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An extension of the bivariate model suggested by Dale is proposed for the analysis of dependent ordinal categorical data. The so-
called multivariate Dale model is constructed by first generalizing the bivariate Plackett distribution to any dimensions. Because the
approach is likelihood based, it satisfies properties that are not fulfilled by other popular methods, such as the generalized estimating
equations approach. The proposed method models both the marginal and the association structure in a flexible way. The attractiveness
of the multivariate Dale model is illustrated in three key examples, covering areas such as crossover trials, longitudinal studies with
patients dropping out from the study, and discriminant analysis applications. The differences and similarities with the generalized

estimating approach are highlighted.
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1. INTRODUCTION

During the last 20 years there has been an explosion of
papers on repeated measurement problems, comprising a
fascinating, yet complicated research area in statistics. Until
recently, however, most attention was devoted to continuous
response models, with emphasis on longitudinal studies that
have various interesting aspects. Indeed, longitudinal studies
typically have unbalanced designs, missing data, attrition,
time-varying covariates, and other characteristics that make
standard multivariate procedures inapplicable, as pointed
out by Ware (1985). For continuous responses, Ware (1985)
and Jennrich and Schluchter (1986) proposed a general ap-
proach for analysis using a linear model for the expected
responses and structural models for the within-subject co-
variances. Central in this approach is the use of the Gaussian
distribution, for which conditional and marginal models are
of the same type. For categorical response models, such a
flexible model is not yet available. Although there have been
several proposals, none of them incorporated simultaneously
a simple model for the conditional and marginal approach
(for an extensive review, see Ashby et al. 1992).

The marginal approach has received much attention lately.
Here, emphasis is on the efficient estimation of the effect of
covariates on the marginal probabilities of a multivariate
categorical response vector. From a practical viewpoint, two
methods are currently in use: the empirical least squares
method (EGLS), as implemented in the procedure CAT-
MOD of SAS (Koch, Landis, Freeman, Freeman, and Leh-
nen 1977), and the more recent generalized estimating
equations (GEE) approach of Liang and Zeger (1986). Nei-
ther of these two methods is likelihood based. In the discus-
sion of the paper by Liang, Zeger, and Qagqish (1992), many
discussants expressed their preference for likelihood methods.
But up to now there has been no flexible, likelihood-based,
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regression model available for multivariate categorical re-
sponses. We are aware of only the multivariate probit model
(Lesaffre and Molenberghs 1991); but although this model
works well for a number of applications, it is not as flexible
as needed.

We have developed a full likelihood method for the anal-
ysis of ordinal categorical responses allowing time-varying
and subject-specific (continuous) covariates. The model is
based on an extension of the two-dimensional Plackett dis-
tribution. Three key examples were chosen to illustrate the
wide range of applications of the model. The first example
is a crossover study with ordinal responses. The second ex-
ample, a longitudinal clinical trial with an ordinal response
and dropouts in time, illustrates the use of the model when
some data are missing at random, ruling out the use of the
GEE approach. The third example was chosen to illustrate
the method’s capabilities in discriminant analysis applica-
tions. The examples are presented in Section 2. Bivariate
data models are presented in Section 3, and the multivariate
extension is introduced in Section 4. Maximum likelihood
estimation is briefly discussed in Section 5; and the examples
are analyzed in Section 6.

2. EXAMPLES
2.1 Example 1: Primary Dysmenorrthea Data

The data are taken from a crossover trial that appeared
in the paper of Kenward and Jones (1991). Eighty-six subjects
were enrolled in a crossover study that compared placebo
(A) with an analgesic at low and high doses (B and C) for
the relief of pain in primary dysmenorrhea. The three treat-
ments were administered in one of six possible orders: ABC,
ACB, BAC, BCA, CAB, and CBA. The primary outcome
score was the amount of relief, coded as none (1), moderate
(2), and complete (3). There are 27 possible outcome com-
binations: (1, 1, 1), (1, 1, 2), ..., (3, 3, 3), where (a,, a,,
as;) denotes outcomes a; in period i. A table of the realized
combinations can be found in the paper of Kenward and
Jones (1991). For the analysis of the crossover data, these
authors suggested a subject-specific approach based on the
Rasch model. Here, too, it was of interest to estimate the
treatment, period, and carryover effects.
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2.2 Example 2: A Multicenter Psychiatric Study

In a multicenter study, 315 patients were treated with flu-
voxamine for psychiatric symptoms described as possibly
resulting from a dysregulation of serotonin in the brain. Pa-
tients with one or more of the following diagnoses were in-
cluded: depression, obsessive-compulsive disorder, and panic
disorder. An anamnestic parameters, one has recorded sex;
age; psychiatric antecedents (y/n); and duration of actual
mental disease and initial severity, coded in 7 classes, from
(1) = not ill through (7) = severely ill. The patients in the
study were investigated at three subsequent visits. At each
visit a detailed evaluation of the symptoms was made by
scoring the presence and intensity of psychiatric symptoms,
such as the depressive state, insomnia, anxiety, agression,
and nausea. Furthermore, during each visit the therapeutic
effect and the side effects were scored in an ordinal manner.
One of the study’s primary endpoints was the intensity of
side effects at each visit. Four codes were given: (0) = no,
(1) = not interfering with functionality of the patient, (2)
= interfering significantly with functionality of the patient,
and (3) = side effect surpassing the therapeutic effect. There
was a considerable dropout rate at each visit. A logistic
regression analysis shows that the probability of dropping
out is highly significantly related to the occurrence of side
effects at the previous visit. It was of interest to know which
factors at baseline influenced this dropout rate significantly.
The data set is available from the authors on request.

2.3 Example 3: The POPS Study

The POPS (Project On Preterm and Small-for-gestational
age infants) is a multiclinic study that collected, in 1983,
information about 1,338 infants with birthweight less than
1,500 g and/or gestational age less than 32 weeks born in
the Netherlands in the same year (see Verloove-Vanhorick
1986 for more details). A total of 133 clinics were involved.
The study population represents 94% of the births in that
year with similar gestational age and birthweight character-
istics. Prenatal, perinatal, and postnatal information, as well
as 2-year follow-up data, were collected. The data base also
contains information on the delivery and specific details of
the infant. After 2 years, each child was reexamined. Lesaffre
and Molenberghs (1991) studied the relationship between
two ability scores at age 2 and related them to risk factors
measured at delivery. Both ability scores were recorded in a
dichotomous manner. They were available for 799 children.
The first score (ABIL,) checks whether the child can pile
three bricks; ABIL, = 1 corresponds to “no,” and ABIL,
= 2 to ““yes.” The second score (ABIL,) measures whether
the child’s physical movements are natural; ABIL, = 1 de-
notes “no” and ABIL, = 2 denotes “yes.”” ABIL, is a purely
physical ability score, but ABIL, is a combination of physical
and mental qualities. We also considered a third ability score,
ABIL;, which expresses whether or not the child is able to
put a ball in a box when asked to do so. The problem was
to determine the risk factors for low performance at the three
tests. Further, it was of interest to compare the predicted
probabilities, taking into account the relationship between
the responses to those probabilities calculated under the as-
sumption of independent responses.
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3. A LIKELIHOOD METHOD FOR BIVARIATE
DEPENDENT ORDINAL DATA

3.1 Two Binary Responses

Suppose that for each of K subjects in a study, a vector of
two binary responses Zy = (Z1, Z2 )7 is observed, together
with a vector of covariates x. The vector x can be different
for each response, as in longitudinal studies with time-
dependent covariates. Thus the study subjects are described
by (z4, i), (k=1,...,K;t =1, 2). We want to establish
the dependence of each of the two responses on the covariate
vector(s), taking the dependence between the responses into
account. This can be done using a marginal model that re-
gresses each response on the covariate vector. But the mar-
ginal distributions do not fully determine the joint distri-
bution. Thus an association parameter is needed to describe
the dependence between the two responses. The bivariate
probit model (Ashford and Sowden 1970; Lesaffre and Mo-
lenberghs 1991) describes the association via the correlation
coeflicient of an assumed underlying bivariate normal ran-
dom variable W.

Dale (1986) proposed a family of bivariate response models
that also meets the requirements of preceding description
and avoids the (restrictive) assumption of a single underlying
density. The model arises from the decomposition of the
joint probabilities p;, ;,(x) = P(Z, = ji, Z> = j»|x), (J1, )2
= 1, 2)into “main effects” and “interactions.” The marginal
probabilities describe the main effect, and the log cross-ratio
is the interaction term. Formally, this decomposition is given
by

hi(p14(x)) = B1x, (3.1
hy(p+1(x)) = B1x, (3.2)
and
D11(X) pra(X) _ QT
h3(p12(X)pzl(X)) bsx, .3)

where A, h,, and A3 are link functions in the generalized
linear model terminology and p,.(x) and p,,(x) are the
marginal probabilities for observing Z, = 1 and Z, = 1. The
most popular choice for 4, = A, is the logit function, whereas
for A3 the natural logarithmic function is commonly used.
In that case, one has two marginal logistic regression models,
and the logarithm of the cross-ratio

P11(X)P22(X))

I y(x) = ln(Plz(X)le(x)

is linear in the covariates. But other links are equally possible
while the links 4, and 4, may be different.

The joint probabilities follow from the marginal proba-
bilities in the following way (omitting the dependence of the
different terms on x for ease of notation):

_ 1+ (e + o)W — 1) = S(D1+, D115 ¥)
Pn 20 - 1)

= Di+D+1

ify # 1,

ify =1,
3.4)
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and pi; = P+ — P11, P21 = P41 — Pir,and ppp = 1 — po — pyy
— D11, with

(a1, @) = VIL + (@1 + @) (¥ — D> + 41 — V) q145.

The preceding description also arises as the discrete real-
ization of a continuous bivariate Plackett distribution
(Plackett 1965). This is seen as follows. Suppose that the
bivariate random vector W = (W;, W,)T has joint distri-
bution function F(w,, w,), with marginal distributions F(w,)
(t =1, 2). Define the (global) cross-ratio function Y(w;, w,)
by

pubn F( —F —F,+F)

VO W) = o (Fi— F)E>— F)

(3.5)

with F, = F(w,), (t = 1, 2), and F = F(w;, wy). It is clear
that Y(w,, w,) satisfies 0 < ¢ < oo. The components p;, ;, in
(3.5) are the quadrant probabilities in R? with vertex at (w,
w,). For a Plackett distribution, the global cross-ratio Y(w,,
w,) = ¢ is constant. Equation (3.5) can be seen as a defining
equation for F, once F, F,, and ¢ are known. The Plackett
distribution then gives rise to the preceding bivariate response
model if its mean vector p = (u,, )7 depends linearly on
the covariate vector and if it is assumed that Z is a discretized
version of the continuous vector W, in the sense that Z, = 1
<= 0,< W,fort=1,2. Here §, and 6, are two a priori defined
thresholds. In other words, Dale’s bivariate response model
is obtained if the bivariate response vector Z is a discretized
version of W using the threshold vector 0, and if the covariate
vector shifts the mean vector of the distribution of W over
the plane, thereby possibly changing also the association pa-
rameter ¥ as a function of x.

3.2 The Bivariate Global Cross-ratio Model

Dale (1986) generalized the preceding approach to model
r1 X r, contingency tables (representing pairs of ordered cat-
egorical variables with r; and r, levels) in the presence of
explanatory variables x. This is called the global cross-
ratio model; we will refer to it here as the bivariate Dale
model (BDM).

Let Z = (Z,, Z,) T be arandom vector that takes on values
(ji,J2), where 1 < j, <r, (¢t = 1, 2). The outcomes, corre-
sponding to a given covariate vector x, can be arranged as
an r; X r, contingency table (y;,;,)(j;=1,...,r5t=1,2):

Y Yij, Y1,j,+1 Yir,
Vi Yiij Vi, i1 Yj,r.
N1 J1J2 J1sJ2 Jira (36)
Vi1 Yjerr, || Vit Yjtt,r,
Yra Yrij, Yrij+1 Yrir,

Similarly, the probabilities can be represented as an 7, X 7,
table:
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Pu DPij, P1,j,+1 P,
DPja Dj,j Dj.j,+1 Djr
J1 JiJ2 JisJ2 Jir2 (37)
DPj+11 Pj+1,j, || Pi+1,j+1 Dj+1,r,
Pra Pr.j, Prjy+1 Prr,

Dichotomizing contingency table (3.6) at (j;, j,) (double
lines) leads to a 2 X 2 contingency table,

{(Zi=j1,2Z,> )}
{Z,>]1,Z,> j,}

{Zy=j1,Z,= )5}
{Z,>j1,Z,= )5}

(3.8)

-

of which the probabilities are given by
11U, Ja, X) = P(Zy < j1, Zy < Jo|x),
Pia(jrs Jas X) = P(Zy < i1, Zy > JaX),
Py1(J1, j2, X) = P(Zy > j1, Zy < Jo|X),
and
Py(Jis Jo» X) = P(Zy > 1, Z2 > Ja|X).

Marginal probabilities are obtained by summing over sub-
scripts: Py (j1, X) = P(Z, < ji|x) and Pi,(js, x) = P(Z;

< Jja1x).
In analogy with (3.1)-(3.3), the link functions are de-
scribed by:

(P, X)) = oy, + BTx,
Gi=1....,n—-
hy (P12, X)) = o), + BIX,

(j2=1s~~~’r2_

1), (3.9)

1), (3.10)
and
h3(1,/(jl7j2a X)) = B{xs

=1...,n—11t=12),
where the global cross-ratio (i, j., X) is given by

(3.11)

Pyy(j1, j2, X)P2a(Ji, J2, X)
Pi2(j1s J2> X)Poy (i, Jas X)
Note that for every contingency table (3.6)—or, equiva-

lently, table of probabilities (3.7)—a set of (r; — 1) X (7,
— 1) global cross-ratios is obtained:

Y1, J2, X) =

Y i, U141 Y11
¥jn gy | Vit Wj,rm1
lpjl+l,1 ¢jl+l,j2 lpjl+l,j2+l lilljl"'l,rz_l
‘,jr,—l,l l;l’r,—l,j2 lprl--l o+l 'prl—l,rz—l

More complex choices for the linear predictors on the right
side of (3.9)-(3.11) are possible. For instance, /; can incor-
porate terms depending on j; and j,, representing row, col-
umn, and cell effects.
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For every table (3.8), we assume that (3.5) holds with ¢
replaced by ¥(ji, j», X), indicating that  is allowed to depend
on the cutpoints and on the covariates. Further, F(- |x)
= F; ,(+ |x) = Pu(ji, j2, X), and F(-|x) can also be ex-
pressed in terms of the assumed underlying Plackett distri-
bution: F(- |x) = P(W, <0,,,, W, < 0,;,|x). Observe that
for each double dichotomy of the r; X r, table, a different
underlying Plackett distribution is assumed. When it can be
assumed that ¥(j, jo, x) = ¥(x), forj,=1,...,rn—1(t
= 1, 2), there is a single underlying Plackett distribution,
exactly as for the binary response model.

3.3 Some Properties of Dale’s Model

Dale’s model has appealing properties. First, there is the
flexibility with which the marginal structure is modeled; that
is, the cumulative marginal probabilities can be fitted in the
generalized linear models framework. Second, the marginal
parameters are orthogonal onto the association parameters
in the sense that the corresponding elements in the expected
covariance matrix are identically 0 (Palmgren 1989). Further,
the associations can be modeled in a flexible way, including
covariate-, row-, and column-, and cell-specific terms (see
Dale 1986).

The BDM does not require marginal scores for the re-
sponses and is essentially invariant under any monotonic
transformation of the marginal response variables. Further,
if adjacent marginal categories are combined, then the model
for the new table has fewer parameters, but these parameters
have the same interpretation as in the model for the original
expanded table, because the parameters pertain to cutpoints
between categories. This is in contrast to models based on
local association (Goodman 1981).

But despite these advantages, the model has not been gen-
eralized to three or more dimensions. McCullagh and Nelder
(1989) described the three-way decomposition into “main”
and “interaction” parameters, but they did not indicate how
to compute the probabilities. Recently, Liang et al. (1992)
independently suggested marginal models that are very sim-
ilar to the general Dale model we propose.

4. A LIKELIHOOD METHOD FOR MULTIVARIATE
DEPENDENT ORDINAL DATA

The computational basis of the BDM is the Plackett dis-
tribution. Therefore, we first generalize the bivariate Plackett
distribution to » dimensions. In this section we present a
general description and mention some properties without
proof. An extensive mathematical description of the multi-
variate Plackett distribution will be the subject of a separate
publication. The multivariate Plackett distribution will be
used to construct the multivariate Dale model, which is the
basis for our full-likelihood approach.

4.1 Definition of the Multivariate Plackett
Distribution

Given the marginal distributions F;(w,) and F,(w,) and
the cross-ratio ¥, the Plackett distribution is the solution of
the second-degree polynomial equation

WF —a))(F—a) = (F=b)(F—b)=0, (41)
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where a; = Fy,a, = F5, b, =0, and b, = F; + F, — 1. The
solution of this equation is given by (3.4). To yield a genuine
distribution function, the solution F of (4.1) should satisfy
the Fréchet inequalities (Fréchet 1951): max(b,, b,) < F
< min(a,, a,). This approach can be generalized to n di-
mensions. To define the multivariate Plackett distribution,
consider the set of 2" — 1 generalized cross-ratios with values
in [0, +oo]: ¥y, (1 <2 < n); Yy, (1 <4 < 1, < n);
Y (LSt <+ <t =<n);...;¥;. ., The one-
dimensional ¢,’s are precisely the odds of the univariate
probabilities; that is,
Y __F
\0! p ) 1 _ Ft ’
(1 < ¢t < n). The bivariate associations ¥, ,, are defined as in
(3.5):

S

4.2)

N~

Yoo = DiRp3% - Ftltz(l - Ftl - th + Ft,tz)

hiz piPpip (Ft| - Ftltz)(th - Ft,tz) ’

(1 =t <t <n). Assoon as ¥,,, ¥,,, and ¢,,,, are known,

F,,,, can be calculated. The cross-ratio y,,,, can also be viewed

as the odds ratio of ¥,y and ¥, computed as in (4.2),
within the first and second level of dimension ,.

The three-dimensional cross-ratios can be defined similarly
to the three-factor interactions in log-linear models (see
Agresti 1990) and are analogous to the aforementioned ex-
tension. Thus the cross-ratio y;,,, is defined as the ratio of
two conditional cross-ratios ¥,y and ¥z, the two-
dimensional cross-ratios defined within the first and second
level of dimension #;. The numerator of y,,,, contains
F, ., With a positive sign, and the denominator contains
F, i, with a negative sign. Again, the knowledge of the cross-
ratios enables one to determine F,,,.

But care must be taken when specifying the cross-ratios,
because not every combination leads to a valid solution. This
is not surprising, as the correlation matrix in a multivariate
probit model is similarly constrained to be positive definite.
An example is given in Section 4.2.

The n-dimensional probabilities can be computed if all
lower-dimensional probabilities together with the global
cross-ratio of dimension 7 are known. Let p}: % be the (j,

., Ji)-orthant probability of the k-dimensional marginal
table, formed by dimensions (z;, ..., #). We present the
defining equation for F,  ,:

(4.3)

L e pi

v _ Gy, .. nedi P gk
0.tk X X ety

ILi.....joeaz D

where A% = {(jy, ..., Jjx) € {1, 2}*|2 divides %, jy — k}
and Aj = {1, 2}*\4%. In particular, for F, _,,

4.4)

s s imeaz Pir. . n

4.5)
1y e e v s Jnyea; D ..

For example, for n = 3, A7 = {1}, 45 = {(1, 1), (2, 2)},
and 43 = {(1, 1, 1),(1,2,2),(2,1,2),(2,2,1)}. Based on
these expressions, (4.4) yields (4.2), (4.3), and the three-
dimensional odds ratio

_ P1iuPr22D212P221

Y123 .
Dii2Pi21D211D222
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The orthant probabilities p;, . ;, are determined by the dis-
tribution F. A general expression can be derived that will be
useful for the automated computation of the orthant prob-
abilities. Some notation is needed. Let 8(j) = B(J1, . - . » Ju)
be the set of places for which j, is equal to 1 (e.g., (1, 2, 1,
1) = {1, 3, 4}); then

Di.jn= 2 sgn(s)Fs, (4.6)
$D8()
where
sgn(s) =1 if #s — #8(j) is even,

= —1 otherwise,

and F; = F,  ,,, with 5y < .-+ < 5,. In the three-
dimensional case, the octant probabilities are

Din = Fias,
D2 = Fip — Fia3,

Do = Fo3 — Fis,

P2 = Fy — Fip — Fi3 + Fips,

D22 = Fy — Fip — Fp3 + Fips,

P21 = F3y — Fi3 — Fp3 + Fias,
and

Dn=1—F—F—F+F,+ F3+ Fy—Fp. (47)

As an example, consider p,,,. In this case, 8(2, 1, 2) = {2},
and there are four possible vectors s: (2), (1, 2), (2, 3),
and (1, 2, 3). Therefore, (4.6) yields the expression for p;,
in (4.7).

The set of 2” — 1 generalized cross-ratios fully specifies
the n-dimensional Plackett distribution. But from the pre-
ceding reasoning it is not clear whether such a distribution
always exists. Further, if existence and uniqueness are guar-
anteed, just how to calculate the distribution is not yet clear,
because it is only implicitly specified by (4.4). These matters
are discussed in the next section.

4.2 Computational Aspects of the Distribution

Note that the probabilities in the numerator (denominator)
of (4.5) involve + F,  ,(—F,,. . .),and that both numerator
and denominator contain an even number of factors. Thus
(4.5) may be abbreviated as

y= 2 (F—b)
H%:Il (F—a)’
where ¢ =y, ,and F=F, . The a; and b, are functions

of the (n — 1)- and lower-dimensional probabilities (or,
equivalently, cross-ratios). A valid solution must satisfy

(4.9)

(4.8)

max b; < F < min a;.
i i

But this condition is not satisfied for all choices of a@; and
b;. To see this, take the three-way Plackett distribution. Then,
according to (4.9), the one- and two-dimensional marginal
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distributions must satisfy the following inequalities: F;; + Fy
SF,+‘ij,(l5é]5ék#=l),andFl+F2+F3S 1 +F12
+Fl3 + F23. IfFl = F2 = F3 = %, ¢/12 = 05, lpl'_; = 1, and
§I/23 = 20, then Fl'_; + F23 > F3 + Fs, and (49) cannot be
satisfied. Such constraints are not exceptional and can be
found in several multivariate distributions; for instance, for
the multivariate normal distribution, the correlation matrix
must be positive definite. ,

If (4.9) is satisfied, then existence and uniqueness of a
solution is guaranteed by the following lemma. The verifi-
cation of (4.9) is straightforward, as the functions b; and a;
are linear functions of the lower-order marginal probabilities:

Lemma 1. Let P(C) = ¢ [12, (C — a;) — II2, (C
— b;), where mis even, 0 < ¢ < +co and b, = max,;<m b;
< min, <<, 4; = a;, then the interval 1b,, a,[ contains exactly
one real root of P(C).

Proof. The inequalities P(a;) = —I1%, (ay — b;) <0
and P(b,) = ¢ [1%, (b, — a;) > 0, together with the con-
tinuity of P(C), establish the existence. Now, dP/dC = ¢
2 ILw(C—a) = ZE I (C—b) =y Z: Ti — 2
S;. T; is a product of (m — 1) negative factors, whence T; is
negative. S; is positive, so P(C) is strictly decreasing in ] b;,
ay[. The result is shown.

It follows from the proof that the regula falsi method with
starting points a; and b, always leads to the solution. Though
in general @, and b, are close to each other and convergence
is quickly reached, it is desirable to look for even faster
methods. It is our experience that a Newton iteration with
starting point say, 1 (a; + b,), converges to the root, generally
in three or four steps (with a convergence criterion | ¢4,
- Ckl < 10_8).

An algebraic solution to the two-dimensional problem has
been given by Mardia (1970) and by Dale (1986). The three-
way Plackett distribution can also be solved algebraically
using Ferrari’s method for solving fourth-degree polynomials
(Chemical Rubber Co. 1972, p. 106). But the solution cannot
be written in a mathematically elegant way. From the four-
way Plackett distribution on, one must rely on numerical
techniques. It is a fundamental result of algebra that a poly-
nomial of degree higher than 5 has no algebraic solution.
We recognize that this may seem as a major disadvantage,
but a similar problem occurs in other, classical statistical
models, such as the probit model, where the probability is
known only after evaluating the standard normal integral,
usually needing six or seven iterations.

4.3 The Multivariate Dale Model

Given the multivariate Plackett distribution, the multi-
variate Dale model (MDM) is a straightforward extension
of the BDM. Let W = (W, ..., W,)T have a multivariate
Plackett distribution with univariate marginals F,(W,), (¢
=1,..., n)and a particular set of generalized global cross-
ratios. Further, let Z = (Z,, . . ., Z,) T be a vector of ordered
categorical variables with Z,, assuming valuesj, = 1,..., 7,
(t=1,...,n). Thus, in analogy with the bivariate case, Z
is a discrete realization of W. Assume that we have a sample
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of K individuals. For the kth subject, a vector of responses
z;, together with a covariate vector xy, is observed. Both the
marginal distributions and the cross-ratios can depend on
the covariates.

For each multi-index j = (j;,...,j,)with 1 <j, <r, (¢
=1, ..., n), define a 2"-dichotomization table (multiple
dichotomy): T; = {O4(j)|s € {—1, 1}"}, where

0,()={Z1Z,<j, ifs,=—1 and Z,>j, ifs = 1}.

This means that at every n-dimensional cutpoint, the data
table is collapsed intoa 2 X 2 X - - - X 2 table. Observe the
analogy with the bivariate case. For n = 2, T; contains the
four corners of the r; X r, contingency table, split up at j
= (J1,J2)-

Every table is assumed to arise as a discretization of a
multivariate Plackett distribution. The » marginal distri-
butions are modeled, together with all pairs of two-way cross-
ratios. In addition, three-way up to n-way interactions (i.e.,
generalized cross-ratios) are included to fully specify the joint
distribution. Formally, we assume that for each T}, (4.5)
holds with a cross-ratio possibly depending on j and x; that
is, ¥;.. » is replaced by ¥(j; x). Further,

F=Fi(-|x)=PZ <], ...,
=P(W1501j|,..

Zy < julx)
.y Wn < 0”jn Ix).

The model description is completed by specifying link func-
tions and linear predictors for both the univariate marginals
and the association parameters. If we assume a marginal
proportional odds model, then the marginal links can be
written as

1y(x) = h(P(Z, < j|x)) = o, + B[,

(l<st=n,1=<j<r). (4.10)

Expression (4.10) can be represented in terms of the latent
variables: i,(P(W, < 0,|x)) = a, + B{x,(1 <t<n,1 <}
< 1,). As in the bivariate case, common choices for the link
functions #, are the logit and the probit links.

The cross-ratios are usually log-linearly modeled. Covari-
ate terms may be included, together with row-, column-, and
cell-specific terms. A possible choice consists of complex
models for the bivariate associations and simple ones for the
higher-order associations. For a fixed pair of variables (¢,,
t;), where 1 < ¢, < t, < n, one can model the log cross-ratio
as

ﬁy-’llljzz(x) = ln ‘ptltz(jl’jZ’ x)

=v+ Pj, + Kj, + Tjri2 + xTﬂtltz‘ (4~1 1)
Here » is an intercept parameter, p;, (j; = 1,...,r, — 1) are
row-specific parameters, «;, (j, = 1, ..., r, — 1) are column-
specific parameters, and 7, (ji = 1,...,n—Lh=1,...,

r, — 1) are cell-specific parameters. Unicity constraints need
to be imposed on the row, column, and cell parameters; for
instance, p; = 0,4, =0,7;,;, =0,(j;=1,...,r — 1), and
715, =0,(/2=1, ..., r,—1). The higher-order associations
usually are assumed to be constant. Parameter estimates are
obtained using the maximum likelihood method.
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Because this model description yields the BDM for n = 2,
it follows that the attractiveness and the flexibility of the
original two-dimensional version is carried over on its n-
dimensional version. But not all properties of the BDM are
inherited by the MDM. As mentioned earlier, Palmgren
(1989) showed that the estimated marginal and association
parameters are orthogonal. This result holds only partially
for the MDM; details can be found in the Appendix.

Once the model, the links, and the linear predictors are
specified, the model parameters can be estimated by the
maximum likelihood method. Using the multivariate Plack-
ett distribution makes it easy to compute both the joint
probabilities and their derivatives. A Fisher scoring algorithm
is a good choice, as it also provides the asymptotic expected
covariance matrix for the model parameters.

When contrasts of log probabilities are used as link func-
tions (e.g., cumulative logit links for the marginal probabil-
ities and log cross-ratios for the associations), the model can
be summarized using the terminology of McCullagh and
Nelder (1989, pp. 219-221):

7 = Cln(Lp(x)). (4.12)

The vector of n-dimensional probabilities p(x) is expanded
to a vector containing all probabilities of dimensions 1 -
through » by multiplying p with an appropriate matrix of
constants L. Contrasts of the log probabilities, formed by
multiplication with the contrast matrix C, are linked to linear
predictors. In general, the MDM can include other than log-
linear link functions. Although (4.12) provides a simple and
elegant description, it provides no shortcut for the compu-
tations. In computing the joint probabilities, (4.12) naturally
leads to the defining polynomial for the Plackett distribution,
which in turn leads to the previously specified equations.

5. MAXIMUM LIKELIHOOD ESTIMATION

For the MDM, a full maximum likelihood estimation
program for arbitrary dimension has been written in GAUSS.
Despite the fact that the Plackett distribution is known only
implicitly, its values can be computed efficiently using nu-
merical algorithms. Further, the derivatives of the Plackett
cumulative distribution function can be evaluated in an an-
alytical way, using implicit derivation. Based on these results,
the score functions and the expected Fisher information ma-
trix can be used to implement a convenient Fisher scoring
algorithm.

We present the basic tools for the computations. We dis-
tinguish between the following parts: model description,
likelihood function and cell probabilities, and score functions
and information matrix. _

For convenience, the observations, sharing covariate vec-
tor x;, are combined into an r; X - - - X r, contingency
table. The dimension of this table is abbreviated by r, Denote
the entries of this table by y;;. Here jindicates a multi-index:
i=U -5, =j,=<r,t=1,...,n). In vector
notation: 1 < j <r. A particular table is indicated by (y;;) ;.

We assume that the tables are sampled from a multinomial
distribution, with cell probabilities (p;;);, (i = 1, ..., m)
given by the MDM. These probabilities are derived from the
orthant probabilities defined by (4.6). The model is fully
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specified by link functions n;; = n,/(X;) given by (4.10) and
vi12(x;) given by (4.11), together with the assumption that
the higher-order association parameters are constant. If we
denote the vector of three- and higher-order associations by
¢ with an appropriate subscript, then we obtain in vector
notation In ¥y, = ¢y, with h a vector running through all
higher-order associations. The parameters y and ¢ determine
the association structure.

Assume that all parameters form a column vector 8. The

log-likelihood takes the form

2 z yijln pj(os xi)s

i=1 j=1

1(0) = (5.1)

and is fully determined if we indicate in what way the cell
probabilities p;;(0) = p;(0, x;) arise from the link functions.
Let g5 = g;(x;) denote the n-dimensional cumulative Plackett
distribution function F, evaluated in the appropriate links:

qu = F(ni, Yis ¢), (52)

where the arguments are appropriately vectorized forms of
the links. Note that g;; is the orthant probability of [—co,
M1 X+« « X[—00,n;,;,]. To compute the cell probabilities,
write the cutpoints for dimension as —00 = 9,0 <Ny < * *
< M1 < Nigr, = +oo. If one or more components Jrof j
equal 0, then the corresponding orthant probability g;; van-
ishes. If one or more components of j equal r,, then g;; is
an orthant probability of a lower-dimensional marginal dis-
tribution.

The cell probabilities p;; can be expressed in terms of g;;:
pi = 2n (—1)*0Mg;. Summation goes over all indices h
satisfying 0 < j — h < 1, and the function S is defined by
S(j,h) = 2%, j,— h,. The computation of g;in (5.2) involves
the evaluation of the cumulative Plackett distribution. The
derivatives are computed by implicit derivation of (4.8).

The derivative of the log-likelihood with respect to a mar-
ginal parameter # can be written as
1 2! apy Oma(xi)

= YVii —
22 inj =1 k=1 Mmu(x;) a0

i=1 j=1

(5.3)

A few conventions will simplify notation. First, assume that
there is only one covariate vector x, thereby dropping the
index i. Second, due to model (4.10), a marginal parameter
pertains to only one margin, ¢ say. For such a parameter,
summation over all £ = 1, ..., n is replaced by a single 7.
In principle, we need to distinguish between intercepts oy,
corresponding to only one cutpoint k, and covariate param-
eters 8, common to all cutpoints k = 1, ..., r, — 1 of di-
mension ¢. But we assume that every marginal parameter
pertains to only one cutpoint, k, say. The correct formula
can be obtained by summing over all cutpoints, if needed.
In conclusion, ¢ and k = k, are assumed to be fixed. Finally,
note that in most formulas, some indices j, of j will play a
particular role and should be mentioned explicitly. The re-
maining indices will be denoted by j. Accordingly, the upper
bound is denoted by r'. In subscripts (e.g., p;), only the rel-
evant indices will be mentioned. Applying these conventions
to (5.3) yields
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ol _omu L (i
a0 a0 E, Px

For an intercept or covariate parameter in the two-way as-
sociation model, we deduce
il
af

Vi1 jth) aqh
Edans (_I)S(Jk, =
.Dk+1) hhz,: e

3%112 2 _1_ {:tjzz z (- I)S(Jh)
p] a‘ptltz

Note that a similar form obtains for higher-order associations.
For a parameter 6 in (4.11) pertaining to a row category &,
the score equation is

9! a7t1t2 z (yk .Vk-H) f{z 2 (_l)s(j}‘,h) aq_“_
a0 a0 Dk Dr+1 1 hhy, =k 1y
whereas for a cell-specific parameter we find
Ol vy, . (yk|k2 _ Ytk _ Yikort yk.+l,k2+1)
80 80 pklkz pk|+l,k2 pkl,k2+l pk|+l,k2+l
Xyl 3 (-l S
]l,h,|=k|,ht2=k2 iy

Straightforward but lengthy computations lead to expres-
sions for the elements of the expected information matrix.
We do not present them here. They are used to implement
a Fisher scoring algorithm, to maximize (5.1). Full details
are described in a technical report that can be obtained from
the authors.

6. ANALYSIS OF THE EXAMPLES
6.1 The Primary Dysmenorrhea Data

6.1.1 Modeling Crossover Data. Consider a crossover
trial where each patient subsequently receives each of three
treatments (A4, B, C) in a random order. There are six treat-
ment sequences: ABC, ACB, BAC, BCA, CAB, and CBA.
Suppose that the outcome at time i (corresponding to treat-
ment j) is an ordered categorical variable Y;; with ¢ levels.
Then at X ¢ X ¢ table is assigned to each sequence, containing
the joint outcomes for the patients allocated to that particular
sequence. The MDM can be used to fit such data. The mar-
ginal parameters are used to describe the overall treatment
effects, the period and the carry-over effects. The cross-ratios
play a role, similar to the subject specific parameters in the
paper of Kenward and Jones (1991).

Given a particular sequence s, let Lj; = logit(P(Y; < k))
be the cumulative logit for cutpoint k (k = 1, . t— 1),
and time i which, for sequence s, corresponds to treatment
j. In full detail, we have L{EC, Li‘ﬁc, L4BC, LGB, L45E,
L45E, L¥C, LBAC, LHC, LI, LI, L3 LGE,

LS8, L8, L, LS, LS.

The following model for the logits is adopted: L = ux
+ 7;+ p; + Ns—1), Where u, are intercept parameters, 7; are
treatment effects, p; are period effects, and A;(_p) stands for
the carry-over effect, corresponding to the treatment at time
i — 1 in sequence s. Given for instance sequence CAB, we
get Lz = ux + 73+ p1, Lok = e+ 7 + p2 + A5, and Ly
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Table 1. The Primary Dysmenorrhea Data: Selection of Effects

Effects Log-likelihood vs. G? df P value
Marginal effects
1 ™ —279.74
2 My Ti —245.53 1 68.42 2 <.0001
3 B, Tiy Pj —243.78 2 3.50 2 1740
4 My Tiy )\3(1_1) _245.40 2 .26 2 .8790
Model 2 + association effects
5 s Tis s Y123 —244.40
6 iy Tis Ky Tiiry Y123 —239.54 5 9.66 2 .0080
7 His Tiy My Pjjrs (27 —239.50 5 9.73 2 .0077
8 Hier Tiy B Tiirs Py Y123 —236.44 5 15.87 4 .0032
6 6.21 2 .0448
7 6.14 2 .0465

NOTE: The columns describe the model number, the effects included, the log-likelihood of the model, the number of the model to which this model is compared, the G statistics with the number

of degrees of freedom, and the corresponding P value.

= ux + 72 + p3 + \;. To avoid overparameterization, the
following unicity constraints are set: 7, = p; = A\; = 0.

Let R}; ;- =In ¢/ be the log cross-ratio for the marginal
t X t table, formed by the responses at times i and i for
sequence s (corresponding to treatments j and j). The sim-
plest model for the cross-ratios is given by Rj;;; = u. The
most complex model assumes all 18 cross-ratios to be dif-
ferent, which was done by Jones and Kenward (1989) and
by Becker and Balagtas (1993). In between those two models
there is room for modeling. One can think of the following
linear models in the log cross-ratios:

Rijigr = n+ 1), (6.1)

Rijijr = p + piirs (6.2)
and

Rjjijr = p+ 7550 + piiv, 6.3)

where u is an intercept parameter, 7;;- are parameters for the
joint (j, j')th treatments effects, and p;;- describe effects for
periods i and i’. In model (6.1) the log cross-ratio depends
only on the treatments, irrespective of their order and the
periods in which they were administered. In model (6.2) only
the periods are of importance. In model (6.3) the two effects
are combined linearly. For instance, for sequence CAB we
get Rz = p+ 713+ p12, Rizz = p + 723 + pi3, and Ry 3
= u + 715 + py3. Possible unicity constraints are 7, = p;»
= 0. Model (6.2) corresponds to the model introduced in
Section 4.3. In models (6.1) and (6.3) the two-way cross-
ratios change with the treatment combination, which is a
time-dependent covariate. Finally, in all six cases the three-
way association depends on the same periods and treatments,
the only difference being the order in which the treatments
occur. So the most natural choice is R{,; = u + p°, (B¢
= 0); however, in most cases it is reasonable to assume that
R1i,3 = Rj»; constant over sequences.

No carry-over effects are incorporated in the cross-ratios,
as the marginal carry-over parameters have no straightfor-
ward generalization. As usual, the different nested models
can be tested using the likelihood ratio G? statistic.

6.1.2 Analysis of the Primary Dysmenorrhea Data
Table 1 gives the details concerning the selection of effects

for the primary dysmenorrhea data. As can be seen from
this table, the marginal logit modeling yields a highly sig-
nificant treatment effect. The period and carry-over effects
are not significant. The model retained (model I in Table 2)
consists of two cutpoints y; and two treatment parameters
7;; the estimates are shown in Table 2. Up to now, no two-
way or three-way association is assumed.

The next step is to model the association structure; the
three-way association is assumed constant in all cases. First
the minimal model is fitted. This model will serve as the
basic model against which the other models will be compared.
Models (6.1), (6.2), and (6.3) were fitted to the data. There
seems to be evidence that both the treatment terms as well
as the period terms are necessary. The maximal model (i.e.,
with 18 cross-ratios) has a G? statistic of 16.27 (df = 13, P
=.2349) compared with model ITI. Model I in Table 2 shows
the parameter estimates when treatment parameters are in-
cluded in the two-way cross-ratios. Model III contains as
association parameters the intercept u, treatment effects 7;-,
period parameters p;;- and the three-way interaction In ¢,53.
This model will be chosen.

Parameter interpretation is as follows. The odds of ob-
serving Y; < k (k = 1, 2) decreases with factor exp(—1.98)
when the patient is treated with the analgesic at low dose
rather than with placebo. A further decrease with factor
exp(—2.37 + 1.98) is observed if the patient is treated with

Table 2. Models Fitted to the Primary Dysmenorrhea Data

Model | Model Il Model Ill

Marginal effects

i 1.07 (.25) 1.07 (.24) 1.08 (.24)

Ko 2.71 (.29) 2.70 (.29) 2.72 (.29)

T2 —2.03(.33) —2.02(.35) —1.98(.34)

T3 —2.41(.33) —-2.37(36) —2.37(.35)
Two-way association effects

© 0(—) —.62(.47) —.46(.56)

Ti3 0(—) —-.16(.65) —.10(.58)

Tos 0(—) 1.51 (.64) 1.32 (.61)

P13 0(=) 0(—) —1.12(.55)

P23 0(—) 0(=) -51(.66)
Three-way association 1(—) 1.59 (.75) .63 (.88)
Log-likelihood —245.53 —239.54 —236.43

NOTE: Each entry represents the parameter estimates (standard error). The absence of a standard
errors corresponds to a preset value.
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the analgesic at high dose. Further, the association between
responses is higher if they are close to each other in time
(p13 = —1.12). Also, responses from the two analgesic treat-
ments are more associated than responses from one analgesic
treatment and placebo (7,3 = 1.32).

Thus our analysis confirms the results found by Kenward
and Jones (1991). But the marginal approach here allows
the estimation of treatment effects which now are easily in-
terpretable, in contrast with Kenward and Jones (1991) and
with the conditional approach in Jones and Kenward (1989).
Confidence intervals for the effects can be found from the
estimated standard errors, shown in Table 2 for model III.
Finally, the method allows flexible modeling of the associ-
ation.

6.2 The Psychiatric Study

The relationship between the severity of the side effects at
the three visits and some baseline characteristics of the pa-
tients was established. The response is a trivariate ordered
categorical vector with four classes, measured at three visits.
For the selection of significant predictors of the response,
age and sex were fixed into the model. The other baseline
characteristics were then considered for selection. Only the
duration (months) of the disease and the initial severity
(measured on a seven-point scale) turned out to significantly
influence the severity of side effects.

At the second and third visit, a nonnegligible portion of
the patients (20% ) dropped out from the study. An ordinary
contingency table analysis, as well as a logistic regression of
the variable dropout on potential covariates, showed that
the dropout mechanism is heavily dependent on the severity
of the side effect reported at the preceding visit. We cannot
claim that the missing data are missing completely at ran-
dom. Thus the assumption that the data are missing at ran-
dom is plausible (see Little and Rubin 1987, chap. 5). These
authors showed that for this pattern of missing data, valid
inferences can still be drawn if the analysis is based on like-
lihood methods. If we want to take the possibility into ac-
count that the missing data mechanism cannot be ignored,
then this mechanism must be modeled explicitly. This ex-
tension will be the goal of future research. If we assume miss-
ing at random, then our analysis is valid despite the dropouts,
a property the GEE (Liang and Zeger 1986) does not possess.
We argue that this is an important advantage of our method
over the now-popular GEE method.

From the parameter estimates shown in Table 3 (model
I), it is seen that the effect of some covariates is almost con-
stant over time. The G? test statistic for the hypothesis that
both the intercepts and parameters for age and sex are time-
invariant is 5.37 (df = 10, P = .8654). But duration and
initial severity depend on time (G* = 37.58, df = 4, P
< .0001). This leads to a more parsimonious model II. The
odds of observing high side effects increases with age and
duration and decreases with initial severity. The influence
of initial severity increases over time. There is a strong as-
sociation between side effects measured at successive visits.
Although significant, the association is less strong between
the first and third visit.
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Table 3. Analysis of the Psychiatric Study Data
Model |
Marginal Parameters
Parameter Side 1 Side 2 Side 3
™ —.41 (.90) —.45 (.95) —.79 (1.06)
™ 1.78 (.90) 1.64 (.96) 1.64 (1.07)
U3 2.94 (.92) 2.97 (.99) 2.85(1.13)
Age —.19 (.09) —.22 (.09) —.25(.110)
Duration —.14 (.05) —.20 (.05) —.24 (.06)
Initial severity .29 (.14) .28 (.15) 42 (17)
Sex —.23 (.24) .09 (.24) 16 (.27)
Association Parameters
12 13 23 123
3.20 (.27) 2.49 (.28) 3.71 (.33) —.38 (.76)
Model Il
Marginal Parameters
Parameter Side 1 Side 2 Side 3
™ —.52 (.82)
K2 1.67 (.82)
Us 2.89 (.84)
Age —.21 (.07)
Duration —.14 (.05) —.21 (.05) —.24 (.06)
Initial severity .27 (.13) .33 (.13) .42 (13)
Sex —.06 (.22)
Association Parameters
12 13 23 123
3.13 (.26) 2.43(.27) 3.74 (.33) —.29 (.74)

NOTE: The side effects at three successive times are regressed over age, duration, initial severity,
and sex. In model | the parameters are assumed to be different over time. In model Il only duration
and initial severity have a time-dependent effect. The entries represent the parameter estimates
(standard errors).

6.3 The POPS Example

From the eight candidate predictor variables, neonatal
seizures (NSZ), congenital malformation (CGM), and high-
est bilirubin value since birth (BIL) were retained for analysis.
They were selected using a stepwise logistic analysis for each
response separately, at significance level .05. The first two
regressors are dichotomous; the third is continuous.

We fitted the trivariate Dale model (TDM) with both nor-
mal (N) and logistic (L) margins. We also fitted the trivariate
probit model (TPM). (See, for example, Lesaffre and Mo-
lenberghs 1991 for an extensive description of this approach.)
Table 4 contains the estimated parameters under the TPM,
TDM-N, and TDM-L. It is seen that the presence of neonatal
seizures and/or congenital malformation significantly de-
creases the probability of successfully performing any of the
three ability tests. A similar effect of BIL on ABIL, and ABIL,
is observed.

Based on the log-likelihood, the TDM is slightly preferable.
The association is given by means of correlations for the
TPM and cross-ratios for the Dale models. There is a strong
association between each pair of dichotomous responses, but
no significant three-way association.
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Table 4. The POPS Study: Parameter Estimates (Standard Errors)
for the Trivariate Models

M TDM-N TDM-L

Association 12 .73 17.37 17.35

1.85 (.23) 2.85 (.30) 2.85 (.30)
Association 13 .81 30.64 30.61

2.27 (.25) 3.42 (.32) 3.42 (.32)
Association 23 .72 17.70 17.65

1.83 (.23) 2.87 (.31) 2.87 (.31)
Association 123 — 91 .92

—_— —.09 (.76) —.09 (.76)

Log-likelihood —570.69 —567.11 —567.09

Parameters for ABIL1
CONST 2.01 (.26) 2.03 (.27) 3.68 (.52)
NSZ —1.12 (.26) —1.16 (.26) —2.06 (.44)
CGM —.61(.18) —.62(.18) —1.17 (.33)
BIL (X100) -.32(.14) —.32(.14) —.64 (.27)

Parameters for ABIL2
CONST 2.19 (.27) 2.21 (.27) 4.01 (.54)
NSZ —1.27 (.26) —1.29 (.26) —2.28 (.44)
CGM —.56 (.19) —.59 (.19) —1.11 (.34)
BIL (X100) —.42 (.14) —.41(.14) —.80(.27)

Parameters for ABIL3
CONST 1.84 (.27) 1.91 (.27) 3.49 (.54)
NSz —.88 (.27) —.93 (.27) —1.70 (.46)
CGM —.47 (.19) —.49 (.19) —.96 (.35)
BIL (X100) —.21 (.14) —.24 (14) —.49 (.28)

NOTE: For the associations, two entries are given: correlations and transformed correlations (¢
= In((1 + p)/(1 — p))) for the TPM and cross-ratios and log cross-ratios for the TDM.

Note that the coefficients associated with the marginal risk
probabilities are close to each other for all three models if
one multiplies the coefficients of the BDM-L with the well-
known factor VTr/ 3.

Another feature of the likelihood method is that calcula-
tion of individual probabilities can be performed. For ex-
ample, the method allows one to calculate the joint proba-
bility of failing at the three tests. This can be quite different
from the joint probability obtained by assuming independent
responses, as is shown in Figure 1, where the probability that
the child will fail on all three ability scores is calculated for
different bilirubin values, given that both CGM and NSZ
are 1.

7. DISCUSSION

A model has been proposed for the analysis of dependent
ordinal categorical data using an underlying Plackett distri-
bution. As for the bivariate global cross-ratio model, this
assumption is not essential. In our case it was the vehicle to
generalize the BDM to any dimensions. For a model with
association depending on cutpoints j and covariates x, the
Plackett distribution changes accordingly with j and x. Thus
the model can be used when the assumption of a single un-
derlying distribution does not hold. There is no claim that
using our model is physically or logically more justified than
using any other multivariate model. But as it is usually the
case, our model is a good candidate for modeling categorical
dependent variables because of its elegant statistical prop-
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erties. For instance, the flexibility with which the marginal
and association structures can be modeled is a great advan-
tage. Furthermore, because some investigators may find the
odds ratio easier to interpret, this model has also some in-
terpretative advantages over, say, the multivariate probit
model. (See also Lipsitz et al. 1991 for a similar argument
in the related GEE methodology.) Finally, the philosophy
underlying the model was recently and independently
touched on, although from a different angle, by Liang et al.
(1992).

The multivariate Dale approach does not support the
analysis of nominal categorical data. Although this is a lim-
itation, we claim that the model covers the most interesting
applications, certainly in the area of clinical trials. Further-
more, the model can be easily adapted to cover mixtures of
continuous and ordinal responses. This will be investigated
in the future.

At several occasions in the analysis of the examples, our
approach is compared with other existing approaches.
Thereby we showed the advantages of our likelihood method
over the GEE approach. These advantages are shared by
other likelihood-based methods. For binary responses the
model specification is “close” to the GEE approach. In GEE1
only the margins are modeled, whereas in GEE2 the second-
order cross-ratios are modeled as well. In both cases the spec-
ifications are the same as in our model. But one can see that
even if the higher-order cross-ratios are all set equal to 1,
they cannot be left out from the model if a full likelihood
method is envisaged. So the difference between our method
and the GEE approach is that in the former model all higher-
order cross-ratios are kept in the model even if they are not
important. Despite the stated advantages, however, we rec-
ognize that the GEE approach has appealing properties. The
most important one is possibly the consistency in GEE1 of
the marginal parameter estimates, even under misspecifi-
cation of the association structure. Theoretical consistency

Posterior Probabilities
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Figure 1. POPS Study: probability that a child fails on all three ability
scores for a range of bilirubin values, evaluated under four fitted models:
the trivariate Dale model (TDM), with logistic (L; solid line) and Normal
(N; large-dashed line) margins; the trivariate probit model (TPM; small-
dashed line), and the model assuming independent responses (three lo-
gistic regressions; dashed and dotted line).
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and robustness properties still have to be investigated for the
n-way Dale model, but some empirical investigations are
very promising.

For categorical responses the global cross-ratio was chosen
as association parameter. Other choices are possible, such as
the local cross-ratio. There is some debate about the choice
between a local or a global cross-ratio model. We do not
want to add anything to this dispute. But it should be noted
that similar statistical arguments can be given to defend both
models, which is far from saying that both approaches are
suitable in all circumstances.

Possibly a disadvantage of our model is that it is only
implicitly defined. Only parts of the model are “visible”—
the marginal probabilities and the association structure (again
a similarity with the GEE approach). The consequence is
that some statistical properties of the model are “hidden.”
But this was no obstacle to writing a full maximum likelihood
program based on the Fisher scoring algorithm. The program,
written in GAUSS, is available from the authors on request.
The derivation of the score equations and the expected Fisher
information matrix, which forms the basis for the Newton-
Raphson fitting algorithm, is summarized in a technical re-
port that also can be obtained from the authors.

An important advantage of the MDM is that classical
goodness-of-fit tests, available for likelihood methods, can
be performed. Pearson’s X 2 statistic can be used. Further-
more, hypotheses formulated in terms of parameters and/
or multivariate cell probabilities can be tested using the like-
lihood ratio G? statistic.

A formal comparison between the Dale model and a ver-
sion of GEE for the analysis of multivariate ordinal data will
be the subject of a separate publication.

APPENDIX: ORTHOGONALITY

Palmgren (1989) showed that for the BDM, the marginal param-
eters and the global cross-ratio are orthogonal, in the sense that the
corresponding expected correlations vanish. This section presents
an analogous result for the MDM.

Suppose that there are m groups (covariate combinations), with
anr, X r, X -++ X r, contingency table corresponding to each
group. We denote the jth cell of the ithtable (i = 1, ..., mand j
=1,..., Rwith R = %, r,) by y, and denote the total number
of observations in the ith table by y;. Let v be the part of the
parameter vector corresponding to the n-way association 5. , = ¥,
and let a be the parameters corresponding to the cumulative logits
and the lower-order associations. In that case, the log-likelihood for
the MDMis!= 27, SR, yinpia,v) = %, li(a,v). We prove
the following result.

Theorem 1. Assume v and « are disjoint. Choose parameters

v € v and a € «a, with o corresponding to A, where A4 is either a
logit or a lower order association. Then,

9%l m al; dl;
=E[->——]|=0. 1
E(Oa&’y) E( - O a'y) 0 A
Proof. The right side of (A.1) can be rewritten as
= al; dl; mapad X 1 dp;dpy
E->—=|=-3"—y>—="L-H, A2
( 25 ay) “ 5y 90 ,2, oy aa A

In the expression for the cell probabilities p;, Fy, ., = F depends
on ¢, but the lower-order marginal distributions are independent
of . Thus
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where sgn(j) denotes the sign of F'in the expression for p;;. Setting
V: = (0¢/dv)(0A4/3a)(dF/d¢y)y; and combining (A.2) and (A.3)
yields :

(A.3)

ol oLy Mmoo R 1 dpy
E(— a——) =3V 3 sen(j) — 22
- 9a Iy : :

Sl

completing the proof.

Theorem 1 states that the expected asymptotic covariance matrix
has a block structure. The block corresponding to covariances be-
tween the n-way association parameters and the other parameters
is 0. Note that this is the only block with this property. It does not
hold for the blocks pertaining to the marginal parameters and the
lower order association parameters. A counterexample is provided
by the TPM. In this case, there are three marginal parameter vectors
(ay, ay, and a3 ), three bivariate cross-ratio parameter vectors (7,
Y13, and 4v,3), and a trivariate association parameter vector 7y,;.
Choose ¥ € v,; and a € o, for some ¢t = 1, 2, 3. The left side of.
(A.1) becomes

-y O Oy

i) i)
= 2 Vi[Gl ey In Y13,=1) — G2 o In t1/12,(,-=2)J , (A4)

i=

where

G =0 %y by by

W HWin Wz i’

(A.4) vanishes if and only if either G, = G, or ¥, is modeled
separately, contradicting the nature of the Plackett distribution.
But, empirical calculations showed that the correlations between
estimated marginal and association parameters are usually small,
when compared to the other correlations.

(=12).

[Received September 1992. Revised March 1993.]
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