constructing an estimator: (1) replacing the conditional density
and conditional survival function by nonparametric estimators, or (2) smooth-
ing a nonparametric estimator for the cumulative conditional hazard function.
The two just mentioned papers deal with censored data, but it is easy to
take out the censoring in order to compare with the results in Theorem 1.
In Spierdijk (2008) an estimator of type (1) with local linear smoothing of
numerator and denominator is studied while the estimator in Van Keilegom
and Veraverbeke (2001) is of type (2). These authors applied kernel smoothing
to a nonparametric cumulative conditional hazard estimator. Our new estima-
tor for λ(t1 | T2 = t2) is also of type (2). The Bernstein method is used to
estimate the cumulative conditional hazard. The result of Van Keilegom and
Veraverbeke (2001) is formulated for a fixed covariate design. Replacing the
Gasser-Müller weights by the Nadaraya-Watson weights results in the appear-
ance of the design density f2(t2) in the denominator of the expression for the
asymptotic variance. Hence, the asymptotic variance of the estimators in Van
Keilegom and Veraverbeke (2001) and Spierdijk (2008) is

1

nhnbn

‖K0‖2‖K‖2

f2(t2)

λ(t1 | T2 = t2)

1− Ft2(t1)
, (9)

with K the kernel used for the cumulative hazard estimator, while the asymp-
totic variance of our new estimator in Theorem 1 is given by

1

nm−1/2bn

‖K0‖2

2
√
πF2(t2) [1− F2(t2)]

λ(t1 | T2 = t2)

1− Ft2(t1)
. (10)

Further note that the order O((nm−1/2bn)−1) in (10) is smaller than the or-
der O((nhnbn)−1) in (9), when making the usual identification hn = m−1 as
proposed by Sancetta and Satchell (2004) or Leblanc (2012). This improved
order is due to the Bernstein method.

A further remark is that the density f2(t2) in the denominator of (9) is
replaced by

√
F2(t2) [1− F2(t2)] in (10). A comparison of these two factors

can be made using a result of Parzen (1979); see also Remark 5 in Janssen et
al. (2016). It follows that

√
F2(t2) [1− F2(t2)] is asymptotically (as t2 → ∞)

larger than f2(t2) for all T2 with medium tails (e.g., exponential, Weibull, and
normal) and long tails (e.g., Cauchy and Pareto).

Note that asymptotically (t2 →∞) the scale of T2 does not play any role
in this comparison. Indeed, with σ2 = V ar(T2), T̃2 = T2/σ, we can easily see
that the distribution function of F̃2 and the density function f̃2 of T̃2 satisfy

f̃2(t̃2)√
F̃2(t̃2)[1− F̃2(t̃2)]

=
σf2(t2)√

F2(t2)[1− F2(t2)]
,
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with t̃2 = t2/σ. Since t2 →∞ is equivalent to t̃2 →∞, we have that the right
hand side tends to zero whenever the left hand side does. So asymptotically
as t2 →∞, the value of σ has no influence.

Non-asymptotically, however, there is of course the question of ‘how large’
t2 has to be in order to have that f(t2) is smaller than

√
F2(t2)[1− F2(t2)].

This can only be checked in concrete cases. For instance, if T2 is exponentially
distributed with parameter 1/σ, then the above inequality is satisfied for all
t2 > l = σ ln

(
1 + 1

σ2

)
. For σ = 1: l = 0.7, for σ = 10: l = 0.1. Note that l

decreases with σ.

4.2 Boundary effect

The definition of λ̂(t1|T2 = t2) is obtained by kernel smoothing of the empirical
cumulative hazard function. It is a well known fact that such estimator can
suffer from some boundary effect at t1 = 0. The remedies are well described in
the literature. We mention: (1) the use of a boundary kernel (Müller and Wang,
1994), (2) mirror-reflection (Gijbels and Mielniczuk, 1990), (3) shrinkage of
the bandwidth (Omelka et al., 2009), and (4) various transformation methods
(Ruppert and Cline, 1994, Swanepoel and van Graan, 2005). To avoid the
related technicalities, we restrict our attention to interior points.

4.3 Required conditions

The conditions of Theorem 1 are in line with the conditions in Van Keilegom
and Veraverbeke (2001) and Spierdijk (2008). Conditions (a) and (b) of The-
orem 1 are very close to the assumptions (iv) and (v) of the parallel result in
Spierdijk (2008). Starting from the relation C(2) [S1(t1), S2(t2)] = 1− Ft2(t1),
it is easily seen that there is a correspondence between the third order deriva-
tive of Ft2(t1) and the fourth order partial derivatives of the copula C, together
with the second derivative of f1. Condition (c) is of course standard in kernel
smoothing. Finally, the relations between the order m and the bandwidth bn
are needed to take care of a remainder term and also to control a bias term.
Similar relations appear, for example, in Theorem 4 of Van Keilegom and
Veraverbeke (2001).

4.4 Asymptotic mean squared error

From (11) and (17), both in the proof of Theorem 1 in the Appendix, we have

an explicit expression for the asymptotic mean squared error of λ̂m(t1 | T2 =
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t2), namely

1

nm−1/2bn

‖K0‖2

2
√
πF2(t2) [1− F2(t2)]

λ(t1 | T2 = t2)

1− Ft2(t1)

+

[
1

2
b2nλ
′′(t1 | T2 = t2)µ2(K0) +

1

2
m−1φ(t1, t2)

]2
,

with φ(t1, t2) defined in (17) of the proof of Theorem 1. Minimizing with
respect to m and bn provides that the optimal choices are of the form bn =
O(n−1/6) and m = O(n1/3) and that the asymptotic mean squared error has

order O(n−2/3). Furthermore, λ̂m(t1 | T2 = t2)−λ(t1 | T2 = t2) = Op(n
−1/3).

5 Asymptotic normality of the cross ratio function estimator

We first prove a result on the behavior of the denominator in the estimator
θ̂m(t1, t2) given in (7).

Theorem 2. Assume that the conditions of Theorem 1 hold, together with the
extra relation m1/2bn →∞. Then, for all (t1, t2) such that C(S1(t1), S2(t2)) >
0,

(nm−1/2bn)1/2[λ̂m(t1 | T2 > t2)− λ(t1 | T2 > t2)]
P→ 0.

Combining the results of Theorem 1 and Theorem 2 leads to the asymptotic
normality for the cross ratio estimator θ̂m(t1, t2).

Theorem 3. Assume that the conditions of Theorem 2 hold.
Then, for all (t1, t2) such that 0 < F1(t1) < 1, 0 < F2(t2) < 1, 0 < Ft2(t1) < 1,
0 < C[S1(t1), S2(t2)],

(nm−1/2bn)1/2[θ̂m(t1, t2)− θ(t1, t2)]

d→ N

(
β(t1, t2)

λ(t1 | T2 > t2)
;

‖K0‖2

2
√
πF2(t2)[1− F2(t2)]

θ2(t1, t2)

ft2(t1)

)
.

Note that the estimator θ̂m(t1, t2) in (7) is not symmetric in the pair (T1, T2).
However, this is in contrast to the function θ(t1, t2) defined in (1) which has
the symmetry property that θ(t1, t2) = θ∗(t2, t1) where

θ∗(t2, t1) =
λ(t2 | T1 = t1)

λ(t2 | T1 > t1)
,

which is a direct application of Bayes’ rule. Since our estimator θ̂m(t1, t2) does
not preserve this property, we define the following symmetrized version

ϑ̂m(t1, t2) =
1

2

[
θ̂m(t1, t2) + θ̂∗m(t2, t1)

]
,
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where θ∗m(t2, t1) and its estimator θ̂∗m(t2, t1) are obtained by reversing the roles
of T1 and T2 in the definition of θ(t1, t2) and the estimator in (7) respectively.

The next theorem provides the asymptotic normality result for ϑ̂m(t1, t2).

Theorem 4. Assume that the conditions of Theorem 2 hold and

(b∗) f2(t2) is twice continuously differentiable in an open neighborhood V of t2

and
∂4

∂3u∂v
C(u, v) exists and is continuous on (u, v) ∈ (0, 1)× S2(V ).

Then, we have for all (t1, t2) such that 0 < F1(t1) < 1, 0 < F2(t2) < 1,
0 < C [S1(t1), S2(t2)] < 1,

(nm−1/2bn)1/2[ϑ̂m(t1, t2)− θ(t1, t2)]
d→ N (B(t1, t2);V (t1, t2)) ,

where

B(t1, t2) =
1

2

[
β(t1, t2)

λ(t1 | T2 > t2)
+

β∗(t2, t1)

λ(t2 | T1 > t1)

]
,

V (t1, t2) =
1

4
‖K0‖2θ2(t1, t2)

[
1

2ft2(t1)
√
πF2(t2) [1− F2(t2)]

+
1

2ft1(t2)
√
πF1(t1) [1− F1(t1)]

]
,

with β(t1, t2) defined in (8) and

β∗(t2, t1) =
1

2
C

1/2
1 λ′′(t2 | T1 = t1)µ2(K0).

The proof of this theorem is given in the Supplementary Material.

Remark 1. Note that the asymptotic variance of ϑ̂m(t1, t2) is essentially 1/4

of the sum of the asymptotic variances of the two estimators θ̂m(t1, t2) and

θ̂∗m(t2, t1). The proof indeed shows that the covariance terms are of lower order.

Remark 2. We have the following expression for the asymptotic mean squared
error of ϑ̂m(t1, t2):

V (t1, t2)

nm−1/2bn
+

1

4

{ 1
2b

2
nλ
′′(t1 | T2 = t2)µ2(K0) + 1

2m
−1φ(t1, t2)

λ(t1 | T2 > t2)

+
1
2b

2
nλ
′′(t2 | T1 = t1)µ2(K0) + 1

2m
−1φ∗(t1, t2)

λ(t2 | T1 > t1)

}2

,

with φ(t1, t2) defined in (17) of the proof of Theorem 1 and

φ∗(t1, t2) =
b∗(2)[S1(t1), S2(t2)]

1− Ft1(t2)
f2(t2),

b∗(u, v) = (1− 2u)C(1,1)(u, v) + u(1− u)C(1,1,1)(u, v)

+ v(1− v)C(1,2,2)(u, v).
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Remark 3. In Theorem 4 we take the same bandwidth bn for θ̂m(t1, t2)

(smoothing over t1) and θ̂∗m(t2, t1) (smoothing over t2), which is a natural
choice when T1 and T2 have a similar scale. In Section 7 (simulations), we
briefly discuss the non-similar scale case.

6 Computational formulas

For the random sample (T11, T21), . . . , (T1n, T2n) let, for i = 1, 2, Ti(1) ≤
Ti(2) ≤ . . . ≤ Ti(n) denote the ordered Tij-values; and let Rij denote the rank
of Tij , j = 1, . . . , n. For computational convenience, the empirical version of
the marginal survival functions used in the computational formulas are

S̃1n(t1) =
n

n+ 1
S1n(t1) and S̃2n(t2) =

n

n+ 1
S2n(t2).

The empirical estimator for the survival copula of (T1, T2) is:

Cn(u1, u2) =
1

n

n∑
j=1

I[S̃1n(T1j) < u1, S̃2n(T2j) < u2]

=
1

n

n∑
j=1

I

(
R1j

n+ 1
>

n

n+ 1
− u1,

R2j

n+ 1
>

n

n+ 1
− u2

)
.

In terms of Cm,n, C
(1)
m,n, C

(2)
m,n, C

(1,2)
m,n , the Bernstein estimators for the copula

C and its first order and second order partial derivatives, the proposed esti-
mator for the cross ratio function given in (7) can be written as:

θ̂m(t1, t2) =
λ̂m(t1 | T2 = t2)

λ̂m(t1 | T2 > t2)
,

where

λ̂m(t1 | T2 = t2) =
1

(n+ 1)bn

n∑
j=1

K0

(
t1 − T1(j)

bn

) C
(1,2)
m,n

[
n− j
n+ 1

, S̃2n(t2)

]
C

(2)
m,n

[
n− j + 1

n+ 1
, S̃2n(t2)

] ,

λ̂m(t1 | T2 > t2) =
1

(n+ 1)bn

n∑
j=1

K0

(
t1 − T1(j)

bn

) C
(1)
m,n

[
n− j
n+ 1

, S̃2n(t2)

]
Cm,n

[
n− j + 1

n+ 1
, S̃2n(t2)

] ,
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with

Cm,n(u1, u2) =

m∑
k=0

m∑
l=0

Cn

(
k

m
,
l

m

)
Pm,k(u1)Pm,l(u2),

C(1)
m,n(u1, u2) = m

m−1∑
k=0

m∑
l=0

[
Cn

(
k + 1

m
,
l

m

)
− Cn

(
k

m
,
l

m

)]
Pm−1,k(u1)Pm,l(u2),

C(2)
m,n(u1, u2) = m

m∑
k=0

m−1∑
l=0

[
Cn

(
k

m
,
l + 1

m

)
− Cn

(
k

m
,
l

m

)]
Pm,k(u1)Pm−1,l(u2),

C(1,2)
m,n (u1, u2) = m2

m−1∑
k=0

m−1∑
l=0

Pm−1,k(u1)Pm−1,l(u2)

×
[
Cn

(
k + 1

m
,
l + 1

m

)
− Cn

(
k

m
,
l + 1

m

)
− Cn

(
k + 1

m
,
l

m

)
+ Cn

(
k

m
,
l

m

)]
.

See Janssen et al. (2012, 2014, 2016) for more details.
In order to have an estimator which is also smooth in the t2-direction, we

replace in the simulations and the data example the empirical survival func-
tion S̃2n(t2) in the Bernstein estimator for θ(t1, t2) by:

˜̃
S 2n(t2) =

1

n+ 1

n∑
i=1

K0

(
T2(i) − t2

bn

)
,

where K0 is the integrated kernel

K0(t) =

t∫
−∞

K0(u)du.

For computational efficiency we use the following equivalent formulas (see
Janssen et al., 2017, Remark 5), for similar formulas in the context of condi-
tional density estimation):

Cm,n(u1, u2) =
1

n

n∑
j=1

m∑
k=

⌊
m(n−R1j)

n+1

⌋
+1

Pm,k(u1)×
m∑

l=
⌊

m(n−R2j)

n+1

⌋
+1

Pm,l(u2),

C(1)
m,n(u1, u2) =

m

n

n∑
j=1

P
m−1,

⌊
m(n−R1j)

n+1

⌋(u1)×
m∑

l=
⌊

m(n−R2j)

n+1

⌋
+1

Pm,l(u2),

C(2)
m,n(u1, u2) =

m

n

n∑
j=1

m∑
k=

⌊
m(n−R1j)

n+1

⌋
+1

Pm,k(u1)× P
m,

⌊
m(n−R2j)

n+1

⌋(u2),

C(1,2)
m,n (u1, u2) =

m2

n

n∑
j=1

P
m,

⌊
m(n−R1j)

n+1

⌋(u1)× P
m,

⌊
m(n−R2j)

n+1

⌋(u2).
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7 Simulations

Based on simulations we show the finite sample performance of θ̂m(t1, t2),

θ̂∗m(t2, t1) and ϑ̂m(t1, t2), our unsymmetrized and symmetrized estimators of
the cross ratio function θ(t1, t2). To quantify the impact of the choice of
the kernel bandwidth bn and the Bernstein order m, we use an approxima-
tion of the MISEθ̂m , the mean integrated squared error for which a for-
mal definition can be found in the Supplementary Material. We now define
for θ̂m(t1, t2), the quantities needed to study this impact. For θ̂∗m(t2, t1) and

ϑ̂m(t1, t2) similar expressions are obtained by replacing θ̂m(t1, t2) by the es-
timator under consideration. The integrated squared error on the rectangle
[a∗1, b

∗
1]× [a∗2, b

∗
2] ⊂ [0, 1]× [0, 1], ISEθ̂m , is defined as

ISEθ̂m =

b∗1∫
a∗1

b∗2∫
a∗2

{
θ̂m[F−11 (u1), F−12 (u2)]− θ[F−11 (u1), F−12 (u2)]

}2

× dF−11 (u1)dF−12 (u2).

Note that, with [a∗1, b
∗
1]× [a∗2, b

∗
2] ≡ [F1(a1), F1(b1)]× [F2(a2), F2(b2)]

ISEθ̂m =

b1∫
a1

b2∫
a2

[
θ̂m(t1, t2)− θ(t1, t2)

]2
dt1dt2.

Using a bivariate grid of N1×N2 equally-spaced grid points in [a∗1, b
∗
1]×[a∗2, b

∗
2],

we approximate ISEθ̂m by

Iθ̂m = ∆1∆2

N1∑
k=1

N2∑
l=1

wkl

{
θ̂m[F−11 (u1[k]), F

−1
2 (u2[l])]− θ[F−11 (u1[k]), F

−1
2 (u2[l])]

}2

,

where ∆1 = (b∗1 − a∗1)/(N1 − 1), ∆2 = (b∗2 − a∗2)/(N2 − 1), u1[k] = a∗1 + (b∗1 −
a∗1)(k−1)/(N1−1) and u2[l] = a∗2+(b∗2−a∗2)(l−1)/(N2−1), k = 1, . . . , N1, l =

1, . . . , N2; and the weights wkl are equal to (dF−11 (u1)/du1)(dF−12 (u2)/du2)
evaluated in (u1[k], u2[l]). The MISEθ̂m is then approximated by averaging
over M = 100 simulation runs (denoted by MIθ̂m):

MIθ̂m =
1

M

M∑
r=1

I
(r)

θ̂m
,

where I
(r)

θ̂m
is the approximation of the ISE based on the r-th simulated

dataset. In our simulations we take [a∗1, b
∗
1] = [a∗2, b

∗
2] = [0.01, 0.99] and N1 =

N2 = 99.
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On top of that, since the mean integrated squared error can be decomposed
into variance and (squared) bias components (see Supplementary Material for
more details), we provide approximations of the integrated variance IV ARθ̂m
and the integrated squared bias ISBIASθ̂m , which will be denoted by IVθ̂m
and ISBθ̂m respectively from this point onwards, and for which expressions
are provided in the Supplementary Material.

7.1 Simulation procedure

We generate n pairs of event times (t1j , t2j), j = 1, . . . , n using the ‘copula’
package in R version 3.3.2. More specifically, random samples (u1j , u2j) are
drawn from three different copula functions with various tail dependencies
(Clayton, Gumbel and Frank copulae) after which dependent exponential event
times are obtained with constant hazard functions λ1 = 0.03 and λ2 = 0.05,
as follows:

tij = − ln(1− uij)
λi

.

The Clayton copula captures lower tail dependence, while the Gumbel copula
captures upper tail dependence; the Frank copula family has no (upper or
lower) tail dependence. In our simulation study, we generate simulation sets
of sample size n = 500 and n = 800. Additional simulation results for varying
sample sizes are provided in the Supplementary Material. The proposed esti-
mator works globally well for sample sizes of at least 300 pairs. Depending on
the shape of the cross ratio surface, smaller sample sizes can still provide a
useful estimator (see Supplementary Material for more details).

For K0 we take the standard normal density. To investigate the effect of
the kernel bandwidth bn and the Bernstein order m on the performance of
our estimators θ̂m(t1, t2), θ̂∗m(t2, t1) and ϑ̂m(t1, t2), we explore a range of val-
ues B = {1, 2.7, 7.4, 20.1, 54.6} for bn, i.e., the bandwidths values are chosen
equidistant on a logarithmic scale, and a range A = {25, 50, 100} for the Bern-
stein order m. The bandwidths chosen in B are equidistant on the log-scale
to have more small candidate values than large ones, since large bandwidths
typically yield very similar smooth estimates. The order m is typically chosen
as a fraction of n (see Janssen et al., 2016). Furthermore, note that T1 takes
values in the range [0, 100] with probability 0.95 thereby explaining the max-
imal range of the grid.

Remark 4. Note that, although T1 and T2 have different scales (the scale ratio

is λ1/λ2 = 0.6), we use in the simulations the same bandwidth for θ̂m(t1, t2)

and θ̂∗m(t2, t1). Simulations (for n = 300, see Tables 4–6 in the Supplementary

Material) in which we choose bandwidths bn1 for θ̂m(t1, t2) and bn2 = cbn1 for

θ̂∗m(t2, t1), where, in each simulation run, we take for c the estimated scale ra-
tio for T1 and T2, give the same optimal choices for the smoothing parameter.
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Hence, the selection of the bandwidth is not sensitive to this size of the scale
difference.

Also note that, if working with two different bandwidths, bn2 = cbn1 is a
simple and workable choice in relation to condition (d). Theorem 4 can easily
be adapted to this choice.

7.2 Clayton copula function

First, we consider the Clayton copula function (θ > 0):

Cθ(u1, u2) =
{

max
[
u−θ1 + u−θ2 − 1, 0

]}−1/θ
with parameter θ = 0.5. The true underlying cross ratio function takes con-
stant value 1 + θ = 1.5. In Table 1, we show the approximated mean inte-
grated squared errors, integrated variances and integrated squared biases for
the symmetrized estimator ϑ̂m(t1, t2) for various choices of bn, m and n. As
the performances are very similar, the simulation results for the unsymmet-
rical estimators θ̂m(t1, t2) and θ̂∗m(t2, t1) can be found in the Supplementary
Material. Since the true cross ratio function is constant, large bandwidths bn
are preferred based on the minimization of MIϑ̂m

. In Figure 1, we graphically
show a heat plot of the difference between the estimated cross ratio values
ϑ̂m(t1, t2) averaged over the M replications and the true values θ(t1, t2) (left

upper panel), and the estimated cross ratio function ϑ̂m(t1, t2) (black solid
lines in the other panels) as a function of one time component by fixing the
other (t1 = F−11 (0.5) in the right upper panel, or t2 = F−12 (0.5) in the left

lower panel, respectively, and b̂n = 54.6, m = 100 and n = 800). Pointwise
95% simulation-based confidence intervals (gray dash-dotted lines) and true
cross ratio values (red dashed lines) are included as well. In the right lower

panel, we plot the cross ratio function ϑ̂m[F−11 (u), F−12 (u)] against u ∈ (0, 1).
In the left panel of Figure 2, we illlustrate the fact that the asymptotic vari-
ance of the symmetrized estimator ϑ̂m(t1, t2) is essentially equal to (1/4) times

the sum of the asymptotic variances of θ̂m(t1, t2) and θ̂∗m(t2, t1) based on the
simulation results.

7.3 Gumbel copula function

Second, a Gumbel copula function is considered with parameter θ = 1.5 to
induce time-varying association among the event times, i.e., for θ ∈ [1,∞):

Cθ(u1, u2) = exp

(
−
{

[− ln(u1)]
θ

+ [− ln(u2)]
θ
}1/θ

)
.

The expression for the true cross ratio function is given by:

θ(t1, t2) = 1 + (θ − 1)
(
{− ln [S1(t1)]}θ + {− ln [S2(t2)]}θ

)−1/θ
.
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Table 1 MI
ϑ̂m

, IV
ϑ̂m

and ISB
ϑ̂m

for different choices of bn, m and n and different

assumptions regarding the dependence between the event times; Clayton, Gumbel and Frank
copula functions with parameters θ = 0.5, 1.5 and 3.0, respectively. Minimum MI

ϑ̂m
-values

are highlighted in bold.

Clayton copula (θ = 0.5)
n = 500 n = 800

m/b̂n 1 2.7 7.4 20.1 54.6 1 2.7 7.4 20.1 54.6
25 MI

ϑ̂m
3.928 3.914 3.903 3.929 4.156 3.826 3.823 3.825 3.861 4.120

IV
ϑ̂m

0.382 0.333 0.269 0.176 0.094 0.236 0.206 0.172 0.120 0.067

ISB
ϑ̂m

3.546 3.581 3.634 3.753 4.062 3.590 3.617 3.653 3.741 4.053

50 MI
ϑ̂m

3.828 3.541 3.357 3.146 3.266 3.161 3.033 2.955 2.881 3.126

IV
ϑ̂m

1.600 1.333 1.059 0.649 0.347 0.972 0.819 0.664 0.443 0.242

ISB
ϑ̂m

2.228 2.208 2.298 2.497 2.919 2.189 2.214 2.291 2.438 2.884

100 MI
ϑ̂m

7.880 5.816 4.504 3.420 2.983 5.115 4.122 3.560 2.874 2.640

IV
ϑ̂m

5.392 4.102 2.887 1.683 0.841 3.439 2.735 2.141 1.330 0.688

ISB
ϑ̂m

2.488 1.714 1.617 1.737 2.142 1.676 1.387 1.419 1.544 1.952

Gumbel copula (θ = 1.5)
n = 500 n = 800

m/b̂n 1 2.7 7.4 20.1 54.6 1 2.7 7.4 20.1 54.6
25 MI

ϑ̂m
1.209 1.275 1.403 1.623 1.878 1.006 1.122 1.282 1.539 1.844

IV
ϑ̂m

0.365 0.294 0.232 0.151 0.086 0.197 0.163 0.131 0.085 0.048

ISB
ϑ̂m

0.844 0.981 1.171 1.472 1.792 0.809 0.959 1.151 1.454 1.796

50 MI
ϑ̂m

2.258 2.008 1.981 1.999 2.029 1.696 1.640 1.713 1.833 1.954

IV
ϑ̂m

1.255 0.959 0.745 0.463 0.258 0.845 0.664 0.528 0.340 0.194

ISB
ϑ̂m

1.003 1.049 1.236 1.536 1.771 0.851 0.976 1.185 1.493 1.760

100 MI
ϑ̂m

8.086 5.692 4.608 3.538 2.746 4.629 3.732 3.388 2.931 2.470

IV
ϑ̂m

4.829 3.417 2.435 1.325 0.687 2.827 2.123 1.633 0.995 0.542

ISB
ϑ̂m

3.257 2.275 2.173 2.213 2.059 1.802 1.609 1.755 1.936 1.928

Frank copula (θ = 3.0)
n = 500 n = 800

m/b̂n 1 2.7 7.4 20.1 54.6 1 2.7 7.4 20.1 54.6
25 MI

ϑ̂m
0.395 0.315 0.272 0.304 0.517 0.249 0.206 0.190 0.258 0.502

IV
ϑ̂m

0.321 0.257 0.203 0.132 0.075 0.199 0.162 0.131 0.088 0.053

ISB
ϑ̂m

0.075 0.058 0.068 0.172 0.442 0.049 0.044 0.059 0.169 0.449

50 MI
ϑ̂m

1.799 1.294 1.028 0.796 0.752 1.061 0.816 0.681 0.588 0.679

IV
ϑ̂m

1.256 0.947 0.721 0.446 0.260 0.792 0.626 0.497 0.328 0.197

ISB
ϑ̂m

0.543 0.346 0.3073 0.349 0.491 0.269 0.190 0.184 0.261 0.483

100 MI
ϑ̂m

14.612 5.023 3.602 2.396 1.608 3.786 2.685 2.185 1.547 1.159

IV
ϑ̂m

12.019 3.558 2.460 1.423 0.792 2.635 1.951 1.525 0.916 0.501

ISB
ϑ̂m

2.593 1.465 1.142 0.974 0.816 1.151 0.734 0.660 0.631 0.658

The results in Table 1 show that small values for the bandwidth bn are pre-
ferred in the Gumbel setting in order to minimize the mean integrated squared
error. Since the surface is peaked in the lower left corner, smaller bandwidths
are needed to capture the peak. In Figure 3, we graphically depict the dif-
ference between the average estimated cross ratio function ϑ̂m(t1, t2) and the
true cross ratio function (heatplot in left upper panel). Intersections of the
averaged estimated cross ratio function (black solid lines) are shown together
with pointwise 95% simulation-based confidence intervals (gray dash-dotted
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Fig. 1 Clayton copula with b̂n = 54.6, m = 100 and n = 800: heatplot representing
the difference between the estimated cross ratio function ϑ̂m(t1, t2) averaged over the M
replications and the true cross ratio function θ(t1, t2) (left upper panel) and intersections of
the estimated cross ratio surface given t1 = F−1

1 (0.5) (right upper panel; black solid line),

t2 = F−1
2 (0.5) (left lower panel) and F−1

1 (u) = F−1
2 (u) (right lower panel) with pointwise

95% simulation-based confidence intervals (gray dash-dotted lines). True cross ratio curves
are graphically depicted in red dashed lines.

lines) for b̂n = 1, m = 25 and n = 800. Although the nonparametric estimator
generally performs well, θ(t1, t2) is slightly underestimated for small values of
(t1, t2) in the lower left corner of the surface.

In the right panel of Figure 2, we again show the relation between the
asymptotic variance of the symmetrized estimator ϑ̂m(t1, t2) (black dashed

line) and the asymptotic variances of θ̂m(t1, t2) and θ̂∗m(t2, t1) based on simu-
lation results.
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Fig. 2 Empirical variance of ϑ̂m[F−1
1 (u), F−1

2 (u)] (black dashed line) compared to (1/4)

times the sum of the asymptotic variances of θ̂m[F−1
1 (u), F−1

2 (u)] and θ̂∗m[F−1
1 (u), F−1

2 (u)]

for the Clayton simulation setting with b̂n = 54.6, m = 100 and n = 800 (left panel) and

the Gumbel simulation setting with b̂n = 1, m = 25 and n = 800 (left panel).

7.4 Frank copula function

Finally, a Frank copula function is considered with parameter θ = 3. The
copula function is defined as

Cθ(u1, u2) = −θ−1 ln

{
1 +

[exp(−θu1)− 1] [exp(−θu2)− 1]

exp(−θ)− 1

}
,

for (−∞,∞) \{0}. After some calculus, the expression for the true cross ratio
function takes the form:

θ(t1, t2) = φ
ln
(
1 + φ−1 {exp [−θS1(t1)]− 1} {exp [−θS2(t2)]− 1}

)
{exp [−θS1(t1)]− 1} {exp [−θS2(t2)]− 1}

,

where φ = [exp(−θ)− 1]. In Figure 4, similar plots are presented for b̂n =
7.4, m = 25 and n = 800. Compared to the Clayton copula setting, smaller
bandwidth values are selected for both the Gumbel and Frank copulae based
on the minimisation of MIθ. This is mainly due to the shape of the cross
ratio surface which is non-constant for the latter copulae, thereby requiring
a smaller kernel bandwidth to allow for more flexibility when estimating the
surface.

8 Real data examples

A dataset on recurrent asthma attacks in children (Duchateau et al., 2003)
and a dataset on the relationship between food expenditure and net income
(Family Expenditure Survey, 1968–1983, Härdle, 1990) illustrate the use of
our novel nonparametric estimator for the cross ratio function. The analysis
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Fig. 3 Gumbel copula with b̂n = 1, m = 25 and n = 800: heatplot representing the
difference between the estimated cross ratio function ϑ̂m(t1, t2) averaged over the M repli-
cations and the true cross ratio function θ(t1, t2) (left upper panel) and intersections of
the estimated cross ratio surface given t1 = F−1

1 (0.5) (right upper panel; black solid line),

t2 = F−1
2 (0.5) (left lower panel) and F−1

1 (u) = F−1
2 (u) (right lower panel) with pointwise

95% simulation-based confidence intervals (gray dash-dotted lines). True cross ratio curves
are graphically depicted in red dashed lines.

of the asthma data (event times) is given in the Supplementary Material. In
this section we discuss the food expenditure dataset.

A random subsample of size n = 500 is selected, this dataset is used in
our analysis. In Figure 5 we graphically depict food expenditure (T2) versus
net income (T1) in multiples of the expenditure sample mean, respectively, the
net income sample mean. Summary statistics for the selected subsample are in
Table 7 of Section 5 of the Supplementary Material, which also contains a link
to the used dataset. From this Table 7 it follows that T1 and T2 have similar
scales.

In order to select appropriate values for the bandwidths bn andm, we use an
ad-hoc procedure inspired by the work of Sen and Xu (2015). For more details,
the reader is referred to the Supplementary Material. Based on the selected
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Fig. 4 Frank copula with b̂n = 7.4, m = 25 and n = 800: heatplot representing the
difference between the estimated cross ratio function ϑ̂m(t1, t2) averaged over the M repli-
cations and the true cross ratio function θ(t1, t2) (left upper panel) and intersections of
the estimated cross ratio surface given t1 = F−1

1 (0.5) (right upper panel; black solid line),

t2 = F−1
2 (0.5) (left lower panel) and F−1

1 (u) = F−1
2 (u) (right lower panel) with pointwise

95% simulation-based confidence intervals (gray dash-dotted lines). True cross ratio curves
are graphically depicted in red dashed lines.

values, a heatplot of the estimated cross ratio surface ϑ̂m(t1, t2) is plotted in the
upper panel of Figure 6. To visualize the variability of the estimates we include
bootstrap based pointwise 95% bootstrap-percentile confidence intervals for
the cross ratio function at values of T1 corresponding to the empirical quartiles
(25%, 50% and 75%). Figure 6 shows that the degree of dependence is stronger
for low net incomes relative to the mean net income. More specifically, when
families have a low relative net income T1 = t1 they tend to spend less money
on food as compared to families with a net income exceeding T1 > t1. For
families with a net income which is large relative to the average (t1-values
larger than 1), the cross ratio values are approximately equal to one, implying
that there is no longer dependence between food expenditure and net income.
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Fig. 5 Food expenditure versus net income data application: scatterplot of the food expen-
diture (y-axis) versus net income (x-axis) expressed in multiples of the expenditure sample
mean, respectively, the net income sample mean. Family Expenditure Survey (1968–1983).

9 Discussion

In this paper, we propose a Bernstein-based nonparametric estimator for the
cross ratio function which is commonly used to describe local dependence be-
tween two correlated variables. As explained in Section 1 there is some earlier
work on cross ratio estimation, but the study of a fully nonparametric estima-
tor is new. Our estimator uses Bernstein estimators for the survival copula and
its derivatives to estimate conditional cumulative hazards in a nonparametric
way. Kernel smoothing is then used to obtain nonparametric estimators for
the conditional hazards in the numerator and the denominator of the cross
ratio function. The asymptotic distributional behavior of the new estimator
and of its symmetrized version is studied. Simulations show the overall good
performance of the proposed estimators for n ≥ 300. An example on the rela-
tion between net income and food expenditure shows how the estimator gives
local information on the relation between these two variables.

A couple of interesting further questions emerge from our findings. On
the theoretical side it would be nice to study the bootstrap consistency. An
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Fig. 6 Food expenditure and net income data application: heatplot of the estimated cross
ratio surface ϑ̂m(t1, t2) and cross ratio curves for t1 equal to the empirical quartiles (25%,
50% and 75%, i.e., 0.5, 0.9 and 1.2, respectively) (black solid lines) with pointwise 95%
bootstrap-percentile confidence intervals (gray dash-dotted lines).

interesting problem on the applied side is to obtain a data-driven method
to determine the kernel bandwidth bn and the Bernstein order m. These are
challenging open problems. Even for more simple Bernstein-based estimators,
e.g. for the conditional density, these problems are unsolved.
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Appendix: Proofs of Theorems 1–3

In this appendix, we present the proofs of Theorems 1–3 in the main text.

Proof of Theorem 1

λ̂m(t1 | T2 = t2)− λ(t1 | T2 = t2)

=
1

bn

∫ [
Λ̂m(t1 − bnu | T2 = t2)− Λ(t1 − bnu | T2 = t2)

]
dK0(u)

+
1

bn

∫
Λ(t1 − bnu | T2 = t2)dK0(u)− λ(t1 | T2 = t2)

= (A) + (B).

The non-random term (B) equals

(B) =
1

2
b2nλ
′′(t1 | T2 = t2)µ2(K0) + o(b2n) (11)

where µ2(K0) =

∫
t2K0(t)dt. This is because λ(t1 | T2 = t2) is twice continu-

ously differentiable with respect to t1.
For the integrand in (A) we first note that

Λ̂m(t1 | T2 = t2)− Λ(t1 | T2 = t2)

=

t1∫
0

dF̂t2(s)

1− F̂t2(s)
−

t1∫
0

dFt2(s)

1− Ft2(s)
+O

(m
n

)
a.s.

Indeed, for n sufficiently large,∣∣∣∣∣∣
t1∫
0

dF̂t2(s)

1− F̂t2(s−)
−

t1∫
0

dF̂t2(s)

1− F̂t2(s)

∣∣∣∣∣∣ ≤ 4

[1− Ft2(t1)]2
O
(m
n

)

because the maximal jump of F̂t2(·) is O
(m
n

)
a.s. (see Janssen et al., 2016)

and because F̂t2(t1) converges to Ft2(t1). Hence the term (A) can be written
as

(A) =
1

bn

t1+bnL∫
t1−bnL

ln

[
1− F̂t2(s)

1− Ft2(s)

]
dK0

(
t1 − s
bn

)
+O

(
m

nbn

)
a.s.

By the mean value theorem we obtain that

ln

[
1− F̂t2(s)

1− Ft2(s)

]
= − F̂t2(s)− Ft2(s)

1− Ft2(s)
− 1

2

[F̂t2(s)− Ft2(s)]2

[1− θn(s)]2
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for some θn(s) between Ft2(s) and F̂t2(s). Hence,

(A) =
1

bn

L∫
−L

F̂t2(t1 − bnu)− Ft2(t1 − bnu)

1− Ft2(t1 − bnu)
dK0(u)

+ Rn(t1, t2) +O

(
m

nbn

)
a.s., (12)

where

Rn(t1, t2) =
1

2bn

L∫
−L

[F̂t2(t1 − bnu)− Ft2(t1 − bnu)]2

[1− θn(t1 − bnu)]2
dK0(u).

From Theorem 3 of Janssen et al. (2016) and the first part of the proof of
Lemma 7 available in the Electronic Supplementary Material provided by
Janssen et al. (2016) we conclude that

sup
s
|F̂t2(s)− Ft2(s)| = O

(
m1/4n−1/2(lnn)1/2

)
+O(n−1/2(lnn)1/2 +m−1

+ m1/2n−3/4(lnn)1/2(ln lnn)1/4 +m13/12n−1(lnn)1/2(ln lnn)1/2) a.s.

= O
(
m1/4n−1/2(lnn)1/2

)
a.s., (13)

by applying the assumptions in condition (d) of the theorem.
Since we assume that K0 is a continuous density function of bounded vari-

ation, there exist two nondecreasing bounded and continuous functions K01

and K02 such that K0(u) = K01(u) −K02(u). Assume that K01 and K02 are
supported on [−L,L1] and [L1, L] respectively, for some −L ≤ L1 ≤ L. Hence,
K01(−L) = K02(−L) = 0 = K01(L) = K02(L) and K01(L1) = −K02(L1).
Therefore,

|Rn(t1, t2)| ≤ 1

2bn

L1∫
−L

[F̂t2(t1 − bnu)− Ft2(t1 − bnu)]2

[1− θn(t1 − bnu)]2
dK01(u)

+
1

2bn

L∫
L1

[F̂t2(t1 − bnu)− Ft2(t1 − bnu)]2

[1− θn(t1 − bnu)]2
dK02(u).

Furthermore, since sup
s
|F̂t2(s) − Ft2(s)| → 0 a.s., we have that sup

s
|θn(s) −

Ft2(s)| → 0 a.s.; hence for some constant C > 0,

|Rn(t1, t2)| ≤ 2C

bn[1− Ft2(t1)]2

[
sup
s
|F̂t2(s)− Ft2(s)|

]2
K01(L1)

= O

(
m1/2

nbn
lnn

)
a.s.,
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by using (13). Therefore, under the conditions in (d) we conclude that

(nm−1/2bn)1/2Rn(t1, t2)→ 0 a.s. (14)

By the mean value theorem the first term in the expression of (A) given in
(12) becomes

1

bn [1− Ft2(t1)]

L∫
−L

[
F̂t2(t1 − bnu)− Ft2(t1 − bnu)

]
dK0(u)

+

L∫
−L

u
[
F̂t2(t1 − bnu)− Ft2(t1 − bnu)

]
ft2 [θ(u)]

{1− Ft2 [θ(u)]}2
dK0(u)

=: (A11) + R̃n(t1, t2), (15)

for some θ(u) between t1 and t1 − bnu.
As above, we have that for some constant C > 0,

|R̃n(t1, t2)| ≤ Cft2(t1)

[1− Ft2(t1)]2

[
sup
s
|F̂t2(s)− Ft2(s)|

] L∫
−L

|u|d [K01(u) +K02(u)]

= O
(
m1/4n−1/2(lnn)1/2

)
a.s.

Under the conditions in (d), we have

(nm−1/2bn)1/2R̃n(t1, t2)→ 0 a.s. (16)

For (A11) in equation (15), we write

(A11) =
1

bn [1− Ft2(t1)]

L∫
−L

{
F̂t2(t1 − bnu)− E[F̂t2(t1 − bnu)]

}
dK0(u)

+
1

bn [1− Ft2(t1)]

L∫
−L

{
E[F̂t2(t1 − bnu)]− Ft2(t1 − bnu)

}
dK0(u)

=: (A111) + (A112).

For (A112), which contributes to the bias, note that E[F̂t2(t1−bnu)]−Ft2(t1−
bnu) = −{E[Ŝt2(t1− bnu)]−St2(t1− bnu)}. In line with Remark 3 in Janssen
et al. (2016), we have

E[Ŝt2(t1 − bnu)]− St2(t1 − bnu) = −1

2
m−1b [S1(t1 − bnu), S2(t2)] + o(m−1),

where

b(u, v) = (1− 2v)C(2,2)(u, v) + u(1− u)C(1,1,2)(u, v) + v(1− v)C(2,2,2)(u, v).
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Using partial integration we obtain that

(A112) =
1

2
m−1φ(t1, t2) + o(m−1), (17)

where

φ(t1, t2) =
b(1) [S1(t1), S2(t2)]

1− Ft2(t1)
f1(t1),

with b(1)(u, v) = ∂
∂ub(u, v). For the first term we have, after partial integration,

(A111) =
1

1− Ft2(t1)

{
f̂t2(t1)− E[f̂t2(t1)]

}
, (18)

where f̂t2(t1) is precisely the Bernstein estimator for a conditional density
function studied in Janssen et al. (2017).

The proof of the theorem follows directly from (11) – (18) and the Theorem
in Janssen et al. (2017) by simply replacing Y by T1 and X by T2 in the
aforementioned paper.

Also note that the term 1
2m
−1φ(t1, t2) in the bias vanishes after multiplica-

tion with (nm−1/2bn)1/2. This is because (nm−1/2bn)1/2m−1 ≤ n1/2m−5/4b−1/2n →
0 by the first relation in (d). This proves Theorem 1. �
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Proof of Theorem 2
Write

λ̂m(t1 | T2 > t2)− λ(t1 | T2 > t2)

=
1

bn

∫ [
Λ̂m(t1 − bnu | T2 > t2)− Λ(t1 − bnu | T2 > t2)

]
dK0(u)

+
1

bn

∫
Λ(t1 − bnu | T2 > t2)dK0(u)− λ(t1 | T2 > t2)

= (Ã) + (B̃).

For the non-random term (B̃) we have, similar to (11),

(B̃) = O(b2n). (19)

For (Ã) we perform analogous operations as we did in the proof of Theorem
1. This gives, in analogy with (12),

(Ã) =
1

bn

L∫
−L

Cm,n[S1n(t1 − bnu), S2n(t2)]− C[S1(t1 − bnu), S2(t2)]

C[S1(t1 − bnu), S2(t2)]
dK0(u)

+ R̃n(t1, t2) +O

(
m1/2

nbn

)
a.s., (20)

where

R̃n(t1, t2) =

1

2bn

L∫
−L

{Cm,n[S1n(t1 − bnu), S2n(t2)]− C[S1(t1 − bnu), S2(t2)]}2

[1− θ̃n(t1 − bnu)]2
dK0(u)

for some θ̃n(t1 − bnu) between Cm,n[S1n(t1 − bnu), S2n(t2)] and

C[S1(t1 − bnu), S2(t2)]. The O

(
m1/2

nbn

)
term in (20) comes from the

replacement of S1n(s−) by S1n(s).
Indeed, for n sufficiently large, we have for some constant M > 0:∣∣∣∣∣∣
t1∫
0

{
1

Cm,n[S1n(s−), S2n(t2)]
− 1

Cm,n[S1n(s), S2n(t2)]

}
dsCm,n[S1n(s), S2n(t2)]

∣∣∣∣∣∣
≤ M

C2[S1(t1), S2(t2)]
sup
s

m∑
k=1

m∑
`=1

Cn

(
k

m
,
`

m

)
Pm,`[S2n(t2)]

n

∣∣∣∣P ′m,k (S1n(s) +
1

n

)∣∣∣∣
= O

(
m1/2

n

)
a.s., using Lemma 1 in Janssen et al. (2014).
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Using that Cm,n[S1n(s), S2n(t2)]→ C[S1(s), S2(t2)] a.s. and the fact that K0

is of bounded variation we can make an argument completely analogous to
the one used for Rn(t1, t2) in (12). This give the following bound for

R̃n(t1, t2):

R̃n(t1, t2) = O

(
1

bn

{
sup
s
| Cm,n[S1n(s), S2n(t2)]− C[S1(s), S2(t2)] |

}2
)

a.s.

Now,

| Cm,n[S1n(s)), S2n(t2)]− C[S1(s), S2(t2)] |
≤| Cm,n[S1n(s), S2n(t2)]− C[S1n(s), S2n(t2)] |

+ | S1n(s)− S1(s) | + | S2n(s)− S2(s) |

by the Lipschitz continuity of C (see Nelsen 2006).
The supremum of the first term on the right hand side is
O(n−1/2(ln lnn)1/2 +m−1/2) a.s. (see the proof of Theorem 1 in Janssen et
al., 2012) and the supremum of the other two terms is O(n−1/2(ln lnn)1/2)

a.s. So the bound for R̃n(t1, t2) is

O

(
n−1 ln lnn

bn
+
m−1

bn

)
a.s.

Combine this with (19) and (20) to obtain

λ̂m(t1 | T2 > t2)− λ(t1 | T2 > t2)

=
1

bn

L∫
−L

Cm,n[S1n(t1 − bnu), S2n(t2)]− C[S1(t1 − bnu), S2(t2)]

C[S1(t1 − bnu), S2(t2)]
dK0(u)

+ O

(
n−1

bn
ln lnn+

m−1

bn
+
m1/2

nbn
+ b2n

)
a.s.

For the first term in the right hand side we write

Cm,n[S1n(t1), S2n(t2)]− C[S1(t1), S2(t2)]

= {Cm,n[S1(t1), S2(t2)]− C[S1(t1), S2(t2)]}
+ C(1)

m,n[θ1n(t1), θ2n(t2)] [S1n(t1)− S1(t1)]

+ C(2)
m,n[θ1n(t1), θ2n(t2)] [S2n(t2)− S2(t2)] ,

with (θ1n(t1), θ2n(t2)) denoting an intermediate point between
(S1n(t1), S2n(t2)) and (S1(t1), S2(t2)). Now using similar ideas as in Lemma
3 of Janssen et al. (2012) and the convergence rate of the Bernstein
approximation given in (5) of the same paper, we obtain

Cm,n[S1n(t1), S2n(t2)]− C[S1(t1), S2(t2)]

=
1

n

n∑
i=1

Ymi[S1(t1), S2(t2)] +OP (m−1) + oP (n−1/2)
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where the Ym(u1, u2) are independent zero mean random variables which are
bounded. With this

λ̂m(t1 | T2 > t2)− λ(t1 | T2 > t2)

=

n∑
i=1

Win +OP

(
n−1

bn
ln lnn+

m−1

bn
+

m

nbn
+ b2n +

n−1/2

bn

)
,

where

Win =
1

nbn

∫
Ymi[S1(t1 − bnu), S2(t2)]

C[S1(t1 − bnu), S2(t2)]
dK0(u).

Now

V ar

(
n∑
i=1

Win

)
=

∫ ∫
E{Ymi[S1(t1 − bnu1), S2(t2)]Ymi[S1(t1 − bnu2), S2(t2)]}
nb2nC[S1(t1 − bnu1), S2(t2)]C[S1(t1 − bnu2), S2(t2)]

dK0(u1)dK0(u2)

= O

(
1

nb2n

)
by the boundedness of the Ymi and the fact that K0 is of bounded variation.
Hence,

n∑
i=1

Win = OP

(
n−1/2

bn

)
and

λ̂m(t1 | T2 > t2)− λ(t1 | T2 > t2)

= OP

(
n−1/2

bn
+
m−1

bn
+
m1/2

nbn
+ b2n

)
.

The imposed conditions in (d) of Theorem 1 and the extra condition
m1/2bn →∞ imply that all the terms in the right hand side vanish after
multiplication with (nm−1/2bn)1/2. �
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Proof of Theorem 3
Linearization of the ratio gives that θ̂m(t1, t2)− θ(t1, t2) has the same
limiting distribution as

1

λ(t1 | T2 > t2)
[λ̂m(t1 | T2 = t2)− λ(t1 | T2 = t2)]

− λ(t1 | T2 = t2)

λ2(t1 | T2 > t2)
[λ̂m(t1 | T2 > t2)− λ(t1 | T2 > t2)].

Multiplication with (nm−1/2bn)1/2 gives that the second term is oP (1) (by
Theorem 2) and that the first term is asymptotically normal (by Theorem
1). �
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