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ABSTRACT
Clustered count data are commonly analysed by the generalized linear mixed model
(GLMM). Here, the correlation due to clustering and some overdispersion is captured
by the inclusion of cluster-specific normally distributed random effects. In some
cases, the model does not capture the variability completely. Therefore, the GLMM
can be extended by including a set of gamma random effects. Routinely, the GLMM
is fitted by maximising the marginal likelihood. However, the whole maximisation
process is computationally intensive. Although feasible with medium to large data,
it can be too time-consuming or computationally intractable with very large data
(overall sample and/or cluster size). Therefore, a less computationally intensive two-
stage estimator for correlated, overdispersed count data is proposed. It is rooted in
the pseudo-likelihood split-sample methodology. Based on a simulation study, it
shows good statistical properties. Furthermore, it is computationally much faster
than the full maximum likelihood estimator. The approach is illustrated using a
large dataset belonging to a network of Belgian general practices.

KEYWORDS
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1. Introduction

The analysis of count data, also referred to Poisson data, is commonly encountered
in many fields, e.g., in a medical study, one may be interested in the weekly number
of seizures of epileptic patients. Furthermore, the observations may be collected from
structured units, e.g., repeated measures of the same individual or patients nested in
hospitals, leading to clustered data. The Poisson as distribution belongs to the expo-
nential family, the analysis of clustered count data is frequently done using generalized
linear mixed models (GLMM; [1]; [2]), which is a direct extension of the generalized
linear model (GLM; [3]) and the linear mixed model (LMM; [4]; [5]). In the GLMM
framework, we assume that conditionally on the normally distributed subject-specific
random effects, the outcomes are independent and their distribution belongs to the
exponential family. The main idea of including these random effects is to address cor-
relation and some variability due to clustering. Nevertheless, in practice, the model
can be too restrictive and may not completely capture the variability.

In the GLM framework, the variance is a deterministic function of the mean. In
particular, for the Poisson model, the variance is equal to the mean. However, the vari-
ance of observed count data is often larger (overdispersion) and occasionally smaller
than the mean. One approach to accommodate overdispersion is to include gamma
distributed random effects, leading to the negative-binomial model [6]. Further, the



GLMM for count data can be extended by combining normal and gamma random
effects to account for association and overdispersion simultaneously [7].

A GLMM is commonly fit by maximising the marginal likelihood. With Gaussian
outcomes, both the conditional and marginal distribution are multivariate normal,
simplifying the whole maximisation process. However, in the non-Gaussian case, the
derivation of the marginal joint distribution can be complicated, or even not possible
in analytical form, although some progress was made by [8], among others. Therefore,
marginalisation is routinely done numerically, at the cost of requiring more computing
resources. Of course, full likelihood estimation is still computationally tractable with
medium to large data. However, when the number of clusters and/or cluster sizes be-
come very large, the fitting process can be too time-consuming or even computationally
infeasible.

To facilitate the estimation procedure with large datasets, [9] proposed a pseudo-
likelihood-based split-sample methodology. In this approach, the sample is partitioned
into K sub-samples, which are analysed separately and afterwards the results are
combined to obtain overall inferences. Depending on the model and the data size, the
sub-samples can be independent or dependent. The method is not only fast, but it has
also exhibited high efficiency with different clustering settings and types of outcomes
[10–12].

Based on complete sufficient statistics, findings by [13] suggest that a convenient way
to split the sample is by selecting balanced clusters in each sub-sample, i.e., equally
distributed clusters. Although feasible in many situations, it is difficult to achieve
with very unbalanced clusters, e.g., in meta-analysis or longitudinal studies. In the
most extreme case, each sub-sample contains only a single cluster, leading to the so-
called cluster-by-cluster (CbC) estimator. Nevertheless, the covariance matrix of the
random effects cannot be estimated using a single cluster. Consequently, an estimator
based on the cluster-specific estimates is needed. In the LMM, the CbC estimator is
unbiased, closed-form, and therefore computationally fast. Furthermore, it is efficient
when cluster sizes and the number of clusters grow large at appropriate rates [14]. One
interesting finding is that the CbC estimator is equivalent to the restricted maximum
likelihood (REML) estimator when analysing balanced clusters.

In the present paper, we introduce the cluster-by-cluster estimator to the GLMM
to clustered count data. It is motivated by [8,15]’s finding on marginalised GLMM’s.
In particular, the Poisson model allows explicit expressions for the marginal joint dis-
tribution, including marginal means, variances, and covariances. The CbC estimator
requires two stages. At first, a GLM is fitted to each cluster separately. Next, a global
estimate for the fixed effects and overdispersion parameter (if needed) is computed us-
ing weighted averages. Given the mean-variance relationship and the complex marginal
joint distribution in the Poisson model, the estimator of the covariance matrix of the
random effects differs from the one in the LMM. Particularly, does not allow for an
analytical expression and relies on approximations. Note that, contrary to the imple-
mentation in the LMM, the CbC for the GLMM is no longer closed-form even from
the first step. Nevertheless, it reduces the computation time considerably compared
to the full MLE.

The paper is organised as follows. Section 2 presents a motivating case study based
on a large database belonging to a network of Belgian general practices. In Sections 3
and 4, the generalized linear mixed model, with focus on models for count data, and
the split-sample method are briefly described. The CbC estimator for count data, with
and without overdispersion, is proposed in Section 5. In Section 6, the simulation study
to evaluate the cluster-by-cluster estimator is presented. The case study is analysed

2



in Section 7. Finally, Section 8 is reserved for concluding remarks.

2. Intego dataset

These data come from the Intego database, a Belgian general practice-based morbid-
ity registration network at the Department of General Practice of the University of
Leuven. It consists of a continuous recording of patient information, diagnoses, drug
prescriptions, laboratory results and vaccinations from general practitioners evenly
spread throughout Flanders, Belgium [16]. We consider the Intego database from 2011.
In total, the sample contains information about 151,971 patients from 65 practices.
Particularly, patients with diagnosed chronic diseases, such as cancer, diabetes and
heart diseases, are considered reducing the sample size to 54,967. We are interested
in evaluating the effect of age, gender, body mass index (BMI), diabetes, cholesterol
(mean value per year), and systolic blood pressure on the number of additional diag-
nosed chronic diseases suffered by patients, as they might be risk factors. Although
the covariates age and gender are fully observed, a large amount of missing data is
encountered in the other covariates. The percentage of missingness for these range
between 55% and 78%.

To handle the missing covariates, we implemented a multiple imputation (MI) pro-
cedure. The MI framework embraces an extensive collection of techniques to deal with
missing values. Nevertheless, all these techniques follow the same three phases. Firstly,
each missing value is replaced by a set of M plausible values. Later, the multiply im-
puted datasets are analysed by using the standard method for complete data. Finally,
the set of estimates from these analyses are combined to obtained overall estimates
and their standard error. More details on MI can be found in [17], [19], [20], among
others.

3. Generalized linear mixed model

Let Y i = (Yi1, . . . , Yini
)′ be the ni-dimensional vector of measurements of cluster i,

with i = 1, . . . , N . The GLMM assumes that, conditionally on a q-dimensional vector
of random effects bi ∼ N(0,D), where D is an unstructured covariance matrix,
the elements of Y i are independent and follow a distribution that belongs to the
exponential family, that is:

f (yij |bi) = exp
{
φ−1 [yijθij − ψ (θij)] + c (yij , φ)

}
, (1)

where θij and φ are called natural and scale parameter, respectively; ψ (·) and c (·, ·)
are known functions. Here, the conditional mean vector µci is modeled by a known
link function, η (µci ) = Xiβ + Zibi, where Xi and Zi are (ni × p) and (ni × q)
matrices of known covariates, and β is an unknown p-dimensional vector of fixed-
effects coefficients. Furthermore, the conditional covariance matrix V c

i is a diagonal

matrix with the (j, j)th element equals to vci,jj = φν
(
µcij

)
, where ν(·) is a function

that describes the mean-variance relationship.
Although (1) is expressed hierarchically, the GLMM is commonly fitted through
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maximising the marginal likelihood:

L(β,D, φ) =

N∏
i=1

∫ ni∏
j=1

f(yij |bi,β, φ)f(bi|D)dbi, (2)

As it can be seen from (2), maximisation of the likelihood involves N integrals over
bi. Except for some special cases, e.g., linear mixed models, there is no easy analytic
solution for these integrals, and a numerical approximation is required [8].

There are several approaches to solve these intractable integrals, most of them based
on an approximation of the integrand (Laplace’s method), linearization of the data (Pe-
nalized quasi-likelihood-PQL or marginal quasi-likelihood-MQL), or an approximation
of the integral (using Gaussian or adaptive Gaussian quadrature) [2]. The estimation
based on the latter performs better, but it is computationally more intensive. The
Laplace method, PQL, and MQL perform poorly when the number of measurements
per cluster is small, and the outcomes are far from a normally distributed, e.g., binary
data [21]. More details can be found in [2, chap. 14].

3.1. Poisson-Normal model

Assuming that, conditionally on the random effects, Yij follows a Poisson distribution,
we obtain the Poisson-Normal (PN) model with log link function:

Yij |bi ∼ Poisson (λij) , where λij = exp
(
x′ijβ + z′ijbi

)
, (3)

where xij and zij are the jth row of Xi and Zi, respectively. This means that,
conditionally on bi, the elements of Y i are independent with expected value and
variance equal to λij .

[8,15] derived an analytical expression for the marginal distribution of Y i. Particu-
larly, the marginal mean and variance are:

E (Y i) = exp

[
Xiβ +

1

2
diag

(
ZiDZ

′
i

)]
,

and

V (Y i) = M i +M i

[
exp

(
ZiDZ

′
i

)
− Jni

]
M i,

respectively, where Jni
is a (ni×ni) matrix of ones, and M i is a diagonal matrix with

the vector E (Y i) along the diagonal.

3.2. Poisson-Normal-Gamma model

The traditional GLMM can be extended to address for overdispersion by including
gamma distributed random effects. Hence, combining ideas of overdispersion models
[6] and PN model (3), we obtain the Poisson-Normal-Gamma (PNG) model:

Yij |bi, ϑij ∼ Poisson (ϑijλij) , where λij = exp
(
x′ijβ + z′ijbi

)
, (4)
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where ϑij follows a gamma distribution with E(ϑij) = 1, V (ϑij) = α and,
Cov(ϑij , ϑik) = 0, for all j 6= k. In this model, bi induces association between ob-
servations of the same cluster, and ϑij capturing additional overdispersion.

4. Split-sample methodology for clustered data

In this approach, the sample is divided, according to some appropriate rule, into K
sub-samples, with ck independent clusters in sub-sample k, for k = 1, . . . ,K. After
partitioning, the method is implemented in two stages:

(1) Estimate θ in each of the K sub-samples. Let us denote these estimates as θ̂k,

with their corresponding variance V
(
θ̂k

)
;

(2) Calculate a weighted average of θ̂k, to obtain an overall estimate:

θ̃ =

K∑
k=1

Akθ̂k, with V
(
θ̃
)

=

K∑
k=1

AkV
(
θ̂k

)
A′k,

where Ak is a weighting matrix for sub-sample k. There are several ways to
determine the weights, but the

∑K
k=1Ak = I constraint is needed to retain

asymptotic unbiasedness.

The most convenient split is that each sub-sample consists of balanced clusters; i.e.,
clusters with the same distribution for Y i. In the LMM, it facilitates the estimation
process, because with balanced clusters there are complete sufficient statistics and a
closed-form MLE exists [13]. For more details on the split-sample methodology, we
refer to [12].

5. Cluster-by-cluster estimator

The cluster-by-cluster estimator is referred to as the split-sample method restricted
to the most extreme partitioning: a single cluster per stratum, i.e., ck = 1 for
k = 1, . . . , N . Nevertheless, it follows the same two steps presented in Section 4. Con-
sidering model (1), and with enough information per cluster, an individual analysis of
each cluster allows estimating the fixed effects (β) and overdispersion parameter (α),
but not the variance of the random effects (D). Its estimation requires information on
more than one cluster. Therefore, we propose a method-of-moments estimator based

on the cluster-specific estimates, i.e., θ̂i = β̂i for the PN model and θ̂i = (β̂
′
i, α̂i)

′ for
the PNG model.

To describe the estimator, η (µci ) is re-expressed as:

η (µci ) = Xiβ +Zibi = T i

[
Kiβ +

(
bi
0r

)]
= T iβi, (5)

where T i = (Zi Zci), Zci is a (ni×r) matrix of within-cluster covariates not associated
with random effects, and Ki is a (q+r×p) matrix of known cluster-specific covariates
satisfying Xi = T iKi. The augmented vector of random effects (bi) with
0r in (5) implies that some, but not all, cluster-specific parameters are
necessarily associated with random effects.
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To facilitate the derivation of the estimator, we assume that T i = Zi. Therefore,
for now on η (µci ) = Ziβi, with βi = Kiβ + bi. Nevertheless, the general expression
requires some further but straightforward algebra.

5.1. First stage

Conditionally on the random effects, the measurements of the same cluster are in-
dependent and follow a distribution that belongs to the exponential family, with
η (µci ) = Ziβi. Hence, we can fit a GLM within each cluster. Of course, this requires
that all covariates in Zi change within clusters, allowing estimation of βi. Therefore,
at the first stage, we use the iteratively re-weighted least squares (IRLS) estimator to

obtain a set of estimates (β̂i, i = 1, . . . , N). So, the asymptotic conditional expectation

and variance of β̂i are:

E(β̂i|bi) = Kiβ + bi and V
(
β̂i|bi

)
=
(
Z ′iW iZi

)−1
,

respectively; where W i is a diagonal matrix with the (j, j)th element equal to wi,jj =(
∂µc

ij

∂ηij

)2
/νcij . Note that W i depends on the conditional distribution of Y i in Model

(1).

Asymptotically, the marginal mean and covariance matrix of β̂i are E
(
β̂i

)
= Kiβ

and

V
(
β̂i

)
= E

[
V
(
β̂i|bi

)]
+ V

[
E
(
β̂i|bi

)]
= E

[
(Z ′iW iZi)

−1|bi
]

+D,

respectively. Generally, there is no closed-form expression for E
[
(Z ′iW iZi)

−1|bi
]
. Nev-

ertheless, it can be approximated using the (first-order) delta method. So, the marginal
variance is approximately equal to

V
(
β̂i

)
≈
[
Z ′iE (W i|bi)Zi

]−1
+D. (6)

Poisson-Normal model

In the PN model (3), we have that wi,jj = λij . Then,

V
(
β̂i

)
≈ (Z ′iM iZi)

−1 +D. (7)

In the case of a single random effect bi, i.e., random intercept PN model, there is an

analytic expression for V
(
β̂i

)
leading to an unbiased estimator of the variance of bi

(see Section B of the Supplemental Materials).

Poisson-Normal-Gamma model
In the Poisson-Normal-Gamma model (4), we have that:

wi,jj =
exp

(
x′ijβ + z′ijbi

)
1 + α exp

(
x′ijβ + z′ijbi

) . (8)
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There is no analytic expression for E(wi,jj), but it can be approximated using a Taylor
series expansion around bi = 0:

E (wi,jj) ≈ h
(
x′ijβ

)
+

1

2
h′′
(
x′ijβ

)
z′ijDzij , (9)

where h
(
x′ijβ

)
and h′′

(
x′ijβ

)
refers to function (8) and its second derivative with

respect to bi, both evaluated at bi = 0, respectively. Therefore, the approximation is:

V
(
β̂i

)
≈ (Z ′iGiZi)

−1 +D, (10)

where Gi is a diagonal matrix with the (j, j)th element equal to (9).
A wide range of methods are available in the literature, such as likelihood- or

moments-based, to estimate α in each cluster. For a detailed description of them,
see [6] and, [22]. The marginal variance of α̃ is:

V (α̂i) = E [V (α̂i|bi)] , (11)

which depends on the actual estimator used. Generally, there is no closed-form expres-
sion for the expected value (11). As before, Taylor series expansions and delta methods
can be implemented to find an approximation.

5.2. Second stage

A weighted average of the sets of estimates (β̂1, . . . , β̂N ) and (α̂1, . . . , α̂N ) is computed
to obtain global estimates:

β̃ =

(
N∑
k=1

K ′kAkKk

)−1 N∑
i=1

K ′iAiβ̂i and α̃ =

N∑
i=1

aiα̂i.

Furthermore, the variances of β̃ and α̃ are

V
(
β̃
)

=

(
N∑
k=1

K ′kAkKk

)−1 [ N∑
i=1

K ′iAiV
(
β̂i

)
A′iKi

](
N∑
k=1

K ′kAkKk

)−1

and

V (α̃) =

N∑
i=1

a2iV (α̂i) ,

respectively.
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Estimator of D

The estimator of D is based on the sum of the cross-product of the difference between
the cluster-specific estimates (β̂i) and the global estimate (β̃):

Sb =

N∑
i=1

(
β̂i −Kiβ̃

)(
β̂i −Kiβ̃

)′
=

N∑
i=1

b̃ib̃
′
i.

A method-of-moments estimator is found by equating Sb to its expected value and

solving for D. Since E
(
b̃i

)
≈ 0, the expected value of Sb is approximately:

E (Sb) ≈
N∑
i=1

V
(
b̃i

)
=

N∑
i=1

(I −H ii)V
(
β̂i

)
(I −H ii)

′ +
∑
k 6=i

H ikV
(
β̂i

)
H ′ik, (12)

where H ij = Ki

(∑N
k=1K

′
kAkKk

)−1
K ′jAj . For the PN and PNG model, V

(
β̂i

)
is

equal to (7) and (10), respectively. For the latter, we plug α̃ into expression (9).
Given that (12) is non-linear, an iterative procedure, e.g., Newton-Raphson, is

needed to find the solution of D. The approximation used in (7) or (10) leads to
a biased estimator. Nevertheless, the bias goes to zero as ni → ∞. An expression
for the variance of D̃ can be found using the delta method (see Section A of the
Supplemental Materials).

For the random intercept PN model, there is an analytical expression
for the marginal variance of β̂. Therefore, unbiasedness for the variance of
the random intercept can be reached (see Section B of the Supplemental
Materials).

In D̃, each set of estimates (β̂i) contributes equally to the estimation. However,
estimates based on relatively small clusters are less precise than the ones obtained
from large clusters. Therefore, in the case of small and highly unbalanced clusters,
weights can be added to Sb as follows:

Sb =

N∑
i=1

wib̃ib̃
′
i.

Of course, the expected value (12) should be modified accordingly. A comparison of
the estimator ofD with proportional weights as well as unweighted is shown in Section
C of the Supplemental Materials.

5.3. Weighting scheme

The most obvious choice is a constant weight, i.e., Ai = (1/N)I. When the clusters

vary substantially by size, proportional weights, Ai = [ni/(
∑N

k=1 nk)]I, are more ad-
visable. The advantages of these alternatives are their simplicity, and that they are
parameter-free.

A more formal weighting scheme is the optimal one [12]. To estimate β, these take
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the form:

Aopt
i =

[
N∑
k=1

V
(
β̂k

)−1]−1
V
(
β̂i

)−1
. (13)

In our case, the main drawback is that Aopt
i depends on unknown parameters, as

one can see from expression (6). Furthermore, this expression is an approximation of

V
(
β̂i

)
. To overcome the former, we can compute the optimal weights iteratively as

follows:

(1) Estimate βi and α in each cluster.
(2) Calculate β̃, α̃ and D̃ using a simple weighting scheme, e.g., proportional

weights.

(3) Using α̃ and the current estimates, β̃
(t)

and D̃
(t)

, calculate V
(
β̂i

)(t+1)
.

(4) Update β̃
(t+1)

and D̃
(t+1)

using optimal weights (13) and replace V
(
β̂i

)
by

V
(
β̂i

)(t+1)
.

(5) Repeat steps 3 and 4 until convergence.

The iterative procedure involves only calculations based on the estimates; the data is
used only once to yield β̂i and α̂i (in step 1). This is a convenient advantage in cases
where the number of elements per cluster is large.

6. Simulation study

6.1. Setting

The simulation study recreates a longitudinal study for count data with an unbalanced
number of measurements per individual. The data-generation model is:

Yij |bi ∼ Poisson (µij) , (14)

where µij = θij exp (β0 + β1Ti + β2tij + β3tijTi + b0i + b1itij); tij is measurement time
j of individual i; Ti is the treatment administrated to individual i (0 for control and 1
for treatment) and bi = (b0i, b1i)

′ ∼ N(0,D). In model (14), β0 and β2 represent
the intercept and the slope for the control group, respectively. Moreover,
β1 and β3 are the difference in intercept and slope for the treatment effect
with respect to the control group, respectively. In a longitudinal setting,
the primary interest lies in β3, since it measures the treatment effect on
the average growth.

For the simulation, we set:

β = (β0, β1, β2, β3)
′ = (1.5,−0.1,−0.5,−0.2)′ and D =

(
0.4 −0.2
−0.2 0.6

)
. (15)

For the PNG model, we assumed that θij follows a gamma distribution with α = 0.5.
On the other hand, for the PN model, we fixed θij = 1.
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The number of measurements per individual (ni) was determined using a normal dis-

tribution, ni ∼ N
[
µn, (0.25µn)2

]
(rounded to the nearest integer), with a minimum

of 10 observations. The measurement times of each individual (tij) range uniformly
over the interval (0, 1). Finally, the treatment allocation (Ti) follows a Bernoulli dis-
tribution with p = 0.5, restricting the minimum number of individuals per treatment
arm to five.

We varied the number of individuals (N) and mean number of measurements per
individual (µn), at first fixing N = 50 and varying µn = {20, 50, 100, 150, 250}, and
later, fixing µn = 50 and increasing N = {20, 50, 100, 150, 250}. A total of 1,000
datasets were generated for each scenario. Afterwards, each simulated dataset was
analysed using the following methods:

• The cluster-by-cluster estimator with proportional and iterated optimal weights.
• The MLE based on adaptive quadrature.

A comparison between both methodologies is undertaken via the relative efficiency
(RE), i.e., the mean squared error (MSE) ratio of the cluster-by-cluster estimator
over the MLE, and the relative bias (RB), separately for each parameter of model
(14). Additionally, the coverage of the 95% confidence interval (CI) for the parameter
associated with the treatment effect (β3) is evaluated.

To evaluate the computational efficiency in large data, we increased N and µn as
follows: first, fixing N = 500 and increasing µn ={500, 1000, 1500, 2000}; second,
fixing µn = 500 and varying N ={500, 1000, 1500, 2000}. Here, we simulated 25
datasets per scenario.

In Section 6.2, we present a comparison between the cluster-by-cluster estimator
using iterated optimal weights and the MLE. The use of proportional weights performs
somewhat worse than the iterated optimal ones; nevertheless, the difference is small
(see Section C of the Supplemental Materials).

6.2. Results

Table 1 exhibits the RB and RE of the CbC estimator of the PN model. When the
mean number of measurements per individual is bounded by 50 and the number of
individuals increases (Table 1a), the estimator of the fixed effects is unbiased and the
efficiency loss seems to be negligible. On the contrary, a constant but small positive
bias is observed for each variance component. Regarding efficiency, the loss increases
as the number of individuals gets larger. When the number of individuals is fixed at
50 and the mean number of measurements per individual increases (Table 1b), the
estimator of the fixed effects remains unbiased and highly efficient. For the variance
components, it is asymptotically unbiased and efficient. Its RE goes slowly to one;
with µn = 250, the MSE of the CbC estimator is only around 10% larger than the
MSE of the full MLE.

The RB and RE of the CbC estimator of the PNG model are displayed in Table 2.
It shows similar behaviour as before, unbiased and small efficiency loss for the fixed
effects. Furthermore, the estimator of the variance components and the overdispersion
parameter are asymptotically unbiased and efficient when the µn increase faster than
N . However, the efficiency loss of α̃ goes to one at a slower rate; with µn = 250, its
efficiency loss is around 25%. Meanwhile, it is roughly 6% for the variance components.

One interesting result is that, in most cases, no more than two iterations were
needed to get the iterated optimal weights. Compared to proportional weights (see
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Table C.1 of the Supplemental Materials), there is an improvement in the estimation
of the fixed effects, but not for the variance components. Taking into account that the
iterative procedure to estimate D can be demanding with a large number of clusters,
a computationally efficient way to proceed is to estimate initially β and D using
proportional weights, compute the optimal weights using D̃, and thereafter, update
the overall estimate of β. We call this method approximate optimal weights.

Regarding coverage of the 95% confidence interval of β3, the proportion of samples
for which the parameter is contained in the confidence interval is around 0.95 in all
scenarios for both estimators (see Table C.3 of the Supplemental Materials).

The median computation time of the CbC estimator, using approximate and iter-
ated optimal weights, and the full MLE for the PN model is displayed in Table 3a.
As expected, the CbC estimator is faster than the full MLE in all scenarios. Further-
more, the latter shows a steeper increase in computation time. With 2,000 clusters of
mean size of 500, the CbC estimator can be more than 30 times faster. Regarding the
weighting scheme, the use of approximate optimal weights is less demanding than the
iterated optimal weights. As one observes in Table 3b, the PNG model is computa-
tionally more demanding. Nevertheless, the CbC estimator is still considerably faster
than the full MLE in all settings.

The CbC estimator was implemented in R 3.5.1 [23] and the full MLE in SAS
software 9.4 [24] using the nlmixed procedure. Both programs have been run on a
laptop computer with a Intel(R) Core(TM) i5-6200U CPU 2.30GHz processor and
16GB of RAM memory.

7. Analysis of the Intego database

Defining Yij as the number of additional chronic diseases by patient i in practice j, a
PNG model (4) with:

lnλij = β01 + bi+ageijβ1 +genderijβ2 +BMIijβ3 +systolicijβ4 +cholesterolijβ5 (16)

where bi ∼ N(0, d), is proposed. We also considered the PN model, assuming that
ϑij = 1.

Before fitting the model, a MI procedure was performed to complete the covariates.
We used fully conditional specification (FCS; [25]) implemented in the mice package
in R [26]. After creating 20 multiply imputed datasets, we fitted model (16) using the
CbC estimator to each one, and the estimates were combined using Rubin’s rule [? ].
Furthermore, all continuous covariates were centred to reduce collinearity and possible
convergence issues. The clusters are highly unbalanced, their sizes range between 11 up
to 4,240 patients, with a mean of 846. Therefore, we considered proportional weights
to the estimator of d and α. Furthermore, iterated optimal weights are implemented
for β. For comparison, the same analysis was performed by MLE. Table 4 displays the
estimates and standard error of the estimates of model (16) by both estimators.

For both models, the CbC and ML estimator provide similar estimates for the
fixed effects and negative-binomial parameter (for the PNG model), with a slightly
larger standard error for the former. For the variance of the random intercept, the
ML estimate is somewhat smaller. Based on the Wald test, there is a significant effect
of all covariates, excepted for cholesterol. Regarding gender, the number of chronic
diseases in men is roughly 1.3 times higher than in women. Regarding computation
time, fitting the CbC estimator for th PNG model for all the multiply imputed datasets
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took roughly 6 minutes. On the contrary, the MLE was more than 15 times more time-
consuming.

8. Final remarks

The so-called cluster-by-cluster (CbC) estimator has been proposed for hierarchical
count data with and without overdispersion. Although the estimator is no longer
closed-form, it is computationally less intensive than the standard MLE based on
adaptive quadrature. Furthermore, it shows good statistical properties. For the fixed
effects, it is unbiased and almost as efficient as the MLE. For the variance of the
random effects and overdispersion parameter, it is biased. However, it is asymptotically
efficient when the number of elements per cluster increases faster than the number of
clusters. Particularly in the random intercept Poisson-Normal model, unbiasedness
can be attained. Therefore, we suggest that the cluster-by-cluster estimator is an
attractive alternative to fit a GLMM for count data with several large-size clusters.
Our findings are based on simulations in the context of the random-slope
PN and PNG models, with unstructured covariance matrix. For a larger
dimension of the random-effects vector, we expect a higher computational
efficiency of our proposed method, with similar statistical properties for
the fixed effects. In the case of a large number of clusters, all processes in the first
stage can be executed in parallel, reducing the computation time considerably.

Although the estimator still has attractive properties with medium cluster-sizes,
its implementation can be problematic, especially during the first stage. With few
observations or several zeros in a cluster, the IRLS algorithm may diverge or converge
to a spurious solution, leading to unstable overall estimates. Therefore, we suggest
performing a sensitivity analysis by excluding any problematic clusters and evaluating
the overall estimates. Furthermore, the addition of weights in the estimator of D
reduces the influence of small and unstable clusters.

Regarding the weighting scheme, iterated optimal weights lead to relatively more
efficient estimates of β than proportional weights. However, its implementation is
computationally more expensive. Hence, we recommend to estimate D using a simple
weighting scheme for β, and later, estimate β using approximated optimal weights
based on the foregoing estimation of D. In this way, the efficiency loss is negligible,
and there is a large gain in computation time.

The implementation of the CbC estimator for a broader class of GLMM
deserves further work and simulations. To address excess zeros in the out-
come, the PNG can be extended by adding a zero-inflated component to
the model [22,27]. Here, the CbC estimator proceeds in the same way. How-

ever, V
(
β̂
)

has to be modified accordingly to estimate D. Furthermore, a

specific covariance structure for D, e.g., compound-symmetry (CS) or au-
toregressive (AR), can be considered. Each case implies that a different
system of equations needs to be solved to find an estimator of D. Findings
by [12] and [11] for normally distributed hierarchical data with CS and
AR structure can be extended to non-Gaussian outcomes, but arguable
will be more complicated. In most cases, we may rely on approximations
to estimate D. Therefore, a biased estimator is expected. However, we
believe that it will be negligible as the cluster sizes increases. Most impor-
tantly, we expect that there may still be computational advantages of our
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methodology over the full maximum likelihood estimator.
We have focused on the analysis of count data, for which an explicit expression of

the marginal distribution is available. However, the cluster-by-cluster estimator can be
considered for other types of non-Gaussian outcomes, such as binary and time-to-event
data.
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Supplemental materials

Expression for the precision of the estimator of D is presented in Appendix A. The
cluster-by-cluster estimator for the random intercept model is introduced in Appendix
B. Finally, additional results of the simulation study are shown in Appendix C.
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