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ABSTRACT

The asteroseismic modelling of period spacing patterns from gravito-inertial modes
in stars with a convective core is a high-dimensional problem. We utilise the measured
period spacing pattern of prograde dipole gravity modes, in combination with the effective
temperature (7.¢) and surface gravity (log g) derived from spectroscopy, to estimate the
fundamental stellar parameters and core properties of 37 y Doradus (y Dor) stars whose
rotation frequency has been derived from Kepler photometry. We make use of two 6D
grids of stellar models, one with step core overshooting and one with exponential core
overshooting, to evaluate correlations between the three observables I1j, 7., and log g and
the mass, age, core overshooting, metallicity, initial hydrogen mass fraction and envelope
mixing. We provide multivariate linear model recipes relating the stellar parameters to
be estimated to the three observables (I1y, 7.4, log g). We estimate the (core) mass, age,
core overshooting and metallicity of y Dor stars from an ensemble analysis and achieve
relative uncertainties of ~ 10% for the parameters. The asteroseismic ageing allows us to
conclude that efficient angular momentum transport occurs already early on during the
main-sequence. We find that the 11 stars with observed Rossby and/or Yanai modes occur
across the entire main-sequence phase. Future improvements of our work will come from
the inclusion of more types of detected modes per star, larger samples, and modelling of
individual mode frequencies.

Key words: asteroseismology — methods: statistical — stars: fundamental parameters — stars:
interiors — stars: oscillations

1 INTRODUCTION terrupted time series photometry with at least a factor ten longer
time base, such as that assembled with the Kepler space telescope
(Borucki et al. 2010). Meanwhile, lots of progress has been made
on the observational side in this topic over the past few years with
firm detections of period spacing patterns reported in Péapics et al.
(2014, 2015); Kurtz et al. (2014); Saio et al. (2015); Van Reeth et al.
(2015a); Schmid et al. (2015); Van Reeth et al. (2016); Murphy et al.
(2016); Guo et al. (2016); Ouazzani et al. (2017); Saio et al. (2017,
2018); Szewczuk & Daszyriska-Daszkiewicz (2018) and Li et al.

The photometric data provided by space-based missions such as
CoRoT (Auvergne et al. 2009) and Kepler (Koch et al. 2010) have
heralded a new era for asteroseismology. Here, we are concerned
with gravito-inertial asteroseismology, i.e., the study of gravity
modes (g modes) in rotating intermediate-mass stars. Such modes
are subject to both the Coriolis force and buoyancy as restoring
forces. While CoR0T data led to the first discoveries of period spac-
ings of gravity-mode pulsators in the core-hydrogen burning phase

2019).
(Degroote et al. 2010; Papics et al. 2012), it did not allow the identi- ( )
fication of the angular degree of these detected oscillations without As shown in these papers, we have now reached the stage
ambiguity. Secure mode identification had to await nearly unin- where tens of gravity-mode frequencies have been measured in these

pulsators with sufficient precision to identify their mode degree from
the 4-year nominal Kepler light curves and hence to start testing and
* Contact: joey.mombarg @kuleuven.be improving stellar structure theory of intermediate-mass stars.
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Forward modelling applications to a few stars have shown the
need of core overshooting and envelope mixing in both B-type and
F-type gravity-mode pulsators, in order to be able to explain the
measured mode trapping properties (Moravveji et al. 2015, 2016;
Schmid & Aerts 2016). Moreover, the near-core rotation rates de-
rived from the g modes (Van Reeth et al. 2016; Ouazzani et al. 2017;
Van Reeth et al. 2018) have revealed shortcomings in stellar evolu-
tion theory in terms of angular momentum transport, both during
the core-hydrogen burning phase (Rogers 2015; Aerts et al. 2017;
Townsend et al. 2018; Ouazzani et al. 2018) and in the red giant
phase (Mosser et al. 2015; Eggenberger et al. 2017; Gehan et al.
2018) — see Aerts et al. (2019) for a recent extensive review.

Since the evolution of a star is greatly affected by the stellar
rotation profile (Maeder 2009), the opportunity to calibrate theo-
retical stellar models from empirically derived angular momentum
distributions in stellar interiors at different evolutionary stages is of
major importance. In order to compute these angular momentum
distributions, the mass and radius of the star as a whole and of
its convective core have to be estimated, as well as the star’s age.
Given that forward asteroseismic modelling of intermediate-mass
stars is a high dimensional problem (+6D, Aerts et al. 2018), a
robust statistical methodology is needed.

In this paper, we explore the feasibility of estimating the most
important stellar parameters, i.e., (core) mass, core overshooting,
initial hydrogen mass fraction, metallicity, the amount of envelope
mixing, and age (or age-proxy) of y Doradus (henceforth y Dor)
stars. While these pulsators of spectral type late-A to early-F were
already known to have g modes excited by a flux blocking mech-
anism from ground-based studies (e.g., Kaye et al. 1999; Guzik
et al. 2000; Dupret et al. 2005; Cuypers et al. 2009; Bouabid et al.
2013), the derivation of g-mode period spacings had to await the
long-term uninterrupted Kepler data (e.g., Bedding et al. 2015; Van
Reeth et al. 2015a,b).

Van Reeth et al. (2016, 2018) and Ouazzani et al. (2017) have
developed methods to infer the near-core rotation frequency from
the slope of the measured period spacing pattern of y Dor stars.
These authors applied their methods to ensembles of 40 and 4 stars,
respectively, of such gravito-inertial pulsators. Here, we consider
the sample by Van Reeth et al. (2016) because 37 of these stars
have been monitored with high-resolution spectroscopy (Tkachenko
et al. 2013) and the asymptotic period spacing from their prograde
sectoral dipole modes, effective temperatures, surface gravities and
metallicity have been determined in a homogeneous way.

We explore the modelling capacity of the combined seismic
parameter for dipole modes (in the non-rotating limit), I, and
the spectroscopically derived effective temperature, 7 and surface
gravity, log g, as a major simplification of typical forward modelling
that is based on the fitting of all the individual g-mode frequencies.
In our approach, we first derive correlations between the the seis-
mic parameter Iy, the effective temperature and surface gravity
on one hand, and the correlation between these three observables
and the stellar parameters varied in two 6D stellar model grids on
the other hand. Previous studies in the literature have derived corre-
lations between the stellar mass, metallicity, and step overshooting
for low-order modes in 3 Cep stars (e.g., Briquet et al. 2007; Wal-
czak et al. 2013) and for high-order g-modes in a Kepler slowly
pulsating B-type star (Moravveji et al. 2015). In Section 2, we in-
vestigate correlations between mass, central and initial hydrogen
fraction, metallicity, the amount of envelope mixing, and the mass
and radius of the convective core, by means of linear multivariate
regression to investigate the correlations between the parameters in
a simple manner. We do this for both a step and an exponential core

overshooting formalism since it was recently shown that g modes
potentially allow for these two overshooting prescriptions to be dis-
tinguished (Pedersen et al. 2018). In particular, we also investigate
how well a benchmark model — based on one of these two core
overshooting prescriptions — can be approximated by a model based
on the other overshooting prescription for the mass range of y Dor
stars in Section 3.

Armed with the knowledge of the correlation structure in the
two 6D model grids, we explore the capacity of these diagnostics
(TTg, Teg, log g) for parameter estimation from seismic modelling,
using the methodology based on maximum likelihood estimation de-
veloped in Aerts et al. (2018). The results of our forward modelling
are presented in Section 4. In Section 5, we describe our methodol-
ogy of determining uncertainties from ensemble modelling and we
conclude in Section 6.

2 PROPERTIES OF 6D ASTEROSEISMIC MODEL
GRIDS

2.1 Gravity-mode period spacings

In the framework of the traditional approximation of rotation
(TAR), the period of a high-order g-mode can be well approxi-
mated by

Iy
v /ll, m,s

with A the eigenvalue of the Laplace tidal equation, depending
on the mode geometry (spherical degree / and azimuthal order
m) and the spin parameter s = 2./ frot (cf., Townsend 2003;
Bouabid et al. 2013; Van Reeth et al. 2018). The phase term ag
depends on the stellar structure and

-1
I = 272 ( / Edr) . )
g I

Here, the quantity N is the Brunt-Viisali frequency and N/r is
integrated over the gravity-mode cavity indicated as “gc”. An
example of such a cavity is shown in Fig. A1l in the Appendix.
The asymptotic period spacing of g modes, i.e., the difference
in period between two modes of consecutive radial order, in the
case of a chemically homogeneous, non-magnetic star is defined
in the corotating frame as

Iy
v /ll,m,s .

Depending on the nature of the mode and on the value of the
spin parameter, 4, ,, ¢ can be approximated by simple analyt-
ical expression (cf., Townsend 2003; Saio et al. 2017, Fig. A1).
The spin parameter for the gravito-inertial modes of the stars in
our sample ranges from 1 to 15 (cf., Fig. 2 of Aerts et al. 2017).
Given this broad range, it is not obvious to resort to analytical
approximations for 4; ,, ; in the case of y Dor stars. This moti-
vated Van Reeth et al. (2016) to work with numerical solutions
of the Laplace tidal equation.

Comparison between the measured and theoretically pre-
dicted gravity-mode periods requires the transformation of the
periods to an inertial frame of reference. In the case of a uniform
stellar rotation with frequency f;., the periods of the oscillation
modes in an inertial frame can be computed as

1
Jeo + m frot ’

Peo ~ (ng+(1'g)’ (D

APy = 3

“

Pinert =
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where f;, is the mode frequency in the corotating frame. We
adopt the convention that prograde modes correspond to m > 0.

In the forward modelling applied here, we rely on the ob-
servational estimates of I1y and of f.,; as determined by Van
Reeth et al. (2016, 2018). We are therefore in need to com-
pute the quantity 1) from theoretical stellar evolution models.
The diagnostic power of the Brunt-Viiséli frequency and I1, of
g modes are well known and have already been exploited asteroseis-
mically since ground-based multi-site white dwarf asteroseismol-
ogy (Winget et al. 1991; Brassard et al. 1992). The g modes of these
compact objects have periods of order a few to ten minutes, such
that beating patterns can be covered in observing runs lasting weeks.
Moreover, the rotation period of such stars is of order days, such
that the rotational effect on the pulsation modes can be treated from
a perturbative approach. The models and g modes in white dwarfs
are quite different from those of young stars, hence the parameters
that can be deduced from them, as well as the mode trapping prop-
erties differ accordingly. From an observational point of view, the
application and exploitation of g-mode asteroseismology to core-
hydrogen burning stars had to await long-term uninterrupted Kepler
photometry, given that the modes have periodicities of order days
and beating patterns of years. Moreover, the g modes and rotation
rates in these stars have similar periodicities, such that rotation can-
not be treated perturbatively, except for a few ultra-slow rotators.
This requires dedicated asteroseismic modelling tools suitable to
interpret the measured frequencies. Here, we explore and apply as-
pects of the methodology developed specifically for gravito-inertial
modes by Aerts et al. (2018). We first highlight relevant properties
of the asteroseismic grids upon which we rely and subsequently
exploit the probing power of the three observables (Ily, ., l0og g)-

2.2 Correlations among the stellar model parameters

Van Reeth et al. (2016) computed two extensive grids of non-
rotating stellar modes with the MESA stellar evolution code (17385,
Paxton et al. 2018, and references therein). These models vary in
stellar mass (M4 ), metallicity (Z), diffusive envelope mixing (Dpix,
constant throughout the radiative zone), the extension of the core
overshoot region @y / fov (i.e., for step/exponential overshoot, ex-
pressing the mean free path of a convective fluid element in a ra-
diative region in terms of the local pressure scale height), the initial
(Xini) and normalised central hydrogen content (X! = X¢/Xini)- The
latter is a proxy for the evolutionary stage, hence for the age of the
model. In this paper, these two grids of evolution models were ex-
tended to lower mass compared to Van Reeth et al. (2016) — a lower
limit of 1.2 Mg instead of 1.4 M. For the models with a convective
envelope, we did not consider any undershooting, because this is
not important to assess the probing power of high-order g modes.
In Table 1, an overview is given of the parameters varied across
the two grids and respective step sizes. The efficiency of convec-
tion, in our model grids parameterized by the mixing length
parameter apg T, was kept fixed at 1.8 throughout the grids.
As this was done without further discussion in Van Reeth et al.
(2016), we point out here that this parameter does influence the
three quantities I1y, 7., and log g. This is particularly the case
for the lower-mass stars in the model grids, since these have
the larger convective envelope and are hence affected more by
the treatment of convection than the higher-mass stars. Using
Table 2 from Viani et al. (2018), we made a rough estimate for
the range of the mixing length parameter for the stars in our
sample, resulting in a7 € [1.5, 1.9]. Varying ap T between 1.5
and 1.9, we find that only for the most evolved low-mass stars the
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differences in 1y, 7.4, and log ¢ become comparable to typical
observational uncertainties. We illustrate this in Figs C1 to C3
in Appendix C for a low-mass and high-mass stellar model. We
do stress that o T has a major influence in forward modelling
based on fitting individual gravity-mode frequencies (Aerts et al.
2018, Table 2), but that this dependency plays an inferior role
compared to the other parameters varied in our grids for for-
ward modelling based on I1j.

For the modelling done here, we also transformed to the
parameter X! = X¢/Xini € [0, 1], i.e., to the fraction of the main-
sequence duration, as a proxy for the age, rather than using
X, itself as in Van Reeth et al. (2016). In this way, the span of
X! in the grids is the same for all model tracks ranges from the
Zero-Age Main-Sequence (ZAMS; X! = 1) to the Terminal-Age
Main-Sequence (TAMS; X! = 0). After the onset of core-hydrogen
burning at the ZAMS, a model requires a few iterations to return to
hydrostatic equilibrium and therefore we do not consider any models
with X/ > 0.99. In total, the step overshoot grid contains 1530
evolutionary tracks with 819 774 stellar models and the exponential
overshoot grid contains 2295 evolutionary tracks with 1300590
stellar models.

For each stellar model in the grids, [1; was computed, along
with the effective temperature 7.4 and surface gravity log g, as
well as the mass M. and radius R.. of the convective core.
We refer to Table D1 in Appendix D, where we assembled the
measured values of [1y from Kepler data as determined by Van
Reeth et al. (2018) under the assumption of rigid rotation. For
the stars with both gravito-inertial prograde dipole modes and
Rossby or Yanai modes, these are improved values compared
to those in Van Reeth et al. (2016). The observational estimate
of Iy for all these stars was deduced along with estimation
of the near-core rotation frequency f.,;: from the slope of the
measured period spacing patterns. The relative observational
errors for Iy range from 1 per cent to 10 per cent for the
various sample stars. Below, we compare these observables with
the theoretical predictions for I1y computed for each of the grid
models. We recall explicitly that Van Reeth et al. (2016) carefully
omitted modes that are trapped to estimate Il and fror from the
data (cf., their Figs 4 and 9). These two observed quantities, along
with the mode identification, were derived using the TAR to
compute 4; ,, ; with the pulsation code GYRE (Townsend &
Teitler 2013; Townsend et al. 2018) for each of the models in
the two extensive 6D grids, which cover the relevant parameter
ranges of y Dor stars. In this way, our observational estimation
of I1p and f;o: does not depend on particular choices of these
model parameters.

We recall that mixing in the radiative zone had to be introduced
in addition to core overshooting in models of B-type pulsators to fit
the frequencies of trapped g modes (Moravveji et al. 2015, 2016).
In Fig. 1, the evolution of I as a function of the stellar age is illus-
trated, where either Xjni, Z, aov/ fov Or Dpix is being varied, while
the three remaining parameters are kept fixed, for masses 1.3, 1.6,
and 1.9 M. This gives a good visual representation of the depen-
dencies of [y on these four model parameters in the grids. It can be
seen that there is no unique monotonic relation between mass, age
and I because the core overshooting, metallicity and initial hydro-
gen (in this descending order of importance) do have an effect larger
than the typical measurement uncertainty of Il deduced from the
Kepler light curves (cf., Aerts et al. 2018, for a thorough discussion
of theoretical uncertainties on g-mode frequencies). The envelope
mixing does not influence the period spacing values as much as the
other three parameters. This is entirely as expected, given that the
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Parameter | Lower boundary ~ Upper boundary  Step size
Step overshoot
M, 1.20Mg 2.00Mg 0.05Mp
Z 0.010 0.018 0.004
log Dpix[cm?s™1] -1 0 1
oy 0.01 0.300 0.075
Xini 0.69 0.73 0.02
X! 0 0.99 <0.007
Exponential overshoot
M, 1.20Mg 2.00 Mg 0.05 Mg
Z 0.010 0.018 0.004
log Dpix[cm?s™1] -1 1 1
Jov 0.001 0.0300 0.0075
Xini 0.69 0.73 0.02
X! 0 0.99 <0.007

Table 1. Range of the model grids for which Ily, ¢, and log g have been
computed.

g modes mainly probe the core overshooting, while they are hardly
affected by the envelope mixing. However, the mixing at the inter-
face between the overshoot zone and the bottom of the radiative
envelope is responsible for the details of the mode trapping and has
to be considered when performing frequency fitting as opposed to
matching of the asymptotic period spacing (cf., Moravveji et al.
2016; Van Reeth et al. 2016; Pedersen et al. 2018).

2.3 Linear statistical model for 1,

Following problem set 3 in Aerts et al. (2018), we construct a
statistical model for I1j based on the stellar input parameters
of the model grids by performing a linear multivariate regression,
adopting the following form

o = Bo + Biaov + BaDnix + B3Mx + BaZ + Bs Xini + Be X +€, (5)

where € is the residual and the coefficients 8; are computed ac-
cording to an ordinary least-squares regression,

B=(X"X)'XTY. (6)

Here, Y is a vector with length equal to the number of grid points

i=1,...,q,containing all values of AT ; and
1 Qoy, 1 Dmix, 1 M*, 1 4 Xini, 1 Xc’, 1
I ao2 Dmixa Myn 2 Xiip X[,
X =, . . . . . R @)

1 aovg Dmixg Mxrq Zg Xinig X(;LI

For the step overshoot grid, g = 819 774, while for the exponential
overshoot grid, ¢ = 1300 590.

The residual term € captures the non-linearity in Il as it
occurs in the model grids. We point out that both the coeffi-
cients 3; and € depend on the choices of microphysics that went
into the computation of the stellar models. This concerns opac-
ity tables, the equation of state, nuclear reactions and chemical
mixtures, etc. The effect of these choices on gravity-mode pul-
sation frequencies cannot be represented by a few simple model
parameters, as discussed in detail in Sections 2 to 4 in Aerts
et al. (2018). That paper’s Table 2 also includes a detailed quan-
tification and hierarchical ordering of the effect of the choices
of micro- and macrophysics when performing forward astero-
seismic modelling of MS stars.

The mass and radius of the convective core (denoted as M

Step overshoot

Exponential overshoot

Bo (Offset)  1095.74 + 12.64 1112.30 + 10.05
B (aoy) 2582+3.6 -3076.99 + 30.43
B> (Dmix) 53.0£0.6 -7.70 £0.05

B3 (M) 520.2+2.0 631.0+1.5
B (Z) 32236.60 + 87.77 32201.55 +70.09
Bs (Xini) 456.17 £ 17.74 236.57 + 14.07
B (X0) 26204 +3.4 2716.8+2.7
B (M)  2217629+33.18 21397.18 £25.16
Bs (Rec) 2423695+ 6579 -25246.43 + 50.06

Table 2. Regression coefficients from an ordinary least squares fit for
the best statistical model in Eq. (8) according to the BIC for ITj (s).

Step overshoot

Exponential overshoot

Bo (Offset) 7995.63 +£11.70 7872.1+9.1
B (aov) -393.9+3.3 -6509.54 +27.48
B2 (Dmix) - -0.48 £0.04
B3 (M) 2508.7+1.9 2351.6+14
B4 (Z) -87369.35 + 81.21 -84919.61 £ 63.29
Bs (Xini) -6879.91 £ 16.41 -6606.00 + 12.71
Be (X{) -792.5+3.1 -720.1£2.5
B7 (M) -11630.93 +30.69 -7662.64 £22.72
Bs (Ree) 39468.86 + 60.87 36305.27 £45.21
Table 3. Same as Table 2, but for a linear regression in the form of Eq. (8)
for Te (K).
Step overshoot Exponential overshoot
Bo (Offset) 3.746 +0.002 3.704 +0.002
Bi (ov) -0.2478 +0.0007 -3.577 £0.006
B2 (Dix) -0.0015 £ 0.0001  -0.000560 + 0.000009
B3 (M) -0.2440 + 0.0004 -0.2703 + 0.0003
Ba(Z) -1.22+0.02 -0.61+£0.01
Bs (Xini) 0.506 +0.003 0.543 +0.003
B (X{) -0.0080 + 0.0006 0.0096 + 0.0005
B7 (M) -3.592 +£0.006 -2.825+0.005
Bs (Ree) 10.48 +0.01 10.131 +0.009

Table 4. Same as Table 2, but for a linear regression in the form of Eq. (8)
for log g (g given in cm~'s72).

and R, respectively) follow for every stellar model in the grid
once a value for each of the six input parameters is chosen. Their
computation in our setup comes through the estimation of the
core boundary mixing properties, of which the parameters f,
and Dpix are simple representations. With Eq. 5, we basically
represent the I from the grid models by a multivariate linear
statistical estimation of it, with the aim to have a fast tool to
compute model properties for parameter sets that fall within
the range of those of the grids but do not coincide with an actual
grid point. The fit in Eq.5 also highlights correlations among
the six parameters to keep in mind when trying to fit observed
values of I1j. Since the fit for I1) from Eq. 5 is an approximation,
there is no longer a unique correspondence between the six
input parameters and the values for M. and R for parameter
combinations that do not coincide with a grid model. For this
reason, we also pay specific attention to M. and R..

Some of the models in the grids have a growing convective core
as the hydrogen-burning progresses, while others have a shrinking
convective core, where the transition occurs roughly around a birth
mass of 1.6 Mg (cf., Fig. 3.6 in Aerts et al. 2010). This is illustrated
for our grids of models in Fig.2 in terms of the mass and size of
the convective core. The phenomenon of a shrinking or growing
core lies at the basis of the different correlation structure seen in the

MNRAS 000, 1-14 (2018)
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Figure 1. Evolution of IT; along the main-sequence for changing metallicity, level of core overshooting, initial hydrogen mass fraction and the amount
of mixing in the radiative zone, for a 1.3, 1.6 and 1.9 M, star (lightest colour to darkest). The blue lines correspond to an exponential overshooting
prescription and the red lines to a step overshooting prescription, both of which consider the radiative temperature gradient in the overshoot zone. When a
parameter is not being varied, it is set at Z = 0.014, @,y = 0.225, foy = 0.0225, Dpix = 1.0 cm?s™! and Xipi = 0.71.

different morphologies of the trends for different masses in Fig. 1 in
terms of the stellar mass, because the mode cavities are influenced
by it during the evolution of the star. Moreover, the extent of the
overshoot zone affects the mode trapping and shrinkage or growth
of the convective core is influenced by the core overshooting. A
summary representation of the maximal growth of the convective
core mass during the hydrogen burning, for the entire mass range of
the grids and for the two descriptions of the overshooting, is shown
in Fig. 3. The gain in core mass gradually decreases as the birth
mass increases. It disappears for the most massive stellar models
in our grid, as their convective core never grows, but only shrinks
after birth. Moreover, the evolution of the core mass is strongly
dependent on the value of the overshoot parameter.

The results in Figs 2 and 3 imply that the mass and size of the
convective core correlate with Iy and that the correlation struc-
ture is different for step and exponential overshoot. In order to
investigate these dependencies, we add these two quantities to
the linear regression model,

My =Py + Bi oy + BoDmix + B3Mx + BaZ + BsXini + BeXe

8
+BIM( + B3R + €, ®

where M/, is expressed in terms of M, and R/, is expressed in
terms of Ry. The core boundary is defined by the Ledoux criterion
and we defined the core radius Rcc as the point where the Brunt-
Viisild frequency becomes larger than a small threshold N2 >
10-%rad?s~2. With this set up, we test how a multivariate linear
model can capture the influence of the core mass and size on
IIp. The results are listed in Table 2 for both grids.

We evaluate the capacity of the multivariate linear model
in Eq. (8) by inspecting the square-root of the residual sum of
squares of the fit, averaged over all grid points, denoted here as
V(RSS). We find a value of 252 s for step overshoot and 253 s for
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exponential overshoot. As these 1/(RSS) values are comparable
with typical measurement uncertainties for I1y (Table D1), we
conclude that I1) can generally be well approximated by a mul-
tivariate linear statistical model up to the level of the measure-
ment uncertainties. We do keep in mind that the approximation
works less well near the TAMS, where non-linearity of I is
larger than for the other evolutionary phases (cf., Fig. 1). Non-
linear multivariate regression to approximate I1, (and 7. and
log g further on) is beyond the scope of this paper, but may be
interesting to consider as an improvement of our current work
for future stellar modelling of near-TAMS pulsators.

Both overshooting prescriptions suggest that the amount of
mixing in the radiative zone, Dpjx, has only a modest effect on
Iy, as already reflected in Fig.1 (see also Table 2 in Johnston
et al. (2019)). However, we expect Dp,ix to have some effect on Il
(Van Reeth et al. 2015b) and mainly on the mode trapping, as was
shown from forward modelling of g modes in the Kepler B-type
pulsator KIC 10526294 (Moravveji et al. 2015). For this reason, we
applied the principle of “backward selection”, where one eliminates
one-by-one the least significant S-parameter and test if the simpler
statistical model is more appropriate (cf., Aerts et al. 2014, where
this is explained in more detail and was applied to a similar problem).

A formal way to deduce which statistical model is the more ap-
propriate one is the Bayesian Information Criterion (BIC). Among
many other statistical tests, the BIC corrects for the complexity of
a statistical model by applying a penalty involving the degrees of
freedom (Claeskens & Hjort 2008) rather than just using the RSS
for the model selection. Here, we make an application, using

BIC=¢In (%) + k In(q), ©)

where k is the number of free parameters and ¢ is the number of
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Figure 2. Evolution from near-ZAMS to TAMS of the mass (top panel)
and radius (middle panel) fraction of the convective core for different stellar
masses. The evolution of the absolute radius of the convective core is given
in the bottom panel. The tracks are for Xiyi = 0.71, Z = 0.014, Dpix =
0.1cm?s~! and £, = 0.03.

grid points. Starting with a statistical model described by Eq. (8),
we compute the corresponding S values and their p-value, which is
defined in the case ¢ > k as,

p =2[1-(t)], (10

where ®(|¢]) is the cumulative standard normal distribution, i.e.,
the integral of the standard normal density between —co and |¢]. Its
argument ¢ is inverse of the relative uncertainty on 3, where the
absolute uncertainties are computed by taking the square-root of
the diagonal elements of the variance-covariance matrix

V(B) = (XTX) o2, (11)
in which

2 _ 1 _ T _

ot = —gTn¥ ~ XA - XB) (12)

where for our grids g > k. Next, we compute a new statistical model
where the 3; with the highest p-value from the previous model is
omitted, and the new BIC is evaluated. This process is repeated
until the BIC of the new model is higher than the previous one.
This previous model is then selected to be the optimal statistical
model. We refer the interested reader to Aerts et al. (2018) for more
details on the statistical framework discussed here. For the statistical
models for Iy, none of the parameters can be omitted according to
the BIC criterion.
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Figure 3. The maximum difference in mass fraction of the convective core
as a function of stellar mass for different overshooting prescriptions. For
visibility purposes, the data points corresponding to exponential overshoot
have been shifted by 0.01 M along the abscissa axis.

2.4 Linear statistical model for 7. and log g

For 37 of the y Dor stars with identified dipole modes in the sam-
ple from Van Reeth et al. (2016), a measurement of T.g, log g,
and [M/H] has been obtained from high-resolution spectroscopy.
Uncertainties for [M/H] are large (~100 per cent) (Fig.2 and Ta-
ble 5 in Van Reeth et al. 2015a), but the spectroscopic T and
log g measurements have relative average precisions of ~2 per cent
and ~9 per cent, respectively, for the stars in our sample. As the
relative uncertainties of 7. and log g are comparable with the av-
erage precision on Il (for the stars that have spectroscopic data)
these observables are good candidates to lift part of the degeneracy
between Il and the stellar parameters. For the statistical mod-
els of T, the values of 4/(RSS) are 233 and 229K for step and
exponential overshoot, respectively. For log g, the statistical model

as 4/(RSS) = 0.05 dex for both overshooting prescriptions. For T.g
this is larger than the typical uncertainty on the observed value mea-
sured by Van Reeth et al. (2015a), while for log g it is significantly
better than the observed uncertainties. As shown in Fig. 4, there is
a correlation between ITy and Tog from near-ZAMS (X! ~ 0.99)
to near-TAMS (X! ~ 0). Again, we vary either Xini, Z, aoy/ fov or
Dnix while keeping the other parameters fixed and do this for 1.3,
1.6 and 1.9 Me.

Analogous to the procedure developed for Il above, we
searched for an optimal linear multivariate regression model for
T and log g. Again, we start with a statistical model as described
in Eq. (8) and perform backward selection to see if any redundant
parameters can be eliminated, by minimizing the BIC. For expo-
nential overshoot we find that Dpyix has little effect on T, but BIC
increases when this parameter is not taken into account, suggesting
it is not a redundant parameter. In the case of step overshoot, a
decrease in BIC of suggests the model without Dy is statistically
favoured. The results of these linear regressions for T, are listed in

MNRAS 000, 1-14 (2018)
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Figure 4. Correlation between the effective temperature 7. and I1j along the main-sequence (starting at X, = 0.99) for changing metallicity, level
of core overshooting, initial hydrogen mass fraction and level of mixing in the radiative zone, for a 1.3 M (lightest colours), 1.6 My and 1.9 Mo
(darkest colours) star. The blue lines correspond to an exponential overshooting prescription and the red lines to step overshooting prescription, both of
which consider the radiative temperature gradient in the overshoot zone. When a parameter is not being varied, it is set at the values Xjn; = 0.71, Z = 0.014,
Dix = 1.0cm? 57!, @y = 0.225 and Jfov = 0.0225. Both axis have been inverted as to emulate an HR diagram, where the main-sequence stars evolve upwards.
The rapid change in ITj at constant Teg seen in the tracks of the 1.3 Mg models results from the transition from pre-MS to the MS. These models are already

on the MS track and are burning hydrogen in their convective cores.

Table 3. For the statistical models of log g, we find that none of the
parameters may be omitted according to the BIC (Table 4).

3 COMPARING THE TWO OVERSHOOTING
PRESCRIPTIONS

A major uncertainty in evolution theory of star born with a convec-
tive core is the efficiency of the mixing inside the core overshoot
region. This translates into the question of the functional prescrip-
tion of the overshooting. It was recently shown that g modes have
the potential to unravel the most appropriate shape, or at least to
discriminate between an exponential and a step overshooting pre-
scription (Pedersen et al. 2018).

Here, we compare theoretical models with step versus expo-
nential overshooting prescriptions for the mass range of the y Dor
stars to test if we can make a distinction between our two grids of
models. We do this by applying the method of parameter estimation
and model selection described in Aerts et al. (2018, problem 2). For
both overshooting prescriptions, we chose a benchmark model from
one grid and fit its Ilj, effective temperature and surface gravity
to the models in the other grid. Adopting the notations in Aerts
et al. (2018), we use the subscript to indicate the “observational”
values (BM) and a superscript to distinguish between a step (s) and
an exponential (e) overshooting prescription. We then compute the
optimal (independent) parameters

00 = (M*, Xc,, a’ov/fov’ Z, Xinis Dmix)» (13)

MNRAS 000, 1-14 (2018)

for both benchmark models according to

© _ .o (3@ _ 6\ (5@ (v _ 3

o e (v v (7] ()] oo
00 — aremin | (v® —y@\ (36 (y© _y© s
o =azmin| (V7 -¥0) (V) (v -vg) [ a9
where the index i = 1,...,819 774 runs over all stellar models in

the grid with the exponential overshooting prescription and the
index j = 1,...,1300590 runs over all models in the grid with
the step overshooting prescription (superscript on 6¢ indicates
the corresponding grid) and

AHU/J-
Yi/i =| Tett,iy; (16)
log g;/;
Moreover, we define the matrix
1 & _ o
V(Y):q,_IZ(Yk—Y)(Yk—Y) : (17)
k=1

taking into account the variance across the grid, where Y is the
mean value of Y in the grid. We choose eight benchmark mod-
els; a young low-mass star, an old low-mass star, a young high-
mass star and an old high-mass star, with Z = 0.014, Xj,; = 0.71,
@ov(foy) = 0.15(0.015) and Dpix = 1.0em?s~!, all for both over-
shooting prescriptions. In Table 5 we list the maximum likelihood
estimate (MLE) from using an incorrect overshooting prescription
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Figure 5. Difference between Ilp in the step overshoot grid (H(()S)) and

the exponential overshoot grid (H(()e)), for pairs of models with the same
parameters My, X/, Dmix. Z, Xini, varied across the grid. An agy in one
grid corresponds to 10f;y in the other grid. The pairs of models are equally
distributed across both grids and are arbitrarily labelled from 1 to 3541.
When M, > 1.4 Mg the maximum difference is comparable with a typical
observational uncertainty on ITy. For visual aid, a dashed line is plotted at

zero difference. )
predominantly

for each of these eight benchmark models. se models,
the resulting 6 from fitting (ITo, Teg, log g) does not change
tically, compared to the step size of the grids for M, and X/. The
grids contain too few points in the other parameters to draw a con-
clusion on how robust the MLE is for these parameters. However,
even though there is scatter in oy / fovs Dmix, Z and Xjyj, similar
masses and age-proxies are found.

Furthermore, we note that for aoy = 10foy, the MLE agrees
well with the input parameters (see Fig. 5). This scaling with a
factor 10 between aoy and foy is a commonly used rule-of-thumb
when comparing step overshoot and exponential overshoot. In Fig. 5,
the difference in Il is plotted between two models, each from a
different grid, that have the same parameters (X! within 0.001)
where aoy = 10foy. This scaling rule does give similar values for
[y within the parameter space of y Dor stars, compared to typical
uncertainties on this seismic parameter, as the difference is less
than 60 s for masses above 1.4 M. The deviation between the two
grids at the lower masses is a result from the fact that this factor
10 is not exact and also mass dependent (11.36 + 0.22 was found
by Claret & Torres 2017). We stress that our inability to distinguish
between step and exponential overshooting from the MLE is due to
the coarseness of the grids (Table 1), as this determines how well
Y (©b%) can be matched in the other grid. This can be seen in the last
three columns of Table 5.

4 PARAMETER ESTIMATION FROM I, 7.¢, AND log g

We aim to test the feasibility of estimating (some of) the six param-
eters in the two grids for all y Dor stars in the sample of Van Reeth
et al. (2016) with 1y deduced from prograde dipole modes in an
automated way. We recall that these measured values of 1y were de-
rived along with estimation of the near-core rotation frequency (Van
Reeth et al. 2016, 2018). Our aim is to test if [1g, along with spectro-
scopic measurements of Tog and log g are sufficient to estimate My,
X!, a@ov/ fov, and possibly Z, Xini and/or Dpyix from an ensemble of
v Dor stars (see Fig. 6, illustrating the 2D projected 1o errors on the

observed parameters of each star). We use an automated grid-based
approach, keeping in mind the uncertainties of individual theoret-
ically computed g-mode frequencies due to unknown aspects of
the input physics of the stellar models, as assessed by Aerts et al.
(2018). These authors describe a new method for forward seismic
modelling, where the correlation between the observables is taken
into account. This method is based on the Mahalanobis distance
which is defined in our 3D case as

.
Dy = (Y]ﬁ‘h) - Y(OW) A+V)! (Yj(‘h) - Y(Obs)) . a8)

The matrix A = diag(o-2 ,02 o2 ) takes the uncertainties of
o> " Te” ~log g

the observed quantities into account and the (co-)variance matrix

V is computed according Eq. (17) for both grids.

We first get MLEs for all stars in our sample for which
spectroscopic data is available by minimizing the Mahalanobis
distance across each of the grids. As has already been demonstrated
with the statistical models presented in Section 2, some parameters
are more strongly correlated with the observables than others. We
therefore assess whether it is possible to reduce the dimension
of our forward modelling problem from a principal component
analysis (PCA). For each star, the best 10 per cent of the models
is selected and the basis of this 6D solution space is redefined
in terms of its principal components (PCs). These PCs are the
eigenvectors of the correlation matrix and the corresponding
normalised eigenvalues give the percentages of the total variance
is captured by each PC. As a rule-of-thumb, the number of PCs
selected is mber of PCs which is needed to describe at least
80 per cent of the tota iance (Jolliffe 2002). In this way, we find
that four PCs are sufficient for all the rs in the sample.

The PCs that can be dropped are dominantly connected
with Dpnix and Xj,i. Therefore, we wish to remove these two
parameters from the grid to reduce the dimensionality, by fixing
a value for them. In order to assign the most appropriate fixed
value, we consider each of the six combinations of these two
parameters available in the grids and determine the MLE for all
stars in our sample. For the four estimated parameters, the average
standard deviations between these six MLEs is found to be (o, ) =
0.06 Mg, (ox,) = 0.02, {0, = 0.061 and {(oz) = 0.001, for step
overshoot. For exponential overshoot, (oas, ) = 0.06 M, (ox,) =

0.03, {o,) = 0.062 and {oz) = 0.001. Based on these values, we

argue that Dpyix and Xjpi can be set to the fixed values 1.0 cm?s7!

and 0.71, respectively.

The results of the parameters estimations from MLE are listed
in Table D1 for both overshooting prescriptions. The corresponding
fractional mass and fractional radius of the convective core of the
best model are also listed. For My, X/, M/ and R/ (fractional mass
and radius of the convective core), the grid is comprised of a suffi-
ciently large number of points to make a comparison. However, for
these parameters there is no obvious discrepancy reported between
the two overshooting prescriptions for any given star.

The relation between the near-core rotation frequency fror and
the evolutionary state of the stars in our sample has previously
been investigated by Aerts et al. (2017, their Fig. 1), where the
spectroscopic log g was used as a proxy for the evolutionary stage.
In Fig.7, log g is replaced by the MLE of X/ for both overshooting
prescriptions. We colour-code for the measured near-core rotation
rate, for which the relative uncertainty is typically a few per cent.
From these more precise estimates of the proxy for stellar age, the
data reveal that the cores of intermediate-mass A and F stars spin
down as the stars evolve.

MNRAS 000, 1-14 (2018)
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M. Mol X!  aw fov Dpnix[em—2s71] Z  Xmi Iols] TeglK] logg

BM 1.30 090 0.150 - 1.0 0.014 0.71 4327 6669 4.33
GRID 1.35 0.92 - 0.0075 10.0 0.014 0.73 4330 6678 4.33
BM 1.30 0.90 - 0.0150 1.0 0.014 0.71 4352 6669 4.33
GRID 1.25 0.88 0.225 - 1.0 0.014  0.69 4343 6657 4.33
BM 1.30 0.10 0.150 - 1.0 0.014 0.71 3140 6158 4.04
GRID 1.35 0.10 - 0.0010 10.0 0.018 0.69 3147 6186 4.04
BM 1.30 0.10 - 0.0150 1.0 0.014 0.71 3182 6104 4.01
GRID 1.25 0.10 0.225 - 1.0 0.014  0.69 3179 6099 4.02
BM 2.00 090 0.150 - 1.0 0.014 0.71 5551 9217 4.29
GRID 2.00 0.90 - 0.0150 0.1 0.014 0.71 5535 9216 4.29
BM 2.00 0.90 - 0.0150 1.0 0.014 0.71 5531 9218 4.29
GRID 2.00 090 0.150 - 1.0 0.014 0.71 5551 9217 4.29
BM 2.00 0.10 0.150 - 1.0 0.014 0.71 4172 7100 3.69
GRID 1.80 0.17 - 0.0225 10.0 0.010 0.71 4166 7088 3.69
BM 2.00 0.10 - 0.0150 1.0 0.014 0.71 4210 6957 3.64
GRID 1.90 0.14  0.300 - 1.0 0.010 0.73 4221 6979 3.63

9

Table 5. The MLE:s for eight different benchmark models (BM) using a grid with the incorrect overshooting prescription, i.e., step overshoot models are fitted
to an exponential overshoot grid and vice versa.
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Figure 6. 2D projected 10~ error boxes of the observable (Ily, 7., log g) for the 37 stars in our sample for which spectroscopic measurements are

available.

Ouazzani et al. (2018) report that faster rotators are less mas-
sive and younger than the slow rotators. This is consistent with
our findings that the two aforementioned faster rotating near-ZAMS
stars are less massive than the slower rotating stars with roughly the
same X/, as shown in the top row of Fig. 7. As the y Dor instability
region is relatively small (Bouabid et al. 2013), it is possible for stars

MNRAS 000, 1-14 (2018)

to be born on the ZAMS outside of the instability region and later
evolve into it, and vice versa. Therefore, it is expected that high-
mass y Dor stars are slow rotators since they are closer to the TAMS
than low-mass stars. Yet, the fact we do not observe any evolved fast
rotators might also be caused by an observational selection bias,
because the structure of a TAMS star combined with fast rotation
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creates a dense, and typically unresolvable spectrum of pulsation
modes (e.g., Buysschaert et al. (2018)). Nevertheless, the fact that
the fastest rotators in our sample are all found to be relatively
young suggests that the transport of angular momentum from
the core to the envelope must be efficient already early on in the
stellar evolution. Given that the convective core size decreases
as the star evolves (cf., Fig. 2), our findings suggest that the ef-
ficiency of angular momentum transport is determined by the
convective core size/mass.

In the second row of Fig. 7 we plot the MLEs of the overshoot
versus X/ and colour-code by the rotation rate to investigate if a
higher overshooting estimate corresponds with faster rotation at
the interface of the convective core and the radiative envelope.
For both overshooting prescriptions, the MLE of the overshoot-
ing shows no correlation between the level of mixing prescribed
as core overshooting and the near-core rotation frequency. This
result is complementary to the conclusion by Aerts et al. (2014)
that the surface nitrogen excess of a sample of OB stars, which
demands efficient mixing in the stellar envelope, is not corre-
lated with their surface rotation frequency but rather with the
frequency of the pressure mode with dominant amplitude. Tak-
ing the results of both studies together suggest that some sort
of pulsational mixing (e.g., as in Rogers & McElwaine 2017)
rather than rotational mixing might be active in stars with a
convective core and a radiative envelope.

In the last two rows of Fig. 7 the fractional mass and radius of
the convective core are placed on the ordinate axis. We see that
estimation of the convective core mass and size is well achieved,
despite the absence of predictive power for the core overshoot
parameter. This is the same conclusion as found by Johnston
et al. (2019) for three gravity-mode pulsators in close binaries
and points to a strong probing power of dipole gravity modes
(through I1j) to assess convective core properties. When we com-
pare the four stars closest to ZAMS, we notice that the two stars
with a lower fior have more massive and larger convective cores
than the two faster rotating stars. However, the overlapping confi-
dence intervals do not allow us to claim a significant dichotomy
with certainty.

5 CONFIDENCE INTERVALS FROM ENSEMBLE
MODELLING

Determining uncertainty intervals from the distributions of the Ma-
halanobis distance of each individual star (Aerts et al. 2018; problem
1) is not meaningful because of the large span of these intervals in
the grids. This should not come as a surprise, given that one is then
determining an estimator based on a single star, i.e., a sample of size
one. A convenient way to deal with this consists of considering the
sample of § = 37 as an ensemble. This is taken to mean a collection
of stars that, while having star-specific characteristics and hence
parameters 6, makes up a sufficiently ‘natural’ family fulfilling the
same underlying theory of stellar structure.

Evidently, when a sample of size S is available, the average
of the parameters 6, say 6, can be estimated much more precisely
than the parameter of an individual star. If we think of a given star
parameter @ as being decomposed into 85 = 6 + ¢, with £ the
star-specific deviation around 6, then we can use the precision of 9,

the MLE, as a measure of precision for the entire sample. Precisely,
we write the likelihood for the entire sample as:

S

1
L= | G

s=1

exp {—% [Y5(05) - Yﬁ]T vy [¥5(65) - Y;k‘]}’

19)

with P = dim(Y). In our application, S = 37 and P = 3. The kernel
of the log-likelihood is:

t=-

N =

S S
! vy _y?
;mlm zg[mos) AN ACHES M
(20)

Consider now the deviance function for the kth component of 6:

S
D(h) = _Z [Ys(05) - Vi) T Vil [Ys(8s) - Y] @21
=1

Y
- i [Fa@) - vi] vt e - v,

s=1

with 0§k’h) = 0O, except in the kth component, where we put

(kh)
gs,k =
search for both the negative and positive & values, say hy, and Ay,
that satisfy D(hp) = D(hy) = 3.84 which is the critical value of
the )(12 distribution. When making use of a sufficiently fine grid,
those grid points can be chosen that satisfy the above requirement
sufficiently well. The corresponding confidence interval is:

Os.x + h, where h is a (discrete) perturbation. We then

[6s.k + hL; 05k + hul.

Because the likelihood ratio is not based on a quadratic approxima-
tion, the interval is not necessarily symmetric, but it will be more
symmetric in larger samples. In Appendix B, the deviance function
is plotted as a function of the four parameters we have estimated.
The grid is quite coarse for overshoot and Z to properly sample
D(h), hence we stay on the conservative side and pick the values of
hr, and hy as the smallest discrete values for which the deviance
function is larger than 3.84. For X/, the confidence interval may,
statistically seen, contain unphysical values and therefore we trun-
cate the interval at the edge of the grid. The confidence interval of
the overshoot is only truncated at the lower edge of the grid. for
both overshoot grids we were not able to determine /; for our
ensemble, therefore the lower limit on a,, and on f,, is always
the lowest value in the respective grid. In Appendix B, the sam-
pling of D(h) is shown for the four parameters that estimated from
the the MLE. This yields uncertainties of 0.1 Mg on My, 0.004 on
Z (in these cases symmetric), all rounded to the nearest step in the
respective grids and 0.12 and 0.10 on X/ for the lower and upper
uncertainties, respectively. The uncertainties on M/, and R/ are
defined as the minimum and maximum values found in the models
that lay within the confidence intervals of the estimated parameters.

6 DISCUSSION & CONCLUSIONS

In this paper we have explored the power of I1j estimated from pro-
grade dipole gravito-inertial modes, combined with spectroscopic
measurements of the effective temperature and surface gravity to

MNRAS 000, 1-14 (2018)
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Figure 7. Top to bottom: MLEs for X/ versus mass, overshoot, convective core mass and convective core radius, colour-coded by the measured near-core
rotation frequency from Van Reeth et al. (2016), for all 37 stars in our sample. Left column: Step overshoot. Right column: Exponential overshoot. Stars that
have observed Rossby or Yanai modes in addition to gravito-inertial prograde dipole modes are plotted as triangles.
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perform asteroseismic modelling of y Dor stars, which have a
well-developed convective core. We devised recipes relating the
most important fundamental stellar parameters to these three ob-
servables, from multivariate linear regression. Such linear recipes
have a proper capacity with respect to the measurement errors.
The recipes are advantageous in the forward modelling of y Dor
stars, as they imply a huge decrease in computation time while
still providing good constraints for the stellar parameters in the
high-dimensional parameter space. The method of backward se-
lection based on the BIC reveals that, among the mass, metallicity,
central and initial hydrogen mass fraction, mass and size of the
convective core and the amount of mixing in the radiative zone,
only the latter can be ignored in the linear recipes. Earlier it was
found that fitting frequencies of individual trapped gravity modes
does require extra mixing in the radiative envelope (Moravveji et al.
2015, 2016; Schmid & Aerts 2016).

The forward modelling of y Dor stars is a cumbersome task if
the aim is to achieve stellar parameters with a relative precision
of 10% or better. This can only be reached when I, 7.4, and
log g are measured with high precision. This problem is illustrated
in Fig.6 where the 2D projected 1o error boxes for Y (D) are
plotted for all 37 stars in our sample. Even though we use high-
precision spectroscopy here, the error boxes are still relatively large
due to the correlated nature of the three observables.

This work contains the first asteroseismic forward mod-
elling of y Dor stars as an ensemble, using the Mahalanobis
distance as described in Aerts et al. (2018). With this method,
we assume the sample stars to adhere to a single underlying stel-
lar evolution theory and that each star with its own parameters
can be seen as a deviation of an “average” star in the ensemble
to derive meaningful uncertainties to go along with the MLEs
of My, X!, aov/fovs Z, as well as the mass and radius of the
convective core for the 37 y Dor stars in our sample. From PCA
it was concluded that the dimensionality of this problem could be
reduced to a 4D problem when fitting (ITy, 7.4, log g), by fixing
Xini and Dpix. For My and X/ we find in general consistent results
between a step and an exponential overshooting prescription.

We have demonstrated that linear statistical models are able
to capture the correlated nature of Iy, 7. and logg on the
one hand, and the fundamental stellar parameters on the other
hand, up to the level of the measurement uncertainties. This
finding allows us to use recipes rather than having to com-
pute dense stellar model grids when fitting the observables
(g, Tefr, log g) for future applications to additional y Dor stars.

Future work will involve the addition of Xjui, Dmix and apmrT
in the modelling of the morphology of the period spacing patterns
for all y Dor stars with suitable mode detection and spectroscopy,
rather than just I1y. Especially the mixing profile in the radiative
zone cannot be constrained with the observables in this paper, but
does have a large effect on the morphology of the period spacing
pattern. The dips in the pattern caused by mode-trapping decrease
when the mixing efficiency increases as this process washes out the
chemical gradient and therefore reduces the effect of mode trapping,
as shown in B-type stars (Moravveji et al. 2015). As computing the
individual theoretical frequencies is a more computationally de-
manding exercise, the MLEs of My, X/, aov/ fov and Z presented
in this paper provide a starting point for refined modelling to esti-
mate Dpix(r). The ongoing NASA TESS (Ricker et al. 2015) and
upcoming ESA PLATO (Rauer et al. 2014) space missions will de-
liver many new g-mode pulsators covering a mass range of 1.2 to
~20 M. Therefore, the similar analysis of potentially thousands of
new g-mode pulsators and its extension to include binary star infor-

mation (e.g., Johnston et al. 2019) with the next generation of space
telescopes will provide an improved insight of stellar structure and
evolution of stars with convective cores across the HR diagram.
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APPENDIX A: MODE CAVITIES IN A TYPICAL y DOR
STELLAR MODEL

Here, we show an example of the mode cavities of the gravity
(g) modes and pressure (p) modes in a y Dor star.

APPENDIX B: DEVIANCE FUNCTIONS

Below we show the behaviour of the deviance functions used for
determining the confidence intervals from ensemble modelling as
described in Section 5.
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Figure A1. Mode cavities of the g modes (green) and p modes (grey) in
a 1.8 M star at X! = 0.4 for (I, m) = (1, 1). The mode frequencies w,, ||
were computed with GYRE, adopting the TAR for a uniform rotation
at 20 per cent of the critical rotation velocity in the Roche formalism.
The dashed lines are placed at the mode frequencies and the black dots
mark the position of the radial nodes of each mode. The solid black line
is the Brunt-Viisila frequency, the dotted line is the dipole-mode Lamb
frequency S;_;. The effect of rotation is only taken into account in the
computation of the mode frequencies and not in the equilibrium model
(Aerts et al. 2018, for a thorough justification of such an approach in
gravity-mode asteroseismology). The position of some of the nodes for
the low-order modes is subject to avoided crossings (see Chapter 11 in
Smeyers & Van Hoolst 2010, for a thorough mathematical description
of this phenomenon and numerical examples).
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Figure B1. deviance function D(h), where h is a “perturbation” in M, of
the best model. The dashed grey line at 3.84 indicates the critical value of
the )(12 distribution.

APPENDIX C: INFLUENCE OF THE MIXING LENGTH
PARAMETER

In this appendix we present the differences in the theoretical pre-
diction of Iy, Teg, and log g caused by the use of a different value
of appt in the computation of stellar models for a high-mass and
low-mass y Dor star.
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Figure B3. Same as Fig. B1, but for overshoot.

APPENDIX D: MAXIMUM LIKELIHOOD ESTIMATES
OF THE STELLAR PARAMETERS

Below we present the maximum likelihood estimates described in
Sections 4 and 5 for each of the five stellar parameters estimated for
all the 37 stars in our sample, along with the observed value of I.

This paper has been typeset from a TEX/IXTEX file prepared by the author.
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Figure C1. Evolution of Il for different values of the mixing length pa-
rameter apt. The average uncertainty on Il (in grey) for the stars in our
sample is also plotted for comparison.
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KIC ID 0] Ma[Mo] X! Qoy Fov z M/ Moy Rec/Ry
KIC2710594 4301 *173 2.00 0.14 *3-19  0.075 #3139 - 0.018  0.082 3913 0.049 *3-011
1.65 0.29 *3-19 - 0.0300 *8-0130  0.010  0.104 *3-014  0.053 +3-029
KIC3448365 4237 53! 1.55 0.49 *0-19 0.150 £-130 - 0.014  0.1033-33¢  0.073 -39
160 043019 - 0.0075 *0:0150 0,014 0.100 *0-02L  0.070 *9-01
KIC4846809 4144 *1%8 1.50 048 70-19  0.225+3-13¢ - 0.010  0.109 *3-917  0.074 *J-J11
1.50 0.47 *3-19 - 0.0150 *8-0120  0.010  0.106 *3-923  0.073 +3-01}
KIC5114382 4315139 1.50 0.74 2319 0.150 #3130 - 0.014  0.104 #3-02>  0.088 *-014
150 0724019 - 0.0075 *§-9150  0.014  0.099 *3-028 0,086 +9-014
KIC5522154 4738 +3] 1.50 0.74 319 0.300 +3-139 - 0.018  0.112 *-911 0.089 *3-092
1.50 0.75 *3-19 - 0.0300 *3-0130  0.018  0.116 £3-019  0.090 £-319
KIC5708550 4709 *337 1.70 0.47 +0-19 0.225 £0-13¢ - 0.018  0.11073-02  0.071 -3
170 0.50+3-19 - 0.0225 *0:0150 0,018  0.115*0-015 0,072 +0-013
KIC5788623 3960 *§75 1.40 0.66 *J-19  0.150 +3-139 - 0.010  0.098 *3-028  0.084 *J-01¢
1.40 0.64 +9-19 - 0.0075 *3:013  0.010  0.0923-032  0.081 £J-314
KIC6468146 4243 *136 1.80 0.21 2319 0300 +3-139 - 0.010  0.096 *-012  0.049 3-029
185 018019 - 0.0225 *0:0150 0,010  0.094 *0-018 0,047 +0-019
KIC6468987 4591 *10 1.75 0.44 019 0.075 #3130 - 0.018  0.103 *-015  0.071 *J-919
1.60 0.55 *3-19 - 0.0300 ¥3:0130  0.014  0.1223-012  0.076 *J:013
KIC6678174 4766 100} 1.95 0.29 73-19 0225 #3139 - 0.018  0.100 *3-18  0.056 *3-913
2.00 0.25 *3-19 - 0.0150 *8-0130  0.018  0.096 *3-817  0.053 +3-914
KIC6935014 4497 *438 1.60 0.51 7319 0.300 +3-139 - 0.014  0.1153-012  0.074 *J-012
160 0513 - 002254850 0014 0.115:481 0073 413
KIC6953103 5035 *$53 1.55 0.99 73-9  0.300 +3-139 - 0.018  0.110 *3-318  0.104 *-096
1.55 0.99 *3-9 - 0.0300 *3-0130  0.018  0.111 *3-913  0.105 *3-99¢
KIC7023122 4780 %3] 1.65 0.73 #9019 0.150 £-139 - 0.018  0.116 3-020  0.091 £J-013
165 074518 - 00150 3813 0018 0.119 7420 0,002 *413
KIC7365537 4723 42 1.35 0.99 *0-9 0225 +3-13¢ - 0.010  0.091 *3-928  0.101 *J-94¢
1.35 0.99 *3-9 - 0.0225 +8-0190  0.010  0.094 +3-928  0.102 +3-919
KIC7380501 4045 233 1.95 0.12 #8019 0.010 -39 - 0.018  0.077 £3-014  0.049 *J-598
195 0.11#19 - 0.0010 *0-0150 0,018 0.076 *-015  0.048 +9-008
KIC7434470 4271 *]1 1.45 0.71 2319 0.150 +3-139 - 0.014  0.097 *3-926  0.085 *J-9!3
1.45 0.72 *3-19 - 0.0150 *8-0130  0.014  0.101 *3-92¢  0.086 *3-913
KIC7583663 4240 *130 1.55 0.51 819 0.150 £J-130 - 0.014  0.104 #3-021  0.074 *J-919
155 049 #0-19 - 0.0075 *0:0150 0,014 0.100 *0-923  0.073 *9-019
KIC7939065 4243 +37 1.60 0.51 319 0.010 +3- 139 - 0.014  0.097 *3-222  0.076 *J-319
1.45 0.58 *3-19 - 0.0300 *8-0130  0.010  0.121 *3-811 0.081 +3-912
KIC8364249 4370 135 1.75 0.36 23-19  0.010 #3339 - 0.018  0.094*3-017  0.067 £J-0%
1.60 046019 - 0.0150 #0910 0.014  0.107 +0-921  0.070 *9-011
KIC8375138 4151 *%3 1.45 0.47 %319 0.300 +3-139 - 0.010  0.110 *3-912  0.072 *J-912
1.45 0.51 *3-19 - 0.0300 *3-0130  0.010  0.117 *3-012  0.074 +3-912

15

Table D1. MLE for each star in our sample, based on the model grids. The confidence intervals were derived from treating the sample as an ensemble. The
uncertainty on M, and Z are 0.1 Mg and 0.004, respectively. When the confidence interval of X/ or oy /fov extends beyond physical values, it is truncated at
the edge of grid as is explained in Section 5. Uncertainties on the mass and size of the convective core are derived from the extreme values from the models
that lay within the confidence intervals of the estimated parameters. Stars in italic have Rossby or Yanai modes. The second column lists the observed values
of I1p computed by Van Reeth et al. (2018).
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KICID o[s] My [Mo ] X! Qov Jov z Mee/Mx Ree/Rx
KIC8645874 4525 *14 2.00 022319 0.075 #3122 - 0.018  0.090 *8-912  0.055 #3-919
1.85 0.28 73-19 - 0.0150 *3-0130  0.014  0.099 *3-920  0.057 £3-913
KIC8836473 4101 +{}! 1.80 023319 0.010 *J-429 - 0.014  0.087 *3-7  0.058 #3-09
160 033%0:19 - 0.0150 *0:-9130 0,010  0.100*9-921  0.063 *0-014
KIC9480469 4581 +112 1.55 0.66 *3-19  0.300 *J-139 - 0.014  0.121 *8-911  0.086 *3-012
1.65 0.65 *3-19 - 0.0010 *3-0130  0.018  0.103 *3-923  0.084 *J-012
KIC9595743 4313 +136 1.60 0.51 3319 0.075 £3-329 - 0.014  0.102 *3-317 0.076 £3-910
160 052%0:19 - 0.0075 *0-0150 0,014 0.105*9-923  0.077 +9-019
KIC9751996 4364 *7 1.80 027 5319 0.150 #3139 - 0.014  0.094 *8-018 ~ 0.057 £3-013
1.95 0.20 73-19 - 0.0010 *3-0130  0.018  0.086 *3-91¢  0.055 *3-0%8
KIC10467146 4158 *3%9 1.75 0.1973-19  0.225 #3-13¢ - 0.010  0.090 *8-918  0.049 #3-017
1.95 0.13 719 - 0.0075 *0-0150 0,014  0.081 *0-018  0.047 +0-012
KIC11080103 4752 +1243 1.60 0.88 7319 0.150 ¥J-139 - 0.018  0.109 *8-02¢  0.098 +3-012
1.60 0.88 73-19 - 0.0150 ¥3:8120  0.018  0.112*J-933  0.098 +J-913
KIC11099031 5035 *14} 1.60 0.51 73-19 0300 *J-139 - 0.018  0.112*8-31L 0.073 £3-011
160 053%0:19 - 0.0300 09150 0,018  0.116*9-011 0,073 +0:012
KIC11294808 3917 *423 1.85 0.12 319 0.075 #3422 - 0.014  0.078 3014 0.047 +3-911
1.70 0.17 73-19 - 0.0150 *3-9130  0.010  0.086 *3-920  0.048 *3-01>
KIC11456474 3974 *334 1.50 038 73-19  0.225 #3-13¢ - 0.010  0.101 *8-91¢  0.065 *3-912
1.50 0.37 2319 - 0.0150 *3-0130  0.010  0.099 *8-922  0.065 *J-912
KIC11721304 4356 +%8 1.55 0.59 7319 0.150 ¥J-139 - 0.014  0.108 *8-922  0.081 *3-91)
1.55 0.61 £3-19 - 0.0150 *3-0130  0.014  0.112 8922 0.082 £3-911
KIC11754232 4426 38 1.70 0.43 73-19 0.075 #3122 - 0.014  0.102 *8-916  0.071 £3-011
1.70 0.44 73-19 - 0.0075 *3-9130  0.014  0.105 +3-921  0.072 *3-91
KIC11826272 4172 *4}9 1.60 0307319 0.300 *J-139 - 0.010  0.101 *8-313  0.057 £3-917
1.75 0.25 +0-19 - 0.0075 ¥3:9120  0.014  0.090 £3-912  0.056 *J:512
KIC11907454 4203 +39 1.45 0.69 *3-19  0.075 #3122 - 0.014  0.088 *8-023  0.082 *3-012
1.45 0.70 £3-19 - 0.0075 *3-0130  0.014  0.091 *3-330  0.083 £J-914
KIC11917550 4101 *3}} 1.55 0.48+3-19 0.010 #3-330 - 0.014  0.092*3-023  0.073 £0-009
1.55 0.49 7019 - 0.0010 *0-0150 0,014 0.093 *3-24  0.073 *3-9%
KIC11920505 4214 +3¢8 1.55 0.55 319 0.010 #3439 - 0.014  0.094 +8-024  0.077 £3-011
1.55 0.56 73-19 - 0.0010 *3-0130  0.014  0.096 *3-92¢  0.078 £3-01}
KICI12066947 4185 *+38 1.40 0.94 73-9  0.010 *J-§39 - 0.010  0.065*3-046  0.087 *J-020
140 0947093 - 0.0010 ¥0-0150 0,010 0.068 *-047  0.088 *0-021

Table D1 - continued
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Figure C2. Evolution of T.g for different values of the mixing length pa-
rameter apr. The average uncertainty on Teg (in grey) for the stars in our
sample is also plotted for comparison.
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Figure C3. Evolution of log g for different values of the mixing length
parameter apr. The average uncertainty on log g (in grey) for the stars in
our sample is also plotted for comparison.
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