The Shape of Correlation Matrices
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A correlation matrix between three variables has to sat-
isfy certain conditions. Such a matrix essentially con-
tains three numbers and thus can be represented by a point
in three dimensions. The set of all possible correlation
matrices yields a convex solid body with an uncommon
shape. Allits cross sections perpendicular to the axes are
ellipses. Atthe same time, its surface contains the vertices
and edges of aregular tetrahedron. Another unusual shape
is obtained for banded correlation matrices between four
variables.
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1. INTRODUCTION

The correlation coefficient is one of the most frequently
used statistical tools. The correlation ryy between two
variables X and ¥ can be interpreted intuitively by look-
ing at scatterplots of observed data points or at bivariate
population densities (see, e.g., Rodgers and Nicewander
1988). However, things become harder to visualize when
there are three variables X, Y, and Z, which yield the pair-
wise correlations ryy, ryz, and ryz. The latter correlations
are somehow intertwined: for instance, knowing two of
them gives some information about the third. In this ar-
ticle we will construct a three-dimensional graph of the
set of all combinations (ryy, rxz, ryz), which has very pe-
culiar properties. We will also study correlation matrices
between four variables. The results given throughout this
article are valid both for empirical correlations computed
from data as well as for their population versions.

In the simplest case we only have two variables, X and
Y, and we can compute the correlation ryy between them.
The correlation matrix of X and Y is

C= (‘l rxy) (l)
Yyy I

where the diagonal entries are always 1. Moreover, any
correlation matrix is symmetric, so it suffices to list the
upper triangular part. From the definition of correlation,
it follows that —1 < ryy < 1. Conversely, if we take any
number between —1 and 1 and plugitinto (1), the resulting
C is always a correlation matrix (e.g., there will exist a
bivariate Gaussian distribution with correlation matrix C).
Therefore, it is trivial to see whether a given 2-by-2 matrix
is a correlation matrix.
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2. CORRELATIONS BETWEEN
THREE VARIABLES

When considering three variables X, ¥, and Z, the cor-
relation matrix has the form

L rxy ryz
C=|rmy 1 rz (2)
Yyz Fyz 1

which is again symmetric with diagonal entries of 1. By
definition, each of the three correlation coefficients must
lie in the interval [—1,1]. However, there is more to a
correlation matrix than that. We cannot take any combi-
nation of three numbers in [—1, 1], plug them into (2), and
be certain that the resulting C is a correlation matrix. From
elementary matrix algebra it follows that amatrix C of type
(2) 1s a correlation matrix (e.g., of a multivariate Gaussian
distribution) if and only if it is positive semidefinite (PSD),
meaning that v'Cv > 0 for any column vector v.

Our goal is to picture the set of combinations r =
(rxy,xz, ryz) that arises in this way. Each of these com-
binations can be seen as a point in the cube [—1, 1] in
three-dimensional space. Let us denote the set of these
points by R, so that each point r in R corresponds to a PSD
matrix C and vice versa. Therefore R is bounded (being
a subset of [ 1, 1]*) and it contains the point (0, 0, 0) that
corresponds to the identity matrix. Moreover, the region
R is convex because the set of PSD matrices is convex. For
all points in R, the determinant of C must be nonnegative:

det(C) =1+ eryrxz?'yz —_— ?'i—r -— F')z(z - r%z Z 0. (3)

For matrices C that are positive definite (i.e., v'Cv > 0
for any column vector v # 0), the determinant (3) is even
strictly positive. On the boundary of R the determinant
becomes zero, yielding the equation

riy + ez + 1z — 2royrxervz = 1. (4)

We can verify thatin the cube [—1, 113, Equation (4) deter-
mines a closed surface, and that det(C) is strictly positive
inside and strictly negative outside. Therefore, the surface
(4) determines the solid region R.

Figure la gives a picture of R. It is clearly convex with
four sharp vertices. It is symmetric with respect to certain
mirrorreflections and to rotations corresponding to permu-
tations of the components of (ryy, ryz, rvz). Although (4)
has no flat surfaces anywhere, it does contain six straight
line segments connecting the four vertices. These line seg-
ments form a regular tetrahedron. Note that the surface is
rather smooth and that it is only sharp at the four vertices.
The surface (4) also contains three complete circles (or-
thogonal to each other) with unit radius, corresponding to
the cross sections with rxy =0, ryz =0, and ry; = 0.

Surprisingly. any horizontal cross section of this surface
is an ellipse. Indeed, if we fix ryz = ¢ with |¢| < 1, we
find

ri'y + r;z(- e ZCrny‘xz =1- Cz. (5)
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Figure 1. (a) Set of all Possible Correlations Between X, Y, and
Z. (b) Slicing this set at ryz yields ellipses.

Some typical slices are shown in Figure 1b. For ¢ = 0, we
obtain the circle mentioned previously. For 0 < ¢ < 1,
we find an ellipse with a major axis in the direction of
the line ryy = ryz and a minor axis in the direction of
rey = —ryz. For —1 < ¢ < 0, the major and minor axes
are interchanged. In the limiting casesc=1andc = —1,
the ellipse degenerates to a line segment on a face of the
cube (e.g., ryz = 1 implies that ryy = ryz and that the latter
may take any value between —1 and +1.)

In conclusion, the surface is made up of many ellipses,
and the same is true if we slice the surface according to
fixed values of ryy or ryz. Nevertheless, the surface is not
an ellipsoid (in fact, (4) is a cubic in r because the term
—2ryyrxzryz is of degree 3), and it contains all the edges
of a regular tetrahedron. We call this surface an elliptical
tetrahedron. It appears to have interesting physical prop-
erties (e.g., it resembles an elastic-membrane tetrahedron
that is being inflated), but it may not be round enough for
a ball game. It would be nice to make a solid model, for
instance, carved out of wood or using rapid prototyping,
or to rotate a model on a computer screen using video
software.

Projections of R can have different shapes. If we project
R on a horizontal plane (e.g., ryz = 0). we obtain a whole
square. The same happens if we project R on the vertical
plane orthogonal to (1,0,0) or the plane orthogonal to
(0,1,0). If we project R on a plane orthogonal to one
of the main diagonals, such as (1, 1, 1), then we obtain a
triangle with rounded edges, as used in a Wankel engine
or a movie projector.

The volume of R can be computed by elementary cal-
culus, yielding V = x?/2 = 4.93. This means that if we
generate three numbers ryy, ryz, and ryz independently
of each other and uniform in [—1, 1], the probability that
the resulting C is a true correlation matrix equals only
V/8=mn%/16 ~ 61.7%.

Remark 1. For any matrix C of the type (2) with off-
diagonal clements belonging to [—1, 1], it holds that C is
PSD if and only if condition (3) is satisfied. This is a spe-
cial case of a more general result in matrix algebra (see, for
instance, Rao 1965, sec. 1.¢), saying that a symmetric p X p
matrix C is PSD if and only if all its symmetric subma-
trices, including C itself, have a nonnegative determinant.
(Here, a symmetric submatrix is defined by removing at
most p — 1 rows and the corresponding columns.)

Remark 2. Condition (3) is algebraically equivalent
to formula (3) of Leung and Lam (1975), which gives up-
per and lower bounds on ryz assuming that ryy and ryz
arc known. Olkin (1981) considered range restrictions in
the multivariate case. Thomas and O’Quigley (1993) ob-
tained a related formulation in the trivariate case, making
use of spherical trigonometry in the space of the variables.
Also some particular cases have received attention: for in-
stance, Brown and Eagleson (1984) described a situation
where the sample correlations rxy, rxz, and ryz are pairwise
independent but notindependent as a triple. More recently,
Hamilton (1987) obtained an example where 1%, + i, is
smaller than the coefficient of determination. These ar-
ticles also provide references to earlier literature on the
subject. In this context, Figure 1 yields a visual aid to
intuition.

Remark 3.  We arrived at the set R in a different way,
in connection with the following question: given a matrix
C of type (2) that is not PSD, how can we transform it to
a true correlation matrix? Several approaches to this were
reviewed in Roussecuw and Molenberghs (1993). In ret-
rospect, some of these transformations can be interpreted
geometrically. The linear shrinking method starts from
a point in [—1, 1]%, outside of R, and moves the point to
the boundary of R along the ray through (0,0,0). The
scaling method searches for the point in R closest (in Eu-
clidean distance) to the starting point, thereby carrying out
an orthogonal projection on R.

3. CORRELATIONS BETWEEN
FOUR VARIABLES

When correlating four variables X, ¥, Z, and U, the ma-
trix C becomes a symmetric 4-by-4 matrix with six upper
diagonal entries. Therefore, each matrix C corresponds
to a point (ryy, rxz, Fxu, vz, Fyu, *zu) in six-dimensional
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space. Using Remark 1, we can verify that a symmet-
ric 4-by-4 matrix C with diagonal elements of 1 and off-
diagonal elements belonging to [—1, 1] is PSD if and only
if (a) all its symmetric 3-by-3 submatrices are PSD as in
Section 2 and (b) it holds that det(C) > 0. The expression
of det(C) is a lengthy polynomial of degree 4 in ryy, rxz,
rxu, vz, ryu, and rzy.

It becomes much harder than in the previous section to
visualize the set R of the points (ryy, rxz, rxv, vz, Fvu,
rzy;) for which C is PSD. R remains convex but is now a
subset of the six-dimensional cube [—1, 115, However, we
can still compute the (hyper-)volume of R. If we divide it
by the volume of the cube, we find the probability that a
matrix C obtained by uniformly generating six numbers
in [—1,1] is a true correlation matrix. This probability
is 18.3%, which is lower than the 61.7% of the trivariate
case because the requirements on C include the condition
(3) on the first three variables X, ¥, and Z.

4. BANDED CORRELATION MATRICES

The reasoning in this article can also be applied to cor-
relation matrices with a special structure. A very useful
type is the banded (or tridiagonal) correlation matrix, in
which there can only be a correlation between adjacent
variables. This arises naturally in practice, for instance,
when the variables X, Y, Z,. . . are measured one after the
other and the only dependence is between succesive mea-
surements. (This is called the one-dependent model.)

An important application of banded correlation matri-
ces is in the popular method of Liang and Zeger (1986)
for analyzing longitudinal responses. Its computation is
much simpler than specifying the joint distribution of the
outcomes and estimating its parameters by maximum like-
lihood, whereas consistency and related properties still
hold. The strength of this technique is that the true cor-
relation matrix between the outcomes need not be known
exactly and can be replaced by a simple “working” corre-
lation matrix, for instance, of banded type.

In the 3-by-3 case, a banded correlation matrix is of the
form

| xy 0
C = xy ] Fyz
0 Fyz 1
This matrix is PSD if (3) holds, which reduces to
r;'“, 4 rfz < 1; (6)

Thercfore, the set R of points (ryy, ryz) is simply the unit
disk in the plane.
Things become more interesting in the 4-by-4 case
where
1 rxy 0 0

Fxy 1 Fyz 0
0 re 1 rzu
0 0 rzuy 1

Using Remark 1 we find that C is PSD if and only if
det(C)= (1 = r3,) )1 ~r2y) —r, > 0 (7)

because (7) also implies the conditions on the symmetric
3-by-3 submatrices. We see that ryy and rzy may be inter-
changed in (7) but that ry, plays a different role, so we will

C=

278 The American Statistician, November 1994, Vol. 48, No. 4

:\ \\\\\‘\\\‘\\\\
n“‘ o
“{\\\\“

\\\“}I\; || \\\\\ III[[FW '

lyz

(b)

Figure 2. {a) Set of all Banded Correlation Matrices Between X,
Y, Z, and U. (b) Slicing this set at rzy yields ellipses.

plot the latter on the vertical axis. The points in [—1,1]*
where (7) is zero form the surface shown in Figure 2a. It
contains the points (0,0, 1) and (0,0, —1) on the vertical
axis. In the horizontal plane it contains four vertices and
four line segments connecting them, which together form
a square. The surface has these features in common with
a regular octahedron, but is more rounded.

In Figure 2b we see that cutting the surface for fixed
values of ryzy yields ellipses of which the major axis is
horizontal and the minor axis is vertical. (Note that the
ellipse in the middle is a circle.) This implies that the sur-
face, which we might call an elliptical octahedron, passes
smoothly through the edges of the square. The surface is
actually smooth everywhere, except at the four vertices of
the square. Physically, it resembles inflating two clastic
membranes attached to a rigid square frame.

If we project this solid on a horizontal plane, we obtain
a square. On the other hand, projecting the solid on a
vertical plane orthogonal to (1,0,0) or (0, 1,0) yields a
perfect circle. Therefore, this object casts very different
shadows depending on the direction of the light.



5. CONCLUDING REMARKS

It is hoped that Figures 1 and 2 may help to develop
intuition for the constraints that exist between correlations
computed from three or more variables. Unlike the tabular
format of correlation matrices, these graphical displays
remind us that correlations combine in certain ways. The
solids formed by these combinations are uncommon, but
they can be investigated by elementary methods.

[Received January 1992, Revised March 1994.]
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