
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Analytical queries on semantic trajectories using graph databases

Peer-reviewed author version

Gomez, Leticia, I; KUIJPERS, Bart & VAISMAN, Alejandro (2019) Analytical queries

on semantic trajectories using graph databases. In: TRANSACTIONS IN GIS,.

DOI: 10.1111/tgis.12556

Handle: http://hdl.handle.net/1942/29137

Analytical Queries on Semantic Trajectories using
Graph Databases

Leticia Gómez1, Bart Kuijpers2, Alejandro Vaisman3

Abstract

This paper studies the analysis of moving object data collected
by location-aware devices, such as GPS, using graph databases. Such
raw trajectories can be transformed into so-called semantic trajecto-
ries, which are sequences of stops that occur at “places of interest.”
Trajectory data analysis can be enriched if spatial and non-spatial con-
textual data associated with the moving objects are taken into account
and aggregation of trajectory data can reveal hidden patterns within
such data.

When trajectory data are stored in relational databases, there is an
“impedance mismatch” between the representation and storage mod-
els. Graphs in which the nodes and edges are annotated with prop-
erties, are gaining increasing interest to model a variety of networks.
Therefore, this paper proposes the use of graph databases (Neo4j in
this case) to represent and store trajectory data, which can thus be
analysed at different aggregation levels using graph query languages
(Cypher, for Neo4j). Through a real-world public data case study,
the paper shows that trajectory queries are expressed more naturally
on the graph-based representation than over the relational alternative,
and perform better in many typical cases.

Keywords: Trajectories, Semantic Trajectories, OLAP, Graph Databases,
Graph OLAP, Graph Aggregation, Trajectory Analysis

1 Introduction and Motivation

Moving object data (MOD) applications [Güting and Schneider2005] are
a relevant topic for the GIS (Geographic Information Systems) commu-
nity since a long time. The behaviour of moving objects can be traced

1Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina; email: lgo-
mez@itba.edu.ar

2Hasselt University, Belgium; email: bart.kuijpers@uhasselt.edu
3Instituto Tecnológico de Buenos Aires, Buenos Aires, Argentina; email: avais-

man@itba.edu.ar

1

using location-aware devices (e.g., GPS, RFID). This produces trajectory
data, which can be analysed in order to obtain interesting mobility pat-
terns [Renso et al.2013]. The trajectory of a moving object is given by
samples consisting of a finite number of 〈Oid, t, x, y〉-tuples, meaning that
at a moment in time t, the object with identifier Oid is located at co-
ordinates (x, y). Over these data, different kinds of analyses can be per-
formed [Giannotti et al.2006, Giannotti et al.2007, Karli and Saygin2009].
Trajectory analysis can not only be performed over the original (raw) tra-
jectories, but also over a database built based on the ideas introduced by
Spaccapietra et al. [Spaccapietra et al.2008, Parent et al.2013], where it is
assumed that objects move over a background map consisting of disjoint ge-
ometrical figures to which semantically meaningful attributes are associated.
These geometrical figures are referred to as Places of Interest (PoIs) of the
application. Typically, they depend on the application area. In a tourist
application, usual examples of PoIs are restaurants, historical buildings and
hotels, while for traffic analysis PoIs could be defined as interesting road
junctions or large parking lots. A PoI is considered a stop, when a moving
object remains in it for a duration above some threshold, in which case all
(x, y)-points of a trajectory that are located inside the PoI are transformed
to the spatial object that represents this stop. As such, each object’s tra-
jectory, being a sequence of points, can be transformed into a sequence of
stops. Thus, trajectory analysis can be applied to these transformed trajec-
tories, which are called semantic trajectories, given that they can provide
more information than the one provided by the (t, x, y)-points alone.

The intuition of the problem addressed in this paper is given next. Figure
1 (left) shows a simplified version of part of the map of London, which shows
two hotels, indicated as Hotel 1 and Hotel 2 in the figure and abbreviated
to H1 and H2 in the tables. The map also shows St Paul’s Cathedral and
the Buckingham Palace. Further, the map also shows the movement of the
objects O1, O2 and O3. Object O1 moves from Hotel 1 to the Cathedral,
then to the Palace, where its remains for some time, and then returns to its
hotel. Object O2 moves from Hotel 2 to the Cathedral, next to the Palace
(where it spends a few hours) and finally returns to its hotel. Object O3
leaves Hotel 2, visits the Palace, and returns to Hotel 2. Figure 1 (center)
shows a portion of a table containing the raw trajectories (i.e., expressed for
each object as 〈t, x, y〉-tuples). Figure 1 (right) gives the table with the PoIs
corresponding to the application (details of how these tables are obtained are
beyond the scope of the paper). The points belonging to the same trajectory
are temporally ordered, and identified by an object identifier. In this setting,
a data scientist may pose queries like “How many persons went from H1 to
St Paul’s Cathedral, and then to the Buckingham Palace (stopping to visit
both places) during the same day.” An analyst may also want to identify

2

[Hotel 2]

[Hotel 1]

O1

O1

O1

O2

O2

O2

O3

O3

[St Paul’s Cathedral]

[Buckingham Palace]

Oid t x y
O1 1 x1 y1
O1 2 x2 y2
O1 3 x3 y3
O1 4 x4 y4
...
O2 5 x5 y5
O2 6 x6 y6
O2 7 x7 y7
...
O3 4 x5 y5
O3 5 x8 y8
O3 6 x9 y9
...

Oid gid ts tf
O1 H1 1 10
O1 C 20 30
O1 P 50 70
O1 H1 100 140
O2 H2 5 20
O2 C 25 40
O2 P 50 80
O2 H2 120 140
O3 H2 4 10
O3 P 15 40
O3 H2 60 140

Figure 1: Introductory example (left), raw trajectories (center), and PoIs-
based trajectory (right).

interesting patterns in the trajectory data, or be interested in queries like
“Give the percentage of trajectories visiting two restaurants in the same
day.”

A typical way of performing trajectory analysis is to store trajectory
data in relational databases for example, in repositories called trajectory data
warehouses [Vaisman and Zimányi2013, Leonardi et al.2014], over which on-
line analytical processing (OLAP) is performed. OLAP refers to a collec-
tion of operations for exploiting multidimensional databases (MD). In a MD
database, data are perceived as data cubes, such that the axes in these cubes
are called dimensions, and cells in the cubes contain one or more measures
that quantify facts. Dimensions are further organised in aggregation hierar-
chies, thus measures can be aggregated along them. Queries in OLAP consist
in sequences of operations that manipulate the data cube. The most usual of
these operations allow aggregating and disaggregating measure values in the
cube cells along the dimensions (Roll-Up and Drill-Down operations, respec-
tively); selecting a portion of the cube (Dice); or projecting the data cube
over some of its dimensions (Slice). A problem with this approach, particu-
larly with the huge volumes of data available nowadays, is the “impedance
mismatch” between the way in which data are modelled and stored. Given
that trajectories can be typically considered as graphs, storing trajectory
data as relations may seem unnatural, since current database technology
provides solutions that allow storing graphs in native form, as explained
next. Thus, this paper discusses how this OLAP-style semantic trajectory
analysis can be performed over graph databases.

Property graphs [Robinson et al.2013] (graphs whose nodes and edges

3

are annotated with properties), are typically used to model networks (e.g.,
social networks, sensor networks) to perform data analysis. The property
graph data model is an abstraction that can be used to represent trajec-
tories, either in their raw or semantic forms. In this model, for example,
the point coordinates or the PoIs can be represented as nodes, and there is
an edge from one point (or PoI) to the consecutive one in the sequence of
points (or PoIs) in the trajectory. In addition, spatio-temporal coordinates
can be also included as properties, as well as other characteristics of the vis-
ited places. Also, hierarchical contextual data can be defined, which would
allow representing the trajectory graph at different granularities, leading to
the notion of trajectory aggregation. With these machinery, a data scientist
may also perform OLAP-like analysis over trajectory graphs. Several dif-
ferent graph data models for this (called Graph OLAP in the remainder)
can be found in the literature, and are discussed in Section 2. Modelling
trajectories using graphs allows storing them in native form (i.e., as graphs)
using graph databases [Angles2012, Angles2018], rather than in relational
databases, thus preventing the “impedance mismatch” problem mentioned
above. In particular, in this paper, the graph database software Neo4j1 is
used. Besides its popularity, the Neo4j community has developed several
libraries of functions; one of these is a spatial library2, which allows defining
different spatial layers, that can enhance the analysis possibilities.

Surprisingly, a careful analysis of the literature reveals that there is al-
most no work on the subject, in light of which this paper aims at answering
the following questions: can graph databases be successfully used to model,
store, and query semantic trajectory data? If so, which are the kinds of
queries that could benefit the most from this approach? In particular, the
paper focuses on analytical queries, that typically require aggregating the
trajectory graph up to different granularity levels. In addition, the paper
aims at showing that using graph databases has several advantages over the
typical solution of storing semantic trajectory data in relational databases,
based on the following assumptions and facts. First, as already mentioned,
graphs are a natural way to represent trajectories. Second, storing trajecto-
ries in a graph database allows having a powerful machinery of algorithms
to exploit these data, at no extra cost. Ad-hoc alternatives require using dif-
ferent tools for different problems (e.g., querying, finding patterns). Third,
graph databases like Neo4j include a high-level graph query language (in
the case of Neo4j, Cypher), together with a large collection of functions in-
cluded in plugins that are easily added to the database, while the relational
solution requires the use of different languages for the different tasks. Fi-

1http://www.neo4j.com
2https://neo4j-contrib.github.io/spatial/

4

http://www.neo4j.com
https://neo4j-contrib.github.io/spatial/

nally, expressing queries using graph query languages is far more intuitive
for a non-expert user, than doing this through, for example, complex SQL
queries.

A real-world running example is used for this study, based on the “Foursquare
New York” dataset.3 This dataset includes about ten months of check-in
data in New York City, collected from the Foursquare social network. In
addition, a Time dimension hierarchy, and a Stop dimension hierarchy are
defined as contextual information. To make the analysis more interesting,
the dataset is enriched with geographic New York City data.4 It is worth
noting that Foursquare is a Location-Based Social Network (LBSN), there-
fore check-ins in this dataset do not conform typical GPS-based trajectories.
However, taking into account the goals of this research, these sequences of
check-ins can be considered as semantic trajectories where stops have no
duration, and there is no move between these stops (or, equivalently, it can
be assumed that a “move” occurs between two zero-duration stops).

In summary, to address the research questions above, the following tasks
are performed:

1. A property graph data model for representing semantic trajectories.
This model is based on the family of Graph OLAP modelling tech-
niques to favour aggregation of trajectory data represented as graphs.

2. The model is applied to the “Foursquare New York” dataset, enriched
with dimensional contextual information and spatial data, and imple-
mented over a Neo4j database. In addition, the trajectory database is
implemented on a PostgresSQL relational database.

3. A collection of twelve analytical queries, classified into five classes, is
defined. These queries are written in the Cypher query language over
the Neo4j implementation and in SQL over the relational implemen-
tation.

4. The queries are run and the results discussed.

As it will be explained, the study shows that most of the hypotheses
are verified. Queries in the graph-based trajectory model are not only more
natural to express than in the relational alternative, but also show a better
performance (ranging from 1.2 to 7 times faster) than the latter in three
of the five classes of queries studied, particularly when sequential patterns
are looked for (e.g., in queries like “Find trajectories that go directly from a
home to a station and then to an airport”), and when aggregation is involved

3https://www.kaggle.com/chetanism/foursquare-nyc-and-tokyo-checkin-dataset
4Maps where downloaded from http://www.mapcruzin.com

5

https://www.kaggle.com/chetanism/foursquare-nyc-and-tokyo-checkin-dataset
http://www.mapcruzin.com

(for example “Compute the total length of each trajectory, as the sum of
the distance between each pair of consecutive stops”).

The remainder of this paper is organised as follows: in Section 2 related
work is discussed. Section 3 very briefly presents some basic notions on
trajectories and OLAP on graphs. Section 4 introduces the data model,
while in Section 5 a case study is discussed. Section 6 concludes the paper,
addressing future work and open problems.

2 Related Work

The field of moving object databases (MODs) has been extensively studied
by the GIS community. The interested reader is referred to Güting and
Schneider [Güting and Schneider2005] for a survey of this large area. Sev-
eral techniques for the semantic annotation of trajectory data have been
proposed and studied. Mouza and Rigaux [du Mouza and Rigaux2005] pro-
pose a model in which raw trajectory data are transformed in a sequence
of moves (zones represented by labels or IDs). They also define a regular
expression-based query language that allows querying for mobility patterns.
Giannotti et al. [Giannotti et al.2007] introduce Temporally Annotated Se-
quences (TAS) as a basis for trajectory pattern mining. A trajectory pat-
tern is defined as a collection of trajectories that visit the same places in
sequence with similar time gaps between each of these places. The concept
of a Region of Interest (RoI) dynamically computed from the trajectories is
defined. With a similar idea, Spaccapietra et al. [Spaccapietra et al.2008]
define “stops and moves” to semantically enrich trajectories. Alvares et
al. [Alvares et al.2007] study trajectory analysis based on the concepts of
stops and moves. The concept of stop here differs from the notion of RoI:
the former is application-dependant, defined in advance and really relevant
to a trajectory, while the latter is detected dynamically. Finally, Gómez
and Vaisman [Gómez and Vaisman2013] presented RE-Spam, a language
for discovering sequential patterns in semantic trajectories, based on reg-
ular expressions. The work by Parent et al. [Parent et al.2013] provides a
comprehensive description of the notions of trajectory and semantic trajec-
tory.

Regarding graph databases, two database models are used in practice:

(a) Models based on RDF,5 oriented to the Semantic Web.

(b) Models based on property graphs.

5https://www.w3.org/RDF/

6

https://www.w3.org/RDF/

Models of type (a) represent data as sets of triples where each triple
consists of three elements that are referred to as the subject, the predicate,
and the object of the triple. These triples allow describing arbitrary ob-
jects in terms of their attributes and their relationships to other objects.
Informally, a collection of RDF triples is an RDF graph. In models of
type (b) [Angles et al.2017], nodes and edges are labelled with a sequence
of attribute-value pairs. It is an extension of classical graph database mod-
els, frequently used for implementations in practical applications. The main
reason for storing attributes in nodes and edges is speeding up the retrieval
of the data directly related to a certain node. For an extensive and com-
prehensive bibliography on graph database models, the interested reader is
referred to [Angles and Gutierrez2008, Angles2018]. Although the models
in (a) have a general scope, the structure of RDF makes them not as effi-
cient as the other models, which are aimed at reaching a local scope. An
important feature of RDF-base graph models, however, is that they fol-
low a standard, which is not yet the case for the other graph databases,
therefore they are typically used for metadata representation. Therefore,
many works have proposed RDF to annotate trajectories with semantic in-
formation [Fileto et al.2015, da Silva et al.2015, Ruback et al.2016]. Har-
tig [Hartig2014] proposes a formal way of reconciling both models formally,
through a collection of well-defined transformations between property graphs
and RDF graphs. He shows that property graphs could, in the end, be
queried using SPARQL,6 the standard query language for the Semantic Web.
The model used in the next sections to represent and query trajectory data
is based on the concept of property graphs.

Several data models to perform OLAP [Kimball1996] on graphs have
been proposed. GraphOLAP [Chen et al.2009], conceptually, is a framework
for OLAP on a set of homogeneous graphs, based on splitting the graph into
a collection of snapshots that are aggregated in two ways, called Informa-
tional and Topological OLAP aggregations. GraphCube [Zhao et al.2011]
provides a framework for computation and analysis on OLAP cubes using the
different levels of aggregation of a graph. This framework introduced the no-
tion of cuboids. A recent proposal, denoted Graph OLAP [Gómez et al.2017]
models the problem as basic graph data (at the finest granularity defined
for the application), background information in the form of dimension hier-
archies, and a collection of so-called graphoids (the basic graph aggregated
at different granularity levels defined by the background dimensions. Analo-
gously to the models commented above, the classic OLAP operations (Roll-
up, Slice, Dice, Drill-down) are also defined in terms of the components of
the model.

6https://www.w3.org/TR/rdf-sparql-query/

7

https://www.w3.org/TR/rdf-sparql-query/

Regarding the use of graph databases for analyzing trajectory data,
Gryllakis et al. [Gryllakis et al.2018] implemented over Neo4j, the Hermes
MOD originally developed over Oracle [Pelekis et al.2015]. This is basically
a datatype system for representing semantic trajectories. The authors also
extended the Neo4j spatial plugin to facilitate operations on semantic trajec-
tories. In particular, the authors address the problem of answering what they
call spatio-temporal-keyword pattern (STKP) queries [Gryllakis et al.2017].
Queries of this kind ask for episodes satisfying a pattern which may include
keywords, spatial and temporal conditions. For example, a STKP query
may ask for trajectories starting with an episode (basically a stop) whose
geometry is contained in a certain bounding box, followed by an indefinite
sequence of episodes.

As far as the authors of this work are aware of, the only work discussed
above that somehow compares with the one presented here, is the work
by Gryllakis et al. [Gryllakis et al.2018]. However, such work is aimed at
extending Hermes with datatypes, and the Neo4j spatial plugin, to answer an
specific kind of queries. The work in the present paper focuses in modelling
and storing semantic trajectories as graphs, in order to support analytical
(OLAP) queries of different kinds, topics not addressed elsewhere. This
approach can therefore be applied to any graph database, although in this
paper Neo4j is used, with no addition whatsoever.

3 Background

A short background on the topics addressed in this paper is given next, to
make the paper self-contained. Basic notions on trajectories are introduced
first. The second part of this section briefly presents the Graph OLAP data
model that will be used in the remainder.

3.1 Trajectories and Semantic Trajectories

The definitions next formalise the intuitive notions given in the example of
Section 1. The notion of “trajectory” is defined first.

Definition 1 A trajectory is a sequence 〈(t0, x0, y0), (t1, x1, y1), ..., (tN , xN ,
yN)〉 of spatio-temporal points, where, for i = 0, ..., N , ti, xi, yi ∈ R. There
order t0 < t1 < · · · < tN induces a natural order on the time-space points in
the trajectory. The time domain of the trajectory is the interval [t0, tN].

A table like the one in Figure 1 (center) is called a Moving Object Ta-
ble (MOT). In practice, MOTs can contain huge amounts of data. Thus,

8

querying raw trajectory data may be extremely time consuming. Further-
more, data scientists are often not concerned with such level of geometric
detail, and they rather look for more aggregated information. Also, an-
swering queries may require semantic information that is not present in the
MOT. As a solution, the literature in the field proposes using the notion
of stops and moves to reduce the size of the MOT. Thus, a trajectory can
be represented in terms of so-called places of interest for a particular ap-
plication, characterized as what are denoted stops. This concise table (see
Figure 1 (right)) cannot encode the complete information contained in the
MOT. However, it allows to quickly access information of interest without
having to consult the complete data set. For this, the notion of “Place of
Interest of an Application” must be defined first [Alvares et al.2007].

Definition 2 A place of interest (PoI) C is represented by a tuple (RC ,∆C).
The geometrical figure RC is a (topologically closed) polygon, polyline or
point in the plane R2, called the geometry of C, and ∆C is called the min-
imum duration of C.

Given an application A, the places of interest of A , denoted PA, is
a finite collection of PoIs (relevant to this application) whose geometries
mutually do not intersect.

Definition 3 Let T = 〈(t0, x0, y0), (t1, x1, y1), ..., (tn, xn, yn)〉 be a trajec-
tory and let PA = {C1 = (RC1 ,∆C1), ..., CN = (RCN

,∆CN
)} be the places

of interest of an application A. A stop of T with respect to PA is a con-
tiguous sub-trajectory 〈(ti, xi, yi), (ti+1, xi+1, yi+1), ..., (ti+`, xi+`, yi+`)〉 of T
of maximal size such that for some k ∈ {1, ..., N} the following holds: (a)
(xi+j , yi+j) ∈ RCk

, for j = 0, 1, ..., `; (b) ti+` − ti > ∆Ck
. That means, if

the user stays more than the ∆ threshold, the place is considered a stop. A
move of T with respect to PA is a maximal contiguous subtrajectory of T :

(a) in between two temporally consecutive stops of T ;

(b) between the starting point and the first stop of T ;

(c) between the last stop of T and ending point of T ;

or the trajectory T itself, if T has no stops.

There are many possible variations of the definition of stops and moves of
a trajectory, depending for instance, on the interpolation technique used on
the trajectory samples, or in the tolerance used to consider whether an object
is inside or outside a place of interest [Parent et al.2013, Spaccapietra et al.2013].
Discussing these alternatives is outside the scope of this paper. Intuitively,
semantic trajectories are produced replacing a sequence of 〈t, x, y〉-tuples by
a sequence of stops, taken from the collection of PoIs. More formally:

9

Definition 4 A semantic trajectory is a trajectory (see Definition 1) with
added semantic annotations. Formally, a semantic trajectory is a struc-
ture of the form Ts(Oid,S), where Oid is a moving object identifier, and S
is a sequence of pairs of the form (si, Li), where si and Li are defined as
follows: si is a stop (Definition 3) traversed by Oid; Li is a list of pairs
(metadata, value), where metadata is an attribute representing a character-
istic of si and value is the value of such attribute for si. Moreover, S is
time-ordered, that means, the si’s are listed in the order they were traversed
by the object with Oid in Ts.

3.2 Graph OLAP

The model adopted in this paper for representing trajectories as graphs, is
composed of three main types of elements. The first type is a collection
of OLAP dimension hierarchies that represent contextual (or background)
information for the graph (trajectory) data. Dimensions have schema and
instances, as usual in databases. A dimension schema is a lattice with a
unique top and a unique bottom. Each node in a dimension schema is
called a dimension level, which, in turn, is associated with level instances,
containing elements of a certain domain. Dimension instances are collec-
tions of hierarchies. The second element in the model is the base graphoid.
Assuming a collection of dimensions D1, ..., Dd in a certain application do-
main, the nodes and edges of the base graphoid are defined at the bottom
levels of the background dimensions (i.e., D1, ..., Dd). The nodes and edges
in a graphoid have a type, associated with the corresponding background di-
mensions. The third type of element in the model are the graphoids defined
at different levels of granularity (these levels are defined in the background
dimensions).

Figure 2 illustrates the above for the running example (the complete
example is detailed in Section 4 and depicted in Figure 4). The base graph-
oid, representing the trajectory data, is shown in the upper part of the
figure. Here, the Stop nodes are linked by edges labelled #trajstep. Back-
ground dimension hierarchies for the Stop and Time dimensions are defined
as Stop → Venue → Categories → Category, and Minute → Hour → Day →
Month → Year hierarchies, respectively. The base graphoid is defined at
the Stop and Instant granularity levels of these dimensions. Other trajec-
tory graphoids can be defined at different dimension levels, climbing along
the Stop and Time hierarchies. For example, a trajectory graphoid denoted
a (Stops.Category,Time.Datehour)-graphoid is the base graphoid aggregated
at the [#Datehour] and [#Category] levels, and it is depicted in the bottom
part of Figure 2 .

Over this model, a collection of operations are defined, analogously to

10

[#trajstep] [#trajstep] [#trajstep]

[#trajstep]

[#trajstep]

[#Category, Restaurant]

[#trajstep]

[#Datehour,11,7,2012,0]

[#Category, Theater]

[#Datehour,11,7,2012,1]

[#Stop, 3, Theater, 2012-07-11 01]

[#Stop, 3, Restaurant, 2012-07-11 00]

[#Stop, 3, 67, 2012-07-11 00:38:38] [#Stop, 3, 68, 2012-07-11 01:12:34]

Figure 2: Base graphoid and (Stops.Category,Time.Datehour)-graphoid for
the trajectory graph in the running example.

the classic OLAP operations that are performed over multidimensional data
cubes. This way, the Climb operation replaces each node in a graphoid
with the corresponding node according to the associated dimension level.
For example, if an attribute of a node representing trajectory stops (as in
Figure 2) is instant, a climbing operation to the Hour level along dimen-
sion Time, will produce the (Time.Datehour)-graphoid. Other operations
are defined over the graph model resembling the corresponding operations
on cubes. Operation Roll-Up takes a graphoid to a coarser granularity level
along a dimension Dd up to a level `up, and performs an aggregation over
a collection of measures. The Drill-Down operation does the opposite of
Roll-Up, taking a graphoid to a finer granularity level, along a dimension
Dd, down to a level `down. The Dice operation produces a subgraphoid of
another one, whose nodes satisfy a Boolean condition ϕ defined over a ele-
ments in the graphoid model. All these operations will be further explained
over the running example in Section 5.

4 Representing and Storing a Trajectory as a Graph

This section shows, through an example, how a trajectory can be represented
using the property graph data model, and loaded into a graph database.
First, the running example to be used in the remainder of the paper is
presented. Then, this example is modelled as a trajectory graph.

11

4.1 Running Example

As mentioned in Section 1, the running example considers data from the
“Foursquare New York” dataset. This dataset includes about ten months of
check-in data in New York City, with a total of 227,428 check-ins collected
from the Foursquare social network. When someone checks-in into some
place (an airport, a restaurant, her private home, for instance), a point is
recorded. Data from more than a thousand users are stored in this dataset.
The dataset is used to analyse how people move in the city. Further, the
dataset is enriched by adding spatial and not-spatial contextual information
to the PoIs. Such information is organised as aggregation hierarchies, so
semantic trajectories can be represented at different granularity levels. For
example, in the dataset, an (x, y) point is represented as a (zero duration-)
stop by means of a (latitude, longitude) pair. This stop can be a train sta-
tion, which in turn is categorised as “Station”. The next stop may be a Thai
restaurant, which, at a coarser level, is categorised as “Restaurant”. Thus,
this sub-trajectory becomes a sequence of the form 〈...Station, Restaurant,
... 〉. A temporal hierarchy is also used for analysis. For example, a check-in
into a PoI at 3pm can be aggregated as an “afternoon” stop, if the analyst
is not interested in a finer level of detail. Note that the original dataset
contains the check-in data, and the data enrichment has been performed to
enhance this use case, as it is explained below.

Many interesting queries of different types can be posed over the scenario
described above. For example, since check-ins in this dataset also include
public transport, queries like the following can be expressed.

• “List the users moving between places of interest using a taxi.”

• “Which users travel to an airport by taxi during the night.”

The second query implies an aggregation along the temporal dimension.
As another type of problem, interesting patterns may be investigated, like,
for instance:

• “Return the trajectories in which users go from their homes to an
airport after 5pm.”

• “Give the percentage of trajectories in which users go from a restaurant
to a sport event and end at a coffee shop.”

The addition of spatial data layers allows queries like the following ones.

• “Compute the number of users moving between two or more boroughs
in the same day”

12

• “Compute the average distance travelled per user and per day”

Accounting for all of the above, the graph trajectory model is presented
next.

4.2 Modelling the Trajectory Graph

The “Foursquare New York” dataset contains check-in data of 1083 users
into different places, or “venues”. This comprises 1083 trajectories of differ-
ent lengths. For this study, long trajectories are not split into smaller ones
in a “preparatory phase”. In any case, this could be done through queries,
asking for example, for places visited by a user on a certain day. Each row in
the dataset contains the following information: the user identifier, denoted
userId in the table below; the identifier of the place where the user checked-
in, called venueId; the categorization of the venue, with the identifier and the
category name, called, respectively, venueCatId and venueCat (these describe
the kind of venue, e.g., private home, Thai restaurant, etc.); the geographic
coordinates of the stops, denoted latitude and longitude; the timezone off-
set, called t-zone in the table; the timestamp for the stop, called timestamp
(representing the check-in time for the user at the stop). These data where
loaded into a Postgres relational database and an additional field was added,
indicating the relative position of the stop in the trajectory, called pos. The
resulting relational schema and an example tuple are depicted next.

The Trajectories table has the form:

userId venueId venueCatId venueCat lat. long. t-zone timestamp pos
1 4abc1.... 4bf5... Seafood Rest. 40.78.. -73.97.. -240 2012-04-04 23:31:31 1
...

There is also a table Categories, not in the dataset. This table has
been included in order to make the case study more interesting, and to add
semantics to the trajectory data. The idea is to further categorize venues.
For example, in the table Trajectories, attribute venueCat, in the first row
details the kind of venue. Thus, a category type ‘Restaurant’ can be defined,
to aggregate data at a coarser level of detail. Actually, this represents a level
in an aggregation hierarchy. This new aggregation level is materialized by
the attribute catType in the table Categories below. This categorization been
produced manually, analyzing all kinds of venues one by one, and assigning
to them a category type. All in all, thirty-three category types have been
defined. The dataset defines 251 venue categories, and each one of them
has been assigned to one of category type. In summary, 38,333 venues are
classified into 251 categories, which in turn are classified into 33 category
types.

13

venueId venueCat venueCatId catType
4aa06479f964a5.. Pizza Place 4bf58dd... Restaurant

...

To model semantic trajectory data as a graph, with graph aggregation
in mind, the paper adopts the Graph OLAP model described in Section 3.2.
The base graphoid is composed of the trajectories themselves. Each node
in the base graphoid represents a stop in the trajectory, and has properties
(attributes) userid (i.e., the trajectory id), instant (the time instant when
reaching the stop), and position (the relative position of the stop in the tra-
jectory). Note that, like in any conceptual design, many modelling options
can be considered (for example, regarding the representation of an object
as a node or as an attribute, or placing an attribute in a node or in a
relationship). The one chosen for this use case is only one of them.

In order to analyse trajectories along contextual dimensions (called back-
ground dimensions in Graph OLAP), and at different levels of granularity,
these dimensions must be built and associated with the base graphoid (in
what follows, the “trajectory graph”). In this case, hierarchies for Stop and
Time dimensions are built. For the former, fields in the original dataset are
used, together with the categories defined for each kind of venue. The latter
is built using software libraries (as explained below).

The Time hierarchy aggregates data from the instant represented in the
stops, up to the year level as follows (this is a conceptual representation, the
actual one is described below):

Minute→ Hour→ Day→ Month→ Mear

The background dimension for stops is defined as follows. The bottom
level of the hierarchy, that is, Stops (represented in the trajectory graph),
is associated with the level Venue, which in turn is associated with level
Categories through a relationship denoted hasCategory (the category of the
venue is included in the dataset, and denoted venueCat in the table above).
The hierarchy is completed with the level Category such that there is an
m:1 relationship, denoted isSubcategoryOf, from Categories to Category. The
instance of the level Category corresponds to the attribute catType in the
table Categories. For example, the element Afghan Restaurant at the Cate-
gories level, is associated with the element Restaurant at the level Category.
Thus, the Stop dimension hierarchy is (conceptually) of the form

Stop→ Venue→ Categories→ Category.

As a remark, note that although the name Categories for the level may
seem confusing, the decision of keeping it (instead of, for example, subCate-
gories), is led by the intention to remain faithful to the original data.

14

[#trajstep]
[#Stop,userid,position,instant]

[#isVenue]

[#hasCategory]

[#subCategoryOf]

[#isInstantOf]

[#isMinuteOf]

[#isHourOf]

[#isDayOf]

[#isMonthOf]

[#Stop,userid,position,instant]

[#Dateminute,day,month,year,hour,minute]

[#Datehour,day,month,year,hour]

[#Dateday,day,month,year]

[#Monthyears,month,year]

[#Years,year]

[#Venue, venueid, latitude, longitude]

[#Categories,category,categoryid]

[#Category, categoryType]

Figure 3: Schema of the trajectory database.

Figure 3 depicts the schema of the trajectory database expanded with
the background dimensions, using the Graph OLAP notation. Stops in
each trajectory are represented by a node of type #Stops, with its cor-
responding attributes. Between each pair of stops there is an edge la-
belled trajstep. The figure also shows the schema of the background di-
mensions. Each aggregation level in the dimension hierarchies is shown
as a tuple containing the node type and its corresponding level attributes.
For example, in the Stop dimension, the level Venues is represented as the
tuple [#Venue, venueid, latitude, longitude]. The relationships representing
the hierarchy for the venues are indicated by the edges labelled [#isVenue],
[#hasCategory], and [#subcategoryOf]. The Time dimension is represented
analogously. Note that, although is this case the relationships do not contain
attributes, in general this will not be the case.

Figure 5 shows a portion of an instance of the trajectory graph, repre-
sented as a property graph using the Graph OLAP notation. Two trajecto-
ries are shown, namely for user ids 2 and 3. At the instance level, there is
an edge between two stops s1 and s2 if s2 is the stop occurring immediately
after s1. For the latter trajectory, the complete instance of the hierarchy for
the stop in position 67 is shown. It can be seen that, for each node attribute
in the schema, there is a value in the instance. Also, note that although is
this case data are quite structured, one feature of a graph data model is that

15

[#Stop, 2, 26, 2012-05-29 18:03:57]

[#Stop, 2, 25, 2012-05-29 17:46:15]

[#Stop, 3, 67, 2012-07-11 00:38:38]

[#trajstep]

[#trajstep]

[#trajstep]

[#trajstep]

[#trajstep]

[#Stop, 3, 68, 2012-07-11 01:12:34]

[#Venue, 3fd66200f9, 40.73359624, -74.00313914]

[#isVenue]

[#hasCategory]

[#subCategoryOf]

[#Categories,African Restaurant,4bf58dd8d4]

[#Category, Restaurant]

[#isInstantOf]

[#isMinuteOf]

[#trajstep]

[#isHourOf]

[#isDayOf]

[#isMonthOf]

[#Dateminute,11,7,2012,0,38]

[#Datehour,11,7,2012,0]

[#Dateday,11,7,2012]

[#Monthyears,7,2012]

[#Years,2012]

Figure 4: Portion of the trajectory graph instance.

the schema is totally flexible and unstructured, meaning that, for example,
it is not a requirement that all nodes contain the same attributes.

4.3 Storing the Trajectory Graph

The last step of this process consists in loading the trajectory graph into
the Neo4j graph, which is quite straightforward, and therefore details are
omitted here for the sake of brevity. To build the Time dimension, functions
in the APOC library for Neo4j7 are used. A portion of the resulting graph
is shown in Figure 4 (the attributes are not shown, because of the graph
interface). The edges between stops are highlighted in bold font. The Time
hierarchy is not shown for the sake of clarity. It can be seen, for example,
that node 86 corresponds to the venue with id 11943, which in turn is a
vegetarian restaurant, further classified as a restaurant. The path between
nodes 84 through 87 is also shown, with edges labelled trajstep.

In addition, three spatial layers are defined (not shown in the figure),
namely nycdistricts, new york highway, and nyorkpois, representing, respec-

7https://neo4j.com/developer/apoc/

16

https://neo4j.com/developer/apoc/

tively, the districts, highways and places of interest in New York City. These
layers were imported from public data, and loaded into the Neo4j database.

Figure 5: The trajectory graph in a Neo4j database

The trajectory graph is now ready to be exploited with the Neo4j tools,
and queried using the high-level language Cypher. This is addressed in the
next section.

5 A Case Study

The trajectory graph described in Section 4 can be analysed in many ways.
The first part of this section presents a collection of queries classified into five
query types. Note that the model is aimed at addressing analytical queries,
which take advantage of the contextual dimensions of the Graph OLAP
data model used here, in order to study semantic trajectories at different
granularity levels. Thus, most queries include climbing and aggregating data
along the dimension hierarchies, and the operations á la OLAP involved
are explained for each query. Queries are expressed in the Cypher query
language, the high-level language that comes with Neo4j. Only the Cypher
expressions which may be intuitively understood even by non-expert readers,
have been included. The remaining queries are detailed in the appendix.
The second part of the section discusses the performance of the queries, and
compares it (when possible) against the analogous relational ones.

17

5.1 Analytical Semantic Trajectory Queries

This section addresses queries aimed at helping in the decision-making pro-
cess, for example, for transport policy makers, companies considering start-
ing a new business, etc. Queries are organized into classes that account for
their main characteristics.

Queries computing non-recursive patterns These are typical queries
in trajectory analysis. Below, an example of a query asking for a simple pat-
tern is presented. Complex patterns are commented later on, when studying
transitive closure queries. The Graph OLAP model allows finding patterns
at different granularity levels. In this case, note that the semantic trajectory
graph is defined at the granularity of the stops, and the query below works
at the Category level.

Query 1 Find the trajectories that go from a private home to a station and
then to an airport, without intermediate stops.

MATCH (cat1:Category{categoryType:’Home’})<-[*3..3]-(s1:Stops)-

[r:trajstep]->(s2:Stops)-[:trajstep]->(s3:Stops)-[*3..3]->

(cat3:Category{categoryType:’Airport’})

WHERE s3.position=s1.position+2

MATCH (s2)-[*3..3]->(cat2:Category{categoryType:’Station’})

WITH s1 order by s1.position

RETURN s1.userid, collect(distinct s1.position) order by s1.userid

The first MATCH clause describes a pattern matching a sequence of three con-
secutive stops; the first and last ones include OLAP Climb operations along
the Stops dimension up to the Category dimension level (the coarser level in
the hierarchy). The second MATCH describes the same climbing pattern for
the intermediate stop. At the Category level, a Dice operation is performed,
keeping the desired category, such that only the required 3-stop patterns are
kept. The WITH clause before the last line acts like a ‘pipe’, which passes
variables from one portion of the code to the next one (in this case, it passes
s1). The result is given as pairs of the form (userId,〈LOP〉), where userId
identifies the trajectory, and LOP is a list of the initial position of each
pattern, within the trajectory. Note that in the climbings a shorthand is
used, since there is only one possible path up to the Category level, and no
variables are needed over any intermediate level. If the climbing path were
needed, the second MATCH clause would read:

(s2)-->(:Venues)-[:HasCategory]->(:Categories)-[:subCategoryOf]->

(cat2:Category{categoryType:’Station’})

18

The next query aims at comparing performance for a longer pattern.

Query 2 Find the trajectories that go from a bar (or similar) to a restau-
rant, again to a bar (or similar) and end at a restaurant, without interme-
diate stops.

The Cypher expression for this query is given in the appendix (Query
2), and it is further discussed in Section 5.3.

Queries computing travelled distance Queries in this class compute
the distance between points, but they do not use spatial layers or special
libraries. The functions are part of the Cypher language.

Query 3 For each trajectory, compute the distance travelled between each
pair of consecutive stops.

MATCH (s1:Stops)-[:trajstep]->(s2:Stops)

WITH point({longitude: s1.longitude, latitude:s1.latitude})

AS p1, point({longitude:s2.longitude,

latitude: s2.latitude }) AS p2, s1, s2, s1.userid AS user

RETURN user, s1.position, s2.position, round(distance(p1, p2))

AS travelDistance order by s1.userid asc, travelDistance desc

Here, all consecutive pairs of stops are computed first (by pattern match-
ing, rather than joins, which would be the case in the relational model).
Then, the (latitude, longitude) pairs of each stop are obtained. Finally, for
each trajectory, the distance between two consecutive stops is computed.

The next query shows how to easily analyse distances travelled between
different kinds of places, combining characteristics of Queries 1 and 3 and
including aggregation along background dimensions.

Query 4 For all trajectories that go directly from a private home to an
airport, list the user identifier, together with the distance travelled between
these two places each time that this pattern occurs.

MATCH (cat:Category{categoryType:’Home’})<-[*3..3]-(s1:Stops)-

[r:trajstep]->(s2:Stops)-[*3..3]->

(cat1:Category{categoryType:’Airport’})

WITH s1, s2, cat, cat1, point({longitude: tofloat(s1.longitude),

latitude: tofloat(s1.latitude)}) AS p1, point({longitude:

tofloat(s2.longitude), latitude: tofloat(s2.latitude) }) AS p2

RETURN s1.userid, s1.position, s2.position, round(distance(p1, p2))

AS travelDistance order by travelDistance desc

19

It can be seen that this query first performs two climbings up to the Cat-
egory level to select (Dice) only stops corresponding to homes and airports.
Then, the aggregation is computed at the bottom level of the dimension
(that is, it first climbs, and then computes the distance at the Stop level).

Spatial trajectory queries These queries make use of the spatial infor-
mation contained in layers other than the one where the trajectories are
represented. The query below uses the layers containing the places of inter-
est (“nyorkpois”), and calls the function withinDistance contained in the
Neo4j spatial library.

Query 5 Find the trajectories passing at less than 100m of a public school.

MATCH (s:Stops)

CALL spatial.withinDistance(’nyorkpois’, {latitude: tofloat(s.latitude),

longitude:tofloat(s.longitude) },0.1) YIELD node as c, distance as a

WITH s, c, a WHERE c.NAME CONTAINS ’Public School’

RETURN s.userid, s.position, a

This query uses the NAME feature included in the spatial layer. The
spatial.withinDistance function computes the distance between stops in
the trajectories and the PoIs in the spatial layer. The query returns for
each user (trajectory), the user identifier, the position of the stop in the
trajectory, and the distance between the stop and the school.

The following query is more general, since it does not ask for a particular
kind of PoI.

Query 6 List the trajectories starting at less than 300m from a Place of
Interest of the city, returning the trajectory id (i.e., userId), and the actual
distance, for all the PoIs in the answer.

The Cypher expression is given in Query 6 of the appendix.

Aggregation queries Queries in this class include different forms of ag-
gregations, typical in data analytics.

Query 7 Compute the number of different categories of venues visited by
month.

MATCH p=(s1:Stops)-[*3..3]->(scat:Category)

WITH p,s1,scat

20

MATCH (s1)-[*4..4]->(m1:MonthsYears)

RETURN m1.month as month, scat.categoryType, count(*) as qty

order by qty desc

Here, two climbings are required: one along the Stop dimension hierarchy
up to the Category level, and another one along the Time dimension up to
the MonthsYears level. Finally, the aggregation is performed. The climbing
and the aggregation conform a Roll-up operation.

Two more examples of aggregate queries are given next.

Query 8 Compute the number of stops per day per user, along with the
starting position of each sub-trajectory for each day.

Query 9 For each trajectory, compute its total length, as the sum of the
distances between each pair of stops.

The Cypher expressions for these queries are given in Queries 8 and 9 of
the appendix. The queries are also discussed in Section 5.3.

Transitive closure queries This type of queries are quite more complex
than the previous ones, since they do not only include Graph OLAP opera-
tions or pattern to match, but also require computing the transitive closure
of the trajectory graph. In the sequel, the main idea is explained. However,
given that the understanding the details may be hard for readers not familiar
with Cypher, most technical details are given in the appendix.

Query 10 For each trajectory, find the paths that go from a private home
to an airport in the same day.

This query requires some explanation. Several Climb operations are re-
quired along both background dimensions: (1) up to the Category level along
the Stops dimension, to find stops corresponding to homes and airports; (2)
up to theDay level along the Time dimension. Dice operations are finally
used to filter out the sub-trajectories not occurring during the same day,
and to keep only the trajectories going from a home to an airport. The
transitive closure of the resulting sub-graph is finally computed.

MATCH (cat1:Category{categoryType:’Home’})<-[*3..3]-(s1 :Stops)

MATCH (cat2:Category{categoryType:’Airport’})<-[*3..3]-(s2 :Stops)

WHERE s1.userid = s2.userid AND s1.position < s2.position and

apoc.date.fields(s1.instant, ’yyyy-MM-dd HH:mm:ss’).years =

apoc.date.fields(s2.instant, ’yyyy-MM-dd HH:mm:ss’).years and

21

apoc.date.fields(s1.instant, ’yyyy-MM-dd HH:mm:ss’).months=

apoc.date.fields(s2.instant, ’yyyy-MM-dd HH:mm:ss’).months and

apoc.date.fields(s2.instant, ’yyyy-MM-dd HH:mm:ss’).days=

apoc.date.fields(s1.instant, ’yyyy-MM-dd HH:mm:ss’).days

WITH s1, apoc.coll.sort(collect(s2.position)) as firstAirports

WITH s1, head(firstAirports) as s2pos

MATCH path= (s1)-[:trajstep*]->(s2 :Stops {position: s2pos})

RETURN s1, path

The climbings and dicings are computed in the first two parts of the
query (the two MATCH clauses). Note that this is very intuitive, even for
a the non-expert user. There are two tricky parts, however. First, the
climbing along the Time dimension is performed through a conjunction of
Boolean conditions over the instant property of the nodes of type Stop. The
APOC library is used to operate with dates. The reason is that, in this
case, this results more efficient than performing two matchings along the
Time hierarchy as follows:

MATCH (s1)-[:isinstantof]->()-[:isminuteof]->()-[:ishourof]->(d:dateday),

(s2)-[:isinstantof]->()-[:isminuteof]->()-[:ishourof]->(d:dateday)

The second tricky part involved in this query is caused by the fact that
the sequence of stops in the graph, at the Category aggregation level, can be
of the form {Home, Home, Airport, Airport, Airport...}, and thus all combi-
nations are included in the transitive closure. However, the query must only
capture the first airport in that sequence. The “WITH s1, head(firstAirports)”
clause does the job.

The next query partitions a trajectory into its sub-trajectories using
the date as a partition function, by means of keeping only the longest sub-
trajectory occurring within a day. The Cypher expression is given in the
appendix.

Query 11 For each day, and for each trajectory, find the longest sub-trajectory.

As a final example, the next query makes use of the trajectory graph,
together with map information, to find out districts from where people travel
to an airport, together with the part of the day in which this travel starts.

Query 12 Give the districts in which people leave from their home to the
airport before 3pm.

The Cypher expression is also given in the appendix.

22

Type Name Size (#)
Node Stops 226,345
Node Venues 38,333
Node Categories 400
Node Category 33
Node Dateminute 128,412
Node Datehour 4,523
Node Dateday 252
Node MonthYears 11
Node Years 2
Edge trajstep 225,262
Egde isVenue 226,345
Edge HasCategoryOf 38,333
Edge subCategoryOf 400
Egde isInstantOf 226,345
Edge isMinuteOf 128,412
Edge isHourOf 4,523
Edge isDayOf 252
Edge isMonthOf 11
Total # Objects 796,552

Table 1: Number of nodes and edges in the graph database.

5.2 Running the Queries on Neo4j and PostgresSQL

Although query performance is not the core goal of this paper, the queries
in Section 5.1 are run over the Neo4j database designed and populated as
described in Section 4. Further, in order to compare performance against
a relational alternative, the queries are written in the SQL language, and
executed over a PostgresSQL database. The exception are the queries that
involve spatial functions, which would be unfair to compare, since perfor-
mance heavily depends on the spatial libraries used which, in the case of
Neo4j are still in a first stage of development. Both databases are indexed
in order to obtain the best possible query performance.

For the Neo4j database, the number of nodes and edges are given in
Table 1. For the PostgresSQL database, there are two tables: Trajectories,
with 226,252 tuples, and Categories, with 38,333 tuples.

Queries are run on a machine with a i7-6700 processor, 12 GB of RAM
and a 250GB disk (actually, a virtual node in a cluster). The execution
times reported are the averages of five runs of each experiment.

23

5.3 Discussion

Although comparing performance of a graph database like Neo4j against
relational databases with more than 20 years in the marketplace may seem,
at first sight, unfair, it can give an idea of the potential of the former,
even for the current state-of-the-art software. The discussion that follows
is organised considering the query classes defined in Section 5.1. Results
are summarized in Table 2. In the discussion, some of the queries will be
expressed in SQL, although not all of them, since it is assumed that the
reader has at least a basic knowledge of SQL.

For non-recursive pattern queries, writing the Cypher query implies just
writing the pattern the user wants to check, in a very simple and intuitive
way, provided the user has a basic knowledge. In addition to this, these kinds
of queries are very efficient on a graph database, which can be observed in
Table 2: Queries 1 and 2 are executed in Neo4j in 0.18 and 0.41 seconds,
respectively, while the SQL equivalents take 0.3 and 05 seconds to execute.
The reason is that the SQL queries require performing several joins, and
reads, as shown below for Query 1, while joins are solved by direct path
navigation in Neo4j.

SELECT t1.userid, t1.tpos,t2.tpos,t3.tpos

FROM trajectories t1 join trajectories t2 on (t1.userid=t2.userid

and t1.tpos+1=t2.tpos)

join trajectories t3 on (t2.userid=t3.userid and t2.tpos+1=t3.tpos)

join categories c1 on (t1.venueid=c1.venueid)

join categories c2 on (t2.venueid=c2.venueid)

join categories c3 on (t3.venueid=c3.venueid)

WHERE c1.cattype= ’Home’ and c2.cattype=’Station’

and c3.cattype=’Airport’

For queries computing travelled distance, Query 3 also performs better on
the graph alternative than on the relational one. This Neo4j query directly
looks for all pairs of stops, and then computes the distance between each
pair. This is performed, on average, in 2.2 seconds, while just the join in
PostgresSQL takes 31 seconds (as explained above, the geographic part has
not been evaluated in the Postgres version). That is, when the SQL query
requires joining and/or a sorting the complete database, performance tends
to benefit the graph alternative. Query 4, which combines patterns and
distance computation, is also a good example of the former. In this case,
the pattern just consists in checking two kinds of stops (going from home
to the airport, in this case). The navigation along the Stop dimension is
performed very fast, as well as the distance computation. The query takes

24

0.1 seconds to complete, outperforming SQL which took (without distance
computation), 0.25 secs.

For spatial queries, only the Neo4j alternative is evaluated, as explained
above. For the case of Neo4j, results are just given for completeness since,
clearly, the spatial plugin provided for Neo4j has still to be developed. Spa-
tial queries are included here to give an idea of the potential of enhancing
graph queries of any kind (e.g., transitive closure queries, pattern queries,
etc.), with spatial functions. Spatial queries that require going through all
the stops take, naturally, long times to execute, given the high number of
stops in the dataset. For example, Query 6 takes just 22 seconds to execute,
since it only queries the starting position of each trajectory. On the other
hand, Query 5, which needs to go through all the stops in all trajectories,
takes over 700 seconds.

Aggregation queries also require going through the whole database. Thus,
the same observations above are also valid in this case. Query 7 takes 0.8
seconds to complete on Neo4j, while the SQL alternative takes 1 second.
Both queries return 359 records. The reason is that the pattern matching
performing the join in Neo4j (to climb up to the Category level) is more
efficient than the SQL join. This is somehow compensated by the fact that
SQL performs no additional join to climb up to the Month level, while the
Cypher query actually performs such climbing. When the size of the result
increases, the advantage for Neo4j increases, as it can be seen in the result
for the other aggregation queries.

At this point, the reader may argue that there would be better design
alternatives for the relational database. This is true for some queries (like
Query 3), while a different design would be worse for other ones. And the
same may occur for the graph model. The chosen relational design is a
generic one, with denormalized dimensions, which favours navigation along
the hierarchies, preventing joining dimension levels (this is called a “Star
Schema” design in data warehousing jargon [Kimball1996]).

For transitive closure queries, it is worth remarking that Cypher has not
yet included many functions that would be needed to compute paths when
the transitive closure of the graph is involved. This is why, as explained,
extra statements are needed to solve some queries (like in Query 10 to fil-
ter out unnecessary sub-paths). Query 10 takes 7.8 seconds to execute on
the graph database, while the SQL alternative (see the appendix), which
requires recursion techniques, takes 1 minute. This suggests that for transi-
tive closure queries, the graph database alternative can be competitive and
in some cases even better than the recursive SQL solution. Of course, this
is not conclusive, since many other factors impact on the results. For exam-
ple, Query 10 asks for paths between home and airports. If this changes for
more common stops like Restaurant and Banks, since there are more redun-

25

dant paths to eliminate (due to the Cypher limitations commented above),
performance decreases to 27 secs in Neo4j (this is denoted alternative 2 in
Table 2), while the SQL query is not significantly affected. In both cases,
however, Neo4j performs better than Postgres, and these results repeat for
many different combinations of filters. This is due to the fact that the tran-
sitive closure is not computed over the complete graph. There is a situation,
however, when the relational alternative is still better than the graph one.
This is the case when transitive closure computation is performed over the
whole graph, like in Query 11. When this computation is required, paral-
lel graph computation is needed (Neo4j does not scale horizontally). Note
that trajectory graphs are excellent candidates for parallelization, since the
transitive closure of each trajectory can be computed independently of the
others. On the other hand, it can be seen that the SQL query is very efficient
for this task, and the query times are stable. These results suggest, then,
that when the transitive closure is computed over a relatively small portion
of the trajectory graph, the graph database alternative works better than
the relational ones, but when it must be taken over the whole graph, the
relational database performs better. However, for the same reasons, graph
parallelization solutions are great candidates for this problem, particularly
for trajectory graphs. A study of these alternative is beyond the scope of
this paper.

Table 2 summarizes the test results. The last column on the right gives
the ratio between the execution times on Neo4j and PostgresSQL. The best
execution times for each query have been highlighted in bold font. As a
conclusion, it can be said that for most kinds of queries, the graph database
outperforms the relational one, the exception being the transitive closure
queries requiring computing the closure of the whole trajectory graph. In this
case, the relational alternative is clearly better. However, when the closure
is taken over a small portion of the database, the results are competitive, or
even favour the graph option.

6 Open Problems and Future Work

This paper discussed the problem of querying a collection of semantic tra-
jectories modelled as a property graph and stored in a graph database,
focusing on analytical queries, that imply aggregating the trajectories up to
different granularity levels. Typically, trajectories are stored in a relational
database. Given that trajectories can be seen as a graph, modelling and
storing them as graphs instead of relations sound natural, and merits study-
ing the plausibility of this solution. The outcome of this study suggests,
from a qualitative point of view, that analytical trajectory queries are more

26

1 2 # 3 4 5
Type of Query Query # Neo4j (sec) Postgres (sec) 3 / 4

Non-recursive pattern 1 0.18 0.3 0.6
Non-recursive pattern 2 0.41 0.5 0.82

Travelled distance 3 2.2 31 (w/o distance) 0.07
Distance & pattern 4 0.1 0.25 0.4

Spatial 5 720 N/A N/A
Spatial 6 22 N/A N/A

Aggregation 7 0.8 1 0.8
Aggregation 8 1.8 4 0.45

Aggregation & distance 9 2.4 N/A N/A
Transitive closure 10 (alt. 1) 7.8 60 0.13
Transitive closure 10 (alt. 2) 27 60 0.45
Transitive closure 11 99 59 1.67

Spatial & transitive closure 12 970 N/A N/A

Table 2: Execution times for the example queries.

naturally expressed over graphs, using a graph query language (in this case,
Cypher, the query language for Neo4j), than over a relational representa-
tion. Moreover, from a quantitative point of view, for three out of the five
classes of queries studied (non-recursive patterns, distance, spatial, aggre-
gation, and transitive closure queries), the graph database queries run from
1.2 to 7 times faster than the relational ones. Only transitive closure queries
that must go through the complete graph delivered better performance over
the relational database. However, when queries require computing the tran-
sitive closure of only a relatively small portion of the database, the graph
database results competitive, and even outperforms the relational database.

The results reported here, however promising, leave plenty of room for
more research work. As a first indication of the road to follow, note that
even for the queries where results are not positive (basically transitive closure
queries), such results are very likely to change considering parallel execution.
There are many parallel processing graph databases (e.g., GraphFrames8,
Janusgraph9) that may take advantage of the characteristics of trajectory
graphs in order to, for example, compute the transitive closure of the tra-
jectory graph in parallel, and aggregate the results after this computation.
This may speed-up computation by orders of magnitude. Therefore, the
continuation of the work presented will explore the benefits of using those
kinds of graph databases.

8https://graphframes.github.io/
9http://janusgraph.org/

27

https://graphframes.github.io/
http://janusgraph.org/

References

[Alvares et al.2007] Alvares, L.O., et al., 2007. A Model for Enriching Tra-
jectories with Semantic Geographical Information. In: 15th ACM In-
ternational Symposium on Geographic Information Systems (ACM-GIS
2007) ACM, 162–169.

[Angles2012] Angles, R., 2012. A Comparison of Current Graph Database
Models. In: Proceedings of ICDE Workshops, Arlington, VA, USA,
171–177.

[Angles2018] Angles, R., 2018. The Property Graph Database Model. In:
Proceedings of the 12th Alberto Mendelzon International Workshop on
Foundations of Data Management, Cali, Colombia, May 21-25, 2018.

[Angles and Gutierrez2008] Angles, R. and Gutierrez, C., 2008. Survey of
graph database models. ACM Comput. Surv., 40 (1), 1:1–1:39.

[Chen et al.2009] Chen, C., et al., 2009. Graph OLAP: a multi-dimensional
framework for graph data analysis. Knowl. Inf. Syst., 21 (1), 41–63.

[du Mouza and Rigaux2005] du Mouza, C. and Rigaux, P., 2005. Mobility
Patterns. GeoInformatica, 9 (4), 297–319.

[Giannotti et al.2007] Giannotti, F., et al., 2007. Trajectory Pattern Min-
ing. In: Proceedings of Knowledge Discovery and Data Mining (KDD
2007) ACM, 667–680.

[Giannotti et al.2006] Giannotti, F., Nanni, M., and Pedreschi, D., 2006.
Efficient Mining of Temporally Annotated Sequences. In: Proceedings
of the Sixth SIAM International Conference on Data Mining (SDM
2006) SIAM.

[Gómez et al.2017] Gómez, L.I., Kuijpers, B., and Vaisman, A.A., 2017.
Performing OLAP over Graph Data: Query Language, Implementa-
tion, and a Case Study. In: Proceedings of the International Workshop
on Real-Time Business Intelligence and Analytics, BIRTE, Munich,
Germany, August 28, 2017, 6:1–6:8.

[Gómez and Vaisman2013] Gómez, L.I. and Vaisman, A.A., 2013. Mining
semantic trajectories. Intell. Data Anal., 17 (5), 857–898.

[Gryllakis et al.2017] Gryllakis, F., et al., 2017. Searching for Spatio-
Temporal-Keyword Patterns in Semantic Trajectories. In: Advances
in Intelligent Data Analysis XVI - 16th International Symposium, IDA
2017, London, UK, October 26-28, 2017, Proceedings, 112–124.

28

[Gryllakis et al.2018] Gryllakis, F., et al., 2018. Spatio-Temporal-Keyword
Pattern Queries over Semantic Trajectories with Hermes@Neo4j.
In: Proceedings of the 21th International Conference on Extending
Database Technology, EDBT 2018, Vienna, Austria, March 26-29,
2018., 678–681.

[Güting and Schneider2005] Güting, R.H. and Schneider, M., 2005. Moving
Objects Databases. Morgan Kaufman.

[Hartig2014] Hartig, O., 2014. Reconciliation of RDF* and Property
Graphs. CoRR, abs/1409.3288.

[Karli and Saygin2009] Karli, S. and Saygin, Y., 2009. Mining Periodic Pat-
terns in Spatio-temporal Sequences at Different Time Granularities. In-
telligent Data Analysis, 13 (2), 301–335.

[Kimball1996] Kimball, R., 1996. The Data Warehouse Toolkit. J. Wiley
and Sons.

[Leonardi et al.2014] Leonardi, L., et al., 2014. A general framework for
trajectory data warehousing and visual OLAP. GeoInformatica, 18 (2),
273–312.

[Parent et al.2013] Parent, C., et al., 2013. Semantic trajectories modeling
and analysis. ACM Comput. Surv., 45 (4), 42:1–42:32.

[Pelekis et al.2015] Pelekis, N., Sideridis, S., and Theodoridis, Y., 2015. Her-
messem: A semantic-aware framework for the management and analy-
sis of our LifeSteps. In: 2015 IEEE International Conference on Data
Science and Advanced Analytics, DSAA 2015, Campus des Cordeliers,
Paris, France, October 19-21, 2015, 1–10.

[Renso et al.2013] Renso, C., Spaccapietra, S., and Zimányi, E., eds. , 2013.
Mobility Data: Modeling, Management, and Understanding. Cambridge
University Press.

[Robinson et al.2013] Robinson, I., Webber, J., and Eifrém, E., 2013. Graph
Databases. O’Reilly Media.

[Spaccapietra et al.2008] Spaccapietra, S., et al., 2008. A conceptual view
on trajectories. Data Knowl. Eng., 65 (1), 126–146.

[Spaccapietra et al.2013] Spaccapietra, S., Parent, C., and Spinsanti, L.,
2013. Trajectories and Their Representations. Mobility Data: Modeling,
Management, and Understanding., 3–22.

29

[Vaisman and Zimányi2014] Vaisman, A. and Zimányi, E., 2014. Data
Warehouse Systems: Design and Implementation. Springer.

[Vaisman and Zimányi2013] Vaisman, A.A. and Zimányi, E., 2013. Trajec-
tory Data Warehouses. Mobility Data: Modeling, Management, and
Understanding., 62–82.

[Zhao et al.2011] Zhao, P., et al., 2011. Graph cube: on warehousing and
OLAP multidimensional networks. In: Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, Athens,
Greece ACM, 853–864.

Appendix: Cypher and SQL Expressions for Queries
in Section 5.1

This appendix includes the Cypher or SQL expressions not included in the
main body of the paper.

Query 5.2 Find the trajectories that go from a bar (or similar) to a restau-
rant, again to a bar (or similar) and end at a restaurant, without interme-
diate stops.

This query aims at comparing performance for long patterns.

MATCH (cat1:Category{categoryType: ’Bar-Coffee-Tea’}) <-[*3..3]-

(s1:Stops)-[:trajstep]->(s2:Stops)-[:trajstep]->

(s3:Stops)-[:trajstep]->(s4:Stops)-[*3..3]->

(cat4:Category{categoryType:’Restaurant’})

WHERE toint(s4.position) = toint(s1.position)+3

MATCH (s2) -[*3..3]->(cat2:Category{categoryType:’Restaurant’})

MATCH (s3) -[*3..3]->(cat3:Category{categoryType:’Bar-Coffee-Tea’})

WITH s1 order by s1.position

RETURN s1.userid, collect(distinct s1.position) order by s1.userid

Query 5.6 List the trajectories starting at less than 300m from a Place of
Interest of the city, returning the trajectory id (i.e., userId), and the actual
distance, for all the PoIs in the answer.

MATCH (s:Stops)

WHERE s.position=’1’

CALL spatial.withinDistance(’nyorkpois’, {latitude: tofloat(s.latitude),

longitude:tofloat(s.longitude)},0.3) YIELD node as c, distance as a

RETURN s.userid, s.position, a

30

Query 5.8 Compute the number of stops per day per user, along with the
starting position of each sub-trajectory for each day.

MATCH (s:Stops)

WITH s

MATCH (s)-[:isinstantof]->()-[:isminuteof]->()-[:ishourof]->(d1:dateday)

RETURN s.userid as usr, d1.day as day,d1.month as month,

min(s.position), (toint(max(s.position))-toint(min(s.position)))

as dif order by usr asc, month asc,day asc

Query 5.9 For each trajectory, compute its total length, as the sum of the
distances between each pair of stops.

MATCH (s1:Stops)-[:trajstep]-(s2:Stops)

WITH point({longitude:tofloat(s1.longitude),

latitude:tofloat(s1.latitude)}) AS p1,

point({longitude: tofloat(s2.longitude),

latitude:tofloat(s2.latitude)}) AS p2,

s1, s2, s1.userid AS user

RETURN user, sum(round(distance(p1, p2)))

AS totalLength order by user asc, totalLength desc

Query 5.10 For each trajectory, find the paths that go from a private home
to an airport in the same day.

The Cypher expression is given in the main body of the paper. The SQL
expression for this query reads as follows.

WITH RECURSIVE path(tpos_src, venueid_src, venuecategory_src,

cattype_src,tpos_dst, venueid_dst, venuecategory_dst,

cattype_dst,userid,date,stopscattype, stopsvenueid)

as

(SELECT i1.tpos, i1.venueid, i1.venuecategory, i1.cattype,

i2.tpos,i2.venueid, i2.venuecategory,i2.cattype,

i2.userid, date_trunc(’day’,i2.utctimestamp),

Array[i1.cattype] || i2.cattype, Array[i1.venueid]

|| i2.venueid

FROM trajectories i1, trajectories i2

WHERE i1.userid = i2.userid and i1.tpos +1= i2.tpos and

date_trunc(’day’, i1.utctimestamp)= date_trunc(’day’,

i2.utctimestamp) and i1.cattype <> ’Airport’

31

UNION ALL

SELECT path.tpos_src, path.venueid_src, path.venuecategory_src,

path.cattype_src, i2.tpos, i2.venueid, i2.venuecategory,

i2.cattype, i2.userid, date_trunc(’day’, i2.utctimestamp),

stopscattype || Array[i2.cattype], stopsvenueid ||

Array[i2.venueid]

FROM path, trajectories i2

WHERE path.userid = i2.userid and path.tpos_dst+1= i2.tpos and

date_trunc(’day’,path.date)=date_trunc(’day’, i2.utctimestamp)

and ’Airport’ <> path.cattype_dst

)

SELECT tpos_src, venueid_src, venuecategory_src, cattype_src,

tpos_dst, venueid_dst,venuecategory_dst, cattype_dst, userid,

date, stopscattype,stopsvenueid

FROM path

WHERE cattype_src= ’Home’ and cattype_dst=’Airport’

GROUP BY tpos_src, venueid_src, venuecategory_src, cattype_src,

tpos_dst, venueid_dst, venuecategory_dst, cattype_dst, userid,

date, stopscattype, stopsvenueid

ORDER BY userid, tpos_src, tpos_dst;

Query 5.11 For each day, and for each trajectory, find the longest sub-
trajectory.

Below, the corresponding Cypher query is shown.

MATCH (s :Stops)-[*3..3]->(d: dateday)

WITH s.userid AS sid, d, min(s.position) as initialpos,

max(s.position) as lastpos WHERE initialpos <> lastpos

MATCH path=(s1:Stops{userid: sid, position:initialpos})-[:trajstep*]->

(s2:Stops{userid: sid, position: lastpos})

RETURN s1, d, path

In SQL the query reads:

WITH RECURSIVE path(srcpos, currentpos, userid, date,

stopsvenueid)

AS (SELECT i1.tpos, i1.tpos, i1.userid,

date_trunc(’day’, i1.utctimestamp), Array[i1.venueid]

FROM trajectories i1

UNION ALL

SELECT srcpos, i2.tpos, i2.userid, date_trunc(’day’,

32

i2.utctimestamp), stopsvenueid || Array[i2.venueid]

FROM path, trajectories i2

WHERE path.userid = i2.userid and path.currentpos + 1 = i2.tpos

and date_trunc(’day’, path.date) =

date_trunc(’day’, i2.utctimestamp)),

maximal(userid, date, maxlength) AS

(SELECT userid, date, max(array_length(stopsvenueid,1))

FROM path

GROUP BY userid, date

HAVING max(array_length(stopsvenueid, 1)) > 1)

SELECT userid, date, stopsvenueid

FROM path

WHERE EXISTS (SELECT * FROM maximal

WHERE path.userid=maximal.userid AND path.date=maximal.date

and array_length(path.stopsvenueid,1) = maximal.maxlength)

ORDER BY userid, date

Query 5.12 Give the districts in which people leave from their home to the
airport before 3pm.

The query makes use of additional layers, in this case, the layer contain-
ing the districts. The query in Cypher is expressed as follows .

MATCH (cat1:Category{categoryType:’Home’})<-[*3..3]-(s1:Stops)-

[:trajstep*]->(s2:Stops)-[*3..3]->

(cat2:Category{categoryType:’Airport’})

WITH min(s1.longitude) as izq, max(s1.longitude) as der,

min(s1.latitude) as aba, max(s1.latitude) as arri

CALL spatial.bbox(’nycdistricts’, {lat:tofloat(aba), lon:tofloat(izq)},

{lat: tofloat(arri), lon: tofloat(der)}) yield node as c

WITH c

MATCH (cat1:Category{categoryType:’Home’})<-[*3..3]-(:Categories)-

(s1:Stops)-[:trajstep*]->(s2:Stops)-[*3..3]->

(cat2:Category{categoryType:’Airport’})

WHERE apoc.date.fields(s1.instant, ’yyyy-MM-dd HH:mm:ss’).years =

apoc.date.fields(s2.instant, ’yyyy-MM-dd HH:mm:ss’).years and

apoc.date.fields(s1.instant, ’yyyy-MM-dd HH:mm:ss’).months=

apoc.date.fields(s2.instant, ’yyyy-MM-dd HH:mm:ss’).months and

apoc.date.fields(s2.instant, ’yyyy-MM-dd HH:mm:ss’).days=

apoc.date.fields(s1.instant, ’yyyy-MM-dd HH:mm:ss’).days

AND apoc.date.fields(s1.instant,’yyyy-MM-dd HH:mm:ss’).hours < 15

AND tofloat(s1.longitude) > tofloat(c.bbox[0]) and

tofloat(s1.latitude) > tofloat(c.bbox[1]) and

33

tofloat(s1.longitude) < tofloat(c.bbox[2])

and tofloat(s1.latitude) < tofloat(c.bbox[3])

RETURN s1, s2, c.NAME

The Neo4j spatial plugin still does not provide a function that can com-
pute if a point is contained inside a polygon. Therefore, this query is solved
using the bounding boxes of the districts, as can be seen in the last part of
the query. The first part computes the bounding box containing all stops
in the dataset. Then, the spatial.bbox function returns all the district in
this bounding box. Then, all trajectories leaving from a home to an air-
port before 3pm are computed. Finally, the districts corresponding at these
homes are computed (based on the bounding box of the district geometry).

34

