
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Split-Correctness in Information Extraction.

Peer-reviewed author version

DOLESCHAL, Johannes; Kimelfeld, Benny; MARTENS, Wim; Nahshon, Yoav &

NEVEN, Frank (2019) Split-Correctness in Information Extraction.. In: PODS '19

Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems, ACM,p. 149-163.

DOI: 10.1145/3294052.3319684

Handle: http://hdl.handle.net/1942/29007

Split-Correctness in Information Extraction
Johannes Doleschal

University of Bayreuth & Hasselt

University

johannes.doleschal@uni-bayreuth.de

Benny Kimelfeld

Technion, Israel

bennyk@cs.technion.ac.il

Wim Martens

University of Bayreuth

wim.martens@uni-bayreuth.de

Yoav Nahshon

Technion, Israel

yoavn@cs.technion.ac.il

Frank Neven

Hasselt University & transnational

University of Limburg

frank.neven@uhasselt.be

ABSTRACT
Programs for extracting structured information from text,

namely information extractors, often operate separately on

document segments obtained from a generic splitting opera-

tion such as sentences, paragraphs, k-grams, HTTP requests,

and so on. An automated detection of this behavior of ex-

tractors, which we refer to as split-correctness, would allow

text analysis systems to devise query plans with parallel

evaluation on segments for accelerating the processing of

large documents. Other applications include the incremen-

tal evaluation on dynamic content, where re-evaluation of

information extractors can be restricted to revised segments,

and debugging, where developers of information extractors

are informed about potential boundary crossing of different

semantic components.

We propose a new formal framework for split-correctness

within the formalism of document spanners. Our prelim-

inary analysis studies the complexity of split-correctness

over regular spanners. We also discuss different variants of

split-correctness, for instance, in the presence of black-box

extractors with “split constraints”.

CCS CONCEPTS
• Information systems→ Information extraction; •The-
ory of computation → Formal languages and automata
theory; Parallel algorithms.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PODS ’19, June 30–July 5, 2019, Amsterdam, Netherlands
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6227-6/19/06. . . $15.00

https://doi.org/10.1145/3294052.3319684

KEYWORDS
Information Extraction, Spanners, Complexity

ACM Reference Format:
Johannes Doleschal, Benny Kimelfeld,WimMartens, Yoav Nahshon,

and Frank Neven. 2019. Split-Correctness in Information Extraction.

In 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems (PODS ’19), June 30–July 5, 2019, Amsterdam,
Netherlands. ACM, New York, NY, USA, 15 pages. https://doi.org/

10.1145/3294052.3319684

1 INTRODUCTION
Information extraction (IE), the extraction of structured data

from text, is a core operation when dealing with text in data

analysis. Programming frameworks for IE, and especially

declarative ones, are designed to facilitate the development

of IE solutions. For example, IBM’s SystemT [5] exposes an

SQL-like declarative language, AQL (Annotation Query Lan-

guage), which provides a collection of “primitive” extractors

(e.g., tokenizer, dictionary lookup, Part-Of-Speech (POS) tag-

ger, and regular-expression matcher) alongside the relational

algebra for manipulating these relations. In Xlog [29], user-

defined functions are used as primitive extractors, and Data-

log is used for relation manipulation. In DeepDive [28, 30],

rules are used for generating features that are translated

into the factors of a statistical model with machine-learned

parameters.

When applied to a large document, an IE function may

incur a high computational cost and, consequently, an im-

practical execution time. However, it is frequently the case

that the program, or at least most of it, can be distributed by

separately processing smaller chunks in parallel. For instance,

Named Entity Recognition (NER) is often applied separately

to different sentences [17, 18], and so are instances of Rela-
tion Extraction [20, 36]. Algorithms for coreference resolution
(identification of places that refer to the same entity) are typ-

ically bounded to limited windows; for instance, Stanford’s

well known sieve algorithm [27] for coreference resolution

https://doi.org/10.1145/3294052.3319684
https://doi.org/10.1145/3294052.3319684
https://doi.org/10.1145/3294052.3319684

processes separately intervals of three sentences [19]. Sen-

timent extractors typically process individual paragraphs

or even sentences [26]. It is also common for extractors to

operate on windows of a bounded number N of words (to-

kens), also known as N -grams or local contexts [4, 13]. Fi-
nally, machine logs often have a natural split into semantic

chunks: query logs into queries, error logs into exceptions,

web-server logs into HTTP messages, and so on.

Tokenization, N -gram extraction, paragraph segmenta-

tion (identifying paragraph breaks, whether or not marked

explicitly [15]), sentence boundary detection, and machine-

log itemization are all examples of what we call splitters.
When IE is programmed in a development framework such

as the aforementioned, we aspire to deliver the premise of

being declarative—the developer specifies what end result is

desired, and not how it is accomplished efficiently. In partic-

ular, we would like the system to automatically detect the

ability to split and distribute. This ability may be crucial for

the developer (e.g., data scientist) who often lacks the exper-

tise in software and hardware engineering. In this paper, we

embark on a principled exploration of automated inference

of split-correctness for information extractors. That is, we

explore the ability of a system to detect whether an IE func-

tion can be applied separately to the individual segments of

a given splitter, without changing the semantics.
The basic motivation comes from the scenario where a

long document is pre-split by some conventional splitters

(as the above), and developers provide different IE functions.

If the system detects that the provided IE function is cor-

rectly splittable, then it can utilize its multi-processor or

distributed hardware to parallelize the computation. More-

over, the system can detect that IE programs are frequently

splittable, and recommend the system administrator to ma-

terialize splitters upfront. Even more, the split guarantee

facilitates incremental maintenance: when a large document

undergoes a minor edit, like in the Wikipedia model, only

the relevant segments (e.g., sentences or paragraphs) need

to reprocessed. Later in this section, we discuss additional

motivations to split-correctness.

Formal framework. Our framework adopts the formalism

of document spanners (or just spanners for short) [7]. In this

framework, we consider documents (strings) over a fixed

finite alphabet. A spanner is associated with a relational

schema, and it extracts from every input document a rela-

tion of intervals within the document. An interval, called

span, is represented simply by its starting and ending in-

dices in the document. An example of a spanner is a regex
formula—a regular expression with capture variables that

correspond to the relational attributes. The most studied

spanner language is that of the regular spanners, which is

the closure of regex formulas under a subset of relational

algebra: projection, natural join, union, and difference [7].
1

Other equally expressive formalisms are non-recursive Dat-

alog over regex formulas [8] and the variable-set automaton
or (or VSet-automaton for short), which is an NFA that can

open and close variables while running [7].

Our framework is based on the following formal concepts.

A splitter is a spanner S that outputs a set of intervals (e.g.,
sentences, paragraphs, N -grams, HTTP requests, etc.). A

spanner P is self-splittable by a splitter S if for all documents

d , evaluating P on d gives the same result as the union of

the evaluations of P on each of the chunks produced by S .
We also consider the more general case where we allow the

spanner on the chunks produced by S to be some spanner

PS different from P . In this case, we say that P is splittable
by S via PS . If, for a given P and S , such a spanner PS exists,

then we say that P is splittable by S . With these definitions,

we formally define several computational problems, each pa-

rameterized by a class C of spanners. In the split-correctness
problem, we are given P , S , and PS , and the goal is to deter-

mine whether P is splittable by S via PS . In the splittability
(resp. self-splittability) problem, we are given P and S and

the goal is to determine whether P is splittable (resp. self-
splittable) by S .
In our preliminary analysis, we consider the classes of

regex formulas and VSet-automata, as well as VSet-automata

in known normal forms, namely functional and deterministic.
As we discuss later on, we use a slightly stronger definition

of determinism than [24].

We show several complexity results about the studied

classes of spanners. For one, the problems Split-correctness
and Self-splittability are PSPACE-complete for regex for-

mulas and VSet-automata. For Splittability, we require an
additional condition for PSPACE-completeness, namely that

the splitter is disjoint. This is a natural property of split-

ters S , meaning that for all input documents, the spans pro-

duced by S are pairwise disjoint (non-overlapping), such as

in the case of tokenization, sentence boundary detection,

paragraph splitting, and paragraph segmentation. Examples

of non-disjoint splitters include N -grams and pairs of con-

secutive sentences. It turns out that disjointness is also a

useful condition for Split-correctness and Self-splittability.
For VSet-automata that are both functional and determin-

istic, Split-correctness and Self-splittability are solvable in

polynomial time if the splitter is disjoint.

Interestingly, to establish the tractability result, we needed

to revisit past notions and findings regarding determinism

in VSet-automata. Specifically, our notion of determinism

is stronger than that of Maturana et al. [24] (without loss

of expressive power). We require that whenever the VSet-

automata handle multiple variables on the same position of

1
Adding selection would result in Core-Spanners, which are more powerful.

the document, it does so in a predefined order on the vari-

ables. This requirement is crucial, since our tractability proof

uses the fact that containment of functional and deterministic

VSet-automata is solvable in polynomial time (and, in fact, in

NL), which we prove in Section 4. In contrast, we show that

with the determinism of Maturana et al. [24], containment is

PSPACE-complete. As we explain in Section 4.3, this stands

in contradiction to a claim they make about membership in

coNP. Our notion of deterministic VSet-automata is similar

to the extended deterministic VSet-automata by Florenzano

et al. [9]. Note that these results are of independent interest.

Following our analysis of split-correctness and splittability

for regular spanners, we turn to discussing additional prob-

lems that arise in our framework. In Section 6, we discuss

basic reasoning tasks about spanners. For example, if we wish

to materialize two splitters, can we evaluate one of them over

the result of the other, possibly given that documents adhere

to some regular language? As an example, if we wish to split

by sentences and documents are already split by paragraphs,

then we can parallelize the task by splitting each paragraph

individually. Similarly, an K-gram extractor can be applied

to the chunks of an N -gram extractor whenever K ≤ N .

In Section 7, we discuss problems that arise by natural

extensions of the basic framework. One of these problems

captures the case where some of the spanners in the query

are treated as black boxes in a formalism that we do not un-

derstand well enough to analyze (as opposed to, e.g., regex

formulas), and yet, are known to be splittable by the splitters

at hand. For example, a coreference resolver may be imple-

mented as a decision tree over a multitude of features [32]

but still be splittable by sequences of three sentences, and

a NER and a POS tagger may be implemented by a bidirec-

tional LSTM [6] and a bidirectional dependency network [34],

respectively, but still be splittable by sentences. Additional

problems we discuss are split-correctness and splittability un-

der the assumption that the document conforms to a regular

language.

Our framework can be seen as an extension of the parallel-
correctness framework as proposed by Ameloot et al. [2, 3].

That work considers the parallel evaluation of relational

queries. In our terms, that work studies self-splittability

where spanners are replaced by relational queries and split-

ters by distribution policies.

Further motivation. Besides the obvious, there are addi-
tional, perhaps less straightforward, motivations. For one,

even if the document is not split at evaluation time (as op-

posed to pre-split), this split allows to parallelize the evalu-

ation following a sequential split. When the IE function is

expensive, this can be quite beneficial. For example, we have

extracted N -grams from 1.53 GB Wikipedia sentences and

observed that this method (first split to sentences and then

distribute) gives a runtime improvement of 2.1x for N = 2

and 3.11x for N = 3, all over 5 cores. In a similar experiment

on 279 MB of PubMed
2
sentences, the speedup was 1.9x.

Another motivation comes from programming over distri-

bution frameworks such as Apache Hadoop [14] and Apache

Spark [35]. In common cases, the text is already given as

a collection of small documents (e.g., tweets, reviews, ab-

stracts) that allow for a parallel evaluation to begin with.

While we have not seen this scenario as a motivation for our

framework, it turns out that splitting can make a consider-

able difference even then. For illustration, we ran a simple

event extractor of financial transactions between organiza-

tions from sentences of around 9,000 Reuters articles over

Spark. When we broke each article into sentences, the run-

ning time reduced by 1.99x on a 5-node cluster. We ran a

similar experiment on sentences of around 570,000 reviews

from the Amazon Fine Food Reviews dataset,
3
where the goal

is to extract targets of a negative sentiment; we observed a

4.16x speedup. We found this remarkable, because the same

amount of parallelization was used both before and after

splitting. To the best of our understanding, this improve-

ment can be explained by the fact that splitting provides

Spark with parallelizable tasks that are smaller in cost and

larger in number; hence, we provide Spark with consider-

ably more (smartly exploited) control over scheduling and

resource allocation.
4

Finally, another motivation comes from debugging. For
illustration, suppose that the developer seeks HTTP requests

to a specific host on a specific date, and for that she seeks

Host andDate headers that are close to each other; the system

can warn the developer that the program is not splittable

by HTTP requests like other frequent programs over the

log (i.e., it can extract the Host of one request along with

the Date of another), which is indeed a bug in this case. In

the general case, the system can provide the user with the

different splitters (sentences, paragraphs, requests, etc.) that

the program is split-correct for, in contrast with what the

developer believes should hold true.

Organization. The remainder of the paper is organized as

follows. In Section 2, we give preliminary definitions and

notation. We define the concepts of splitter, split-correctness

and splittability in Section 3, and present our analysis for

regular spanners in Sections 4 and 5. We discuss the exten-

sions of the framework to other problems in Section 6 and 7.

Finally, we conclude and discuss open problems in Section 8.

Due to space constraints, we sometimes omit proofs or only

provide a proof sketch.

2
https://www.ncbi.nlm.nih.gov/pubmed/

3
https://www.kaggle.com/snap/amazon-fine-food-reviews

4
See [25] for more detail on the experiments.

https://www.ncbi.nlm.nih.gov/pubmed/
https://www.kaggle.com/snap/amazon-fine-food-reviews

2 BASIC DEFINITIONS
Our framework is within the formalism of document spanners
by Fagin et al. [7]. We first revisit some definitions from this

framework. Let Σ be a finite set of symbols called the alphabet.
By Σ∗

we denote the set of all finite strings over Σ and by

Σ+ the set of all finite strings over Σ that have at least one

symbol. A string s in Σ∗
is also called a document.

Let d = σ1 · · ·σn ∈ Σ∗
be a document, where every σi ∈

Σ. We denote by |d | the length n of d . A span of d is an

expression of the form [i, j⟩ with 1 ≤ i ≤ j ≤ n + 1. For a

span [i, j⟩ of d , we denote by d[i , j ⟩ the string σi · · ·σj−1. For
a document d , we denote by Spans(d) the set of all possible
spans of d . Two spans [i1, j1⟩ and [i2, j2⟩ are equal if i1 = i2
and j1 = j2. In particular, d[i1, j1 ⟩ = d[i2, j2 ⟩ does not imply

that [i1, j1⟩ = [i2, j2⟩. Two spans [i, j⟩ and [i ′, j ′⟩ overlap if

i ≤ i ′ < j or i ′ ≤ i < j ′, and are disjoint otherwise. Finally,
[i, j⟩ contains [i ′, j ′⟩ if i ≤ i ′ ≤ j ′ ≤ j.
The framework focuses on functions that extract spans

from documents and assigns them to variables. To this end,

we fix an infinite set SVars of span variables, which range over
spans, i.e., pairs of integers. The sets Σ and SVars are disjoint.

For a finite setV ⊆ SVars of variables and a documentd ∈ Σ∗
,

a (V ,d)-tuple is a mapping t : V → Spans(d) that assigns
a span of d to each variable. If V is clear from context, or

V is irrelevant, we may also just write “d-tuple.” A set of

(V ,d)-tuples is called a (V ,d)-relation, which is also called a

span-relation (over d).
A document spanner (or spanner for short) is a function

that transforms a document into a span relation. More for-

mally, a spanner is a function P : Σ∗ → S where Σ∗
is the set

of documents and S the set of span relations. A spanner is

always associated with a finite set V ∈ SVars and maps each

document d to a (V ,d)-relation P(d). By SVars(P) we denote
the set V . We say that a spanner P is n-ary if |SVars(P)| = n.
We denote by P = P ′

the fact that the spanners P and P ′

define the same function.

3 SPLITTERS AND MAIN PROBLEMS
In this work, we are particularly interested in spanners that

split documents into (possibly overlapping) segments. For-

mally, a document splitter (or splitter for short) is a unary
document spanner P , that is, |SVars(P)| = 1. Referring back

to the Introduction, a splitter can split the document into

paragraphs, sentences, N -grams, HTTP messages, error mes-

sages, and so on.

In the sequel, we denote a splitter by S and its unique

variable by xS or simply by x if S is clear from the context.

Furthermore, since a splitter outputs unary span relations,

its output on a document d can be identified with the set of

spans {t(x) | t ∈ S(d)}. We often use this simplified view on

a splitter in the paper and treat its output as a set of spans.

1 2 3 4 5 6
1

7

2

8

3

9

4

10

5

11

6

12
13 14 15 16d

s = [7, 13⟩

s ′ ≫ s = [8, 12⟩, s ′ = [2, 6⟩

Figure 1: Visualization of the shift span operator, with
[8, 12⟩ = [2, 6⟩ ≫ [7, 13⟩.

A splitter S is disjoint if the spans extracted by S are always

pairwise disjoint, that is, for all d ∈ Σ∗
and t, t ′ ∈ S(d), the

spans t(x) and t ′(x) are disjoint. For example, the paragraph

and sentence splitters are disjoint, but N -gram extractors

are not disjoint for N > 1.

Next, we want to define when a spanner is splittable by a

splitter, that is, when documents can be decomposed such

that the operation of a spanner can be distributed over the

components. To this end, we first need some notation. Let d
be a document, let s = [i, j⟩ be a span of d , and let s ′ = [i ′, j ′⟩
be a span of the document d[i , j ⟩ . Then s ′ also marks a span

of the original document d , namely the one obtained from

s ′ by shifting it i − 1 characters to the right. We denote this

shifted span by s ′ ≫ s (c.f., Figure 1). Hence, we have:

s ′ ≫ s := [i ′ + (i − 1), j ′ + (i − 1)⟩.

Let t be a (V ,d)-tuple and s = [i, j⟩ be a span. Slightly

overloading notation, we define the (V ,d)-tuple t ≫ s as the
tuple that results from shifting each span in t by s . More

formally, for all variables x ∈ V we have:
5

(t ≫ s)(x) := (t(x)) ≫ s .

As a splitter S always selects a set of unary tuples, in the

following we abuse notation, and simply write s rather than
s(xS) when s ∈ S(d) for some document d .

We now define the composition P ◦ S of a spanner P and

splitter S . Intuitively, P ◦ S is the spanner that results from

evaluating P on every substring extracted by S , with a proper
indentation of the indices. More formally, on every document

d ,

(P ◦ S)(d) :=
⋃

s ∈S (d)

{t ≫ s | t ∈ P(ds)} .

As an example, if P extracts person names and S is a sen-

tence splitter, then P ◦ S is the spanner obtained by applying

P to every sentence independently and taking the union of

the results. Furthermore, if P extracts close mentions of email

addresses and phone numbers, and S is the 5-gram splitter,

then P ◦ S is obtained by applying P to each 5-gram indi-

vidually. An interesting question is if there is any difference

between executing P and P ◦S . This property clearly depends

5
Notice that when the first index of t is too large, t ≫ s could technically

not be a (V , d)-relation anymore. However, we only use the operator in

situations where this can never happen.

on the definitions of P and S . We will define it formally in

Section 3.1 under the name self-splittability.

3.1 Splittability and Split-Correctness
A spanner P is splittable by a splitter S via a spanner PS if

evaluating P gives the same result as evaluating PS on every

substring extracted by S (again with proper indentation of

the indices). If such a PS exists, then we say that P is splittable
by S ; and if PS is P itself, then we say that P is self-splittable
by S . We define these notions more formally.

Definition 3.1. Let P be a spanner and S a splitter. We say

that:

(1) P is splittable by S via a spanner PS , if P = PS ◦ S ;
(2) P is splittable by S if there exists a spanner PS such

that P = PS ◦ S ;
(3) P is self-splittable by S if P = P ◦ S .

We refer to PS as the split-spanner.

As a simple example, suppose that we analyze a log of

many HTTP requests separated by blank lines and assume

for simplicity that the log only consists of GET requests. Fur-

thermore, assume that S splits the document into individual

requests (without the blank lines) and that P extracts the

request line, which is always the first line of the request. If

P identifies the request line as the one following the blank

line, then P is splittable by S via PS , which is the same as P
but replaces the requirement to follow a blank line with the

requirement of being the first line. If, on the other hand, P
identifies the request line as being the one starting with the

word GET, then P is self-splittable by S , since we can apply

P itself to every HTTP message independently.

Other examples are as follows. Many spanners P that ex-

tract person names do not look beyond the sentence level.

This means that, if S splits to sentences, it is the case that P
is self-splittable by S . Now suppose that P extracts mentions

of email addresses and phone numbers based on the formats

of the tokens, and moreover, it allows at most three tokens in

between; if S is the N -gram splitter, then P is self-splittable

by S for N ≥ 5 but not for N < 5.

3.2 Decision Problems
The previous definitions and the motivating examples from

the introduction directly lead to the corresponding decision

problems. We use C to denote a class of spanner representa-

tions (such as VSA or RGX that we define later on).

Split-correctness[C]

Input: Spanners P, PS ∈ C and splitter S ∈ C.

Question: Is P = PS ◦ S?

Splittability[C]

Input: Spanner P ∈ C and splitter S ∈ C.

Question: Is P splittable by S?

In addition, Self-splittability[C] is the special case of the
problem Splittability[C] where we ask if P is self-splittable
by S .

4 PRELIMINARIES ON REGULAR
SPANNERS

In this section, we recall the terminology and definition of

regular spanners [7]. We use two main models for repre-

senting spanners: regex-formulas and VSet-automata. For
both, we follow Freydenberger [10], defining the semantics

of these models using so-called ref-words. We also introduce

here a class of VSet-automata, dfVSA, that have determin-

ism properties essential to the tractability of problems we

study in the paper. In particular, we show that containment

of regex formulas and VSet-automata is PSPACE-complete

(Theorem 4.1), even under some determinism assumptions

introduced in the past work [24] (Theorem 4.2), but is it

solvable in polynomial time, and even NL, for dfVSA (Theo-

rem 4.3).

Ref-words. For a finite set V ⊆ SVars of variables, ref-words

are defined over the extended alphabet Σ ∪ ΓV , where ΓV :=

{x⊢, ⊣x | x ∈ V }. We assume that ΓV is disjoint with Σ and

SVars. Ref-words extend strings over Σ by encoding opening

(x⊢) and closing (⊣x) of variables.
A ref-word r ∈ (Σ ∪ ΓV)

∗
is valid for V if each variable

is opened and closed exactly once. More formally, for each

x ∈ V , the string r has exactly one occurrence of x⊢ and

precisely one occurrence of ⊣x , which is after the occurrence

of x⊢. If V is clear from the context, we simply say that a

ref-word is valid.
To connect ref-words to documents and spanners, we de-

fine a morphism clr : (Σ ∪ ΓV)
∗ → Σ∗

(pronounced “clear”),

as clr(σ) := σ for every σ ∈ Σ and clr(σ ′) := ε for ev-

ery σ ′ ∈ ΓV . For d ∈ Σ∗
, let Ref(d) := {r ∈ (Σ ∪ ΓV)

∗ |

clr(r) = d and r is valid} be the set of all valid ref-words

with clr(r) = d and for a regular language L we define

Ref(L) :=
⋃

d ∈L Ref(d) to be the language of all valid ref-

words over L.

By definition, every valid r ∈ Ref(d) over (Σ ∪ ΓV) has a

unique factorization r = rprex ·x⊢ · rx · ⊣x · r
post

x for each x ∈ V .

We can therefore interpret r as a (V ,d)-tuple t r by defining

t r(x) := [i, j⟩, where i := |clr(rprex)| + 1 and j := i + |clr(rx)|.

4.1 Regex Formulas
A regex-formula (over Σ) is a regular expression that may

also include variables (called capture variables). Formally,

we define the syntax with the recursive rule

α := ∅ | ε | σ | (α ∨ α) | (α · α) | α∗ | x{α } ,

where σ ∈ Σ and x ∈ V . We use α+ as a shorthand for α · α∗

and Σ as a shorthand for

∨
σ ∈Σ σ . The set of variables that

occur in α is denoted by SVars(α) and the size |α | is defined
as the number of symbols in α .
Every regex-formula can be interpreted as a generator

of a (regular) ref-word language R(α) over the extended

alphabet Σ ∪ ΓSVars(α). If α is of the form x{β}, then R(α) :=
{x⊢} ·R(β) · {⊣x}. Otherwise, R(α) is defined as the language
L(α), that is R(∅) := ∅, R(a) := {a} for every a ∈ Σ ∪ {ε},
R(α ∨ β) := R(α) ∪ R(β), R(α · β) := R(α) · R(β), R(α∗) :=

{R(α)i | i ≥ 0}.

By Ref(α)we denote the set of all ref-words in R(α)which
are valid for SVars(α);6 and, for every string d ∈ Σ∗

, we

define Ref(α,d) := Ref(α) ∩ Ref(d). In other words, Ref(α,d)
contains exactly those valid ref-words from Ref(α) that clr
maps to d . Finally, the spanner JαK is the one that defines
the following (SVars(α),d)-relation for every string d ∈ Σ∗

:

JαK(d) := {t r | r ∈ Ref(α,d)}

Slightly abusing notation, we will sometimes simply write

α(d) rather than JαK(d) to denote the span-relation α defines

on d . We say that a regex-formula is functional if R(α) =
Ref(α); that is, every ref-word in R(α) is valid. The set of
all functional regex formulas is also denoted by RGX. Fol-
lowing previous work [7, 12], we assume regex formulas are

functional unless explicitly stated otherwise.

4.2 Variable Set-Automata
A variable-set automaton (VSet-automaton) with variables

from a finite set V ⊆ SVars can be understood as an ε-NFA
that is extended with edges that are labeled with variable

operations ΓV . Formally, a VSet-automaton is a sextupleA :=

(Σ,V ,Q,q0,QF , δ), where Σ is a finite set of alphabet symbols,

V is a finite set of variables, Q is a finite set of states, q0 ∈ Q
is a start state, QF ⊆ Q is a set of final states, and δ : Q ×

(Σ ∪ {ε} ∪ ΓV) → 2
Q
is the transition function. By SVars(A)

we denote the set V . To define the semantics of A, we first
interpretA as an ε-NFA over the terminal alphabet Σ∪ΓV , and
define its ref-word language R(A) as the set of all ref-words
r ∈ (Σ∪ ΓV)

∗
that are accepted by the ε-NFA A. Analogously

to regex formulas, we define Ref(A) as the set of ref-words
in R(A) that are valid for V , and define Ref(A,d) and JAK(d)
accordingly for every d ∈ Σ∗

. We say that A is functional
if Ref(A) = R(A), i.e., every accepting run of A generates a

valid ref-word. Furthermore, two VSet-automata A1,A2 are

equivalent if and only if JA1K = JA2K.

6
Notice that not all ref-words in a ref-word language have to be valid. For

instance, the ref-word ε ∈ R((x {a })∗) is not valid for SVars((x {a })∗) =
{x }, since it does not contain x⊢ and ⊣x .

We refer to the set of all VSet-automata as VSA. Similar

to regex formulas, we sometimes simply denote the relation

JAK(d) by A(d), for a VSet automaton A.

Deterministic VSet-Automata. We use the notion of deter-

minism for VSet-automata as introduced by [24], but refer

to it as weakly deterministic because, as we will show, it

still allows for sufficient nondeterminism to make reasoning

equally hard than for general VSet-automata. Formally, a

VSet-automaton A = (Σ,V ,Q,q0,QF , δ) is weakly determin-
istic, if it does not use ε-transitions and |δ (q,v)| ≤ 1 for every

q ∈ Q and every v ∈ Σ ∪ ΓV .
In Theorem 4.2 we show that weakly deterministic VSet-

automata still have sufficient nondeterminism to make the

containment problem PSPACE-hard.
7
We therefore define a

stronger notion of determinism, which will lead to an NL-

complete containment problem (Theorem 4.3).

We fix a total, linear order ≺ on the set ΓSVars of variable
operations, such that v⊢ ≺ ⊣v for every variable v . A VSet-

automaton A = (Σ,V ,Q,q0,Qf , δ) is deterministic, if
(1) |δ (q,v)| ≤ 1 for every q ∈ Q and every v ∈ Σ ∪ ΓV ;
(2) v ≺ v ′

for every v,v ′ ∈ ΓV for which there are

q1,q2,q3 ∈ Q such that δ (q1,v) = q2 and δ (q2,v
′) = q3.

Condition (1) is the requirement for weakly deterministic

automata, whereas condition (2) ensures that for every doc-

ument d ∈ Σ∗
and every tuple t ∈ A(d) there is exactly

one ref-word r ∈ Ref(A) with t r = t .8 Moreover, all adja-

cent variable operations in r are ordered according to ≺.

We discuss expressiveness and complexity of determinis-

tic VSet-automata in Section 4.3. In particular, none of the

conditions (1–2) restrict the expressiveness of regular span-

ners. In the following, we denote by dVSA (resp., dfVSA) the
class of deterministic (resp., deterministic and functional)

VSet-automata.

4.3 Complexity and Expressiveness
Containment is the problem that asks, given VSet-automata

A and A′
, whether A(d) ⊆ A′(d) for every document d . The

next theorem establishes the complexity of containment. We

note that the VSet-automata are not required to be functional.

The following is essentially [24, Theorem 6.4].

Theorem 4.1. Containment of regex-formulas (RGX) and
VSet-automata (VSA) is PSPACE-complete.

Since weakly deterministic VSet-automata restrict the

transition function to a singleton set, which is a standard way

7
This result contradicts Theorem 6.6 in Maturana et al. [24] unless coNP =

PSPACE. We will further discuss this in Section 4.3.

8
Deterministic VSet-automata are very similar to the extended determinis-
tic VSet-automata by Florenzano et al. [9], which allow multiple variable

operations on a single transition and force each variable transition to be

followed by a transition processing an alphabet symbol.

to define determinism, one may expect their containment

problem to be in NL (just as for their finite automata counter-

parts). However, the next theorem shows that containment is

hard for PSPACE, as they can use different variable orderings

to introduce nondeterministic choice.

Theorem 4.2. Containment of weakly deterministic func-
tional VSet-automata is PSPACE-hard.

Proof sketch. We reduce from the PSPACE complete

problem of DFA union universality [16]. Given deterministic

finite automata A1, . . . ,An over the alphabet Σ, the union
universality problem asks whether

L(Σ∗) ⊆
⋃

1≤i≤n

L(Ai). (†)

As usual, L(Ai) denotes the language accepted by Ai . We

construct VSet-automata A,A′
using the variable set V =

{x1, . . . , xn}, such thatA(d) ⊆ A′(d) for all documentsd ∈ Σ∗

if and only if (†) holds. To this end, letA accept the language

defined by the regex-formula

αA = x1{x2{· · · xn{Σ
∗} · · · }},

selecting the whole document with every variable. Clearly,

the regex-formula αA can be represented by a weakly de-

terministic VSet-automaton A. We now abuse notation and

describe the language accepted by A′
by a hybrid regex-

formula

αA′ = x1{α1} + · · · + xn{αn},

where the DFAs Ai are plugged in. In particular,

αi = x1{· · · xi−1{xi+1{· · · {xn{L(Ai)}} · · · },

for 1 ≤ i ≤ n. Every branch i starts by first opening vari-

able xi , continues to open all other variables in increasing

order, and finally selects for every variable the whole doc-

ument when it is accepted by Ai . Clearly, as every disjunct

starts with a different symbol, this hybrid formula can be

transformed into an equivalent weakly deterministic VSet-

automaton. It is easy to verify that A(d) ⊆ A′(d) for every
document d ∈ Σ∗

if and only if (†) holds. □

The previous theorem contradicts Theorem 6.6 in Mat-

urana et al. [24] (unless coNP = PSPACE), where it is ar-

gued that containment for sequential weakly determinis-

tic automata is in coNP (even allowing partial mappings to

variables).
9
As the VSet-automata we consider are indeed se-

quential, we show that the latter problem is hard for PSPACE

9
The error is in the upper bound of Maturana et al. [24], as can be seen

in the version that includes the proofs [23]. The specific error is in the

pumping argument for proving a polynomial size witness property for

non-containment. The polynomial size witness property is not necessarily

true, due to the nondeterminism entailed in the ability of the automaton to

open variables in different orders. At any specific position in the string, the

execution can be in Θ(n) possible states, where n is the number of states,

implying that a minimal witness may require a length of 2
Θ(n)

.

(already without allowing partial mappings). Our definition

of determinism resolves this complexity issue.

Theorem 4.3. Containment for dfVSA is in NL.

The following proposition shows that deterministic VSet-

automata are equally expressive as VSet-automata in general.

Proposition 4.4. For every VSet-automatonA there is a deter-
ministic VSet-automaton A′ such that A(d) = A′(d) for every
document d ∈ Σ∗. This property still holds if A′ is additionally
required to be functional.

Finally, we recall that it is well known that RGX is less ex-

pressive than VSet-automata [7]. To reach the expressiveness

of VSet-automata, RGX needs to be extended with projec-

tion, natural join, union, and difference.

5 SPLITTINGWITH REGULAR
SPANNERS

We now give preliminary results for the decision problems

we introduced in Section 3 in the case of regular spanners.

We consider split-correctness in Section 5.1, and discuss

splittability and self-splittability in Sections 5.2 and 5.3, re-

spectively. In particular, we show that split-correctness is

PSPACE-complete for all spanners formalisms that we dis-

cuss in the paper (Theorem 5.1); nevertheless, if we make

the natural assumption of disjointness of the splitter, then
the complexity reduces to polynomial time for dfVSA (Theo-

rem 5.7). For splittability, we show a PSPACE-completeness

result under the assumption of splitter disjointness (Theo-

rem 5.15), while membership in PSPACE for general splitters

remains an open question. For self-splittability, we prove

PSPACE-completeness (Theorem 5.16) in general, and again,

that disjointness reduces the complexity to polynomial time

for dfVSA (Theorem 5.17).

5.1 Split-Correctness
5.1.1 General cases. The following theorem states the com-

plexity of Split-correctness for the classes defined in Sec-

tion 4.

Theorem 5.1. Split-correctness[C] is PSPACE-complete for
each of the classes C ∈ {RGX,VSA, dVSA, dfVSA}.

Proof sketch. For the lower bound, we need to prove

hardness separately for dfVSA and for RGX, since the mod-

els are incomparable (dfVSA are more expressive; RGX have

more non-determinism). For the lower bound for dfVSA, we
reduce from the PSPACE-complete problem of DFA union

universality [16]. To this end, let A1, . . . ,An be regular lan-

guages, given as deterministic finite automata over the al-

phabet Σ and let Σ′ = Σ ⊎ {a}. Let P = an · y{Σ∗} and

S = x{an · A1}+a ·x{a
n−1 · A2}+ · · ·+a

n−1 ·x{a · An}. Fur-

thermore, let PS = a∗ · z{Σ∗}. Then P = PS ◦ S if and only if

L(Σ∗) ⊆
⋃

1≤i≤n L(Ai).

The lower bound for RGX is immediate by a reduction

from the RGX containment problem, which is PSPACE-hard

(c.f. Theorem 4.1). Indeed, let P, PS ∈ RGX be spanners and

S = x{Σ∗} ∈ RGX be a splitter. Then P is splittable by S via

PS if and only if P ⊆ PS and P ⊇ PS .
For the upper bound, one can construct a spanner P ′

such

that P = PS ◦ S if and only if P = P ′
. (For readers familiar

with spanner algebra, P ′
is the spanner πSVars(P)((Σ

∗ ·x{PS } ·
Σ∗) ▷◁ S).) Furthermore, P ′

can be constructed in polynomial

time and therefore the upper bound follows from the fact

that equivalence between spanners can be tested in PSPACE

(Theorem 4.1). □

5.1.2 The cover condition. In this section, we introduce a

necessary condition for splittability, called the cover condition.
We show that it is PSPACE-complete to check if the condition

holds for RGX, VSA, dVSA, and dfVSA. In Section 5.1.3, we

leverage the condition to obtain a tractable split-correctness

result. Furthermore, we use the cover condition as a part of

the splittability condition to obtain a characterization for

splittability in Section 5.2.

Definition 5.2 (Cover Condition). A spanner P and splitter

S satisfy the cover condition if, for every document d and

every tuple t ∈ P(d), there exists a span s ∈ S(d) that contains
every span in t . That is, s contains t(v) for everyv ∈ SVars(P).
In this case, we also say that s covers t .

The cover condition is indeed necessary for splittability.

Lemma 5.3. For a spanner P and a splitter S , if P is splittable
by S , then P and S satisfy the cover condition.

The following lemma determines the complexity of testing

the cover condition.

Lemma 5.4. Let P be a spanner and S be a splitter, both
coming from one of the classes RGX, VSA, dVSA, or dfVSA.
Then it is PSPACE-complete to check whether P and S satisfy
the cover condition.

Proof sketch. We start with the PSPACE upper bound.

Let P be a spanner and let S be a splitter both in VSA. LetV =
SVars(P). We assume xS < V . We define a spanner PV that

selects every possible span in every variable. More formally:

PV = (Σ,V , {q0},q0, {q0}, δ), where δ = {(q0, c,q0) | c ∈

Σ∪ ΓV }.We argue next that the cover condition holds if and

only if P ⊆ PV ◦ S . The PSPACE upper bound then follows

from Theorem 4.1.

(if): Assume that the cover condition does not hold. Then

there is a document d ∈ Σ∗
and a tuple t ∈ P(d), such that

there is no split s ∈ S(d)which covers t . Therefore, t < PV ◦S .

(only if): Assume that the cover condition holds. Letd ∈ Σ∗

be a document and t ∈ P(d) be a tuple. Due to the cover

condition, there is a split s ∈ S(d) which covers t . Thus, per
definition of PV , there is a tuple t

′ ∈ PV , such that t = t ′≫ s .
Therefore P ⊆ PV ◦ S also holds.

For the lower bounds, we reduce from DFA union univer-

sality and regular expression union universality, which are

both PSPACE-complete [16, 21]. We prove the lower bound

for dfVSA. (The proof for RGX is analogous.) LetA1, . . . ,An
be regular languages, given as deterministic finite automata

over the alphabet Σ.
Let Σ′ = Σ ⊎ {a}. Furthermore, let P = an · y{Σ∗} be a

spanner and S = x{an · A1} + a · x{an−1 · A2} + · · · + a
n−1 ·

x{a · An} be a splitter. It is easy to see that P and S can

be represented as deterministic functional VSet-automata

whose size is quadratic in the input. For every document

d ∈ Σ′∗
and every tuple t ∈ P(d) there is a split s ∈ S(d) that

covers t if and only if L(Σ∗) ⊆
⋃

1≤i≤n L(Ai). □

5.1.3 Tractability for disjoint splitters. We now show that

split-correctness for deterministic functional VSet-automata

is decidable in polynomial time in the case where splitters are

disjoint. The next proposition shows that deciding whether

a splitter is disjoint is tractable.

Proposition 5.5. For every splitter S ∈ C it can be checked
in NL whether S is disjoint, if C in {VSA, dVSA, dfVSA}. Fur-
thermore, for S ∈ RGX, disjointness can be checked in PTIME.

Recall from the Introduction that disjointness is a natural

property that splitters often satisfy in real life (e.g., tokeniza-

tion, sentence boundary detection, paragraph splitting and

segmentation). Technically, we rely on a polynomial-time

algorithm to test the cover condition for deterministic func-

tional automata.

Lemma 5.6. Let P be a spanner and S a disjoint splitter, both
from dfVSA. Whether P and S satisfy the cover condition can
be decided in polynomial time.

Proof sketch. We reduce this problem to the contain-

ment problem of unambiguous finite automata, which can

be solved in polynomial time [33]. Essentially we construct

unambiguous automata AP and AS that accept ref-words
over an expanded alphabet. That is, AP accepts words r′ =
(σ1, i1) · · · (σn, in) such that σ1 · · ·σn is a ref-word for P and

i1 · · · in ∈ 0
∗
1
+
0
∗
is a bit sequence that indicates from where

to where the ref-word uses its variables. The automaton AS
accepts precisely those words in the language ofAP that cor-

respond to an output tuple that is covered by some span of

S . (We need the disjointness of S for AS to be unambiguous.)

Therefore, AP ⊆ AS , if and only if for every output tuple of

P , there is an output tuple of S that covers it. □

Theorem5.7. Let P , PS be spanners and S be a disjoint splitter,
all from dfVSA. Split-correctness for P , PS , and S (i.e., whether
P = PS ◦ S) is decidable in polynomial time.

Proof Sketch. We explain how to decide the comple-

ment problem. We begin by checking the cover condition. If

the cover condition is not satisfied, it follows by Lemma 5.3

that P , PS◦S . Using Lemma 5.6, this test can be done in poly-

nomial time. Assuming that the cover condition holds, we

look for a split s on which P and PS behave differently. This

can be done by guessing a ref-word r ∈ (Σ∪ ΓSVars(P)∪ Γ{xS }),
symbol by symbol and simulating P , S , and PS on the fly. □

5.2 Splittability
In this section, we address the splittability problem. In partic-

ular, we show that Splittability[VSA] and Splittability[RGX]
are PSPACE-complete for disjoint splitters.

Before we begin, it is useful to note the following insight

about the splittability problem.When a spanner P is splittable

by a splitter S , there can be different split-spanners PS and

P ′
S witnessing splittability. This is illustrated next.

Example 5.8. Consider P = ay{b}b and S = x{ab}b +
ax{bb}. Then, both P = PS ◦S and P = P ′

S ◦S for PS = ay{b}
and P ′

S = y{b}b but PS , P ′
S . The reason this happens is

that S selects two different spans s = [1, 3⟩ and s ′ = [2, 4⟩
both containing the span [2, 3⟩ selected by P on abb. Since
the selected spans are different, the split-spanners PS and P ′

S
need to be different as well to be able to simulate P . Notice
that S is not a disjoint splitter, as [1, 3⟩ ∩ [2, 4⟩ , ∅. □

However, when S is disjoint and P is splittable by S , we
show that there exists a canonical split-spanner P can

S for

which P = P can

S ◦ S . In particular, for every document d ,
the canonical split-spanner selects a tuple t , if there is a

larger document d ′
on which S selects d and P selects t on

d ′
, with proper indentation of the indexes. Formally, P can

S is

defined such that, for every document d ,

P can

S (d) := {t | ∃d ′ ∈ Σ∗, s ∈ S(d ′),d ′
s = d, and

(t ≫ s) ∈ P(d ′)}

In the following proposition, we prove that we can con-

struct the canonical spanner in polynomial time. Essentially,

P can

S is a cross product between P and S , properly adjusted to
use the same variables, operating on substrings of documents

selected by S .

Proposition 5.9. Let P be a spanner and S be a disjoint split-
ter, both coming from one of the classes RGX or VSA. Then a
VSet-automaton can be constructed in time polynomial in the
sizes of P and S that defines the spanner P can

S .

Proof sketch. Let P = (Σ,V ,QP ,q0,P ,QF ,P , δP) be a

VSet-automaton and let S = (Σ, {x},QS ,q0,S ,QF ,S , δS) be
a splitter, with x < V .

d

s1 ∈ S(d1)
t

d1
d

s2 ∈ S(d2)
t

d2

Figure 2: Visualization of the splittability condition
(2).

By PΣ
we denote the VSet-automaton obtained from P by

eliminating all ΓV -transitions, that is, only keeping the Σ-
transitions. For a symbol c , let P ·c P be the VSet-automaton

consisting of two disjoint copies of P where every state

of the first copy is connected to its corresponding state in

the second copy by a transition labeled with c . Then define

Px = PΣ ·x⊢ P ·⊣x P
Σ
. We denote by S+V the VSet-automaton

obtained from S by adding self-loops labeled with v⊢ and ⊣v
to every state of S for v ∈ V . That is, for every state q of S ,
add the transitions (q,v⊢,q) and (q, ⊣v,q) for every v ∈ V .
Then, notice that both Px and S+V define ref-words over

the same extended alphabet Σ ∪ ΓV∪{x } . Moreover, for every

document d ∈ Σ∗
, the spanner (Px ∩ S+V) defines precisely

those tuples t where t(x) ∈ S(d) and t(v) is contained in t(x)
for every v ∈ V . Then, the spanner accepting the ref-word
language {w2 | w1 · x⊢ · w2 · ⊣x · w3 ∈ Ref(Px ∩ S+V)} is
exactly P can

S . □

Notice that, due to Lemma 5.3, whenever P is splittable

by S , P ⊆ P can

S ◦ S . However, when S is not disjoint, the

converse inclusion P can

S ◦ S ⊆ P does not always hold as the

next example shows.

Example 5.10. Consider again P and S from Example 5.8

and let d = abb. Notice that P(d) = {[2, 3⟩}, and P(d ′) =

∅ for every d ′ , d . We now compute (P can

S ◦ S)(d). Since
S(d) = {[1, 3⟩, [2, 4⟩}, we need to consider the documents

d[1,3⟩ = ab and d[2,4⟩ = bb for the definition of P can

S . We have

P can

S (ab) = {[2, 3⟩} and P can

S (bb) = {[1, 2⟩}. Finally,

(P can

S ◦ S)(d) =
⋃

s ∈S (d)

{t ≫ s | t ∈ P can

S (ds)}

=
⋃

s ∈{[1,3⟩,[2,4⟩ }

{t ≫ s | t ∈ P can

S (ab) ∪ P can

S (bb)}

= {[1, 2⟩, [2, 3⟩, [3, 4⟩} .

The reason is that the canonical split-spanner considers all

combinations of output tuples t ′ = t≫s of P with splits s of S
that cover t ′. However, the split-spanner does not “remember”

the relevant combinations of the t and s that lead to an output
tuple t ′ and arbitrarily combines them. Therefore, if S is not

disjoint and there is more than one split that covers some

output tuple t ′, this may lead to combinations that don’t

correspond to outputs of P . □

We define the splittability condition that will characterize

splittability for disjoint splitters.

Definition 5.11 (Splittability Condition). Let P be a spanner

and S a splitter. We say that P and S satisfy the splittability
condition if the following holds:

(1) P and S satisfy the cover condition; and,

(2) for all d,d1,d2 ∈ Σ∗
, [i1, j1⟩ ∈ S(d1), [i2, j2⟩ ∈ S(d2)

such that d = d1
[i1, j1 ⟩

= d2
[i2, j2 ⟩

and for all (SVars(P),d)-

tuples t with t1 = t ≫ [i1, j1⟩, t2 = t ≫ [i2, j2⟩ it must

hold that

t1 ∈ P(d1) ⇔ t2 ∈ P(d2).

Recall that the cover condition states that for every d ∈ Σ∗

and for all t ∈ P(d) there is a span s ∈ S(d) that covers t . The
second requirement of the splittability condition is visual-

ized in Figure 2. In essence, it says that whenever the same

subdocument d is selected by S from two larger documents

d1 and d2, and for every tuple t within d , if we consider the
corresponding tuples t1 and t2 within the larger documents

d1 and d2 then P should behave the same with respect to t1
and t2 on d1 and d2, respectively. That is, P selects t1 in d1 if
and only if P selects t2 in d2.

Lemma 5.12. Let P be a spanner and S be a disjoint splitter.
Then the following three statements are equivalent:
(1) P is splittable by S ;
(2) P and S satisfy the splittability condition; and,
(3) P = P can

S ◦ S .

Proof. Per definition (3) implies (1). Thus we need to

prove that (1) implies (2) and that (2) implies (3).

(1) ⇒ (2) : Let spanner P be splittable by S . The first

requirement of the splittability condition follows directly

from Lemma 5.3. It remains to show that the second re-

quirement holds. Towards a contradiction, assume the re-

quirement does not hold. Thus, there are d,d1,d2 ∈ Σ∗
,

[i1, j1⟩ ∈ S(d1), [i2, j2⟩ ∈ S(d2) such that d = d1
[i1, j1 ⟩

= d2
[i2, j2 ⟩

and there is a (SVars(P),d)-tuple t with t1 = t ≫ [i1, j1⟩, and
t2 = t ≫ [i2, j2⟩ such that t1 ∈ P(d1) and t2 < P(d

2). Let PS
be a spanner for which P is splittable by S via PS . Since S is

disjoint, the span [i1, j1⟩ ∈ S(d1) is the only span of d1 that
covers t1. Therefore, due to t1 ∈ P(d1) and P = PS ◦ S it must

hold that t ∈ PS (d
1

[i1, j1 ⟩
). However, using the same argument,

[i2, j2⟩ ∈ S(d2) is the only span of d2 that covers t2. Thus, as
t2 < P(d2) and P = PS ◦ S it must hold that t < PS (d

2

[i2, j2 ⟩
).

But PS (d
2

[i2, j2 ⟩
) = PS (d

1

[i1, j1 ⟩
) as d = d1

[i1, j1 ⟩
= d2

[i2, j2 ⟩
which

leads to the desired contradiction.

(2) ⇒ (3) : Assume that the splittability condition holds.

We show that P is splittable by S via the canonical split-

spanner P can

S .

We first argue that P ⊆ P can

S ◦ S . Indeed, by construction,

P can

S simulates P on every span selected by S . Moreover, by

the cover condition and disjointness of S , every tuple selected
by P is included in exactly one split selected by S . Formally,

let d ∈ Σ∗
be a document and t ∈ P(d) be a tuple, selected by

P . Then, there is exactly one s ∈ S(d) such that s covers t . Let
d = dpre ·dmid ·dpost such that s = [|dpre | + 1, |dpre ·dmid | + 1⟩.

Due to s covering t , there must be a tuple t ′ with t = t ′ ≫ s .
Thus it follows, per definition of P can

S , that t ′ ∈ P can

S (dmid)

and, therefore, t ∈ (P can

S ◦ S)(d).
We now show the other inclusion, that is, P can

S ◦ S ⊆ P . To

this end, let d1 ∈ Σ∗
be a document and t ∈ (P can

S ◦ S) be a

tuple. Thus, d1 can be written as d1 = d1
pre

·d ·d1
post

, such that

[i1, j1⟩ = [|d1
pre

| + 1, |d1
pre

· d | + 1⟩ ∈ S(d1) and t ′ ∈ P can

S (d)
is a tuple with t = t ′ ≫ [i1, j1⟩. Per definition of P can

S and

t ′ ∈ P can

S (d) there must be a documentd2 = d2
pre

·d ·d2
post

∈ Σ∗

such that [i2, j2⟩ = [|d2
pre

| + 1, |d2
pre
d | + 1⟩ ∈ S(d2) and t ′ ≫

[i2, j2⟩ ∈ P(d2). By the second requirement of the splittability

condition it directly follows that t ∈ P(d1). □

The following example shows that Lemma 5.12 does not

hold in general if S is not disjoint.

Example 5.13. Let P = aby{b} + cy{b}b and S = x{Σ∗} +

Σ∗x{bb}Σ∗
. Furthermore, let d = bb,d1 = abb, d2 = cbb,

and t = {(y, [2, 3⟩)}. With s = [2, 4⟩, it is easy to see that

s ∈ S(d1) and s ∈ S(d2). With t1 = t2 = t ≫ s , we have that
t1 ∈ P(d1), but t2 < P(d2). Therefore, the second requirement

of the splittability condition does not hold. Nevertheless, it

is easy to see that P is self-splittable. □

Lemma 5.14. Let P , PS be regular spanners and S be a disjoint
splitter, such that P = PS ◦ S . Then P can

S ⊆ PS .

We note that the inclusion P can

S ⊆ PS does not hold if

S is not disjoint, since P can

S can select arbitrary tuples on

documents for which S does not produce any output.

We are now ready to state the main complexity result of

this section:

Theorem 5.15. Deciding Splittability[C] for disjoint splitters
and C ∈ {RGX,VSA} is PSPACE-complete.

Proof sketch. The upper bound directly follow from

Lemma 5.12, Proposition 5.9, and Theorem 5.1. For the lower

bound, we give a reduction from the inclusion problem for

regular expressions that is known to be PSPACE-complete.

Let r1 and r2 be regular expressions. It can be shown that the

boolean spanner P = r1 is splittable by the disjoint splitter

S = x{r2} if and only if L(r1) ⊆ L(r2). □

5.3 Self-Splittability
Next, we discuss self-splittability.

Theorem5.16. Deciding Self-splittability[C] for C ∈ {RGX,
VSA} is PSPACE-complete.

Proof sketch. The upper bounds follow directly from

Theorem 5.1. The lower bound for Self-splittability[VSA] fol-
lows directly from the lower bound of Self-splittability[RGX],
since regex-formulas can be transformed into VSet-automata

in polynomial time.

We give a reduction from the containment problem for

RGX to Self-splittability[RGX]. To this end, let r1, r2 ∈ RGX
be regex-formulas over the alphabet Σ with SVars(r1) =
SVars(r2) and let a < Σ be a new symbol and Σ′ = Σ ∪ {a}.
Furthermore, let x,y < SVars(r1) be new variables. We define

the spanner P = r1 + (a · r2) and splitter S = a? · x{Σ∗}. Then

P is self-splittable by S if and only if Jr1K ⊆ Jr2K. □

The following is immediate from Theorem 5.7.

Theorem 5.17. Let P be a spanner and S be a disjoint splitter,
both from dfVSA. Self-splittability for P and S is decidable in
polynomial time.

6 REASONING ABOUT SPLITTABILITY
In a complex pipeline that involves multiple spanners and

splitters, it may be beneficial to reason about the manip-

ulation or replacement of operators for the sake of query

planning (in a similar way as we reason about query plans in

a database system). In this section, we consider questions of

this sort. For the class of regular spanners, we prove PSPACE-

completeness for deciding on splitter commutativity (The-

orem 6.2) and subsumption, that is, whether a splitter can
always be executed after another (Theorem 6.3). We also

discuss conditions for the transitivity of splitters (Observa-

tion 6.4 and Lemma 6.5).

Commutativity. An obvious problem is whether two split-

ters commute (possibly with respect to a context, which we

abstract as a regular language). For example, suppose that

we are given a program that processes a text document, and

suppose that the query plan first splits by pages and then by

paragraphs. This is the same as splitting by paragraphs and

then by pages. So, the query planner can choose between

the two options.

Formally, let S1 and S2 be two splitters and R a regular

language. We say that S1 and S2 commute w.r.t. R if and only

if (S1 ◦ S2)(d) = (S2 ◦ S1)(d) for all d ∈ R. For instance, if S1
and S2 commute and S1 is more selective than S2, then it is

beneficial to apply S1 before S2. The next lemma shows that

the composition of splitters can be explicitly constructed.

Lemma 6.1. Let S1 and S2 be splitters given as VSet-automata.
Then a VSet-automaton for the splitter (S2◦S1) can be computed
in polynomial time.

We now establish the complexity of the decision problem.

Theorem 6.2. Let S1, S2, all coming from one of the classes
RGX or VSA and let R be an NFA. Then deciding if S1 and S2
commute w.r.t. R is PSPACE-complete. The problem is PSPACE-
hard even if L(R) = Σ∗.

Subsumption. Another form of optimization is subsumption.
We say that S subsumes S ′ w.r.t. R if S(d) = (S ′ ◦ S)(d) for all
d ∈ R. For example, suppose that we are told that a spanner

is splittable by a splitter S (e.g., the sentence splitter); does it

also imply that it is splittable by S ′ (e.g., the paragraph split-

ter)? In Section 7, we discuss an extension of the framework

where such knowledge is provided on arbitrary spanners as

split constraints.

Theorem 6.3. Let S , S ′, and R, all coming from one of the
classes RGX or VSA. Then deciding if S subsumes S ′ w.r.t. R is
PSPACE-complete.

Proof. The upper bound is immediate from Lemma 6.1

and Theorem 4.1. The lower bound follows from regular

expression universality. Let E be a regular expression and

let S ′ = x{E}. Then S = x{Σ∗} subsumes S ′ if and only if

L(E) = Σ∗
. □

Transitivity. We conclude the section with a few initial ob-

servations about the transitivity of splittability.

Observation 6.4. Let P , PS be spanners and S1, S2 be splitters,
such that P = PS◦S1 and S1 = S1◦S2. Then it is not necessarily
true that P = PS ◦ S2.

Proof. Let P = Σ∗ ·y{a}·Σ∗, PS = y{a}, S1 = Σ∗ ·x{Σ}·Σ∗,
and S2 = Σ∗ · x{Σ · Σ} · Σ∗ + x{Σ}. It’s easy to see that

P = PS ◦ S1 and S1 = S1 ◦ S2, but P , PS ◦ S2. □

However, self-splittability transfers from one splitter to

another more general splitter:

Lemma 6.5. Let P be a spanner and S1, S2 be splitters, such
that P = P ◦ S1 and S1 = S1 ◦ S2. Then P = P ◦ S2.

7 BEYOND THE BASIC FRAMEWORK
We now discuss three problems that are based on the concept

of splittability, but go beyond the basic framework discussed

in the previous sections. The first problem is that of deciding

on the splittability in the presence of black-box spanners that
are known to follow split constraints (Section 7.1). The second
problem is that of deciding on the splittability under a regular

precondition on the input documents (Section 7.2). Finally,

the third problem is that of deciding on the splittability under

splitters that can annotate the splits as they run (Section 7.3).

7.1 Split-Constrained Black Boxes
We begin with motivating examples. Since the examples and

our definitions afterwards use the natural join of spanners,

we briefly recall it from Fagin et al. [7]. The spanner P1 ▷◁ P2

is defined as follows. We have SVars(P1 ▷◁ P2) = SVars(P1) ∪
SVars(P2), and (P1▷◁P2)(d) consists of alld-tuples t that agree
with some t1 ∈ P(d), and t2 ∈ P2(d); note that the existence of
t implies that t1 and t2 agree on the common variables of P1
and P2, that is, t1(x) = t2(x) for all x ∈ SVars(P1)∩SVars(P2).

Example 7.1. In this example and the next, we’ll denote by

P(x,y) that spanner P uses the variables x and y. Consider
the spanner P that seeks to extract adjectives for Galaxy

phones from reports. We define this spanner by joining three

spanners:

The spanner α(x,y) is the regex formula

Σ∗ · x{Galaxy [A-Z]\d∗} · Σ∗ · y{Σ∗}. · Σ∗

that extracts mentions of Galaxy brands (e.g., Galaxy A6 and

Galaxy S8) followed by substrings y that occur right before

a period.

The spanner P1(x, x
′) is a coreference resolver (e.g., the

sieve algorithm [27]) that finds spans x ′
that coreference

spans x . The spanner P2(x
′,y) finds pairs of noun phrases x ′

and attached adjectives y (e.g., based on a Recursive Neural

Network [31]).

For example, consider the review “I am happy with my
Galaxy A6. It is stable.” Here, in one particular match, x will

match (the span of) Galaxy A6, x ′
will match it (which is

an anaphor for Galaxy A6), and y will match stable. (Other
matches are possible too.)

How should a system find an efficient query plan to this

join on a long report? Natively materializing each relation

might be too costly: α(x,y) may produce too many matches,

and P1(x, x
′) and P2(x

′,y) may be computationally costly.

Nevertheless, we may have the information that P1 is split-
table by paragraphs, and that P2 is splittable by sentences

(hence, by paragraphs). This information suffices to deter-

mine that the entire join α(x,y) ▷◁ P1(x, x
′) ▷◁ P2(x

′,y) is
splittable, hence parallelizable, by paragraphs. □

Example 7.2. Now consider the spanner that joins two span-

ners: α ′(x) extracts spans x followed by the phrase “is kind”
(e.g., “Barack Obama is kind”). The spanner P ′(x) extracts
all spans x that match person names. Clearly, the spanner

α ′(x) does not split by any natural splitter, since it includes,

for instance, the entire prefix of the document before “is
kind”. However, by knowing that P ′(x) splits by sentences,

we know that the join α ′(x)▷◁P ′(x) splits by sentences. More-

over, by knowing that P ′(x) splits by 3-grams, we can infer

that α ′(x) ▷◁ P ′(x) splits by 5-grams. Here, again, the holistic

analysis of the join infers splittability in cases where inter-

mediate spanners are not splittable. □

We now formalize the splittability question that the ex-

amples give rise to. A spanner signature Π is a collection

{π1, . . . , πk } of spanner symbols, where each πi is associated
with a set SVars(πi) of span variables. In Example 7.1, π1 and

π2 would correspond to the name of a coreference resolver

and an adjective extractor, respectively, with SVars(π1) =
{x, x ′} and SVars(π2) = {x ′,y}. We assume that Π is con-

nected, that is, the underlying hypergraph where every πi is
interpreted as the hyperedge consisting of SVars(πi) is con-
nected. An instance I of Π associates with each spanner sym-

bol πi an actual spanner Pi such that SVars(Pi) = SVars(πi).
In Example 7.1, these would be P1 and P2, respectively.
Let Π be a spanner signature, I an instance of Π, and α

a regular spanner. We denote by α ▷◁ I the spanner that is
given by

α ▷◁ P1 ▷◁ · · · ▷◁ Pk .

We note that this is well-defined due to the associativity and

commutativity of the ▷◁-operator.
A regular split constraint over a spanner signature Π is an

expression of the form “πi is self-splittable by the regular

splitter S ,” which we denote by πi ⊑ S . An instance I of Π
satisfies a set C of regular split constraints, denoted I |= C , if
for every constraint πi ⊑ S in C it is the case that Pi is self-
splittable by S . The problem of split-correctness with black
boxes is the following:

Black Box Split-Correctness

Input: A spanner signature Π, a set C of regular

split constraints, a regular spanner α , and a

splitter S .
Question: Is α ▷◁ I splittable by S whenever I is an

instance of Π such that I |= C?

A natural question to ask is the following. Assume that α
is self-splittable by S and we have all split constraints πi ⊑ S ,
that is, all spanners are self-splittable by the same splitter

S . Is it the case that α ▷◁ I is splittable by S? The following
Lemma shows that this is not the case in general.

Lemma 7.3. There are spanners P1 and P2 and a splitter S ,
such that P1 and P2 are self-splittable by S , but P1 ▷◁ P2 is not
splittable (and thus also not self-splittable) by S .

Proof. Let P1 = Σ∗ · x1{a} · x2{b} · Σ∗
and P2 = Σ∗ ·

x2{b} · x3{a} · Σ
∗
be spanners. Furthermore, let S = Σ∗ ·

x{(a · Σ) + (Σ · a)} · Σ∗
be a splitter. Then both P1 and P2 are

self-splittable by S . However, the join P := P1 ▷◁ P2 can not

be splittable by S since for d = aba, S(d) = {[1, 3⟩, [2, 4⟩}
and P(d) = {([1, 2⟩, [2, 3⟩, [3, 4⟩)}, and therefore the cover

condition is violated. □

The next result shows that in the presence of disjoint

splitters the join operator preserves self-splittability.

Theorem7.4. Let S be a disjoint splitter,α be a spanner that is
splittable by S ,Π be a spanner signature, andC = {π1 ⊑ S, . . . ,
πk ⊑ S} be a set of regular split constraints. Then Π,C , α , and
S are black box split-correct.

Proof. Let I be an instance ofΠ, such that I |= Π and let Pi
be the spanner interpreting πi . We have to show, that α ▷◁ I =
PS ◦S for some spanner PS . Per assumption, α is splittable by

S and Pi is self-splittable by S for all 1 ≤ i ≤ k . Let αS be a

spanner such that α = αS ◦S and let PS = αS ▷◁ P1 ▷◁ · · · ▷◁ Pk .
We argue that α ▷◁ I is splittable by S via PS (i.e. α ▷◁ I =

PS ◦ S). To this end, let d ∈ Σ∗
be a document and t ∈ α ▷◁ I

be a tuple. Then there are tuples tα ∈ α(d), and ti ∈ Pi (d) for
1 ≤ i ≤ k , such that t = tα ▷◁ t1 ▷◁ · · · ▷◁ tk . Furthermore, as S
is disjoint and Π is connected there is a unique split s ∈ S(d)
covering all tuples t, tα , t1, . . . , tk . By α = αS ◦ S there is a

tuple t ′α ∈ αS (ds) such that tα = t ′α ≫ s . Furthermore, by

self-splittability of Pi there also is a tuple t ′i ∈ Pi (ds) such
that ti = t ′i ≫s . Thus, it must hold that t ′ = t ′α ▷◁t

′
1
▷◁ · · ·▷◁t ′k ∈

PS (ds) and t = t ′ ≫ s . Hence, t ∈ PS ◦ S .
For the other direction, assume that there is a document

d ∈ Σ∗
, a split s ∈ S(d) and a tuple t ′ ∈ PS (ds). Then it follows

by the same argument, that the tuple t = t ′ ≫ s ∈ α ▷◁ I . □

7.2 Regular Precondition
Sometimes a spanner is not splittable by a given splitter,

because of a reason that seems marginal. For instance, the

spanner may first check that the document conforms to some

standard format, such as Unicode, UTF-8, CSV, HTTP, etc.We

provide two ways to deal with such kind of scenarios: regular
preconditions (here) and annotated splitters (in Section 7.3).

A splitter with filter is a pair (S, L) where S is a splitter

and L is a word language. We denote such splitters as S[L].
The spanner defined by S[L] is the function that maps each

document d to S(d) if d ∈ L and to ∅ otherwise.

It is easy to see that splitters with filter are not more

powerful than ordinary splitters. However, they give rise to

new problems that can be studied. For instance, it may be the

case that we already have a spanner and splitter available that

we do not want to change, but we can use a regular language

as a filter to obtain split-correctness on all documents that

satisfy the filter.

Split-correctness[C] with regular filter

Input: Spanners P, PS ∈ C and splitter S ∈ C.

Question: Is there a regular language L such that

P = PS ◦ S[L]?

Splittability[C] with regular filter

Input: Spanners P ∈ C and splitter S ∈ C.

Question: Is there a regular language L such that

P is splittable by S[L]?

Furthermore, Self-splittability[C] with regular filter is the

special case of Splittability[C] with regular splitter where

we ask if P is self-splittable by S[L].

The next lemma shows that there is a minimal filter lan-

guage for each spanner. For a regular spanner P , define
LP = {d | P(d) , ∅}. That is, LP is the set of strings on

which P produces a non-empty result.

Lemma 7.5. Let P and PS be spanners, S be a splitter and L
be a regular language. Then, P = PS ◦ S[L] implies that:
(1) LP ⊆ L; and,
(2) P = PS ◦ S[LP].

Proof. Per definition of LP it holds that d ∈ LP ⇔ P(d) ,
∅, for everyd ∈ Σ∗

. For the sake of contradiction, assume that

LP ⊈ L and d ∈ LP such that d < L. By d ∈ LP , it holds that
P(d) , ∅, but due to d < L the document d is filtered out by

S[L] (i.e. S[L](d) = ∅), contradicting P = PS◦S[L]. The second
condition (2) follows directly from (1) and P = PS ◦ S[L]. □

Due to Lemma 7.5, we can decide Split-correctness with
regular filter by constructing a splitter S ′ that is equivalent
to the splitter with filter S[LP] and then testing if P = PS ◦S

′
.

Theorem 7.6. Deciding Split-correctness[C] with regular fil-
ter and Self-splittability[C] with regular filter are PSPACE-
complete, if C ∈ {RGX,VSA} and P is functional.

Proof sketch. If P is functional, we can construct a split-

ter S ′ in polynomial time, which computes the same func-

tion as S[LP] (for readers familiar with spanner algebra,

S ′ = S ▷◁ π∅P). Therefore, using Lemma 7.5 there is a regular

languageL such that P = PS◦S[L] if and only if P = PS◦S[LP].
Thus, PSPACE-completeness follows directly from Theo-

rem 5.1 (and Theorem 5.16 in the case of Self-splittability[C]
with regular filters). □

Theorem 7.7. Deciding Splittability[C] with regular filter is
PSPACE-complete, if C ∈ {RGX,VSA}, P is functional, and S
is disjoint.

Proof. Immediate from Theorem 7.6 and Theorem 5.15.

□

7.3 Annotated Splitters
Annotated splitters form a natural extension of splitters that

can propagate annotations to the splitted strings. That is, in-

stead of mapping documents to relations of spans, annotated

splitters map documents to relations of key-span pairs (in

analogy to the key-value pairs from the MapReduce frame-

work). They extend splitters with filters in the following way.

A splitter with filter can be seen as a function that annotates

each of the splits with the Boolean value 1 or 0, depending

on whether the input document satisfies the precondition or

not. More precisely, given a splitter with filter (S, L), we can
define a function S[L]ann as S[L]ann(d) := S(d) × {1} if d ∈ L
and S[L]ann(d) := S(d) × {0} otherwise, for every document

d . An annotated splitter generalizes this idea in the sense

that (1) it can choose from an arbitrary set of keys instead
of the set of Boolean values and (2) it can annotate different

splits with different keys.

As an example, assume that one wants to extract informa-

tion from an HTTP log and wants to process the information

extracted from GET requests differently than that extracted

from POST requests. An annotated splitter can split the doc-

ument and annotate each split with the type of request from

which the split was extracted. This annotation can then be

used to choose different split-spanners that work on the

splits with different annotations.

We omit formal details, due to space constraints, but note

that complexity results on annotated split-correctness and

splittability that are in-line with those on ordinary split-

correctness and splittability can be obtained.

8 CONCLUDING REMARKS
We embarked on an exploration of the task of automating the

distribution of information-extraction programs across split-

ters. Adopting the formalism of document spanners [7] and
the concept of parallel-correctness [2], our framework focuses

on two computational problems, split-correctness and split-

tability, as well as their special case of self-splittability. We

presented a preliminary analysis of these problems within

the class of regular spanners. We have also discussed several

natural extensions of the framework, considering the reason-

ing about the application about multiple splitters, black-box

spanners with split constraints, preconditions, and splitters

with annotation capabilities. Our principal goal is to open

up new directions for research within the framework, and

indeed, a plethora of open problems are left for future inves-

tigation. We discuss these problems in the remainder of this

paper.

Among the basic problems, we know the least about the

splittability problem. For example, we do not know even

whether the problem is decidable without the assumption of

disjointness. Moreover, what is the complexity of splittability

when restricting to dfVSA and disjoint splitters? A funda-

mental problem is the existence of a canonical split spanner
PS such that, similarly to Proposition 5.9, if splittablity holds

for P and S , then it can be realized by PS .
We knowmore about split-correctness and self-splittablity,

but there are some basic open problems there as well. Can

we relax any of the assumptions of determinism and dis-

jointedness and still retain tractability? What other natural

assumptions lead to tractability? For instance, N -gram split-

ters and N -consecutive-sentence splitters are not disjoint;

but do they possess any general (and easily detectable) prop-

erties that can be used for general efficient solvers of our

problems? All of these open problems are within regular
spanners; when considering more expressive languages for

spanners (e.g., the class of core spanners [7, 11] that allow
for string equalities), all problems reopen.

A variant of splittability that we have not touched upon

is that of deciding, given a spanner P , whether it can be

decomposed in a nontrivial way. We can show that this vari-

ant closely relates to the language primality problem—can a

given regular language be decomposed as the concatenation

of non-trivial regular languages? Interestingly, Martens et

al. [22] showed that language primality is also related to the

work of Abiteboul et al. [1] on typing in distributed XML,

which is quite reminiscent, yet different from, our work.

For the extensions of reasoning about splitters, and de-

ciding on splittability with black-box spanners, we barely

scratched the surface. Specifically, we believe that reasoning

about split constraints over black-box extractors can have a

profound implication on the usability of IE systems to devel-

opers of varying degrees of expertise, while embracing the

advances of the Machine Leaning and Natural Language Pro-

cessling communities on learning complex functions such

as artificial neural networks.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for PODS 2019 for many

helpful remarks. The work of Johannes Doleschal was sup-

ported by the Special Research Fund (BOF) of Hasselt Uni-

versity and the Deutsche Forschungsgemeinschaft (DFG),

Grant MA 4938/4-1. The work of Benny Kimelfeld and Yoav

Nahshon was supported in part by the Israel Science Foun-

dation (ISF), Grant 1295/15.

REFERENCES
[1] S. Abiteboul, G. Gottlob, and M. Manna. Distributed XML design.

Journal of Computer and System Sciences, 77(6):936–964, 2011.
[2] T. J. Ameloot, G. Geck, B. Ketsman, F. Neven, and T. Schwentick.

Parallel-correctness and transferability for conjunctive queries. Jour-
nal of the ACM, 64(5):36:1–36:38, 2017.

[3] T. J. Ameloot, G. Geck, B. Ketsman, F. Neven, and T. Schwentick. Rea-

soning on data partitioning for single-round multi-join evaluation in

massively parallel systems. Communications of the ACM, 60(3):93–100,

2017.

[4] J. Chen, D. Ji, C. L. Tan, and Z. Niu. Unsupervised feature selection

for relation extraction. In International Joint Conference on Natural
Language Processing (IJCNLP), Companion Volume, 2005.

[5] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, and

S. Vaithyanathan. SystemT: An algebraic approach to declarative

information extraction. In Annual Meeting on Association for Compu-
tational Linguistics (ACL), pages 128–137, 2010.

[6] J. P. C. Chiu and E. Nichols. Named entity recognition with bidirec-

tional LSTM-CNNs. Transactions of the ACL, 4:357–370, 2016.
[7] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. Document

spanners: A formal approach to information extraction. Journal of the
ACM, 62(2):12:1–12:51, 2015.

[8] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren. Declarative clean-

ing of inconsistencies in information extraction. ACM Transactions on
Database Systems, 41(1):6:1–6:44, 2016.

[9] F. Florenzano, C. Riveros, M. Ugarte, S. Vansummeren, and D. Vr-

goc. Constant delay algorithms for regular document spanners. In

Symposium on Principles of Database Systems (PODS), pages 165–177,
2018.

[10] D. D. Freydenberger. A Logic for Document Spanners. In International
Conference on Database Theory (ICDT), volume 68, pages 13:1–13:18,

2017.

[11] D. D. Freydenberger and M. Holldack. Document spanners: From

expressive power to decision problems. Theory of Computing Systems,
62(4):854–898, 2018.

[12] D. D. Freydenberger, B. Kimelfeld, and L. Peterfreund. Joining extrac-

tions of regular expressions. In Symposium on Principles of Database
Systems (PODS), pages 137–149, 2018.

[13] C. Giuliano, A. Lavelli, and L. Romano. Exploiting shallow linguistic

information for relation extraction from biomedical literature. In

Conference of the European Chapter of the Association for Computational
Linguistics (EACL), 2006.

[14] Hadoop, apache, http://hadoop.apache.org, 2009.

[15] M. A. Hearst. Texttiling: Segmenting text into multi-paragraph

subtopic passages. Computational Linguistics, 23(1):33–64, 1997.
[16] D. Kozen. Lower bounds for natural proof systems. In Symposium on

Foundations of Computer Science (FOCS), pages 254–266. IEEE, 1977.
[17] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer.

Neural architectures for named entity recognition. In Conference of the
North American Chapter of the Association for Computational Linguistics
(NAACL-HLT), pages 260–270, 2016.

[18] R. Leaman and G. Gonzalez. BANNER: an executable survey of ad-

vances in biomedical named entity recognition. In Pacific Symposium
on Biocomputing (PSB), volume 13, pages 652–663, 2008.

[19] H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu, and D. Ju-

rafsky. Stanford’s multi-pass sieve coreference resolution system at

the conll-2011 shared task. In Conference on Computational Natural
Language Learning (CoNLL), Shared Task, pages 28–34, 2011.

[20] A. Madaan, A. Mittal, Mausam, G. Ramakrishnan, and S. Sarawagi.

Numerical relation extraction with minimal supervision. In AAAI
Conference on Artificial Intelligence, pages 2764–2771, 2016.

[21] W. Martens, F. Neven, and T. Schwentick. Complexity of decision

problems for XML schemas and chain regular expressions. SIAM
Journal on Computing, 39(4):1486–1530, 2009.

[22] W. Martens, M. Niewerth, and T. Schwentick. Schema design for XML

repositories: complexity and tractability. In Symposium on Principles
of Database Systems (PODS), pages 239–250, 2010.

[23] F. Maturana, C. Riveros, and D. Vrgoč. Document spanners for extract-

ing incomplete information: Expressiveness and complexity. CoRR,
abs/1707.00827, 2017.

[24] F. Maturana, C. Riveros, and D. Vrgoč. Document spanners for ex-

tracting incomplete information: Expressiveness and complexity. In

Symposium on Principles of Database Systems (PODS), pages 125–136,
2018.

[25] Y. Nahshon. Relational framework for information extraction. Master’s

thesis, Technion - Computer Science Department, 2018.

[26] B. Pang and L. Lee. A sentimental education: Sentiment analysis

using subjectivity summarization based on minimum cuts. In Annual
Meeting on Association for Computational Linguistics (ACL), pages 271–
278, 2004.

[27] K. Raghunathan, H. Lee, S. Rangarajan, N. Chambers, M. Surdeanu,

D. Jurafsky, and C. D. Manning. A multi-pass sieve for coreference

resolution. In Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 492–501, 2010.

[28] C. D. Sa, A. Ratner, C. Ré, J. Shin, F. Wang, S. Wu, and C. Zhang.

DeepDive: Declarative knowledge base construction. SIGMOD Record,
45(1):60–67, 2016.

[29] W. Shen, A. Doan, J. F. Naughton, and R. Ramakrishnan. Declarative

information extraction using Datalog with embedded extraction predi-

cates. In Conference on Very Large Data Bases (VLDB), pages 1033–1044,
2007.

[30] J. Shin, S. Wu, F. Wang, C. D. Sa, C. Zhang, and C. Ré. Incremental

knowledge base construction using DeepDive. Proceedings of the VLDB
Endowment (PVLDB), 8(11):1310–1321, 2015.

[31] R. Socher, C. C. Lin, A. Y. Ng, and C. D. Manning. Parsing natural scenes

and natural language with recursive neural networks. In International
Conference on International Conference on Machine Learning (ICML),
pages 129–136, 2011.

[32] W. M. Soon, H. T. Ng, and C. Y. Lim. A machine learning approach

to coreference resolution of noun phrases. Computational Linguistics,
27(4):521–544, 2001.

[33] R. E. Stearns and H. B. Hunt III. On the equivalence and containment

problems for unambiguous regular expressions, regular grammars and

finite automata. SIAM Journal on Computing, 14(3):598–611, 1985.
[34] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer. Feature-rich part-

of-speech tagging with a cyclic dependency network. In Conference
of the North American Chapter of the Association for Computational
Linguistics (NAACL-HLT), 2003.

[35] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,

X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gon-

zalez, S. Shenker, and I. Stoica. Apache spark: a unified engine for big

data processing. Communications of the ACM, 59(11):56–65, 2016.

[36] D. Zeng, K. Liu, Y. Chen, and J. Zhao. Distant supervision for relation

extraction via piecewise convolutional neural networks. In Conference
on Empirical Methods in Natural Language Processing (EMNLP), pages
1753–1762, 2015.

http://hadoop.apache.org

