
Made available by Hasselt University Library in https://documentserver.uhasselt.be

On the Expressive Power of Query Languages for Matrices

Peer-reviewed author version

BRIJDER, Robert; GEERTS, Floris; VAN DEN BUSSCHE, Jan & WEERWAG,

Timmy (2019) On the Expressive Power of Query Languages for Matrices. In: ACM

TRANSACTIONS ON DATABASE SYSTEMS, 44 (4) (Art N° 15).

DOI: 10.1145/3331445

Handle: http://hdl.handle.net/1942/30378

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

On the Expressive Power ofQuery Languages for Matrices

ROBERT BRIJDER, Hasselt University, Belgium
FLORIS GEERTS, University of Antwerp, Belgium

JAN VAN DEN BUSSCHE, Hasselt University, Belgium
TIMMY WEERWAG, Hasselt University, Belgium

We investigate the expressive power of MATLANG, a formal language for matrix manipulation based on

common matrix operations and linear algebra. The language can be extended with the operation inv for

inverting a matrix. In MATLANG + inv we can compute the transitive closure of directed graphs, whereas we

show that this is not possible without inversion. Indeed we show that the basic language can be simulated in

the relational algebra with arithmetic operations, grouping, and summation. We also consider an operation

eigen for diagonalizing a matrix. It is defined such that for each eigenvalue a set of mutually orthogonal

eigenvectors is returned that span the eigenspace of that eigenvalue. We show that inv can be expressed in

MATLANG + eigen. We put forward the open question whether there are boolean queries about matrices,

or generic queries about graphs, expressible inMATLANG + eigen but not inMATLANG + inv. Finally, the
evaluation problem forMATLANG + eigen is shown to be complete for the complexity class ∃R.
CCS Concepts: • Information systems → Query languages; • Theory of computation → Database
query languages (principles); • Computing methodologies→ Linear algebra algorithms.

Additional Key Words and Phrases: matrix query languages, relational algebra with aggregates, query evalua-

tion problem, graph queries

ACM Reference Format:
Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag. 2020. On the Expressive Power of

Query Languages for Matrices. 1, 1 (January 2020), 30 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In view of the importance of large-scale statistical and machine learning (ML) algorithms in the

overall data analytics workflow, database systems are in the process of being redesigned and

extended. The aim is to allow for a seamless integration of ML algorithms and mathematical and

statistical frameworks, such as R, SAS, and MATLAB, with existing data manipulation and data

querying functionality [7, 12, 15, 31, 33, 39, 44, 48, 49, 52, 60, 69]. In particular, data scientists

often use matrices to represent their data, as opposed to using the relational data model, and

create custom data analytics algorithms using linear algebra, instead of writing SQL queries. Here,

linear algebra algorithms are expressed in a declarative manner by composing basic linear algebra

constructs. Examples of such constructs are: matrix multiplication, matrix transposition, element-

wise operations on the entries of matrices, solving nonsingular systems of linear equations (matrix

inversion), diagonalization (eigenvalues and eigenvectors), singular value decomposition, just to

name a few. The main challenges from a database system’s perspective are to ensure scalability.

Authors’ addresses: Robert Brijder, Hasselt University, Hasselt, Belgium; Floris Geerts, University of Antwerp, Antwerp,

Belgium; Jan Van den Bussche, Hasselt University, Hasselt, Belgium; TimmyWeerwag, Hasselt University, Hasselt, Belgium.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

XXXX-XXXX/2020/1-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: January 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

We identify two general approaches in this direction: (i) to provide physical data independence

and (ii) to provide optimizations. The former is to relieve users from the manual handling of data

distribution, communication, fault tolerance, among other things. The second is to compile linear

algebra algorithms into efficient programs hereby mimicking cost-based query optimization used

to evaluate SQL queries. We refer to [62] for an overview of the different systems addressing these

challenges.

In this context, the following natural questions arise: Which linear algebra constructs need to be

supported to perform specific data analytical tasks? Does the additional support for certain linear

algebra operations increase the overall functionality? When are two linear algebra algorithms

equivalent (perform the same task)? Such questions have been extensively studied for classical query

languages (fragments and extensions of SQL) in database theory and finite model theory [1, 38].

Indeed, the questions raised all relate to the expressive power of query languages. In this paper we

enrol in the investigation of the expressive power of matrix query languages.
As a starting point we focus on matrices and matrix query languages alone, leaving the study

of the expressive power of languages that operate on both relational data and matrices for future

work. Even this “matrix only” setting turns out to be quite interesting and challenging on its own.

To set the stage, we need to formally define what we mean by a matrix query language. There has

been work in finite model theory and logic to understand the capability of certain logics to express

linear algebra operations [18–20, 26, 29, 32]. In particular, the extent to which fixpoint logics with

counting and their extension with so-called rank operators can express linear algebra has been

considered. The motivation for that line of work is mainly to find a logical characterization of

polynomial-time computability and less so in understanding the expressive power of specific linear

algebra operations.

In this paper, we take the opposite approach in which we define a basic matrix query language,

referred to as MATLANG, which is built up from basic linear algebra operations, supported by

linear algebra systems such as R andMATLAB, and then closing these operations under composition.
Throughout the paper we consider matrices with entries in the complex field C, unless specified
otherwise. Let us have a sneak preview of MATLANG.

Example 1.1 (Google matrix). Let A be the adjacency matrix of a directed graph (modeling the

Web graph) on n nodes numbered 1, . . . ,n. Let 0 < d < 1 be a fixed “damping factor”. Let ki denote
the outdegree of node i . For simplicity, we assume ki to be nonzero for every i . Then the Google

matrix [8, 11] of A is the n × n matrix G defined by

Gi, j = d
Ai j

ki
+

1 − d

n
.

To perform the calculation of G from A we can formulate the following MATLANG expression:

apply[+]
(
d⊙apply[/]

(
X ,X ·1(X)·(1(X))∗

)
, (1−d)⊙

(
apply[1/x]

(
(1(X))∗ ·1(X)

))
⊙
(
1(X)·(1(X))∗

))
.

Let us unfold this expression to understand its meaning. The basic operations in MATLANG used

in this expression are: (i) a matrix variable, denoted by X , which is to be instantiated with the input

matrix A; (ii) matrix multiplication, denoted by “·”; (iii) matrix transposition, denoted by “
∗
”; (iv) the

one-vector, denoted by 1(·), returning the column vector with each entry equal to “1” and with

dimension equal to the number of rows of the input matrix; and (v) pointwise function applications,
denoted by apply[f](·), whose semantics will be explained below. In the expression we also find

the operation “⊙”. This is a shorthand notation for scalar multiplication. As we will see later in the

paper, it can be expressed in terms of the basic operations in MATLANG.

, Vol. 1, No. 1, Article . Publication date: January 2020.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

On the Expressive Power of Query Languages for Matrices 3

Given this, the sub-expression 1(X) · (1(X))∗ will evaluate, when X is assigned to A, to the n × n
matrix J in which every entry equals to one. Similarly, (1(X))∗ · 1(X), when X is assigned to A,
returns the dimension n of A. Furthermore, the result of apply[1/x]

(
(1(A))∗ · 1(A)

)
is obtained by

applying the function x 7→ 1/x to every (non-zero) element in its input, in this case only to the

value n, resulting in 1/n. The second term in the Google matrix G is thus obtained by multiplying

J , as previously computed, by 1/n and 1 − d using scalar multiplication ⊙.

We next consider the first term ofG . The sub-expression apply[/]
(
X ,X ·1(X) · (1(X))∗

)
evaluates,

when A is assigned to X , to the n × n matrix B which holds Ai j/ki in entry (i, j). Indeed, A · 1(A) ·
(1(A))∗ = A · J consists of the n × n-matrix K in which the ith row consists solely of the number ki .
The pointwise function application has now two arguments, X and X · 1(X) · (1(X))∗. For every

entry in these two inputs (Ai j and Ki j = ki) it applies the function (x ,y) 7→ x/y. This results in the

matrix B. Finally, a scalar multiplication by d provides the first term in G. It remains to sum up

both terms to obtain G. This is done by a final pointwise function application mapping each of its

two input entries to the sum of those entries, using the function (x ,y) 7→ x + y. □

In the previous example we actually used almost all basic operations (matrix variables, matrix

multiplication, transpose, one-vector, function applications) in MATLANG. Missing here is the

diagonalization operation (diag(·)) turning a column vector into a diagonal matrix. All six basic

linear algebra operations supported in MATLANG stem from “atomic” operations supported in

popular linear algebra packages. While many other operations are supported by these packages,

we feel that they are somewhat less atomic. We present more examples later on, showing that

MATLANG is indeed capable of expressing common matrix manipulations. In fact, we propose

MATLANG as an analog for matrices of the relational algebra for relations. With MATLANG as the

starting point, what can we say about its expressive power?

To answer this question, we relate MATLANG to the relational algebra with aggregates [37, 43],

using a standard representation of matrices as relations. The only aggregate function that is needed

is summation. In fact, it turns out that MATLANG is already subsumed by aggregate logic with

only three nonnumerical variables. Conversely, MATLANG can express all queries from graph

databases (binary relational structures) to binary relations that can be expressed in first-order

logic with three variables. In contrast, the four-variable query asking if the graph contains a four-
clique, is not expressible. We note that the connection with three-variable logics has recently been

strengthened [23]. Indeed, it has been shown that two undirected graphs are indistinguishable by

means of sentences inMATLANG if and only if they are indistinguishable by means of sentences

in the three-variable fragment of first-order logic with counting. A MATLANG sentence here

refers to an expression that always returns single (complex) numbers. We observe that as a direct

consequence from the locality of relational algebra with aggregates [43], it follows that the transitive
closure of graph is also not expressible in MATLANG given its adjacency matrix.

We thus see that, for example, when data analysts want to check for four-cliques in a graph, more

advanced linear algebra operations than those in MATLANG need to be considered when building

scalable linear algebra systems. Similarly, extracting information related to the connectivity of

graphs requires extending MATLANG. We consider two such extensions in the paper:

• MATLANG + inv: The extension ofMATLANG with an operation (inv) for inverting a matrix.

We show that MATLANG + inv is strictly more expressive than MATLANG. Indeed, the tran-
sitive closure of binary relations becomes expressible. The possibility of reducing transitive

closure to matrix inversion has been pointed out by several researchers [16, 17, 41, 57]. We

show that the restricted setting ofMATLANG suffices for this reduction to work.

• MATLANG + eigen: The extension of MATLANG with an operation (eigen) which returns

eigenvectors and eigenvalues. There are various ways to define this operation formally. Since

, Vol. 1, No. 1, Article . Publication date: January 2020.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

no unique set of eigenvectors exists, the eigen operation is intrinsically non-deterministic.
We show that the resulting languageMATLANG + eigen can express inversion and this by

using a deterministic MATLANG + eigen expression (i.e., despite it using eigen, it always
deterministically returns the inverse of a matrix, if it exists). The argument is well known

from linear algebra, but our result shows that starting from the eigenvalues and eigenvectors,

MATLANG is expressive enough to construct the inverse. It once more attests that we have

defined an adequate matrix language for performing common matrix manipulations.

It is natural to conjecture thatMATLANG+eigen is actually strictlymore powerful thanMATLANG+
inv in expressing, say, boolean queries about matrices. Proving this is an interesting open problem.

We conclude the introduction by going back to our earlier question regarding the equivalence of

linear algebra algorithms. Here, one would like to know, at the very least, whether the equivalence of
linear algebra expressions is decidable. We answer this question affirmatively for expressions in our

most expressive matrix query languageMATLANG + eigen. Related to this is the question whether

the evaluation of expressions inMATLANG+eigen is effectively computable. This may seem like an

odd question, since linear algebra computations are done in practice. These evaluation algorithms,

however, often use techniques from numerical mathematics [25], resulting in approximations of

the precise result. We are interested in the exact result.

We show that the input-output relation of an expression e inMATLANG+eigen, applied to input
matrices of given dimensions, is definable in the existential theory of the real numbers, by a formula

of size polynomial in the size of e and the given dimensions. Here, we encode complex numbers in

input matrices by pairs of real numbers. The existential theory of the reals is decidable; actually, the

full first-order theory of the reals is decidable [3, 5]. More specifically, the class of problems that can

be reduced in polynomial time to the existential theory of the reals forms a complexity class on its

own, known as ∃R [58, 59]. To situate ∃R among classical complexity classes: It is known to contain

NP (this follows easily from the definition of ∃R) and is contained in PSPACE [14]. We thus place

natural decision versions of the evaluation problem for MATLANG + eigen in the complexity class

∃R (combined complexity). We obviously restrict ourselves in this setting to pointwise function

applications that are definable in the existential theory of the real numbers.

We show, moreover, that there exists a fixed expression (data complexity) in MATLANG + eigen
for which the evaluation problem is ∃R-complete, even when restricted to input matrices with

integer entries. We remark that the ∃R-hardness proof heavily relies on the non-deterministic

character of the eigen operation. The precise complexity of the evaluation problem for deterministic

MATLANG + eigen expressions is left open.

Organization of the paper. We discuss related work in Section 2 and introduce the syntax, seman-

tics and type-checking system for MATLANG in Section 3. The expressive power of MATLANG
is considered in Section 4, followed by an investigation of the extensions MATLANG + inv, in
Section 5, and of MATLANG + eigen, in Section 6. The evaluation problem for expressions in

MATLANG + eigen is treated in Section 7. We compare the efficiency of computing the transitive

closure of graphs by means of specialized algorithms with the evaluation of the corresponding

MATLANG + inv expression in Section 8. Finally, in Section 9 we conclude the paper.

2 RELATEDWORK
Programming languages to manipulate matrices trace back to the APL language [34]. Providing

database support for matrices and multidimensional arrays has been a long-standing research topic

[55], originally geared towards applications in scientific data management.

In [39], Lara is proposed as a domain-specific programming language written in Scala that

provides both linear algebra (LA) and relational algebra (RA) constructs. This is done by introducing

, Vol. 1, No. 1, Article . Publication date: January 2020.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

On the Expressive Power of Query Languages for Matrices 5

three core types corresponding to bags, matrices, and vectors with various operations for each

type. This approach is taken one step further in [33] where it is shown that the RA operations and

a number of LA operations can be defined in terms of three core operations called Ext, Union,

and Join. The resulting language (although different from Lara of [39]) is also called Lara. Using

these three core operations, the RA operations and some LA operations can be combined in a single

language that can be implemented efficiently. Similarly to what we show in this paper for the

languageMATLANG, it seems that the expressive power of the language formed by Ext, Union,

and Join is subsumed by the relational algebra with aggregates.

Another relevant related work is the FAQ framework [2], which focuses on the project-join

fragment of the algebra for K-relations [28] (relations where the tuples are annotated with elements

from some commutative semiring K). The connection between MATLANG and the algebra for

K-relations is more deeply investigated in a forthcoming paper [10]. Yet another related formalism

is that of logics with rank operators [18, 19, 26, 29, 32, 54]. These operators solve 0, 1-matrices over

finite fields, and increase the expressive power of established logics over abstract structures. In

contrast, in this paper we are interested in queries on arbitrary matrices.

Modest changes to SQL in order to perform LA operations in a scalable way within relational

databases are proposed in [45]. In this way, various linear algebra operations are implemented

in an efficient way using the relational algebra. The exact scope of the linear algebra operations

that can be implemented in this way remains to be formally understood. More generally, various

systems are being developed in which relational and linear algebra functionalities are combined [7,

12, 15, 31, 33, 39, 44, 48, 49, 52, 60, 69].

In this vein, we investigate in this paper the expressive power of common linear algebra opera-

tions, and we relateMATLANG to the relational algebra. While the previous work is focused on

showing that relational algebra (appropriately extended) can serve as a platform for supporting

large scale linear algebra operations, the focus of our work here is complementary. Indeed, we want

to understand the precise expressive power of common linear algebra operations, as adequately

formalized in the language MATLANG and its extensions. In particular, we compare the expressive

power of matrix queries to that of relational queries.

A conference version of this paper was presented at ICDT 2018 [9]. In this journal version,

we provide detailed proofs of all results and report on some preliminary experiments in which

we investigate the efficiency of computing the transitive closure of graph using linear algebra

operators.

3 MATLANG

We start by defining the languageMATLANG in Section 3.1, provide its semantics in Section 3.2,

and conclude by describing a type-checking system for MATLANG expressions in Section 3.3.

3.1 Syntax ofMATLANG expressions
We assume a sufficient supply of matrix variables, which serve to indicate the inputs to expressions

inMATLANG. The syntax ofMATLANG expressions is defined by the grammar:

e ::= M (matrix variable)

| letM = e1 in e2 (local binding)

| e∗ (conjugate transpose)

| 1(e) (one-vector)

| diag(e) (diagonalization of a vector)

| e1 · e2 (matrix multiplication)

, Vol. 1, No. 1, Article . Publication date: January 2020.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag


0 1 + i
2 3 − i

4 + 4i 5


∗

=

[
0 2 4 − 4i

1 − i 3 + i 5

]
1
([

2

√
3 4

4 5 6

])
=

[
1

1

]

0 −3

2 7

2

3
1

 ·
[
1 3 −1 3 − i
5 −2 1 0

]
=


−15 −6 −3 0

37 −8 5 6 − 2i
5

2

3
0

1

3
2 − 2

3
i

 diag
([

6

7

])
=

[
6 0

0 7

]

apply[Û−] ©­«

1 1 1

0 1 1

0 0 0

 ,

0 0 1

0 1 0

1 0 1

ª®¬ =

1 1 0

0 0 1

0 0 0


Fig. 1. Basic matrix operations of MATLANG.

| apply[f](e1, . . . , en) (pointwise application, f ∈ Ω)

In the last rule, f is the name of a function f : Cn → C, where C denotes the complex numbers.

Formally, the syntax ofMATLANG is parameterized by a repertoire Ω of such functions, but for

simplicity we will not reflect this in the notation. We will see various examples of MATLANG
expressions below.

Remark. As can be seen in the grammar, variables can also be introduced in let-constructs inside

expressions as a way to give names to intermediate results. This makes it easier to write expressions.

When consideringMATLANG and its extensionMATLANG + inv (to be defined in Section 5), the

let-construct is not an essential operation and can be easily eliminated from expressions. We will see

later, however, that it plays an important role when consideringMATLANG + eigen (see Section 6).

3.2 Semantics of MATLANG expressions
In defining the semantics of the language, we begin by defining the basic matrix operations.

Following practical matrix sublanguages such as those of R or MATLAB, we will work throughout

with matrices over the complex numbers. However, a real-number version of the language could

be defined as well. The semantics of the different operations is:

Transpose: If A is a matrix then A∗
is its conjugate transpose. So, if A is anm × n matrix then

A∗
is an n ×m matrix and the entry A∗

i, j is the complex conjugate of the entry Aj,i .

One-vector: If A is anm ×n matrix then 1(A) is them × 1 column vector consisting of all ones.

Diag: If v is anm × 1 column vector then diag(v) is them ×m diagonal square matrix with v
on the diagonal and zero everywhere else.

Matrix multiplication: If A is anm × n matrix and B is an n × p matrix then the well known

matrix multiplication AB is defined to be them × p matrix where (AB)i, j =
∑n

k=1
Ai,kBk, j . In

MATLANG we explicitly denote this as A · B.
Pointwise application: If A(1), . . . ,A(n)

are matrices of the same dimensions m × p, then

apply[f](A(1), . . . ,A(n)) is them × p matrix C where Ci, j = f (A(1)

i, j , . . . ,A
(n)
i, j).

Example 3.1. The operations are illustrated in Figure 1. In the pointwise application example,

we use the function Û− defined by x Û− y = x − y if x and y are both real numbers and x ≥ y, and
x Û− y = 0 otherwise. □

The formal semantics ofMATLANG expressions is defined in a straightforward manner, as shown

in Figure 2. Expressions will be evaluated over instances where an instance I is a function, defined

, Vol. 1, No. 1, Article . Publication date: January 2020.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

On the Expressive Power of Query Languages for Matrices 7

M ∈ var(I)

M(I) = I (M)

e1(I) = A e2(I [M := A]) = B

(letM = e1 in e2)(I) = B

e(I) = A

e∗(I) = A∗

e(I) = A

1(e)(I) = 1(A)

e(I) = A A is a column vector

diag(e)(I) = diag(A)

e1(I) = A e2(I) = B number of columns of A equals the number of rows of B

e1 · e2(I) = AB

∀k = 1, . . . ,n : (ek (I) = Ak) all Ak have the same dimensions

apply[f](e1, . . . , en)(I) = apply[f](A1, . . . ,An)

Fig. 2. Big-step operational semantics of MATLANG. The notation I [M := A] denotes the instance that is
equal to I , except thatM is mapped to the matrix A.

on a nonempty finite set var(I) of matrix variables, that assigns a matrix to each element of var(I).
Figure 2 provides the rules that allow to derive that an expression e , on an instance I , successfully
evaluates to a matrix A. We denote this success by e(I) = A. The reason why an evaluation may not

succeed can be found in the rules that have a condition attached to them. The rule for variables

fails when an instance simply does not provide a value for some input variable. The rules for diag,
apply, and matrix multiplication have conditions on the dimensions of matrices, that need to be

satisfied for the operations to be well-defined.

Example 3.2 (Scalars). As a first example we show how to express scalars (elements in C).
Obviously, in practice, scalars would be part of the language. In this paper, however, we are

interested in expressiveness, so we start from a minimal language (MATLANG) and then see what

is already expressible in this language. To express a scalar c ∈ C, consider the constant function
c : C → C : z 7→ c and theMATLANG expression defined as

let N = 1(M)∗ in apply[c]
(
1(N)

)
.

We overload notation a bit and also denote this expression by c . Regardless of the matrix assigned

to M , the expression c evaluates to the 1 × 1 matrix whose single entry equals the scalar c . We

remark that the expression c is actually equivalent to apply[c]
(
1(1(M)∗)

)
in which we eliminated

the let-construct by plugging in the definition of N = 1(M)∗ into apply[c]
(
1(N)

)
. Let-constructs

can always be eliminated from MATLANG expressions in this way. □

Example 3.3 (Scalar multiplication). We can also express scalar multiplication of a matrix by a

scalar, i.e., the operation which multiplies every entry of a matrix by the same scalar. Indeed, let c
be a scalar and consider the MATLANG expression

let O = 1(M) · c(M) · (1(M∗))∗ in apply[×](O,M),

where c is the scalar expression from the previous example. If M is assigned anm × n matrix A,
then c(A) returns the 1 × 1 matrix [c] and in variable O we compute them × n matrix where every

entry equals c . Then pointwise multiplication × which returns xy on input (x ,y) is used to do the

scalar multiplication of A by c . This example generalizes in a straightforward manner to

apply[×]
(
1(e2) · e1 · (1(e∗2))

∗, e2

)
,

, Vol. 1, No. 1, Article . Publication date: January 2020.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

where e1 and e2 areMATLANG expressions such that e1(I) is a 1 × 1-matrix for any instance I . It
should be clear that this expression evaluates to the scalar multiplication of e2(I) by e1(I) for any I .
We use e1 ⊙ e2 as a shorthand notation for this expression. For example, c ⊙ e2 represents the scalar

multiplication of e2 by the scalar c . □

Example 3.4 (Google matrix). We have already seen aMATLANG expression for computing the

Google matrix in Example 1.1. The previous example shows that the scalar multiplication ⊙ with

1/n and constants 1/n, d and 1 − d used in that expression is indeed expressible in MATLANG. □

Example 3.5 (Diag on matrices). In MATLANG we only defined the operation diag on column

vectors. Linear algebra packages also allow the application of diag on square matrices. More

specifically, diag(A) for an n × n matrix A is defined as the column vector holding the diagonal

entries of A in its entries. We can easily express this in MATLANG, as follows:(
apply[×]

(
M, diag(1(M))

))
· 1(M).

Indeed, in this expression we first perform pointwise multiplication of the input matrix with the

identity matrix to extract the entries on the diagonal, followed by the multiplication with the one

vector to return the desired column vector. □

Example 3.6 (Minimum of a vector). A less obvious example is the following. Letv = (v1, . . . ,vn)
∗

be a column vector of real numbers; we would like to extract the minimum from v . This can be

done as follows:

let V = v · 1(v)∗ in

let C =
(
apply[≤](V ,V ∗)

)
· 1(v) in

let N = 1(v)∗ · 1(v) in
let S = apply[=](C, 1(v) · N) in

letM = apply[1/x](S∗ · 1(v)) inM · v∗ · S

The pointwise functions applied are ≤, which returns 1 on (x ,y) if x ≤ y and 0 otherwise; =,

defined analogously; and the reciprocal function. The expression works as follows. In variable V
we compute a square matrix holding n copies of v . Then in variableC we compute the n × 1 column

vector where Ci counts the number of vj such that vi ≤ vj . If Ci = n then vi equals the minimum.

Variable N computes the scalar n and column vector S is a selector where Si = 1 if vi equals the
minimum, and Si = 0 otherwise. Since the minimum may appear multiple times in v , we compute

inM the inverse of its multiplicity. Finally we sum the different occurrences of the minimum in v
and divide by the multiplicity. □

The naive evaluation of theMATLANG expression in Example 3.6 yields a quadratic time algo-

rithm, whereas the minimum can clearly be computed in linear time. An analogous situation occurs

in SQL, where an explicit MIN function is present to avoid this problem. It is an interesting problem

to formally prove that the minimum of a set of ordered elements is not expressible in the relational

algebra with order comparisons, without generating an intermediate result of quadratic size.

3.3 Types and schemas
We now introduce a notion of schema, which assigns types to matrix names, so that expressions can

be type-checked against schemas. We already remarked the need for this. Indeed, due to conditions

on the dimensions of matrices,MATLANG expressions are not well-defined on all instances. For

example, if I is an instance where I (M) is a 3×4 matrix and I (N) is a 2×4 matrix, then the expression

M · N is not defined on I . The expressionM · N ∗
, however, is well-defined on I .

, Vol. 1, No. 1, Article . Publication date: January 2020.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

On the Expressive Power of Query Languages for Matrices 9

M ∈ var(S)

S ⊢ M : S(M)

S ⊢ e1 : τ1 S[M := τ1] ⊢ e2 : τ2

S ⊢ letM = e1 in e2 : τ2

S ⊢ e : s1 × s2

S ⊢ e∗ : s2 × s1

S ⊢ e : s1 × s2

S ⊢ 1(e) : s1 × 1

S ⊢ e : s × 1

S ⊢ diag(e) : s × s

S ⊢ e1 : s1 × s2 S ⊢ e2 : s2 × s3

S ⊢ e1 · e2 : s1 × s3

n > 0 f : Cn → C ∀k = 1, . . . ,n : (S ⊢ ek : τ)

S ⊢ apply[f](e1, . . . , en) : τ

Fig. 3. Type-checking MATLANG. The notation S[M := τ] denotes the schema that is equal to S, except that
M is mapped to the type τ .

Our types need to be able to guarantee equalities between numbers of rows or numbers of

columns, so that apply and matrix multiplication can be type-checked. Our types also need to be

able to recognize vectors, so that diag can be type-checked.

Formally, we assume a sufficient supply of size symbols, which we will denote by the letters α , β ,
γ . A size symbol represents the number of rows or columns of a matrix. Together with an explicit

1, we can indicate arbitrary matrices as α × β , square matrices as α × α , column vectors as α × 1,

row vectors as 1 × α , and scalars as 1 × 1. Formally, a size term is either a size symbol or an explicit

1. A type is then an expression of the form s1 × s2 where s1 and s2 are size terms. Finally, a schema
S is a function, defined on a nonempty finite set var(S) of matrix variables, that assigns a type to

each element of var(S).

The type-checking rules for expressions are shown in Figure 3. The figure provides the rules that

allow to infer an output type τ for an expression e over a schema S. To indicate that a type can be

successfully inferred, we use the notation S ⊢ e : τ . When we cannot infer a type, we say e is not
well-typed over S. For example, when S(M) = α × β and S(N) = γ × β , then the expressionM · N
is not well-typed over S. The expressionM · N ∗

, however, is well-typed with output type α × γ .
To establish the soundness of the type system, we need a notion of conformance of an instance

to a schema.

Formally, a size assignment σ is a function from size symbols to positive natural numbers. We

extend σ to any size term by setting σ (1) = 1. Now, let S be a schema and I an instance with

var(I) = var(S). We say that I is an instance of S if there is a size assignment σ such that for all

M ∈ var(S), if S(M) = s1 × s2, then I (M) is a σ (s1) × σ (s2) matrix. In that case we also say that I
conforms to S by the size assignment σ .
We now obtain the following obvious but desirable property.

Proposition 3.7 (Safety). If S ⊢ e : s1 × s2, then for every instance I conforming to S, by size
assignment σ , the matrix e(I) is well-defined and has dimensions σ (s1) × σ (s2). □

It is clear from the semantics and also from the type-checking rules that MATLANG operations

can only produce matrices with dimensions coming from the input matrices. Consequently, certain

operations supported by linear algebra packages such as the direct sum, the Kronecker product, or

tensor product fall outside the scope of our current formalism.

4 EXPRESSIVE POWER OF MATLANG

In this section we relate MATLANG to standard relational query languages. In particular, we show

that MATLANG can be simulated in the relational algebra with aggregates (Section 4.2) and the

, Vol. 1, No. 1, Article . Publication date: January 2020.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

relational calculus with aggregates in which only three base variables are needed (Section 4.3).

This provides an easy way to implement MATLANG on top of a relational database, although

specific optimizations will still be required to make this scalable [45]. Our main interest in this

paper, however, is to use these translations to show the limitations of MATLANG. In particular, we

use the locality of these relational languages to show that the transitive closure of an adjacency

matrix cannot be expressed inMATLANG and similarly, we use the simulation ofMATLANG in the

relational calculus with aggregates to show that the existence of a four-clique cannot be detected

inMATLANG (Section 4.4).

4.1 Relational representation of matrices
We start by fixing our representation of matrices as relations. It is natural to represent anm × n
matrix A by a ternary relation

Rel2(A) := {(i, j,Ai, j) | i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n}}.

In the special case where A is anm × 1 matrix (column vector), A can also be represented by a

binary relation Rel1(A) := {(i,Ai,1) | i ∈ {1, . . . ,m}}. Similarly, a 1 × n matrix (row vector) A
can be represented by Rel1(A) := {(j,A1, j) | j ∈ {1, . . . ,n}}. Finally, a 1 × 1 matrix (scalar) A can

be represented by the unary singleton relation Rel0(A) := {(A1,1)}. We remark that the relation

representation alone does not distinguish between row and column vectors. When carrying out

the translation of MATLANG into the relational algebra with aggregates below, we always know,

however, whether we are dealing with a row or column vector based on the types of theMATLANG
expressions involved. We then manipulate the relations Rel1(A) accordingly.
Note that inMATLANG, we perform calculations on matrix entries, but not on row or column

indices. This fits well to the relational model with aggregates as formalized by Libkin [43]. In this

model, the columns of relations are typed as “base”, indicated by b, or “numerical”, indicated by n.
In the relational representations of matrices presented above, the last column is of type n and the

other columns (if any) are of type b. In particular, in our setting, numerical columns hold complex

numbers. We now rephrase our relational encoding more formally in this setting.

More formally, we assume a supply of relation variables, which, for convenience, we can take to

be the same as the matrix variables. A relation type is a tuple of b’s and n’s. A relational schema S
is a function, defined on a nonempty finite set var(S) of relation variables, that assigns a relation

type to each element of var(S).

To define relational instances, we assume a countably infinite universe dom of abstract atomic

data elements. It is convenient to assume that the natural numbers are contained in dom. We stress

that this assumption is not essential but simplifies the presentation. Alternatively, we would have

to work with explicit embeddings from the natural numbers into dom.

Let τ be a relation type. A tuple of type τ is a tuple (t(1), . . . , t(n)) of the same arity as τ , such
that t(i) ∈ dom when τ (i) = b, and t(i) is a complex number when τ (i) = n. A relation of type τ is a

finite set of tuples of type τ . An instance of a relational schema S is a function I defined on var(S)

so that I (R) is a relation of type S(R) for every R ∈ var(S).

The matrix data model can now be formally connected to the relational data model, as follows.

Let τ = s1 × s2 be a matrix type. Let us call τ a general type if s1 and s2 are both size symbols; a

vector type if s1 is a size symbol and s2 is 1, or vice versa; and the scalar type if τ is 1 × 1. To every

matrix type τ we associate a relation type

Rel(τ) :=


(b, b,n) if τ is general;

(b,n) if τ is a vector type;

(n) if τ is scalar.

, Vol. 1, No. 1, Article . Publication date: January 2020.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

On the Expressive Power of Query Languages for Matrices 11

Then to every matrix schema S we associate the relational schema Rel(S) where Rel(S)(M) =

Rel(S(M)) for everyM ∈ var(S). For each instance I of S, we define the instance Rel(I) over Rel(S)
by

Rel(I)(M) =


Rel2(I (M)) if S(M) is a general type;

Rel1(I (M)) if S(M) is a vector type;

Rel0(I (M)) if S(M) is the scalar type.

Remark. The different treatment of matrices, vectors and scalars will allow us to use a “clean”

version of the relational algebra where we do not need constants for base columns. We come back

to this issue after the translation of MATLANG into the relation algebra with aggregates in the

next subsection.

4.2 From MATLANG to relational algebra with summation
Given the representation of matrices by relations, we now show thatMATLANG can be simulated in

the relational algebra with aggregates. Actually, the only aggregate operation we need is summation.

The relational algebra with summation extends the well-known relational algebra for relational

databases and is defined as follows. For a full formal definition, see [43]. For our purposes it suffices

to highlight the following about the relational algebra with summation:

• Expressions are built up from relation names using the classical operations union, set dif-

ference, cartesian product (×), selection (σ), and projection (π), plus two new operations:

function application and summation.
• For selection, we only use equality and nonequality comparisons on base columns. No

selection on numerical columns will be needed in our setting.

• For any function f : Cn → C, the operation apply[f ; i1, . . . , in] can be applied to any

relation r having columns i1, . . . , in , which must be numerical. The result is the relation

{(t , f (t(i1), . . . , t(in))) | t ∈ r }, appending a numerical column to r . We allow n = 0, in which

case f is a constant.

• The operation sum[i; i1, . . . , in] can be applied to any relation r having columns i , i1, . . . , in ,
where column i must be numerical. In our setting we only need the operation in cases where

columns i1, . . . , in are base columns. The result of the operation is the relation{(
t(i1), . . . , t(in),

∑
t ′∈group[i1, ...,in](r,t)

t ′(i)
) ��� t ∈ r

}
,

where

group[i1, . . . , in](r , t) =
{
t ′ ∈ r

�� t ′(i1) = t(i1) ∧ · · · ∧ t ′(in) = t(in)
}
.

Again, n can be zero, in which case the result is a singleton. Note that in the definition of

sum above we are using set semantics.

Given that relations are typed, one can define well-typedness for expressions in the relation

algebra with summation, and define the output type. We omit this definition here, as it follows a

well-known methodology [64] and is analogous to what we have already done forMATLANG in

Section 3.3. The simulation of MATLANG into the relational algebra with summation can now be

formally stated:

Theorem 4.1. Let S be a matrix schema, and let e be aMATLANG expression that is well-typed
over S with output type τ . Let ℓ = 2, 1, or 0, depending on whether τ is general, a vector type, or scalar,
respectively.

, Vol. 1, No. 1, Article . Publication date: January 2020.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

(1) There exists an expression Rel(e) in the relational algebra with summation, that is well-typed
over Rel(S) with output type Rel(τ), such that for every instance I of S, we have Relℓ(e(I)) =
Rel(e)(Rel(I)).

(2) The expression Rel(e) uses neither set difference, nor selection conditions on numerical columns.
(3) The only functions used in Rel(e) are those used in pointwise applications in e ; complex conjuga-

tion; multiplication of two numbers; and the constant functions 0 and 1.

Proof. We assign to each MATLANG expression e that is well-typed over S, an expression

Rel(e) in the relational algebra with summation by induction on the structure of e . Since the let
operation is syntactic sugar for MATLANG expressions, we do not consider this operation in this

proof. Consider expressions e and e ′ inMATLANG and let τ = s1 × s2 be the output type of e
′
.

• If e = M is a matrix variable of S, then Rel(e) := M .

• If e = (e ′)∗, then

Rel(e) :=


π1,2,4

(
apply[z; 3]

(
π2,1,3(Rel(e ′))

))
if τ is a general type;

π1,3

(
apply[z; 2]

(
Rel(e ′)

))
if τ is a vector type;

π2

(
apply[z; 1]

(
Rel(e ′)

))
if τ is the scalar type,

where z denotes the complex conjugate function mapping a complex number z to its complex

conjugate z.
• If e = 1(e ′), then

Rel(e) :=



π1,4

(
apply[1; 3]

(
Rel(e ′)

))
if τ is a general type;

π1,3

(
apply[1; 2]

(
Rel(e ′)

))
if s1 , 1 = s2;

π3

(
apply[1; 2]

(
Rel(e ′)

))
if s1 = 1 , s2;

π2

(
apply[1; 1]

(
Rel(e ′)

))
if τ is the scalar type,

where 1 in the first argument of apply stands for the constant function 1 : C → C : z 7→ 1.

We observe the different treatment of Rel(e ′) depending on whether e ′ is an s1 × 1 column

vector or a 1 × s2 row vector.

• If e = diag(e ′), then we define Rel(e) as

σ1=2

(
π1(Rel(e ′)) × Rel(e ′)

)
∪ apply[0;]

(
σ1,2

(
π1(Rel(e ′)) × π1(Rel(e ′))

))
if s1 , 1 = s2 and as Rel(e ′) if τ is the scalar type. The 0 in the first argument of apply stands

for the constant function 0 : C → C : z 7→ 0.

• If e = e1 · e2 where e1 is of type s1 × s3 and e2 is of type s3 × s2, then Rel(e) is defined as

sum[7; 1, 5]
(
apply[×; 3, 6]

(
σ2=4(Rel(e1) × Rel(e2))

))
if s1 , 1 , s2 and s3 , 1;

sum[6; 1]

(
apply[×; 3, 5]

(
σ2=4(Rel(e1) × Rel(e2))

))
if s1 , 1 = s2 and s3 , 1;

sum[6; 4]

(
apply[×; 2, 5]

(
σ1=3(Rel(e1) × Rel(e2))

))
if s1 = 1 , s2 and s3 , 1;

sum[5;]

(
apply[×; 2, 4]

(
σ1=3(Rel(e1) × Rel(e2))

))
if s1 = 1 = s2 and s3 , 1;

π1,3,5

(
apply[×; 2, 4](Rel(e1) × Rel(e2))

)
if s1 , 1 , s2 and s3 = 1;

π1,4

(
apply[×; 2, 3](Rel(e1) × Rel(e2))

)
if s1 , 1 = s2 and s3 = 1;

π2,4

(
apply[×; 1, 3](Rel(e1) × Rel(e2))

)
if s1 = 1 , s2 and s3 = 1;

π3

(
apply[×; 1, 2](Rel(e1) × Rel(e2))

)
if s1 = 1 = s2 and s3 = 1.

, Vol. 1, No. 1, Article . Publication date: January 2020.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

On the Expressive Power of Query Languages for Matrices 13

• Finally, if e = apply[f](e1, . . . , en), then Rel(e) is defined as
π1,2,3n+1

(
apply[f ; 3, 6, . . . , 3n]

(
σp1

(
Rel(e1) × · · · × Rel(en)

)))
if τ is a general type;

π1,2n+1

(
apply[f ; 2, 4, . . . , 2n]

(
σp2

(
Rel(e1) × · · · × Rel(en)

)))
if τ is a vector type;

πn+1

(
apply[f ; 1, 2, . . . ,n]

(
Rel(e1) × · · · × Rel(en)

))
if τ is the scalar type,

wherep1 is the predicate (1 = 4 = · · · = (3n−5) = (3n−2))∧(2 = 5 = · · · = (3n−4) = (3n−1))

and p2 is the predicate 1 = 3 = · · · = (2n − 3) = (2n − 1).

Notice that the only functions used in apply in Rel(e) aside from those used in apply in e are

complex conjugation (z̄), multiplication of two numbers (×), and the constant functions 0 and 1.

Also notice that Rel(e) uses neither set difference, nor selection conditions on numerical columns.

By induction on the structure of e one straightforwardly observes that (1) Rel(e) is well-typed over
Rel(S)with output type Rel(τ) and (2) for every instance I ofS, we have Relℓ(e(I)) = (Rel(e))(Rel(I)),
where ℓ is 2 if τ is of a general type, 1 if τ is of a vector type, and 0 if τ is of the scalar type. □

Remark. As mentioned earlier, the different treatment of general types, vector types, and scalar

types allows us to use a “clean” version of the relational algebra, where we do not need constants

for base columns. In contrast, if we had used the relational encoding Rel2 also for vector types, for

example by assuming that the second base attribute is the fixed constant 1, then expressing the 1
operation would require the constant 1 in the second base column:

Rel(1(M)) = π
1, ‘1′,4

(
apply[1; 3](M)

)
,

withM a matrix variable of general type, cf. the definition of Rel(1(M)) in the proof of Theorem 4.1

above. So, here we would need a generalized projection π that can insert a base column with

constant ‘1
′
. (This constant 1 in a base column should not be confused with the value 1 in the

numerical column.)

4.3 From MATLANG to relational calculus with summation
We can sharpen Theorem 4.1 by working not in the relational algebra, but in the relational calculus
with aggregates. In this logic, we have base variables and numerical variables. Base variables can be

bound to base columns of relations, and compared for equality. Numerical variables can be bound

to numerical columns, and can be equated to function applications and aggregates. We will not

recall the syntax formally (see [43] for a full definition). As an example expression in the relation

calculus with aggregates we show how matrix multiplication is expressed. Matrix multiplication

M · N withM of type α × β and N of type β × γ can be expressed by the formula

φ(i, j, z) ≡ z = sumk,x ,y.(M(i,k,x) ∧ N (k, j,y),x × y).

Here, i , j and k are base variables and x , y and z are numerical variables. The semantics of this

expression is as follows. First, for given i, j, all triples (k,x ,y) that satisfyM(i,k,x) ∧ N (k, j,y) are
collected. Then, the function x × y is applied to all these triples resulting in a multi-set consisting

of the products xy. Finally, summation is applied on this multi-set and the result is assigned to

variable z. We note that of the base variables, only i and j are free. In the subformulaM(i,k,x) only
i and k are free, and in N (k, j,y) only k and j are free.

The advantage of the relational calculus is that variables, especially base variables, can be repeated
and reused. As we show below, this implies that when simulating MATLANG expression in the

relational calculus with aggregates we only need formulas with at most three base variables. This
will give us additional insights into the expressive power ofMATLANG in Section 4.4.

, Vol. 1, No. 1, Article . Publication date: January 2020.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

To illustrate the reuse of variables, consider again our example expression φ(i, j, z) corresponding
to matrix multiplication. We observe that, ifM or N had been a subexpression involving matrix

multiplication in turn, we could have reused one of the three variables. For example, (M · N) · N ′
,

where N ′
is of type γ × δ , can be expressed by the formula

φ ′(i, j, z) ≡ z = sumk,x ,y.(M(i,k,x) ∧
(
y = sum i,x1,x2.(N (k, i,x1) ∧ N ′(i, j,x2),x1 × x2)

)
,x ×y).

We will see that the other operations ofMATLANG need only two base variables. We now state

the simulation result more precisely:

Proposition 4.2. Let S, e , τ and ℓ as in Theorem 4.1. For every MATLANG expression e there is a
formula φe over Rel(S) in the relational calculus with summation, such that
(1) If τ is general, φe (i, j, z) has two free base variables i and j and one free numerical variable z; if

τ is a vector type, we have φe (i, z); and if τ is scalar, we have φe (z).
(2) For every instance I , the relation defined by φe on Rel(I) equals Relℓ(e(I)).
(3) The formula φe uses only three distinct base variables. The functions used in pointwise appli-

cations in φe are as in the statement of Theorem 4.1. Furthermore, φe neither uses equality
conditions between numerical variables nor equality conditions on base variables involving
constants.

Proof. The proof is analogous to the proof of Theorem 4.1 and is deferred to the appendix. The

only additional observation is that we only need three base variables, as explained earlier. □

4.4 Expressing graph queries
So far we have looked at expressing matrix queries in terms of relational queries. It is also natural

to express relational queries as matrix queries. This works best for binary relations, or graphs,

which we can represent by their adjacency matrices.

Formally, we define a graph schema to be a relational schema where every relation variable is

assigned the type (b, b) of arity two. We define a graph instance as an instance I of a graph schema,

where the active domain of I equals {1, . . . ,n} for some positive natural number n. The assumption

that the active domain always equals an initial segment of the natural numbers is convenient

for forming the bridge to matrices. This assumption, however, is not essential for our results to

hold. Indeed, the logics we consider do not have any built-in predicates on base variables, besides

equality. Hence, they view the active domain elements as abstract data values.

To every graph schema S we associate a matrix schema Mat(S), where Mat(S)(R) = α × α
for every R ∈ var(S), for a fixed size symbol α . So, all matrices are square matrices of the same

dimension. Let I be a graph instance of S, with active domain {1, . . . ,n}. We will denote the n × n
adjacency matrix of a binary relation r over {1, . . . ,n} by AdjI (r). Now any such instance I is
represented by the matrix instance Mat(I) over Mat(S), where Mat(I)(R) = AdjI (I (R)) for every
R ∈ var(S).

A graph query over a graph schema S is a function that maps each graph instance I of S to

a binary relation on the active domain of I . We say that a MATLANG expression e expresses the
graph query q if e is well-typed over Mat(S) with output type α × α , and for every graph instance

I of S, we have AdjI (q(I)) = e(Mat(I)).
We can now give a partial converse to Theorem 4.1. We assume active-domain semantics for

first-order logic [1]. Please note that the following result deals only with pure first-order logic,

without aggregates or numerical columns.

Theorem 4.3. Every graph query expressible in FO
3 (first-order logic with equality, using at

most three distinct variables) is expressible in MATLANG. The only functions needed in pointwise
applications are boolean functions on {0, 1}, and testing if a number is positive.

, Vol. 1, No. 1, Article . Publication date: January 2020.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

On the Expressive Power of Query Languages for Matrices 15

Proof. It is known [46, 61] that FO
3
graph queries can be expressed in the algebra of binary

relations with the operations all, identity, union, set difference, converse, and relational composition.

These operations are well known, except perhaps for all, which, on a graph instance I , evaluates to
the cartesian product of the active domain of I with itself. Identity evaluates to the identity relation

on the active domain of I . Each of these operations is easy to express in MATLANG. For all we use
1(R) · 1(R)∗, where for R we can take any relation variable from the schema. Identity is expressed as

diag(1(R)). Union r∪s is expressed as apply[x∨y](r , s), and set difference r −s as apply[x∧¬y](r , s).
Converse is transpose. Relational composition r ◦ s is expressed as apply[x > 0](r · s), where x > 0

is 1 if x is positive and 0 otherwise. □

We can complement the above theorem by showing that the quintessential first-order query

requiring four variables is not expressible.

Proposition 4.4. The graph query over a single binary relation R that maps I to I (R) if I (R)
contains a four-clique, and to the empty relation otherwise, is not expressible in MATLANG.

To prove Proposition 4.4 we first state the following lemma, which refines Proposition 4.2 in the

setting of graph queries.

Lemma 4.5. If a graph query q is expressible in MATLANG, then q is expressible by a formula
ψq(i, j) in the relational calculus with summation, where i and j are base variables, and ψq uses at
most three distinct base variables.

Proof. Let e be a MATLANG expression that expresses q. Let φe (i, j, z) be the formula given

by Proposition 4.2. This formula does not express the graph query q since it has a free numerical

variable and contains relation variables (of type (b, b,n)) corresponding to the matrix variables

in e . We need to transform φe (i, j, z) into an expression over relation variables (of type (b, b))
in the graph schema and ensure that there are only two free base variables. This can be easily

done, as follows. First, let φ ′
e (i, j, z) be the formula obtained from φe (i, j, z) by replacing each

atomic formula of the form R(i ′, j ′,x), where i ′ and j ′ are base variables and x is a numerical

variable, by (x = 1 ∧ R(i ′, j ′)) ∨ (x = 0 ∧ ¬R(i ′, j ′)). Here, we are simply expressing the adjacency

matrix stored in R(i ′, j ′,x) by means of the binary relation R(i ′, j ′). Nowψq(i, j) can be obtained as

∃z (z = 1 ∧ φ ′(i, j, z)). Indeed, it suffices to only list those positions in the result adjacency matrix

that are non-zero. The fact thatψq only uses three base variables is simply because φe only uses

three base variables and in the transformation from φe toψq we did not introduce additional base

variables. □

We now show thatMATLANG cannot verify the existence of four-cliques.

Proof of Proposition 4.4. Let e be a MATLANG expression expressing some graph query q.
Let ψq be the formula given by Lemma 4.5. Although ψq takes a binary relation of type (b, b) as
input and also returns a binary relation of type (b, b), (non-free) numerical variables may be present

inψq . To show that the existence of four-cliques cannot be expressed we want to rely on a result

for logics in which only base variables are allowed. The challenge is to eliminate the numerical

variables fromψq .
This can be done as follows. First, we eliminate all pointwise function applications, arithmetic

and summation fromψq(i, j) following a standard method. Indeed, it is known [30, 43] that every

formula in the relational calculus with aggregates can be equivalently expressed by a formula

ψ ◦
q (i, j) in infinitary logic with counting. This logic, referred to as LC in [43], works on typed

relations (types b and n) and extends first-order logic with infinitary disjunctions and conjunctions,

and counting quantifiers ∃≥m
, form ≥ 1, on base variables. We refer to [30, 43] for the detailed

, Vol. 1, No. 1, Article . Publication date: January 2020.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

translation. We observe that the base variables inψ ◦
q (i, j) are those in the original formulaψq(i, j)

and thus ψ ◦
q (i, j) only uses at most three base variables. Furthermore, we note that in ψ ◦

q (i, j) all
numerical variables are quantified. Consider such a numerical variable z and let ∃z φ(x̄ , z, z̄ ′) be
the sub-formula inψ ◦

q (i, j) in which z occurs. In this formula, x̄ are base variables and z and z̄ ′ are
numerical variables. Then, to eliminate the variable z it suffices to add one infinitary disjunction

and replace ∃z φ(x̄ , z, z̄ ′) by∨
c ∈C φ(x̄ , c, z̄

′). In other words, we replace z by all possible complex

numbers. By doing this for every numerical variable inψ ◦
q (i, j) we end up with a formula φq(i, j) in

which no numerical variables are present. Proposition 4.2 further states thatψq(i, j), and thus also

φ◦q(i, j) and φ(i, j), does not involve equality conditions between base variables and constants. So,

φq(i, j) only contains “pure” equalities between variables. This is a consequence of our encoding of

matrices into relations (recall our earlier remark on how we avoided the need for the constant ‘1
′

in base columns).

Hence, φq(i, j) is a formula in infinitary counting logic with three distinct variables over a

graph schema. This logic is denoted by C3

∞ω in [53] and the four-clique query is not expressible

in C3

∞ω . Indeed, to see this, consider the four-clique graph G, to which we apply the Cai-Fürer-

Immerman construction [13, 53], yielding graphs G0
and G1

which are indistinguishable in C3

∞ω .
1

This construction is such that G0
contains a “four-clique formed by paths of length three”: four

nodes such that there is a path of length three between any two of them. The graph G1
, however,

does not contain four such nodes.

Now suppose, for the sake of contradiction, that there would be a sentence φ in C3

∞ω expressing

the existence of a four-clique.We can replace each atomic formulaR(x ,y) by ∃z(R(x , z)∧∃x(R(z,x)∧
R(x ,y))). The resulting C3

∞ω sentence looks for a four-clique formed by paths of length three, and

would distinguish G0
from G1

, which yields our contradiction.

Similarly, suppose that we can express the four-clique graph query q as in the statement of the

proposition by means of aMATLANG expression e . We then consider theC3

∞ω sentence ∃i, j φq(i, j)
which returns true on a graph if and only if the graph contains a four-clique, which again leads to

a contradiction. □

We conclude by showing that MATLANG cannot express the transitive-closure graph query

which maps a graph to its transitive closure. Indeed, by Theorem 4.1, any graph query expressible

in MATLANG is expressible in the relational algebra with aggregates. It is known [30, 43] that

such queries are local. We recall the definition of locality. For a graph G, vertices a and b, and a

nonnegative integer r , denote by NG
r (a,b) the subgraph of G induced by the vertices that are at

most distance r from either a or b, where by distance we mean the shortest path length in the

undirected graph induced byG . A graph query q over a schema with one relation variable R is said

to be local if there is a nonnegative integer r such that for every graph instance I and for all vertices

a,b, c,d , the existence of a graph isomorphism h from N I (R)
r (a,b) to N I (R)

r (c,d) with h(a) = c and
h(b) = d implies that (a,b) ∈ q(I) if and only if (c,d) ∈ q(I). The transitive-closure query, however,
is known not to be local [43]. We thus conclude:

Proposition 4.6. The graph query over a single binary relation R that maps I to the transitive-
closure of I (R) is not expressible in MATLANG. □

5 MATRIX INVERSION
We now consider the extension of MATLANG with matrix inversion. More precisely, we extend

MATLANG as follows. Let S be a schema and e be an expression that is well-typed over S, with

output type of the form α × α . Then the expression e−1
is also well-typed over S, with the same

1
Specifically, G0

and G1
are the graphs A and A′ defined by Otto [53, Example 2.7 and Lemma 2.8] for the casem = 3.

, Vol. 1, No. 1, Article . Publication date: January 2020.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

On the Expressive Power of Query Languages for Matrices 17

output type α × α . The semantics is defined as follows. For an instance I , if e(I) is an invertible

matrix, then e−1(I) is defined to be the inverse of e(I); otherwise, it is defined to be the zero square

matrix of the same dimensions as e(I). The extension ofMATLANG with inversion is denoted by

MATLANG + inv.

Example 5.1 (PageRank). Recall Example 1.1 where we computed the Google matrix of A. In the

process we already showed how to compute the n × n matrix B defined by Bi, j = Ai, j/ki , and the

scalar n. We use eB and en to denote the corresponding MATLANG expressions. Let I be the n × n
identity matrix, and let 1 denote the n × 1 column vector consisting of all ones. The PageRank

vector v of A can be computed as follows [21]:

v =
1 − d

n
(I − dB)−11.

This calculation is readily expressed in MATLANG + inv as

(1 − d) ⊙ (apply[1/x](en)) ⊙
(
apply[−](diag(1(M)),d ⊙ eB)

)−1

· 1(M). □

Example 5.2 (Transitive closure). We next show that the reflexive-transitive closure of a binary

relation is expressible in MATLANG + inv. Let A be the adjacency matrix of a binary relation r on
{1, . . . ,n}. Let I be the n × n identity matrix, expressible as diag(1(A)). Let en be the expression

computing the scalar n. The matrix B = 1

n+1
A has 1-norm strictly less than 1, so S =

∑∞
k=0

Bk

converges, and is equal to (I − B)−1
[25, Lemma 2.3.3]. Now (i, j) belongs to the reflexive-transitive

closure of r if and only if Si, j is nonzero. Thus, we can compute the reflexive-transitive closure of r
by evaluating

apply[, 0]

((
apply[−]

(
diag(1(M)), apply[1/(x + 1)](en) ⊙ M

))−1

)
,

by assigning matrix variableM toA. Here, , 0 is the function which returns 1 if the value is nonzero

and 0 otherwise. We can express the transitive closure by multiplying the above expression by

M . □

Given our earlier observation that the transitive-closure query cannot be expressed inMATLANG
(Proposition 4.6) and theMATLANG + inv expression given in the previous example which does

express this query, we may conclude:

Theorem 5.3. MATLANG + inv is strictly more powerful than MATLANG in expressing graph
queries.

Once we have the transitive closure, we can do many other things such as checking bipartiteness

of undirected graphs, checking connectivity, and checking cyclicity. MATLANG is expressive

enough to reduce these queries to the transitive-closure query, as shown in the following example

for bipartiteness. The same approach via FO
3
can be used for connectedness or cyclicity.

Example 5.4 (Bipartiteness). To check bipartiteness of an undirected graph, given as a symmetric

binary relation R without self-loops, we first compute the transitive closure T of the composition

of R with itself. Then the FO
3
condition ¬∃x∃y(R(x ,y) ∧T (y,x)) expresses that R is bipartite (no

odd cycles). The result now follows from Theorem 4.3. □

Example 5.5 (Number of connected components). Using transitive closure we can also easily

compute the number of connected components of a binary relation R on {1, . . . ,n}, given as an

adjacency matrix. We start from the union of R and its converse. This union, denoted by S , is
expressible by Theorem 4.3. We then compute the reflexive-transitive closure C of S . Now the

number of connected components of R equals

∑n
i=1

1/ki , where ki is the degree of node i inC . This
sum is simply expressible as 1(C)∗ · apply[1/x](C · 1(C)). □

, Vol. 1, No. 1, Article . Publication date: January 2020.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

Example 5.6 (Regular path queries). MATLANG + inv can express regular path queries on graph

databases [68]. For different edge labels, say a and b, we use different matrices, say A and B,
respectively, to store the adjacency matrices of the a-edges and b-edges. Regular path queries are,

syntactically, regular expressions over the edge labels. Now, concatenation and union are expressed

inMATLANG as already described in the proof of Theorem 4.3. Kleene star is expressed as described

in Example 5.2. □

We do not know whether the four-clique graph query can be expressed in MATLANG + inv.

6 EIGENVECTORS
Another workhorse in data analysis is diagonalizing a matrix, i.e., finding a basis of eigenvectors.

We next consider the extension of MATLANG with an operation eigen.
Formally, we define the operation eigen as follows. Let A be an n × n matrix. Recall that A is

called diagonalizable if there exists a basis of Cn
consisting of eigenvectors of A. In that case, there

also exists such a basis where eigenvectors corresponding to the same eigenvalue are orthogonal.

Accordingly, we define eigen(A) to return an n × n matrix, the columns of which form a basis of

Cn
consisting of eigenvectors of A, where eigenvectors corresponding to a same eigenvalue are

orthogonal. If A is not diagonalizable, we define eigen(A) to be the n × n zero matrix.

Note that eigen is nondeterministic; in principle there are infinitely many possible results.

This models the situation in practice where numerical packages such as R or MATLAB return

approximations to the eigenvalues and a set of corresponding eigenvectors. Eigenvectors, however,

are not unique. In fact, there are infinitely many eigenvectors.

Hence, some care must be taken in extendingMATLANG with the eigen operation. Syntactically,

as for inversion, whenever e is a well-typed expression with a square output type, we now also

allow the expression eigen(e), with the same output type. Semantically, however, the rules of

Figure 2 must be adapted so that they do not infer statements of the form e(I) = B, but rather of
the form B ∈ e(I), i.e., B is a possible result of e(I). The let-construct now becomes crucial; it allows

us to assign a possible result of eigen to a new variable, and work with that intermediate result

consistently.

In this and the next section, we assume notions from linear algebra. An excellent introduction to

the subject has been given by Axler [4].

Remark (Eigenvalues). We can easily recover the eigenvalues from the eigenvectors, using inversion.

Indeed, if A is diagonalizable and B ∈ eigen(A), then Λ = B−1AB is a diagonal matrix with all

eigenvalues of A on the diagonal, so that the ith eigenvector in B corresponds to the eigenvalue

in the ith column of Λ. This is the well-known eigendecomposition. However, the same can also

be accomplished without using inversion. Indeed, suppose B = (v1, . . . ,vn), and let λi be the

eigenvalue to which vi corresponds. Then AB = (λ1v1, . . . , λnvn). Each eigenvector is nonzero, so

we can divide away the entries from B in AB (setting division by zero to zero). We thus obtain a

matrix where the ith column consists of zeros or λi , with at least one occurrence of λi . By counting

multiplicities, dividing them out, and finally summing, we obtain λ1, . . . , λn in a column vector. We

can apply a final diag to get it back into diagonal form. The MATLANG expression for doing all

this uses similar tricks as those shown in Examples 1.1 and 3.6. □

The above remark suggests a shorthand inMATLANG + eigen where we return both B (eigen-

vectors) and Λ (eigenvalues) together:

let (B,Λ) = eigen(A) in . . .

This models how the eigen operation works in the languages R andMATLAB. We agree that Λ, like
B, is the zero matrix if A is not diagonalizable.

, Vol. 1, No. 1, Article . Publication date: January 2020.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

On the Expressive Power of Query Languages for Matrices 19

Example 6.1 (Rank of a matrix). Since the rank of a diagonalizable matrix equals the number

of nonzero entries in its diagonal form, we can express the rank of a diagonalizable matrix A as

follows:

let (B,Λ) = eigen(A) in 1(A)∗ · apply[, 0](Λ) · 1(A). □

Example 6.2 (Graph partitioning). A popular graph clustering method consists of partitioning the

vertex set V of a graph G = (V ,E) into two parts V1 and V2 = V \V1 such that the number of edges

between vertices in these two parts is minimized, and, in addition, the number of vertices inV1 and

V2 are the same [42]. This optimization problem can be phrased in terms of the Laplacian L = D −A
of the adjacency matrix A ofG . Here, D, called the degree matrix of A, is the diagonal matrix where

each diagonal entry is equal to the degree of the corresponding vertex. More specifically, it suffices

to solve fopt = arg minf f ∗ · L · f such that f ∗ · 1 = 0 and fv ∈ {−1, 1} for v ∈ V [42]. Due to the

intractability of the corresponding decision problem [66], in practice, the relaxed optimization

problem fopt = arg minf f ∗ · L · f such that f ∗ · 1 = 0 and f ∗ · f = n, where n is the number of

vertices in G, is solved instead. Furthermore, a partitioning of V is obtained from fopt by defining

V1 = {v ∈ V | fv ≥ 0} and V2 = {v ∈ V | fv < 0}. We consider connected graphs G and assume,

for convenience, that the second-smallest eigenvalue λ2 (i.e., the smallest non-zero eigenvalue) of

their laplacian L has multiplicity one so that all the eigenvectors of λ2 are scalar multiples of each

other
2
. Such an eigenvector is call a Fiedler vector and is known to be a solution of the relaxed

optimization problem. We now show that Fiedler vectors can be obtained inMATLANG + eigen.
Indeed, the Laplacian L can be derived from the adjacency matrix A as

let D = diag(A · 1(A)) in apply[−](D,A).

Now let (B,Λ) ∈ eigen(L). In an analogous way to Example 3.6, we can compute a matrix E, obtained
from Λ by replacing the occurrences of the second-smallest eigenvalue λ2 by 1 and all other entries

by 0. Then an eigenvector f corresponding to this eigenvalue can be isolated from B (and the

other eigenvectors zeroed out) by multiplying B · E. We then normalize f such that f ∗ · f = n.
We remark that f is not unique. Nevertheless we want to return a representation of the induced

partition into V1 and V2 which is independent of the eigenvector f returned. To do so, we first

set non-negative entries in f to 1 and negative entries to −1 by means of a function application

±1(x) = 1 if x ≥ 0 and ±1(x) = −1 otherwise. Next we create a |V | × |V | matrix P such that

Pi j = 1 if vertices i and j belong to the same partition and Pi j = 0 otherwise. We can do this by

evaluating apply[> 0]
(
apply[±1](f) · (apply[±1](f))∗), where > 0 maps every positive entry to 1

and all non-positive entries to 0. □

It turns out that MATLANG + inv is subsumed by MATLANG + eigen.

Theorem 6.3. Matrix inversion is expressible inMATLANG + eigen.

Proof. We describe a fixed procedure for determiningA−1
, for any square matrixA. Let S = A∗A.

Then A is invertible if and only if S is. Let us assume first that S is indeed invertible.

Since S is self-adjoint,Cn
has an orthogonal basis consisting of eigenvectors of S . Eigenvectors of a

self-adjoint operator that correspond to distinct eigenvalues are always orthogonal. Hence, eigen(S)
always returns an orthogonal basis ofCn

consisting of eigenvectors of S . Let (B,Λ) ∈ eigen(S) (using
the shorthand introduced before Example 6.1). We can normalize the columns of B inMATLANG as

apply[x/
√
y](B, 1(B) · (B∗ · B · 1(B))∗).

2
If λ2 has multiplicitym > 1, we havem independent eigenvectors for this eigenvalue. Since in MATLANG we cannot

select a single one of these eigenvectors, the construction given in this example needs to be modified. More precisely, allm
eigenvectors are extracted and combined into a single eigenvector. This can be done, for example, by summing up allm
eigenvectors.

, Vol. 1, No. 1, Article . Publication date: January 2020.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

(This expression works because the columns in B are mutually orthogonal.) So, we may now assume

that B contains an orthonormal basis consisting of eigenvectors of S . In particular, B−1 = B∗
, and

S = BΛB∗
.

Since we have assumed S to be invertible, none of the eigenvalues is zero. We can invert Λ simply

by replacing each entry on the diagonal by its reciprocal. Thus, Λ−1
can be computed from Λ by

pointwise application of the reciprocal function.

Now A−1
can be computed by the expression C = BΛ−1B∗A∗

. To see that C indeed equals A−1
,

we calculate CA = BΛ−1B∗A∗A = BΛ−1B∗S = BΛ−1B∗BΛB∗
which simplifies to the identity matrix.

When S is not invertible, we should return the zero matrix. InMATLANG we can compute the

matrix Z that is zero if one of the eigenvalues is zero, and the identity matrix otherwise. We then

multiply the final expression with Z . A final detail is to make the computation well-defined in all

cases. Note that the functions (x ,y) 7→ x/
√
y and x 7→ 1/x , used in pointwise applications, are

not total functions. If S is invertible, then, in the pointwise application of x/
√
y, the argument y is

always a positive real number, and, in the pointwise application of 1/x , the argument x is always

nonzero. If S is not invertible, then x/
√
y and 1/x can be extended to total functions in an arbitrary

manner. □

We do not know whether the four-clique graph query can be expressed in MATLANG + eigen.
Another interesting open problem is the following: Are there graph queries expressible deterministi-
cally inMATLANG + eigen, but not inMATLANG + inv? This is an interesting question for further

research. The answer may depend on the functions that can be used in pointwise applications.

Remark (Determinacy). The stipulation deterministically in the above open question is important.

Ideally, we use the nondeterministic eigen operation only as an intermediate construct. It is an aid to

achieve a powerful computation, but the final expression should have only a single possible output

on every input. The expression of Example 6.1 is deterministic in this sense, as is the expression for

inversion underlying the proof of Theorem 6.3.

7 THE EVALUATION PROBLEM
Wenext consider the evaluation problem of expressions in ourmost expressive languageMATLANG+
eigen. Naively, the evaluation problem asks, given an input instance I and an expression e , to com-

pute the result e(I). There are some issues with this naive formulation, however. Indeed, in our

theory we have been working with arbitrary complex numbers. How do we even represent the

input? Notably, the eigen operation on a matrix with only rational entries may produce irrational

entries. In fact, the eigenvalues of an adjacency matrix (even of a tree) need not even be definable

in radicals [24]. Practical systems, of course, apply numerical methods to compute rational approx-

imations. But it is still theoretically interesting to consider the exact evaluation problem. For a

treatise on computations of eigenvectors, inverses, and other matrix notions, we refer to [25].

Our approach is to represent the output symbolically, following the idea of constraint query

languages [35, 40]. Specifically, we can define the input-output relation of an expression, for given

dimensions of the input matrices, by an existential first-order logic formula over the reals. Such
formulas are built from real variables, integer constants, addition, multiplication, equality, inequality

(<), disjunction, conjunction, and existential quantification.

Anym×nmatrixA can be represented by a tuple of 2mn real numbers. Indeed, letai, j = ℜAi, j (the

real part of a complex number), and let bi, j = ℑAi, j (the imaginary part). ThenA can be represented

by the tuple (a1,1,b1,1,a1,2,b1,2, . . . ,am,n ,bm,n). The next result introduces the variables xM,i, j,ℜ,

xM,i, j,ℑ, yi, j,ℜ, and yi, j,ℑ, where the x-variables describe an arbitrary input matrix I (M) and the

y-variables describe an arbitrary possible output matrix e(I).

, Vol. 1, No. 1, Article . Publication date: January 2020.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

On the Expressive Power of Query Languages for Matrices 21

In the following, an input-sized expression consists of a schemaS, an expression e inMATLANG+
eigen that is well-typed over S with output type t1 × t2, and a size assignment σ defined on the

size symbols occurring in S. For complexity considerations, we assume the sizes given in σ are

coded in unary. Whether this assumption can be avoided remains open.

Theorem 7.1. There exists a polynomial-time computable translation that maps any input-sized
expression e to an existential first-order formulaψe over the vocabulary of the reals, expanded with
symbols for the functions used in pointwise applications in e , such that

(1) Formulaψe has the following free variables:
• For everyM ∈ var(S), let S(M) = s1 ×s2. Thenψe has the free variables xM,i, j,ℜ and xM,i, j,ℑ,
for i = 1, . . . ,σ (s1) and j = 1, . . . ,σ (s2).

• In addition, ψe has the free variables ye,i, j,ℜ and ye,i, j,ℑ, for i = 1, . . . ,σ (t1) and j =
1, . . . ,σ (t2).

The set of these free variables is denoted by FV(S, e,σ).
(2) Any assignment ρ of real numbers to these variables specifies, through the x-variables, an

instance I conforming to S by σ , and through the y-variables, a σ (t1) × σ (t2) matrix B.
(3) Formulaψe is true over the reals under such an assignment ρ, if and only if B ∈ e(I).

Proof. We prove this result by induction on the structure of e . Let I be an instance conforming

to S by σ . For notational transparency we work in this proof exclusively with complex numbers. It

is then understood that formulas like “ye,i, j = xM,i, j ” are short for (ye,i, j,ℜ = xM,i, j,ℜ) ∧ (ye,i, j,ℑ =
xM,i, j,ℑ).

• Let e = M for some matrix variable M ∈ var(S). We have e(I) = I (M) and so the formula

ψe :=
∧

i, j (ye,i, j = xM,i, j) satisfies the required property. Here, i ranges over {1, . . . ,σ (t1)}
and j ranges over {1, . . . ,σ (t2)}.

• Let e = let M = e1 in e2. Then the formula ψe := ∃i, j ye1,i, j ,ye2,i, j (ψe1
∧ψe2

∧
∧

i, j (ye1,i, j =

xM,i, j) ∧
∧

i, j (ye,i, j = ye2,i, j)) satisfies the required property.

• Let e = (e1)
∗
. Then the formula ψe := ∃i, j ye1,i, j (ψe1

∧
∧

i, j (ye,i, j = y∗e1, j,i)) satisfies the

required property. Here, ye,i, j = y
∗
e1, j,i is short for (ye,i, j,ℜ = ye1, j,i,ℜ) ∧ (ye,i, j,ℑ = −ye1, j,i,ℑ).

• Let e = 1(e1). Then the formula ψe :=
∧

i (ye,i,1 = 1) ∧
∧

i, j xM,i, j satisfies the required

property.

• Let e = diag(e1). Then

ψe :=
(∧
i, j
i,j

(ye,i, j = 0)

)
∧ ∃i ye1,i,1

(
ψe1

∧
∧
i

(ye,i,i = ye1,i,1)

)
satisfies the required property.

• Let e = e1 · e2. Then the formula ψe := ∃i,k ye1,i,k∃k, j ye2,k, j
(
ψe1

∧ ψe2
∧
∧

i, j (ye,i, j =∑
k ye1,i,k · ye2,k, j)

)
satisfies the required property.

• Let e = apply[f](e1, . . . , en). Then the formula ψe := ∃i, j,k yek ,i, j
(
(
∧

k ψek) ∧
(∧

i, j (ye,i, j =

f (ye1,i, j , . . . ,yen,i, j))
))

satisfies the required property (here, f is merely a symbol).

• Let e = eigen(e1). Denote by [ȳe1
] the symbolic matrix corresponding to e1 and denote by

[ȳe] the symbolic matrix corresponding to e .
– To express that [ȳe] is a basis, we write that there exists a matrix [z̄] such that [ȳe] · [z̄] is
the identity matrix. This condition is expressed by the following formula

ψbasis,e := ∃j,k zj,k ((∧ i,k
i,k

(
∑

j ye,i, j · zj,k = 0)
)
∧ (

∧
i (
∑

j ye,i, j · zj,i = 1))
)
.

, Vol. 1, No. 1, Article . Publication date: January 2020.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

– To express, for each column vector v of [ȳe], that v is an eigenvector of [ȳe1
], we write

that there exists λ such that [ȳe1
] · v = λ[ȳe1

]. Explicitly, this condition is expressed by the

formulaψeigenv,e :=
∧

j (∃λ(∧i (
∑

k ye1,i,k · ye,k, j = λ · ye1,i, j))).

– More challenging is to express is that distinct eigenvectors v andw that correspond to the

same eigenvalue are orthogonal. We cannot write ∃λ([ȳe1
] · v = λv ∧ [ȳe1

] ·w = λw) →

v∗ ·w = 0, as this is not an existential formula due to the use of logical implication. Instead,

we avoid an explicit quantifier over the eigenvalue λ by recovering it from the eigenvectors.

This is done in a similar way as in how we retrieved the eigenvalues from the eigenvectors

in the previous section. More precisely, given that v andw are eigenvectors we have that

([ȳe1
] · v)i = λ · vi and ([ȳe1

] · w)i = µ · wi for eigenvalues λ and µ, respectively. The
vectors v and w will be eigenvectors of the same eigenvalue if whenever vi , 0 , wi ,

([ȳe1
] ·v)i/vi = ([ȳe1

] ·w)i/wi . Furthermore, we remark that whenvi , 0 , wi never holds,

then v andw are necessarily orthogonal. We thus use this condition in the premise of the

implication and write

ψortho,e :=
∧

v,w columns in [ye],
v,w

((∧
i

(
vi , 0 , wi → ([ȳe1

] · v)i/vi = ([ȳe1
] ·w)i/wi

))
→ v∗ ·w = 0

)
.

– A final detail is that we should also be able to express that [ȳe1
] is not diagonalizable, for in

that case we need to define [ȳe] to be the zero matrix. Nondiagonalizability is equivalent

to the existence of a Jordan form with at least one 1 on the superdiagonal. We can express

this as follows. We postulate the existence of an invertible matrix [z̄] such that the product

[z̄] · [ȳe1
] · [z̄]−1

has all entries zero, except those on the diagonal and the superdiagonal.

The entries on the superdiagonal can only be 0 or 1, with at least one 1. Moreover, if an

entry i, j on the superdiagonal is nonzero, the entries i, i and j, j must be equal. Denote by

ψnotdiagable,e1
the formula that expresses that [ȳe1

] is not diagonalizable.

Putting all of the above pieces together, we obtain the following formula

ψe := ∃i, j ye1,i, j
(
ψe1

∧
(
(ψbasis,e ∧ψeigenv,e ∧ψortho,e) ∨ (ψnondiagable,e1

∧ψnull,e)
))
,

whereψnull,e :=
∧

i, j ye,i, j = 0 to create the zero matrix in case of non-diagonalizability.

It should be clear from the translation that ψe can be computed in polynomial time and indeed

satisfies the conditions (1), (2) and (3) as stated in the theorem. □

The existential theory of the reals is decidable; actually, the full first-order theory of the reals

is decidable [3, 5]. But, specifically the class of problems that can be reduced in polynomial time

to the existential theory of the reals forms a complexity class on its own, known as ∃R [58, 59].

This class lies between NP and PSPACE. The above theorem implies that the intensional evaluation
problem forMATLANG + eigen belongs to this complexity class. We define this problem as follows.

The idea is that an arbitrary specification, expressed as an existential formula χ over the reals, can

be imposed on the input-output relation of an input-sized expression.

Definition 7.2. The intensional evaluation problem is a decision problem that takes as input:

• an input-sized expression (S, e,σ), where all functions used in pointwise applications are

explicitly defined using existential formulas over the reals;
3

• an existential formula χ with free variables in FV(S, e,σ) (see Theorem 7.1 for the definition

of FV(S, e,σ)).

3
These are the functions whose graph is a semi-algebraic set [6].

, Vol. 1, No. 1, Article . Publication date: January 2020.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

On the Expressive Power of Query Languages for Matrices 23

The problem asks if there exists an instance I conforming to S by σ and a matrix B ∈ e(I) such
that (I ,B) satisfies χ . □

For example, χ may completely specify the matrices in I by giving the values of the entries as

rational numbers, and may express that the output matrix has at least one nonzero entry.

An input (S, e,σ , χ) is a yes-instance to the intensional evaluation problem precisely when the

existential sentence ∃FV(S, e,σ)(ψe ∧ χ) is true in the reals, whereψe is the formula obtained by

Theorem 7.1. Hence we can conclude:

Corollary 7.3. The intensional evaluation problem forMATLANG + eigen belongs to ∃R. □

Since the full first-order theory of the reals is decidable, our theorem implies many other

decidability results. We give just two examples.

Corollary 7.4. The equivalence problem for input-sized expressions is decidable. This problem
takes as input two input-sized expressions (S, e1,σ) and (S, e2,σ) (with the same S and σ) and asks
if for all instances I conforming to S by σ , we have B ∈ e1(I) ⇔ B ∈ e2(I). □

Note that the equivalence problem forMATLANG expressions on arbitrary instances (size not

fixed) is undecidable by Theorem 4.3, since equivalence of FO
3
formulas over binary relational

vocabularies is undecidable [27].

Corollary 7.5. The determinacy problem for input-sized expressions is decidable. This problem
takes as input an input-sized expression (S, e,σ) and asks if for every instance I conforming to S by
σ , there exists at most one B ∈ e(I). □

Corollary 7.3 gives an ∃R upper bound on the combined complexity of query evaluation [65].

Our final result is a matching lower bound, already for data complexity alone.

Theorem 7.6. There exists a fixed schema S and a fixed expression e in MATLANG + eigen, well-
typed over S, such that the following problem is hard for ∃R: Given an integer instance I over S, decide
whether the zero matrix is a possible result of e(I). The pointwise applications in e use only simple
functions definable by quantifier-free formulas over the reals (representing complex numbers as pairs
of reals).

Proof. The feasibility problem [59] takes as input an equation p = 0, with p a multivariate

polynomial with integer coefficients, and asks whether the equation has a solution over the reals.

We may assume that p is given in “standard form”, as a sum of terms of the form a · µ where a is an

integer and µ is a monomial [47]. The feasibility problem is known to be complete for ∃R. We will

design a schema S and an expression e so that the feasibility problem reduces in polynomial time

to our problem.

We use a construction by Valiant [63] in which a polynomial p is converted into a directed,

edge-weighted graphG . The fundamental property of Valiant’s construction is that the determinant

of the adjacency matrixA ofG equals p. Let p be a polynomial in normal form

∑
µ ∈M aµ · µ for some

setM of monomials. The length |µ | of a monomial µ is the number of multiplications used in the

monomial. Similarly, |aµ · µ | = 1 + |µ | and the length |p | of p is given by

∑
µ ∈M (1 + |µ |) + |M | − 1,

where we also account for the number of additions. The size ∥p∥ of p is |p | · log
2
(m) wherem is

an upper bound on the maximum number of variables and the largest integer coefficient in p. In
general, Valliant’s construction results in a graph of at most |p | + 2 vertices. Furthermore, the edge

weights in G are coefficients or variables from p, or the value 1. Similarly, the entries in A are

zero or edge weights from G. The computation of the graph G and its adjacency matrix A require

polynomial time in ∥p∥.

, Vol. 1, No. 1, Article . Publication date: January 2020.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

A =



0 1 0 3 5 0 0 0

0 1 x 0 0 0 0 0

0 0 1 y 0 0 0 0

0 0 0 1 0 0 0 1

0 0 0 0 1 y 0 0

0 0 0 0 0 1 y 0

0 0 0 0 0 0 1 z
1 0 0 0 0 0 0 0


Coef =



0 1 0 3 5 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0


Enc =



0 0 0

1 0 0

0 1 0

0 0 0

0 1 0

0 1 0

0 0 1

0 0 0



Vars =



0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0


v =


v1

v2

v3

 V =



0 0 0 0 0 0 0 0

v1 v1 v1 v1 v1 v1 v1 v1

v2 v2 v2 v2 v2 v2 v2 v2

0 0 0 0 0 0 0 0

v2 v2 v2 v2 v2 v2 v2 v2

v2 v2 v2 v2 v2 v2 v2 v2

v3 v3 v3 v3 v3 v3 v3 v3

0 0 0 0 0 0 0 0

︸ ︷︷ ︸
Enc ·v ·1(Coef)∗

0 1 0 3 5 0 0 0

0 1 v1 0 0 0 0 0

0 0 1 v2 0 0 0 0

0 0 0 1 0 0 0 1

0 0 0 0 1 v2 0 0

0 0 0 0 0 1 v2 0

0 0 0 0 0 0 1 v3

1 0 0 0 0 0 0 0

︸ ︷︷ ︸
A(v)

=



0 1 0 3 5 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

︸ ︷︷ ︸
Coef

+



0 0 0 0 0 0 0 0

0 0 v1 0 0 0 0 0

0 0 0 v2 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 v2 0 0

0 0 0 0 0 0 v2 0

0 0 0 0 0 0 0 v3

0 0 0 0 0 0 0 0

︸ ︷︷ ︸
apply[д](Vars,V)

Fig. 4. Construction of matrix A(v) using matrices Coef , Vars, Enc. The pointwise function д : C2 → C is
defined as д(x ,y) is y if x = 1, and zero otherwise. The matrix A(v) is such that det(A(v)) = 0 if and only if
p(v1,v2,v3) = 0 for polynomial p(x ,y, z) = 3 + 1xy + 5y2z. This follows from the fact that for the symbolic
matrix A, det(A) = p(x ,y, z).

The construction has a specific property: when p is given in standard form, with an explicit

coefficient before each monomial (even if it is merely the value 1), each row of A contains at most

one variable. This property is important for the expression e , specified below, to work.

Example 7.7 (Valiant’s construction). Consider the polynomial p(x ,y, z) = 3 + 1xy + 5y2z given
in standard form in which each monomial has an associated coefficient. Following the construction

by Valiant [63], the symbolic matrix A shown in Figure 4 is such that det(A) = p(x ,y, z). □

Assume G has nodes 1, . . . , n, and let the variables in p be x1, . . . , xk . We represent A by three

integer matrices Coef , Vars, and Enc. Matrix Coef is the n × n matrix obtained from A by omitting

the variable entries (these are set to zero). On the other hand, Vars, also n ×n, is obtained from A by

keeping only the variable entries, but setting them to 1. All other entries are set to zero. Finally, Enc
encodes which variables are represented by the one-entries in Vars. Specifically, Enc is the n × k

, Vol. 1, No. 1, Article . Publication date: January 2020.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

On the Expressive Power of Query Languages for Matrices 25

matrix where Enci, j = 1 if the ith row of A contains variable x j , and zero otherwise. In Figure 4 we

depict these matrices for our example polynomial p(x ,y, z) = 3 + 1xy + 5y2z.
We thus reduce an input p = 0 of the feasibility problem to the instance I consisting of the

matrices Coef , Vars, Enc. Additionally, for technical reasons, I also has the k × 1 column vector

F , which has value 1 in its first entry and is zero everywhere else. Formally, this instance is over

the fixed schema S consisting of the matrix variablesMCoef ,MVars ,MEnc , andMF , where the first

two variables have type α × α ; the third variable has type α × β ; andMF has type β × 1. To reduce

clutter, however, in what follows we will write these variables simply as Coef , Vars, Enc, and F .
We must now give an expression e that has the zero matrix as possible result of e(I) if and only if

p = 0 has a solution over the reals. For any k × 1 vectorv of real numbers, letA(v)
denote the matrix

A where we have substituted the entries of v for the variables x1, . . . , xk . By Valiant’s construction,

the expression e should return the zero matrix as a possible result, if and only if there exists a v
such that A(v)

has determinant zero, i.e., is not invertible.

The desired expression e works as follows. We apply eigen to the k × k zero matrix, which we

compute as O in the expression given below. By selecting the first column of the result, we can

nondeterministically obtain all possible nonzero k × 1 column vectors. Taking only the real part

(ℜ) of the entries, we obtain all possible real column vectors v . Then the matrix A(v)
is assembled

(in matrix variable AA) using the matrices Coef , Vars, and Enc. Finally, we apply inv to AA so that

the zero matrix is returned if and only if AA has determinant zero.

In conclusion, expression e reads as follows:

let O = apply[0](F · F ∗) in

let B = eigen(O) in

let v = apply[ℜ](B · F) in

let V = Enc · v · 1(Coef)∗ in
let AA = apply[+](Coef , apply[д](Vars,V)) in

inv(AA)

Here, in the last expression, д(x ,y) is y if x = 1, and zero otherwise. In Figure 4 we illustrate the

resulting matrices for V and AA (i.e., A(v)
) for our example polynomial. □

Remark (Complexity of deterministic expressions). Our proof of Theorem 7.6 relies on the nonde-

terminism of the eigen operation. In particular, we use the eigen operation to non-deterministically

select an n × 1-vector from all possible complex n × 1 vectors. The hardness therefore holds for

any extension of MATLANG with an operation choice(·) which non-deterministically chooses a

complex vector, whose dimensions could, for example, be determined by the dimension of the

input column vector of this operation. For example, in the expression e at the end of the proof of

Theorem 7.6, we could eliminate the use of the eigen operation by simply replacing the first two

lines by B = choice(A).

Remark. Coming back to our remark on determinacy at the end of the previous section, it is an

interesting question for further research to understand not only the expressive power but also the

complexity of the evaluation problem for deterministic MATLANG + eigen expressions.

8 EXPERIMENTS ON COMPUTING THE TRANSITIVE CLOSURE
We have seen that various natural matrix manipulations are expressible in our matrix query

languages. Each such expression in turn directly corresponds to a possible implementation in

terms of the primitives of MATLANG, MATLANG + inv or MATLANG + eigen. However, this

, Vol. 1, No. 1, Article . Publication date: January 2020.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

Algorithm Progr. lang. 2
8
nodes 2

9
nodes 2

10
nodes 2

11
nodes

Tarjan SageMath 30.2 ms 122 ms 516 ms 2.16 s

Matrix inversion (Ex. 5.2)

R 17 ms 132 ms 691 ms 4.91 s

SageMath 280 ms 1.66 s 3.24 s 15.7 s

Furman

R 91 ms 346 ms 2.58 s 20.9 s

SageMath 370 ms 2.15 s 12.0 s 70.6 s

Floyd-Warshall

R 4.14 s 38.6 s 383 s > 1 h

SageMath 30.4 s 476 s > 1 h > 1 h

Table 1. Running times (best of three runs) of transitive closure algorithms on random dense graphs imple-
mented in R or SageMath. Hardware setup: Lenovo ThinkCentre E71 with Intel Pentium CPU G630 at 2.70
GHz.

implementationmay not be optimal for practical purposes. In this section we report on a preliminary

experimental investigation assessing the efficiency of the MATLANG + inv expression given in

Example 5.2 which computes the transitive closure of a graph given its adjacency matrix A.
We have implemented the algorithm corresponding to this expression in a straightforward way in

both R and SageMath (which is an open source competitor of MATLAB), and we have compared this

algorithm to three other algorithms: (1) Furman’s algorithm [22] which first computes A := A +A2

a number of times logarithmic in the number of vertices and then sets all nonzero entries to 1; (2)

Floyd-Warshall’s algorithm; and (3) an algorithm [67] based on Tarjan’s algorithm that computes

the strongly connected components of a graph. It is known that algorithms based on Tarjan’s

algorithm perform best (especially for sparse graphs) [50, 51], and, indeed, our modest computer

experiments on random dense graphs with up to 2
11
nodes show that our tested implementation

based on Tarjan’s algorithm is significantly faster than the other algorithms, cf. Table 1. Our

implementation corresponding to the MATLANG + inv expression turns out to be faster than the

algorithms based on Furman’s algorithm and Floyd-Warshall’s algorithm. The inversion-based

algorithm performs especially well in R, since R invokes the LAPACK library for fast computation

of matrix inversion, which is the dominating step of the algorithm. Moreover, the expression from

Example 5.2 corresponds to a matrix level (as opposed to matrix-entry level) program that is very

easy to write in R and SageMath.

9 CONCLUSION
There is a commendable trend in contemporary database research to leverage, and considerably

extend, techniques from database query processing and optimization, to support large-scale linear

algebra computations. In principle, data scientists could then work directly in SQL or related

languages. Still, some users will prefer to continue using the matrix languages they are more

familiar with. Supporting these languages is also important so that existing code need not be

rewritten. As already discussed in Section 2, the optimization and efficient processing of matrix

query expressions is a rich area for further research.

In this paper we have proposed a framework for viewing matrix manipulation from the point of

view of expressive power of database query languages. Moreover, our results formally confirm that

the basic set of matrix operations offered by systems in practice, formalized here in the language

MATLANG+ inv+ eigen, really is adequate for expressing a range of linear algebra techniques and

procedures.

In the paper we have already mentioned some intriguing questions for further research. Deep

inexpressibility results have been developed for logics with rank operators [54]. Although these

results are mainly concerned with finite fields, they might still provide valuable insight in our open

, Vol. 1, No. 1, Article . Publication date: January 2020.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

On the Expressive Power of Query Languages for Matrices 27

questions. Also, we have not covered all standard constructs from linear algebra. For instance, it may

be worthwhile to extend our framework with the operation of putting matrices in upper triangular

form, with the Gram-Schmidt procedure (which is now partly hidden in the eigen operation), and

with the singular value decomposition.

Furthermore, as suggested by an anonymous referee, it may be fruitful to make connections to

circuit complexity classes. Thus, MATLANG may be compared to the complexity class TC0
, and

MATLANG+ inv to the complexity class DET. Note, however, that these complexity classes assume

the bit model of computation, whereas our presentation of MATLANG has been over arbitrary

complex numbers.

Finally, we note that various authors have proposed to go beyond matrices, introducing data

models and algebra for tensors or multidimensional arrays [36, 55, 56]. When moving to more and

more powerful and complicated languages, however, it becomes less clear at what point we should

simply move all the way to full SQL, or extensions of SQL with recursion.

ACKNOWLEDGMENTS
We thank Bart Kuijpers for telling us about the complexity class ∃R. We also thank Lauri Hella

and Wied Pakusa for helpful discussions, and Christoph Berkholz and Anuj Dawar for their help

with the proof of Proposition 4.4. Finally, we thank the anonymous referees for their insightful

comments, which we have used to improve the paper. R.B. is a postdoctoral fellow of the Research

Foundation – Flanders (FWO).

REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. 1995. Foundations of Databases. Addison-Wesley.

[2] M. Abo Khamis, H.Q. Ngo, and A. Rudra. 2016. FAQ: Questions Asked Frequently. In Proceedings 35th ACM Symposium
on Principles of Database Systems, T. Milo and W.-C. Tan (Eds.). ACM, 13–28.

[3] D.S. Arnon. 1988. Geometric reasoning with logic and algebra. Artificial Intelligence 37 (1988), 37–60.
[4] S. Axler. 2015. Linear Algebra Done Right (third ed.). Springer.

[5] S. Basu, R. Pollack, and M.-F. Roy. 2008. Algorithms in Real Algebraic Geometry (second ed.). Springer.

[6] J. Bochnak, M. Coste, and M.-F. Roy. 1998. Real Algebraic Geometry. Springer-Verlag.
[7] M. Boehm, M.W. Dusenberry, D. Eriksson, A.V. Evfimievski, F.M. Manshadi, N. Pansare, B. Reinwald, F.R. Reiss, P.

Sen, A.C. Surve, and S. Tatikonda. 2016. SystemML: Declarative machine learning on Spark. Proceedings of the VLDB
Endowment 9, 13 (2016), 1425–1436.

[8] A. Bonato. 2008. A Course on the Web Graph. Graduate Studies in Mathematics, Vol. 89. American Mathematical

Society.

[9] R. Brijder, F. Geerts, J. Van den Bussche, and T. Weerwag. 2018. On the Expressive Power of Query Languages

for Matrices. In Proceedings 21st International Conference on Database Theory (LIPIcs), Vol. 98. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 10:1–10:17.

[10] R. Brijder, M. Gyssens, and J. Van den Bussche. 2019. On matrices and K -relations. arXiv:1904.03934.

[11] S. Brin and L. Page. 1998. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN
Systems 30 (1998), 107–117.

[12] P.G. Brown. 2010. Overview of sciDB: Large Scale Array Storage, Processing and Analysis. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data (SIGMOD ’10). ACM, 963–968.

[13] J.-Y. Cai, M. Fürer, and N. Immerman. 1992. An optimal lower bound on the number of variables for graph identification.

Combinatorica 12, 4 (1992), 389–410.
[14] J. Canny. 1988. Some Algebraic and Geometric Computations in PSPACE. In Proceedings of the Twentieth Annual ACM

Symposium on Theory of Computing (STOC ’88). ACM, 460–467.

[15] L. Chen, A. Kumar, J. Naughton, and J.M. Patel. 2017. Towards linear algebra over normalized data. Proceedings of the
VLDB Endowment 10, 11 (2017), 1214–1225.

[16] S. Datta, R. Kulkarni, A. Mukherjee, T. Schwentick, and T. Zeume. 2015. Reachability is in DynFO. In Proceedings 42nd
International Colloquium on Automata, Languages and Programming, Part II (Lecture Notes in Computer Science), M.M.

Halldórsson, K. Iwama, N. Kobayashi, and B. Speckmann (Eds.), Vol. 9135. Springer, 159–170.

[17] S. Datta, R. Kulkarni, A. Mukherjee, T. Schwentick, and T. Zeume. 2018. Reachability Is in DynFO. J. ACM 65, 5 (2018),

33:1–33:24.

, Vol. 1, No. 1, Article . Publication date: January 2020.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

[18] A. Dawar. 2008. On the descriptive complexity of linear algebra. In Logic, Language, Information and Computation,
Proceedings 15th WoLLIC (Lecture Notes in Computer Science), W. Hodges and R. de Queiroz (Eds.), Vol. 5110. Springer,

17–25.

[19] A. Dawar, M. Grohe, B. Holm, and B. Laubner. 2009. Logics with rank operators. In Proceedings 24th Annual IEEE
Symposium on Logic in Computer Science. 113–122.

[20] A. Dawar and B. Holm. 2017. Pebble games with algebraic rules. Fundamenta Informaticae 150, 3-4 (2017), 281–316.
[21] G.M. Del Corso, A. Gulli, and F. Romani. 2005. Fast PageRank computation via a sparse linear system. Internet

Mathematics 2, 3 (2005), 251–273.
[22] M.E. Furman. 1970. Application of a method of fast multiplication of matrices in the problem of finding the transitive

closure of a graph. Soviet Mathematics Doklady 11, 5 (1970), 1252.

[23] F. Geerts. 2019. On the Expressive Power of Linear Algebra on Graphs. In Proceedings 22nd International Conference on
Database Theory (LIPIcs), Vol. 127. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 7:1–7:19.

[24] C.D. Godsil. 1982. Some graphs with characteristic polynomials which are not solvable by radicals. Journal of Graph
Theory 6 (1982), 211–214.

[25] G.H. Golub and C.F. Van Loan. 2013. Matrix Computations (fourth ed.). The Johns Hopkins University Press.

[26] E. Grädel and W. Pakusa. 2015. Rank Logic is Dead, Long Live Rank Logic!. In 24th EACSL Annual Conference on
Computer Science Logic (CSL). 390–404.

[27] E. Grädel, E. Rosen, and M. Otto. 1999. Undecidability results on two-variable logics. Archive of Mathematical Logic 38
(1999), 313–354.

[28] T.J. Green, G. Karvounarakis, and V. Tannen. 2007. Provenance semirings. In Proceedings 26th ACM Symposium on
Principles of Database Systems. 31–40.

[29] M. Grohe and W. Pakusa. 2017. Descriptive complexity of linear equation systems and applications to propositional

proof complexity. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 1–12.
[30] L. Hella, L. Libkin, J. Nurmonen, and L. Wong. 2001. Logics with aggregate operators. J. ACM 48, 4 (2001), 880–907.

[31] J.M. Hellerstein, C. Ré, F. Schoppmann, D.Z. Wang, E. Fratkin, A. Gorajek, K.S. Ng, C. Welton, X. Feng, K. Li, and A.

Kumar. 2012. The MADlib Analytics Library: Or MAD Skills, the SQL. Proceedings of the VLDB Endowment 5, 12 (2012),
1700–1711.

[32] B. Holm. 2010. Descriptive Complexity of Linear Algebra. Ph.D. Dissertation. University of Cambridge.

[33] D. Hutchison, B. Howe, and D. Suciu. 2017. LaraDB: A minimalist kernel for linear and relational algebra computation.

In Proceedings 4th ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond, F.N. Afrati and
J. Sroka (Eds.). 2:1–2:10.

[34] K.E. Iverson. 1962. A Programming Language. John Wiley & Sons, Inc.

[35] P.C. Kanellakis, G.M. Kuper, and P.Z. Revesz. 1995. Constraint query languages. J. Comput. System Sci. 51, 1 (Aug.
1995), 26–52.

[36] M. Kim. 2014. TensorDB and Tensor-Relational Model for Efficient Tensor-Relational Operations. Ph.D. Dissertation.
Arizona State University.

[37] A. Klug. 1982. Equivalence of relational algebra and relational calculus query languages having aggregate functions. J.
ACM 29, 3 (1982), 699–717.

[38] Ph.G. Kolaitis. 2007. On the expressive power of logics on finite models. In Finite Model Theory and Its Applications.
Springer, Chapter 2, 27–123.

[39] A. Kunft, A. Alexandrov, A. Katsifodimos, and V. Markl. 2016. Bridging the Gap: Towards Optimization Across Linear

and Relational Algebra. In Proceedings 3rd ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and
Beyond. 1:1–1:4.

[40] G. Kuper, L. Libkin, and J. Paredaens (Eds.). 2000. Constraint Databases. Springer.
[41] B. Laubner. 2010. The Structure of Graphs and New Logics for the Characterization of Polynomial Time. Ph.D. Dissertation.

Humboldt-Universität zu Berlin.

[42] J. Leskovec, A. Rajaraman, and J.D. Ullman. 2014. Mining of Massive Datasets (second ed.). Cambridge University

Press.

[43] L. Libkin. 2003. Expressive power of SQL. Theoretical Computer Science 296 (2003), 379–404.
[44] S. Luo, Z.J. Gao, M. Gubanov, L.L. Perez, and C. Jermaine. 2018. Scalable Linear Algebra on a Relational Database

System. SIGMOD Record 47, 1 (2018), 24–31.

[45] S. Luo, Z.J. Gao, M.N. Gubanov, L. Leopoldo Perez, and C.M. Jermaine. 2017. Scalable Linear Algebra on a Relational

Database System. In Proceedings 33rd International Conference on Data Engineering. IEEE Computer Society, 523–534.

[46] M. Marx and Y. Venema. 1997. Multi-Dimensional Modal Logic. Springer.
[47] J. Matoušek. 2014. Intersection graphs of segments and ∃R. arXiv:1406.2636.
[48] Microsoft SQL Server R Services. 2019.

, Vol. 1, No. 1, Article . Publication date: January 2020.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

On the Expressive Power of Query Languages for Matrices 29

[49] H.Q. Ngo, X. Nguyen, D. Olteanu, and M. Schleich. 2017. In-database factorized learning. In Proceedings 11th Alberto
Mendelzon International Workshop on Foundations of Data Management (CEUR Workshop Proceedings), J.L. Reutter and
D. Srivastava (Eds.), Vol. 1912.

[50] E. Nuutila. 1994. An Efficient Transitive Closure Algorithm for Cyclic Digraphs. Inform. Process. Lett. 52, 4 (1994),
207–213.

[51] E. Nuutila. 1995. Efficient Transitive Closure Computation in Large Digraphs. Ph.D. Dissertation. Helsinki University of

Technology.

[52] Oracle R Enterprise. 2019.

[53] M. Otto. 1997. Bounded Variable Logics and Counting: A Study in Finite Models. Lecture Notes in Logic, Vol. 9. Springer.

[54] W. Pakusa. 2015. Linear Equation Systems and the Search for a Logical Characterisation of Polynomial Time. Ph.D.
Dissertation. RWTH Aachen.

[55] F. Rusu and Y. Cheng. 2013. A survey on array storage, query languages, and systems. arXiv:1302.0103.

[56] T. Sato. 2017. Embedding Tarskian semantics in vector spaces. arXiv:1703.03193.

[57] T. Sato. 2017. A linear algebra approach to datalog evaluation. Theory and Practice of Logic Programming 17, 3 (2017),

244–265.

[58] M. Schaefer. 2009. Complexity of some geometric and topological problems. In Graph Drawing (Lecture Notes in
Computer Science), D. Eppstein and E.R. Gansner (Eds.), Vol. 5849. Springer, 334–344.

[59] M. Schaefer and D. Štefankovič. 2017. Fixed points, Nash equilibria, and the existential theory of the reals. Theory of
Computing Systems 60, 2 (2017), 172–193.

[60] M. Schleich, D. Olteanu, and R. Ciucanu. 2016. Learning linear regression models over factorized joins. In Proceedings
2016 International Conference on Management of Data. ACM, 3–18.

[61] A. Tarski and S. Givant. 1987. A Formalization of Set Theory Without Variables. AMS Colloquium Publications, Vol. 41.

American Mathematical Society.

[62] A. Thomas and A. Kumar. 2018. A Comparative Evaluation of Systems for Scalable Linear Algebra-based Analytics.

Proceedings of the VLDB Endowment 11, 13 (2018), 2168–2182.
[63] L.G. Valiant. 1979. Completeness classes in algebra. In Proceedings 11th ACM Symposium on Theory of Computing.

249–261.

[64] J. Van den Bussche, D. Van Gucht, and S. Vansummeren. 2007. A crash course in database queries. In Proceedings 26th
ACM Symposium on Principles of Database Systems. ACM Press, 143–154.

[65] M. Vardi. 1982. The Complexity of Relational Query Languages. In Proceedings 14th ACM Symposium on the Theory of
Computing. 137–146.

[66] D. Wagner and F. Wagner. 1993. Between Min Cut and Graph Bisection. In Proceedings 18th International Symposium
on Mathematical Foundations of Computer Science, A. M. Borzyszkowski and S. Sokołowski (Eds.). Springer Berlin

Heidelberg, 744–750.

[67] B. Westerbaan. 2016. Python implementation of Tarjan’s algorithm. https://pypi.org/project/tarjan/

[68] P. Wood. 2012. Query Languages for Graph Databases. SIGMOD Record 41, 1 (March 2012), 50–60.

[69] Y. Zhang, W. Zhang, and J. Yang. 2010. I/O-efficient statistical computing with RIOT. In 2010 IEEE 26th International
Conference on Data Engineering (ICDE 2010). 1157–1160.

A PROOF OF PROPOSITION 4.2
Let us assign, to eachMATLANG expression e that is well-typed over S, an expression φe in the

relational calculus with summation as follows. As before, since the let operation is syntactic sugar

forMATLANG expressions, we do not consider this operation in this proof.

• If e = M is a matrix variable of S, then φe (i, j,x) := Rel2(M)(i, j,x) if M is of general type,

φe (i,x) := Rel1(M)(i,x) ifM is of vector type, and φe (x) := Rel0(M)(x) ifM is of scalar type.

Let e ′ be a MATLANG and let τ = s1 × s2 be the output type of e
′
.

• If e = (e ′)∗, then φe (i, j,x) := ∃x ′ (φe ′(j, i,x
′) ∧ x = x ′) if τ is a general type, φe (i,x) :=

∃x ′ (φe ′(i,x
′) ∧ x = x ′) if τ is a vector type, and φe (x) := ∃x ′ (φe ′(x

′) ∧ x = x ′) if τ is the

scalar type. Here, x denotes the complex conjugate operation.

• If e = 1(e ′), then φe (i,x) := ∃j,x ′ (φe ′(i, j,x
′) ∧ x = 1(x ′)) if τ is a general type, φe (i,x) :=

∃x ′ (φe ′(i,x
′)∧x = 1(x ′)) is a vector type and s1 , 1 = s2,φe (x) := ∃i,x ′ (φe ′(i,x

′)∧x = 1(x ′))

is a vector type and s1 = 1 , s2, and φe (x) := ∃x ′ (φe ′(x
′) ∧ x = 1(x ′)) if τ is the scalar type.

As before, 1 in the expression φe is the constant 1 function.

, Vol. 1, No. 1, Article . Publication date: January 2020.

https://pypi.org/project/tarjan/

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Robert Brijder, Floris Geerts, Jan Van den Bussche, and Timmy Weerwag

• If e = diag(e ′), then φe (i, j,x) := (φe ′(i,x)∧ j = i)∨ (∃x ′,x ′′φe ′(i,x
′)∧φe ′(j,x

′′)∧ i , j∧x =
0(x ′)) if s1 , 1 = s2 and φe (x) := φe ′(x) if τ is the scalar type.

• If e = e1 · e2 where e1 is of type s1 × s3 and e2 is of type s3 × s2, then

φe (i, j, z) := z = sumk,x ,y.(φe1
(i,k,x) ∧ φe2

(k, j,y),x × y) if s1 , 1 , s2 and s3 , 1;

φe (i, z) := z = sumk,x ,y.(φe1
(i,k,x) ∧ φe2

(k,y),x × y) if s1 , 1 = s2 and s3 , 1;

φe (i, z) := z = sumk,x ,y.(φe1
(k,x) ∧ φe2

(k, i,y),x × y) if s1 = 1 , s2 and s3 , 1;

φe (z) := z = sumk,x ,y.(φe1
(k,x) ∧ φe2

(k,y),x × y) if s1 = 1 = s2 and s3 , 1;

φe (i, j, z) := φe1
(i,x) ∧ φe2

(j,y) ∧ z = x × y if s1 , 1 , s2 and s3 = 1;

φe (i, z) := φe1
(i,x) ∧ φe2

(y) ∧ z = x × y if s1 , 1 = s2 and s3 = 1;

φe (i, z) := φe1
(x) ∧ φe2

(i,y) ∧ z = x × y if s1 = 1 , s2 and s3 = 1;

φe (z) := φe1
(x) ∧ φe2

(y) ∧ z = x × y if s1 = 1 = s2 and s3 = 1.

• If e = apply[f](e1, . . . , en), then

φe (i, j,x) := ∃x1, . . . ,xn (φe1
(i, j,x1) ∧ · · · ∧ φen (i, j,xn) ∧ x = f (x1, . . . ,xn)),

φe (i,x) := ∃x1, . . . ,xn (φe1
(i,x1) ∧ · · · ∧ φen (i,xn) ∧ x = f (x1, . . . ,xn)), and

φe (x) := ∃x1, . . . ,xn (φe1
(x1) ∧ · · · ∧ φen (xn) ∧ x = f (x1, . . . ,xn))

depending on whether τ is of general, vector or scalar type, respectively.

Notice that the only functions in φe aside from those used in apply in e are complex conjugation

(z̄), multiplication of two numbers (×), and the constant functions 0 and 1. Also notice that φe
uses neither negation, nor equality conditions on numerical variables, nor equality conditions on

variables involving a constant.

By induction on the structure of e one straightforwardly observes that φe satisfies the conditions
(1) and (2) in the statement of the theorem. Furthermore, it is clear for all operations except

for matrix multiplication that when φe ′ (or the φei ’s in the case of apply) uses at most 3 base

variables than so does φe . When it comes to matrix multiplication, assume that φe1
(i,k,x) uses

base variables i, j ′,k and φe2
(k, j,y) uses base variables i ′, j,k . Since j ′ is not free in φe1

(i,k,x), we
can rename j ′ to j. Similarly, we can rename i ′ to i in φe2

(k, j,y). In this way, φe (i, j, z) := z =
sumk,x ,y.(φe1

(i,k,x) ∧ φe2
(k, j,y),x × y) uses at most 3 base variables as well (the cases where

not all types are general is similar). □

, Vol. 1, No. 1, Article . Publication date: January 2020.

