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Abstract  4 
Increased cycling uptake can improve population health, but barriers include real and perceived 5 

risks. Crash risk factors are important to understand in order to improve safety and increase 6 

cycling uptake. Many studies of cycling crash risk are based on combining diverse sources of 7 

crash and exposure data, such as police databases (crashes) and travel surveys (exposure), 8 

based on shared geography and time. When conflating crash and exposure data from different 9 

sources, the risk factors that can be quantified are only those variables common to both 10 

datasets, which tend to be limited to geography (e.g. countries, provinces, municipalities) and a 11 

few general road user characteristics (e.g. gender and age strata). The Physical Activity through 12 

Sustainable Transport Approaches (PASTA) project was a prospective cohort study that 13 

collected both crash and exposure data from seven European cities (Antwerp, Barcelona, 14 

London, Örebro, Rome, Vienna and Zürich). The goal of this research was to use data from the 15 

PASTA project to quantify exposure-adjusted crash rates and model adjusted crash risk factors, 16 

including detailed sociodemographic characteristics, attitudes about transportation, 17 

neighbourhood built environment features and location by city. We used negative binomial 18 

regression to model the influence of risk factors independent of exposure. Of the 4,180 cyclists, 19 

10.2% reported 535 crashes. We found that overall crash rates were 6.7 times higher in London, 20 

the city with the highest crash rate, relative to Örebro, the city with the lowest rate. Differences 21 

in overall crash rates between cities are driven largely by crashes that did not require medical 22 

treatment and that involved motor-vehicles. In a parsimonious crash risk model, we found 23 

higher crash risks for less frequent cyclists, men, those who perceive cycling to not be well 24 
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regarded in their neighbourhood, and those who live in areas of very high building density. 25 

Longitudinal collection of crash and exposure data can provide important insights into 26 

individual differences in crash risk. Substantial differences in crash risks between cities, 27 

neighbourhoods and population groups suggest there is great potential for improvement in 28 

cycling safety. 29 

Keywords: cycling safety, crash rates, risk factors, Europe, cohort 30 

  31 
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1.0 Introduction 32 
Cycling for transport has many potential societal benefits. Increased cycling can improve 33 

population health outcomes through increased physical activity (de Hartog et al., 2010; Götschi 34 

et al., 2016; Mueller et al., 2015; Rojas-Rueda et al., 2016). Cycling also has potential harms, 35 

both real and perceived, that prevent concerned individuals from cycling. Negative safety 36 

perceptions are a main barrier to cycling (Heinen et al., 2010; Willis et al., 2015). Cyclists have 37 

higher risks of injury and/or fatality than other road users in highly motorized countries (Beck et 38 

al., 2007; Mindell et al., 2012; Reynolds et al., 2017; Scholes et al., 2018; Wegman et al., 2012).  39 

It is critical to understand risk factors for cycling crashes to identify potential strategies 40 

for interventions. Studies of crash incidence require both crash and exposure data (e.g., cycling 41 

distance or duration) for a specified area and time (Götschi et al., 2016; Vanparijs et al., 2015). 42 

Exposure-based studies of cycling risk are typically conducted by compiling crash and exposure 43 

data from different sources, generally police databases (crashes) and travel surveys (exposure) 44 

(Castro et al., 2018; Hautzinger et al., 2007). Comparative studies of crash risk require attributes 45 

that are common to both the crash and exposure datasets. When combining crash and 46 

exposure data from different sources, common attributes tend to be limited to geography (e.g. 47 

countries, provinces, municipalities) and a few general road user characteristics (age and 48 

gender strata) (Beck et al., 2007; Blaizot et al., 2013; Mindell et al., 2012; Reynolds et al., 2017; 49 

Santamarina-Rubio et al., 2014; Scholes et al., 2018; Teschke et al., 2013). As a result, most 50 

exposure-based risk studies that combine disparate exposure and crash data are not able to 51 

provide detailed explorations of crash risk factors, such as individual user characteristics 52 
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including cycling frequency, perception of their social environment, and neighbourhood 53 

features. Furthermore, different sources of data also make comparisons across different cities 54 

problematic. 55 

Most exposure-based studies of cycling risk typically use crashes reported to police 56 

and/or hospital databases which under report less-serious injuries and crashes without injury 57 

(Amoros et al., 2006; de Geus et al., 2012; Elvik and Mysen, 1999; Juhra et al., 2012; Langley et 58 

al., 2003; Vanparijs et al., 2016; Veisten et al., 2007; Watson et al., 2015; Winters and Branion-59 

Calles, 2017) and can make comparisons across different regions problematic due to potential 60 

differences in reporting practices (Yannis et al., 2014). Less severe crashes and crashes without 61 

injury are important to capture as they comprise the vast majority of crashes that occur and are 62 

a substantial economic cost to society (Aertsens et al., 2010; Veisten et al., 2007), considering 63 

treatment costs, productivity loss or leisure time loss (Aertsens et al., 2010). Furthermore, 64 

minor crashes and crashes without injury can negatively affect how individuals perceive cycling 65 

safety (Sanders, 2015), which may reduce cycling uptake and therefore minimize the net 66 

potential health and other benefits from cycling. 67 

Prospective cohort studies offer an opportunity to address these limitations by 68 

collecting data on a range of crash types, including single bicycle crashes or crashes without 69 

injury (de Geus et al., 2012; Poulos et al., 2012). Furthermore, participant-specific travel 70 

behaviour can also be collected concurrently (Vanparijs et al., 2015), while also permitting the 71 

identification of individual sociodemographic, behavioural, social environment and built 72 

environment factors associated with crash risk. As a result, this design can allow for collection 73 
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of less-severe crash types, more accurate calculation of crash rates and identification of 74 

individual level crash risk factors. 75 

The Physical Activity through Sustainable Transport Approaches (PASTA) project was a 76 

prospective cohort study that used a longitudinal web survey of over 10,000 individuals residing 77 

in seven cities across Europe that collected crash and exposure data simultaneously (Gerike et 78 

al., 2016). The goal of this study was to use data from the PASTA project to quantify exposure-79 

adjusted crash rates and model crash risk factors, including sociodemographic characteristics, 80 

social environment (including attitudes and social norms), and neighbourhood-built 81 

environment features. 82 

2.0 Materials and Methods 83 
2.1 Study Area 84 
Our study area includes the cities in which participants were recruited for the PASTA project 85 

(Antwerp/Belgium, Barcelona/Spain, London/UK, Örebro/Sweden, Rome/Italy, Vienna/Austria 86 

and Zürich/Switzerland) (Gerike et al., 2016). These cities represent a range of environments in 87 

terms of size, population characteristics, mode shares, built environment, and culture (Table 1). 88 

Örebro and Antwerp have the highest levels of cycling, with 25% and 23% of trips being made 89 

by bicycle, respectively (Mueller et al., 2018). Örebro is also the least dense of the cities but is 90 

supported by a well maintained hierarchical network of cycling infrastructure, consisting of high 91 

speed regional cycling corridors that feed into local networks (PASTA Consortium, 2018a). 92 

Antwerp is a much more dense city than Örebro and is supported by a vast network of cycle 93 

paths and an extensive bike share program (PASTA Consortium, 2018b). Vienna has the next 94 

highest mode share at 6% (Mueller et al., 2018). This city is characterised by particularly high 95 
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dynamics in cycling promotion. Having started with the active promotion of cycling not as long 96 

ago as some of the other cities in this study such as Antwerp or Örebro, it has today one of the 97 

largest cycling networks amongst the PASTA cities (PASTA Consortium, 2018c). Zürich has a 98 

modest 4% of trips made by bike (Mueller et al., 2018). Historically, other modes of 99 

transportation have been prioritized over cycling in Zürich resulting in an excellent public 100 

transportation system along with a high mode share of walking, but a fragmented cycling 101 

network (PASTA Consortium, 2018d). London has seen an increase in both investment in the 102 

cycling network and growth in cycling trips (Aldred and Dales, 2017) but still has a cycling mode 103 

share of only 3% (Mueller et al., 2018). Similar to London, Barcelona has expanded their cycling 104 

network significantly in recent years and is considered to be an emerging city for cycling (PASTA 105 

Consortium, 2018e) but currently only has a mode share of 2% (Mueller et al., 2018). Finally, 106 

Rome has the lowest cycling mode share at 1% (Mueller et al., 2018), a very limited cycling 107 

network and is considered to be a challenging place to get around by bicycle (PASTA 108 

Consortium, 2018f). 109 

 110 
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Table 1: Characteristics of PASTA Cities 111 

City Antwerp Barcelona London Örebro Rome Vienna Zürich 

Country Belgium Spain United 
Kingdom Sweden Italy Austria Switzerland 

Populationa 502,604  1,620,943  8,538,689  138,952  2,683,842  1,741,246  398,575  
Area (Km2)a 204 102 1,572  1,373  1,285  415  92  
Population Density 
(pop/km2)a 2,464  15,892  5,432  101  2,089  4,196  4,332  

Cycling Mode Share 
(%)b 23 2 3 25 1 6 4 

Cyclists/dayc 113,509 26,532 235,288 26,538 18,846 75,685 16,416 
Mean distance (km)c 3.84 3.5 3 3.3 7.7 3.3 2.77 
Mean time (mins)c 14.4 16.2 22.8 16.2 24 18.6 14.4 
Cycling network km 
(OSM)d 469.17 159.54 969.17 361.35 120.64 715.63 118.36 

Street network km 
(OSM)d 1,651.74 1,554.56 16,439.74 3,045.27 8,281.36 3,946.11 1,193.59 

Cycling network / 
street networkd 0.28 0.10 0.06 0.12 0.01 0.18 0.10 

Fatalities/yeare 4 3 13 1 4 3 1 
Cycling km/ yeare 313,625,445 89,663,002 463,174,636 59,361,390 98,362,110 219,430,669 45,048,048 
Fatalities/ billion kme 13 33 28 17 41 14 22 

a Data compiled in Gerike et al. (2016) and refer to the year 2012.    112 
b Data compiled in Mueller et al (2018). Antwerp, Barcelona, London, Örebro, Rome, Vienna and Zürich based on data from 2011, 2012, 2012, 2011, 2014, 113 
2012, 2010, respectively.  114 
c Data compiled in Mueller et al (2018). Antwerp, Barcelona, London, Örebro, Rome, Vienna and Zürich based on data from 2013, 2006/2015, 2013, 2011, 2014, 115 
2013, 2010, respectively.  116 
d Data compiled in Mueller et al (2018) from OpenStreetMap as of October 2017.  117 
e Data compiled in Mueller et al (2018). Antwerp, Barcelona, London, Örebro, Rome, Vienna and Zürich based on traffic fatality data from 2011-2014, 2011-118 
2015, 2014, 2012, 2015, 2010-2015, 2006-2010, respectively. 119 
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 120 

2.2 Study Design 121 
Cycling crash and exposure data were collected as a part of the larger PASTA project (Gerike et 122 

al., 2016). The project used a longitudinal web-based survey (Dons et al., 2015). Data were 123 

collected between November 2014 (April 2015 in Örebro) and December 2016, primarily 124 

through an opportunistic sampling approach, though some participants in Örebro were 125 

recruited through random sampling. Participants were recruited with the same methods across 126 

all cities, which included press releases/editorials, consistent design of promotional materials, 127 

translation of promotional materials to local languages, close collaboration with local 128 

stakeholders networks to distribute information, promotion of the study through social media 129 

and participation incentivization through a prize lottery (except for Örebro where lotteries were 130 

not permitted) (Gaupp-Berghausen et al., 2019). A participant could enter (and leave) the study 131 

at any point within the data collection period. Participants were required to be at least 18 years 132 

of age, except for Zürich, where the minimum age was 16 years. The survey oversampled 133 

cyclists to ensure sufficient statistical power for analysis in cities with a low cycling mode share 134 

(Raser et al., 2018).  135 

The PASTA project consisted of a comprehensive baseline questionnaire followed by 136 

follow-up surveys (Figure 1). The baseline questionnaire collected data on sociodemographic 137 

characteristics, travel behaviour, physical activity, information regarding locations of their 138 

home, work and school, as well as data on attitudes toward transportation. Follow-up survey 139 

invitations were sent every 13 days after completion of a questionnaire to collect prospective 140 
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repeated measurements of travel, physical activity behavior, and safety incidents. Each follow-141 

up survey included a modified version of the Global Physical Activity Questionnaire (GPAQ) 142 

aimed at estimating the duration and frequency of cycling in the previous week (World Health 143 

Organization, 2019). Every third follow-up included a 1-day travel diary. A custom designed 144 

web-survey platform automatically sent reminder emails for participants to complete 145 

questionnaires.  146 

 147 

 148 

Figure 1: Longitudinal Survey Design for PASTA participants  149 

2.3 Cycling Exposure and Crash Data  150 
We estimated cycling duration from the modified version of the GPAQ administered in 151 

every follow-up survey. The questionnaire consisted of the following two questions: 1) “In the 152 

previous 7-days on how many days do you cycle for at least 10 minutes continuously to get to 153 

and from places?” and 2) “Typically, how much time do you spend cycling on such a day?”. 154 
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To obtain an estimate of weekly duration of cycling at each follow-up, we multiplied the 155 

number of days cycled by the typical time spent cycling. To estimate the total cycling exposure 156 

for the study, we multiplied the average of a participants weekly cycling over all follow-ups by 157 

the number of weeks between the date they entered the study and the date of the last follow-158 

up survey they completed.  159 

For capturing safety incidents, each follow-up survey asked, “Since the last time you 160 

filled out a questionnaire…, have you experienced any safety relevant incidents (i.e. a collision, 161 

fall or near miss as a pedestrian, cyclists, in public transport or driving)?” If participants had 162 

experienced a collision or fall, they were asked to complete a crash questionnaire for each case. 163 

This crash questionnaire collected details of circumstances including the crash type (fall, crash 164 

with motor vehicle, crash with cyclist or crash with pedestrian), injury (injury or non-injury) and 165 

medical treatment (none, treated without doctor, treated by doctor, brought to hospital, 166 

hospitalized). We only include collisions and falls while cycling in our analysis (e.g., we removed 167 

falls or crashes while using other modes of transport) referred to collectively as crashes in this 168 

paper. 169 

2.4 Covariates  170 
The PASTA study followed a comprehensive framework to understanding active travel 171 

behaviour, and aimed to not only measure sociodemographic characteristics, but also the 172 

characteristics of their social and built environments (Götschi et al., 2017). For this analysis, we 173 

selected the sociodemographic, social and built environment characteristics from the baseline 174 

survey that were either previously identified as risk factors in other cyclist cohorts (Degraeuwe 175 
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et al., 2015; Poulos et al., 2015; Tin Tin et al., 2013; Vanparijs et al., 2015), or had a plausible 176 

association with crash risk, such as perceptions of traffic safety. Sociodemographic 177 

characteristics included age, gender, education, body mass index (BMI), and whether the cyclist 178 

had a driver’s license. Perceptions of built and social environments were included as well, 179 

where participants rated their level of agreement with whether cycling for travel was 180 

comfortable, whether cycling for travel was safe with regards to traffic, whether cycling was 181 

well regarded in their neighborhood, and whether cycling was common in their neighbourhood. 182 

For each participant we also generated objective measures of the built environment around a 183 

participant’s home (300m) including cycling infrastructure density, building density and a 184 

measure of “greenness” the Normalized Difference Vegetation Index (NDVI). These were 185 

derived by mapping the participants’ residential locations to geospatial data from local 186 

partners, and/or open data infrastructure including from the European Environment Agency 187 

and OpenStreetMap. 188 

2.5 Data cleaning and dealing with missing values 189 
From the over 10,000 participants who completed the baseline questionnaire, we included 190 

those who completed at least one follow-up survey in which they were asked about cycling 191 

crashes (n=6,817). We removed participants who reported zero minutes of cycling (n=2,448), 192 

those who reported over 8 hours of daily cycling in 1 or more follow-ups (n=190), those that 193 

were in the study for less than 13 days (n=12), and those who provided incomplete data on 194 

crash type and injury (n=62). There were 4,180 participants who fulfilled the inclusion criteria.  195 
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Across the relevant baseline sociodemographic, social and built environment variables, 196 

the percentage of missing data amongst eligible participants ranged from 0 to 16.9%. The 197 

specific variables with missing data included age (n=1, <0.1%), BMI (n = 19, 0.5%), education 198 

level (n = 8, 0.2%), having young children (n=153, 3.7%), building density within 300 m of 199 

residence (n = 65, 1.6%), bike lane density within 300 m of residence (n = 707, 16.9%), street 200 

density within 300m of residence (n = 60, 1.4%), and NDVI within 300 m of residence (n = 65, 201 

1.6%). In total 886 out of 4,180 eligible participants (21.2%) had incomplete sociodemographic, 202 

social or built environment data. 203 

To address the missing values in sociodemographic, social and built environment 204 

variables we took a multiple imputation approach. Specifically, we used the multivariate 205 

imputation by chained equations (MICE) technique using fully conditional specification and the 206 

default settings of the mice 3.6 package in R (van Buuren and Groothuis-Oudshoorn, 2011). 207 

Multiple imputation creates multiple plausible versions of a complete dataset by filling in the 208 

missing values with reasonable estimates (Azur et al., 2011). We used the MICE algorithm to 209 

create 20 imputed datasets based on the rule of thumb that the number of imputations should 210 

approximate the proportion of incomplete cases (van Buuren, 2018).We converted building 211 

density, bike lane density, and NDVI to a categorical variable based on quintiles for each 212 

imputed dataset after imputation. We then calculated crash rates using the non-imputed data 213 

and statistically modelled crash risks using the imputed datasets. 214 
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2.6 Statistical Analysis  215 
2.6.1 Crash rates 216 
Using the non-imputed data, we calculated overall crash rate (number of crashes per 100,000 217 

hours of cycling) by combining recorded crashes with exposure data. We also calculated crash 218 

rates by city and a range of sociodemographic, attitudinal, and built environment 219 

characteristics without data imputation. We used bootstrapping with 5,000 replications to 220 

generate 95% confidence intervals around crash rates. 221 

To further understand differences in crash rates by city, we also examined crash rates for 222 

specific types of crashes based on which road users were involved and the injury severity. 223 

Crashes were defined as either involving a motor-vehicle, another cyclist, a pedestrian or a fall. 224 

There were 9 crashes that involved multiple other road users. These crashes were assigned to a 225 

category based on the most dangerous road user involved, where we ranked road users from 226 

most to least dangerous as follows: motor-vehicles, another cyclist, pedestrian, and finally no 227 

other road user (i.e. a fall). We also used medical treatment as a proxy for injury severity and 228 

assigned a crash as requiring medical treatment if the participant sought any kind of medical 229 

treatment, or else not requiring medical treatment.  230 

2.6.2 Crash risk factors 231 
To explore crash risk factors, we analysed the relationship between crash risks, exposure and 232 

other individual level factors. We applied this in each of the multiply imputed datasets and 233 

combined the results into a pooled model as per Rubin’s rules (Azur et al., 2011). We used 234 

Generalized Linear Models with negative binomial error structures, and logarithmic links to 235 

quantify the relationship between the number of crashes a participant reported as a function of 236 
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exposure, individual level factors, and city (Hilbe, 2014). We defined a base crash risk model as 237 

the following (Elvik, 2009):  238 

𝐸𝐸�(𝑌𝑌) =  𝑒𝑒∝0 × 𝐸𝐸𝐸𝐸𝐸𝐸 ∝1 × 𝑇𝑇∝2  × 𝑒𝑒(𝑏𝑏1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1+ …+ 𝑏𝑏6𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐6)    (1) 239 

where 𝐸𝐸�(𝑌𝑌) is the predicted crashes for a participant, 𝐸𝐸𝐸𝐸𝐸𝐸 is the average cycling 240 

exposure per month, 𝑇𝑇 is the total months in the study and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is an indicator variable for the 241 

city a participant resides in. We used city as an indicator variable to adjust for between city 242 

differences in individual crash risk (Cerin, 2011). Since participants spent differing amounts of 243 

time in the study there is potential for attrition bias. Here, attrition bias refers to the notion 244 

that there may be differences in crash risk between participants who participate for different 245 

lengths of time (Nunan et al., 2018). Therefore, we separated total exposure into two sub-246 

components: average monthly exposure (EXP) and total number of observed months (T). The 247 

coefficients ∝0, ∝1, ∝2 and 𝑏𝑏𝑖𝑖 are estimated using maximum likelihood methods. If ∝1 or ∝2 248 

are < 1 it means that the number of expected crashes increases less than proportionally to 249 

increases in average exposure or time in the study, respectively. We would expect ∝2 to be ~1 250 

if attrition was non-differential with regards to crash risk. 251 

Each of the specified sociodemographic, social, and built environment characteristics 252 

was then initially examined separately by adding each to the base model: 253 

𝐸𝐸�(𝑌𝑌) =  𝑒𝑒∝0 × 𝐸𝐸𝐸𝐸𝐸𝐸 ∝1 × 𝑇𝑇∝2  × 𝑒𝑒(𝑏𝑏1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1+ …+ 𝑏𝑏6𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐6) × 𝑒𝑒(𝑏𝑏7𝑥𝑥1+ …+ 𝑏𝑏(7+𝑘𝑘)𝑥𝑥𝑘𝑘)   (2) 254 

Where 𝑥𝑥 represented the one additional indicator variable of interest with 𝑘𝑘 levels. We 255 

then estimated the incident rate ratio (IRR) for each level of 𝑥𝑥 by exponentiating its coefficient, 256 

𝑏𝑏. The IRR here represents the change in crash risk from the reference category in a specified 257 



   

 

17 

 

sociodemographic, social, or built environment characteristic holding exposure and city-level 258 

differences constant. We will refer to these IRR’s as “crude”.  259 

Finally, we developed a parsimonious crash risk model in a forward stepwise procedure. 260 

We added additional variables to the base model one at a time, based on the multivariate Wald 261 

statistic, from highest to lowest (van Buuren, 2018). A variable was kept in the model if the 262 

Wald statistic had a p-value under 0.2. The final parsimonious model is given by: 263 

𝐸𝐸�(𝑌𝑌) =  𝑒𝑒∝0 × 𝐸𝐸𝐸𝐸𝐸𝐸 ∝1 × 𝑇𝑇∝2  × 𝑒𝑒(𝑏𝑏1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐1+ …+ 𝑏𝑏6𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐6) × 𝑒𝑒(𝑏𝑏7𝑥𝑥1+ …+ 𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛)  (3) 264 

Where there are 𝑛𝑛 number of sociodemographic, social or built environment variables 265 

that have a p-value under 0.2. We use a high p-value to avoid excluding potentially important 266 

variables. We will refer to the IRRs based on this parsimonious model as “adjusted”.  267 

3.0 Results 268 
Out of the 10,691 participants in the PASTA study, 4,180 participants provided cycling exposure 269 

data in at least one follow-up and did not provide outlier values or unreliable crash data (Table 270 

2). We will refer to these participants as cyclists. The cyclists completed a median of seven 271 

follow-up surveys over a median of 7.3 months. At baseline, most reported being daily or 272 

almost daily cyclists (60.3%) and reported cycling for a median daily average of 16.3 minutes 273 

over follow-ups. Relative to other cities, London had the fewest cyclists (n=355), while Antwerp 274 

had the most (n=891). Cyclists were nearly evenly split between men and women and tended to 275 

be young and highly educated. Most cyclists agreed that cycling for transport was comfortable 276 

(72.9%) but only a minority agreed that it was safe from traffic (28.0%). Most participants 277 

agreed that cycling in their neighbourhood was well regarded (49.5%) and common (41.9%). 278 
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About one in ten cyclists experienced one or more crashes (10.2%) during their time in the 279 

study. 280 

Table 2: Baseline characteristics of the cyclists the PASTA study  281 

Variable  

No. Participants 4180 
Months Observed (median [IQR]) 7.3 [2.2, 16.6]     
Follow-ups Completed (median [IQR]) 7.0 [3.0, 17.0]     
Total Exposure in Hours (median [IQR]) 36.0 [10.5, 114.7]  
Average Exposure in Minutes Per Day (median [IQR]) 16.3 [6.4, 31.1]    
Crashes per person (%)   
0 3752 (89.8)            
>=1  428 (10.2)             
City (%)  

Antwerp 891 (21.3)             
Barcelona 523 (12.5)             
London 355 ( 8.5)             
Örebro 590 (14.1) 
Roma 594 (14.2) 
Vienna 637 (15.2) 
Zürich 590 (14.1) 
Cycling Frequency at baseline (%)   
Never 138 ( 3.3)             
Less than once per month 247 ( 5.9)             
on 1-3 days per month 370 ( 8.9)             
on 1-3 days per week 893 (21.4)             
Daily or almost daily 2522 (60.3)            
Missing 10 ( 0.2)              

Age (%)  

16-25 years 483 (11.6) 
26-35 years 1313 (31.4) 
36-45 years 1049 (25.1) 
46-55 years 840 (20.1) 
56-65 years 401 ( 9.6) 
65+ years 93 ( 2.2) 
Missing 1 (<0.1) 
Gender (%)   
Women 2066 (49.4) 
Men 2114 (50.6) 
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BMI (%)  

<25 2994 (71.6) 
25-30 951 (22.8) 
30+ 216 ( 5.2) 
Missing 19 ( 0.5) 

Education (%)   
No degree/primary education 49 ( 1.2) 
Secondary/further education 930 (22.2) 
Higher/university education 3193 (76.4) 
Missing 8 ( 0.2) 

Income (%)  

< € 10,000 314 ( 7.5) 
€ 10,000 - € 24,999 628 (15.0) 
€ 25,000 - € 49,999 1232 (29.5) 
€ 50,000 - € 74,999 799 (19.1) 
€ 75,000 - € 99,999 309 ( 7.4) 
€ 100,000 - € 150,000 171 ( 4.1) 
€ >150,000 64 ( 1.5) 
Missing 663 (15.9) 

Drivers License (%)   
Yes 3812 (91.2) 
No 368 ( 8.8) 

Have Children (%)  

Yes 1460 (34.9) 
No 2567 (61.4) 
Missing 153 ( 3.7) 

Cycling for transport is comfortable* (%)   
Agree 3047 (72.9) 
Neutral 729 (17.4) 
Disagree 404 ( 9.7) 

Cycling for transport is safe from traffic* (%)  

Agree 1172 (28.0) 
Neutral 1100 (26.3) 
Disagree 1908 (45.6) 

In my neighbourhood cycling is well regarded* (%)   
Agree 2070 (49.5) 
Neutral 1306 (31.2) 
Disagree 804 (19.2) 

In my neighbourhood cycling is common* (%)  

Agree 1750 (41.9) 
Neutral 1194 (28.6) 
Disagree 1236 (29.6) 
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Building density of residence (m2/km2), 300 m buffer (%) 
Quintile 1: [0 – 111,080] 823 (19.7)             
Quintile 2: (111,080 – 195,283] 823 (19.7)             
Quintile 3: (195,283 – 285,409] 823 (19.7)             
Quintile 4: (285,409 – 418,375] 823 (19.7)             
Quintile 5: (418,375 – 659,249] 823 (19.7)             
Missing 65 ( 1.6)              

Bike lane density of residence (m/km2), 300 m buffer (%) 
Quintile 1: [0] 988 (23.6)             
Quintile 2: [0.031 – 1,530] 622 (14.9)             
Quintile 3: ( 1,530 – 3,240 ] 621 (14.9)             
Quintile 4: (3,240 – 5,700] 621 (14.9)             
Quintile 5: (5,700– 20,400] 621 (14.9)             
Missing 707 (16.9)             

Street density of residence (m/km2), 300 m buffer (%)  

Quintile 1: [570 – 11,600] 824 (19.7) 

Quintile 2: (11,600 – 15,700] 824 (19.7) 

Quintile 3: (15,700 – 19,300] 824 (19.7) 

Quintile 4: (19,300 – 23,300] 824 (19.7) 

Quintile 5: (23,300 – 49,000] 824 (19.7) 

Missing 60 (1.4) 

NDVI of residence, 300 m buffer (%) 
Quintile 1: [0.122 – 0.271] 828 (19.8)             
Quintile 2: (0.271 – 0.360] 826 (19.8)             
Quintile 3: (0.360 – 0.474] 815 (19.5)             
Quintile 4: (0.474 – 0.595] 828 (19.8)             
Quintile 5: (0.595 – 0.874] 818 (19.6)             
Missing 65 ( 1.6)              

*Collapsed from 5 category Likert scale, IQR: Interquartile range 282 

3.1 Crash characteristics  283 
Of the 4,180 cyclists in our study, 428 reported a total of 535 crashes (Table 3). Of these, two in 284 

five (40.4%) were falls (single bicycle crashes). The remaining crashes involved another road 285 

user, either a motor vehicle (35.3%), another cyclist (17.4%) or a pedestrian (6.9%). Just over 286 

half of all crashes resulted in an injury (considered to be a bruise or cramp at minimum) 287 

(55.3%). Just over a quarter of crashes required any medical treatment (26.5%), and there were 288 
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just four hospitalizations (0.7%) . Most crashes went unreported in official sources: only 3.9% 289 

were reported as recorded by police and 9.3% were reported to an insurance company. 290 

Table 3: Crash characteristics including involvement, injury, and medical treatment 291 

 N Crashes (%) 
Total s 535 (100) 
Cycling Crash Types   
Fall 216 (40.4) 
Crash with motor vehicle 189 (35.3) 
Crash with other cyclist 93 (17.4) 
Crash with pedestrian 37 (6.9) 
Injurya  
Yes 296 (55.3) 
No 239 (44.7) 
Medical Treatment   
No 393 (73.5) 
Yes, I treated it myself or by another person (no doctor). 80 (15.0) 
Yes, I went to a doctor or hospital myself. 47 (8.8) 
Yes, from an ambulance at the location of the crash. 0 (0.0) 
Yes, I was brought to the hospital for medical treatment but could go home the same day. 11 (2.1) 
Yes, I was hospitalized ≥ 1 night. 4 (0.7) 
Official police report  
Yes, the police showed up and they officially reported the crash 16 (3.0) 
Yes, I reported the crash later to the police (in the station, by phone or online). 5 (0.9) 
No, the police showed up but they didn't officially report the crash. 7 (1.3) 
No, the police didn't show up and the crash was not officially reported 493 (92.1) 
Don’t know 14 (2.6) 
Reported to insurance company  
Yes 50 (9.3) 
No 466 (87.1) 
Don’t know 19 (3.8) 

aDefined as physical injury resulting from the crash including bruises or cramps 292 

 293 
3.2 Crash Rates 294 
Across the seven cities the crash rate was 137.9 crashes per 100,000 hours of cycling (95% CI, 295 

125.2 - 152.1) or 1 crash every 725 hours. London had the highest crash rate with 220.8 crashes 296 

per 100,000 hours, while Örebro had the lowest crash rate of 32.8 crashes per 100,000 hours 297 

(Table 4, Figure 2). Zürich had the second highest crash rate of 188.6 per 100,000 hours 298 
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followed by Vienna, Rome, Antwerp and Barcelona with rates of 154.3,144.9, 136.1 and 134.1, 299 

respectively (Table 4, Figure 2). The high crash rate in London was largely driven by its greater 300 

number of crashes which involved a motor-vehicle relative to the other PASTA cities, while falls 301 

appeared to be a greater issue in Rome compared to other crash types (Figure 3B). When 302 

stratifying by whether medical treatment was required or not, there was relatively little 303 

difference in the crash rates between cities with the exception of Örebro which had a 304 

substantially lower rate requiring treatment (Figure 3C). The overall differences in crash rates 305 

between cities appear to be largely driven by crashes that did not require any medical 306 

treatment (Figure 3C).  307 

We also examined total crash rates by sociodemographic, social and built environment 308 

characteristics of cyclists. Crash rates decreased with increasing age category, increased with 309 

higher BMI category and were higher for men compared to women (Table 4). Crash rates 310 

tended to be highest for participants who disagreed that cycling for travel was comfortable, 311 

well regarded in their neighbourhood or common (Table 4). Participants who lived in 312 

neighbourhoods with a higher density of bike lanes, higher NDVI or lower building density 313 

tended to have lower crash rates (Table 4).  314 
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  315 

Figure 2: Map of crash rates by city 316 
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 1 

Figure 3: Crash rates by city for A) all crashes B) stratified by other road user involved in the crash and C) by injury severity  2 

Table 4: Crash risk factors by city, sociodemographic, attitudinal, and neighbourhood characteristics.  3 

Variable Level 

% of 
total n 
(4,180) 

Total 
Exposure 
Hours 

Total 
number 
of 
crashes 

Crash Rate per 
100,000 hours (95% 
CI)a 

Crude Incident 
Rate Ratio (95% 
CI)b 
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Total  100.0 387,968 535 137.9 (125.2, 152.1)  

City 

Antwerp 21.3  119,041  162 136.1 (115.6, 162.9) Referencec 
Barcelona 12.5  43,084  58 134.6 (100.2, 180.7) 0.87 (0.63, 1.22) 
London 8.5  27,630  61 220.8 (164.6, 292.8) 1.54 (1.09, 2.17) 
Örebro 14.1  48,721  16 32.8 (19.5, 52.8) 0.21 (0.13, 0.36) 
Roma 14.2  51,767  75 144.9 (110.3, 188.6) 1.06 (0.78, 1.45) 
Vienna 15.2  62,198  96 154.3 (122.0, 194.6) 1.03 (0.77, 1.37) 
Zürich 14.1  35,529  67 188.6 (143.1, 256.2) 1.11 (0.80, 1.53) 

Age (years) 

16-25 11.6  32,140  56 174.2 (124.9, 238.0) Reference 

26-35 31.4  115,659  167 144.4 (121.2, 172.3) 0.83 (0.59, 1.15) 
36-45 25.1  101,433  146 143.9 (118.4, 175.1) 0.87 (0.62, 1.23) 
46-55 20.1  89,817  117 130.3 (105.3, 157.2) 0.81 (0.57, 1.16) 
56-65 9.6  44,317  45 101.5 (73.8, 138.2) 0.73 (0.47, 1.13) 
65+ 2.2  4,497  4 89.0 (20.8, 249.6) 0.53 (0.18, 1.56) 
Missing 0  105  0    

BMI 

<25 71.6  277,398  369 133.0 (118.4, 149.9) Reference 
25-30 22.8  90,476  130 143.7 (114.9, 177.1) 1.19 (0.95, 1.49) 
30+ 5.2  18,466  34 184.1 (126.3, 266.9) 1.39 (0.93, 2.09) 
Missing 0.5  1,628  2 122.8 (0.0, 267.6)  

Gender 
Women 49.4  166,862  187 112.1 (95.0, 132.5) Reference 
Men 50.6  221,107  348 157.4 (140.1, 178.5) 1.42 (1.16, 1.73) 

Education 

No degree/Primary 1.2  5,547  6 108.2 (35.7, 216.5) Reference 
Secondary/further 22.2  79,233  116 146.4 (118.0, 184.5) 1.06 (0.41, 2.76) 
Higher/university 76.4  302,491  410 135.5 (121.7, 151.2) 0.96 (0.38, 2.43) 
Missing 0.2  697  3 430.2 (0.0, 2110.6)  

Drivers License 
Yes 91.2  356,032  483 135.7 (122.5, 150.3) Reference 
No 8.8  31,936  52 162.8 (117.0, 222.7) 1.16 (0.84, 1.60) 

Have Children 
under 18 

Yes 34.9  143,338  176 122.8 (104.3, 145.3) Reference 
No 61.4  67,299  335 143.2 (126.0, 162.1) 1.09 (0.89, 1.34) 
Missing 3.7  10,664  24 225 (133.8, 360.2)  

Cycling 'for 
travel' is 
comfortable 

Agree 72.9  316,507  420 132.7 (119.0, 148.5) Reference 
Neutral 17.4  53,633  79 147.3 (114.4, 191.9) 0.97 (0.74, 1.27) 
Disagree 9.7  17,828  36 201.9 (136.1, 293.6) 1.17 (0.80, 1.72) 

Cycling 'for 
travel' is safe 
(with regards 
to traffic) 

Agree 28  130,021  144 110.8 (91.7, 133.0) Reference 

Neutral 26.3  109,699  160 145.9 (120.8, 175.5) 1.16 (0.90, 1.49) 

Disagree 45.6  148,248  231 155.8 (134.3, 178.6) 1.10 (0.87, 1.39) 
In my 
neighbourhood 
is cycling is 
well regarded 

Agree 49.5  202,584  248 122.4 (106.4, 141.0) Reference 
Neutral 31.2  108,480  149 137.4 (113.8, 165.8) 1.16 (0.92, 1.46) 

Disagree 19.2  76,904  138 179.4 (146.9, 219.0) 1.33 (1.03, 1.73) 

In my 
neighbourhood 

Agree 41.9  159,337  201 126.1 (107.6, 145.9) Reference 

Neutral 28.6  108,046  137 126.8 (105.7, 151.3) 1.03 (0.81, 1.32) 
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is cycling is 
common Disagree 29.6  120,585  197 163.4 (135.9, 194.2) 1.26 (0.99, 1.62) 

Building 
density 
(m2/km2) 
within 300 m 
of residential 
location 

[0 – 111,080] 19.7  82,398  86 104.4 (83.6, 128.0) Reference 
(111,080 – 195,283] 19.7  83,056  103 124.0 (99.6, 154.2) 0.88 (0.63, 1.22) 
(195,283 – 285,409] 19.7  70,103  92 131.2 (101.3, 169.9) 0.76 (0.54, 1.07) 
(285,409 – 418,375] 19.7  71,501  122 170.6 (138.8, 207.8) 1.09 (0.79, 1.52) 
(418,375 – 659,249] 19.7  75,708  124 163.8 (132.6, 201.3) 1.20 (0.84, 1.73) 
Missing 1.6  5,203  8 153.7 (60.9, 345.0)  

Bike lane 
density 
(m/km2) within 
300 m of 
residential 
location 

[0] 23.6  91,284 141 154.5 (127.2, 186.3) Reference 
[0.031 – 1,530] 14.9  59,303  96 161.9 (124.1, 210.5) 1.03 (0.75, 1.42) 
(1,530 – 3,240] 14.9  55,515 80 144.1 (113.0, 180.3) 0.95 (0.68, 1.32) 
(3,240 – 5,700] 14.9  52,456 67 127.7 (96.6, 171.0) 0.97 (0.67, 1.41) 
(5,700– 20,400] 14.9  58,913 57 96.8 (70.8, 129.1) 0.84 (0.58, 1.21) 
Missing 16.9  70,495 94 133.3 (107.5, 163.4)  

Street density 
(m/km2) within 
300 m of 
residential 
location 

[570 – 11,600] 19.7  92273 98 106.2 (84.2, 132.4) Reference 
(11,600 – 15,700] 19.7  79,924 99 123.9 (99.0, 153.0) 0.98 (0.71, 1.34) 
(15,700 – 19,300] 19.7  71,207 97 136.2 (108.5, 168.2) 0.98 (0.72, 1.37 
(19,300 – 23,300] 19.7  79,924 129 178.3 (144.5, 219.8 1.26 (0.92, 1.72) 
(23,300 – 49,000] 19.7  71,207 105 155.8 (124.9, 196.9) 1.19 (0.84, 1.70) 
Missing 1.4  72,348 7 145.4 (55.4, 349.7)  

NDVI within 
300 m of home 
location 

[0.122 – 0.271] 19.8  72,482  115 158.7 (126.1, 197.4) Reference 
(0.271 – 0.360] 19.8  72,674  122 167.9 (137.0, 201.5) 0.90 (0.66, 1.22) 
(0.360 – 0.474] 19.5  70,742  108 152.7 (121.6, 194.1) 0.82 (0.59, 1.15) 
(0.474 – 0.595] 19.8  77,777  83 106.7 (83.8, 134.1) 0.65 (0.45, 0.94) 
(0.595 – 0.874] 19.6  89,194  100 112.1 (89.8, 136.5) 0.75 (0.51, 1.09) 
Missing 1.6  5,099  7 137.3 (50.0, 323.8)  

a Confidence intervals calculated using a bias corrected and accelerated bootstrap method (BCa) with 5,000 1 
replications 2 
b Adjusted for average cycling exposure per month, number of months participated in the study and city 3 
c Adjusted for average cycling exposure per month, number of months participated in the study 4 
Bold indicates significance at 95% confidence,  5 
NDVI = Normalized Difference Vegetation Index. 6 
 7 
3.3 Crash Risk Factors  8 
In our parsimonious model, we identified average exposure per month, months of 9 

participation, city, gender, perceiving that cycling is well regarded in their neighbourhood, and 10 

building density as important factors affecting crash risk. The final pooled parsimonious model 11 

suggests a non-linear relationship between individual cycling exposure and number of crashes: 12 

 13 

𝐸𝐸�(𝑌𝑌) = 0.0005 × 𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙0.58 × 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑠𝑠0.80       (4) 14 
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 1 

The exponents for EXP and T are less than 1, thus while the number of expected crashes for a 2 

participant increase with both increased cycling per month and number of months participated, 3 

the risk of a crash (expected crashes per unit of exposure) decreases. In other words crash risk 4 

is lower for participants who cycle more frequently as well as those who spend more time 5 

participating in the study. The effects are of differing strength, with attrition bias being weaker 6 

than the effect of exposure per month. 7 

In the parsimonious model, additional risk factors for a crash included: being a man, 8 

living in a neighbourhood of very high building density, and perceiving that cycling was not well 9 

regarded in one’s neighbourhood (Figure 4). London and Örebro stood out as the most and 10 

least risky cities, respectively. Relative to Antwerp, and holding exposure and other individual 11 

factors constant, the crash risk for a participant in London was 1.58 times higher, while in 12 

Örebro it was less than a quarter as risky (Figure 4). When we ran a sensitivity analysis with only 13 

observations with complete data for all variables, we found very similar results. 14 
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 1 

Figure 4: Adjusted Incident Rate Ratio (IRR) for the variables included in the stepwise model building. The IRR’s represent the 2 
ratio of expected crashes for a given participant relative to the reference category, adjusting for average exposure per month, 3 
number of months participated in addition to the selected variables in the plot (City, Gender, Cycling well regarded in 4 
neighbourhood, and Building density quintile). Holding average exposure and time constant, participants with the highest 5 
number of expected crashes are those that live in London, are men, perceive that cycling in their neighbourhood is not well 6 
regarded, and live in a neighbourhood within the highest quintile of building density.  7 

 8 

4.0 Discussion 9 
This study analysed prospectively collected crash data in a cohort of cyclists across seven 10 

geographically diverse European cities, one of the largest studies of its kind. Of the seven PASTA 11 

cities, we found considerable variation in crash risk. Within cities, risk of a crash was highest for 12 
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less frequent cyclists, men, those who perceive cycling to not be well regarded in their 1 

neighbourhood, and those who live in areas of very high building density. We show that crash 2 

risks differ by city, neighbourhood and individual level factors.  3 

Our findings, like those in the literature, indicate that crash rates vary substantially 4 

across cities. Overall, the average crash rate was 137.9 crashes per 100,000 hours, from a low 5 

of 32.8 crashes per 100,000 hours in Örebro to nearly 7 times higher in London. There are only 6 

two other studies which collected crash and duration-based exposure data simultaneously; one 7 

in New South Wales, Australia (Poulos et al., 2015) and one in Belgium (de Geus et al., 2012). 8 

The Australian cohort had an incidence rate of 606.0 crashes per 100,000 hours (Poulos et al., 9 

2015), while the Belgian cohort had an rate of 89.6 per 100,000 hours (de Geus et al., 2012). 10 

Difference in rates between these studies may be due to differences in the samples of cyclists, 11 

inclusion criteria for inclusion of crashes, methods in calculating and/or collecting exposure, as 12 

well as actual differences in the objective risk of a cycling crash between these areas. To 13 

illustrate, the Australian study included non-injury crashes and a substantial proportion of the 14 

cohort (40.1%) were “mainly recreational” cyclists (Poulos et al., 2015). The Belgian cohort did 15 

not include any recreational cycling and excluded non-injury crashes (de Geus et al., 2012). The 16 

discrepancy between the crash rate we estimated in Antwerp (136.1 per 100,000 hours) and 17 

the crash rate of 75.2 per 100,000 hours for Flanders (a larger region of Belgium in which 18 

Antwerp is located) may be partly explained by the crash inclusion criteria. In our study the 19 

crash rate for Antwerp drops to 74.8 crashes per 100,000 hours for crashes that resulted in 20 

injury and to 43.7 crashes per 100,000 for crashes that required any medical treatment.  21 
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When interpreting the differences we found in crash rates and/or adjusted crash risk 1 

between PASTA cities, the role of self selection should be considered (Castro et al., 2018). Here, 2 

self-selection refers to the idea that due to unsafe cycling conditions, many people may choose 3 

not to bicycle at all. Thus, the participants who choose to bicycle in these unsafe conditions 4 

may be overly brave and/or exceptionally skillful, the latter possibly having a moderating effect 5 

on crash risk (Castro et al., 2018). As such, cycling mode share provides important contextual 6 

information when interpreting differences between large geographic units. PASTA cities were 7 

selected in part to introduce variability in the samples in terms of culture, density, built 8 

environments, policies, and climates, and thereby cover a wide range of conditions related to 9 

cyclist safety (Dons et al., 2015). Our parsimonious model (which adjusted for other factors 10 

including exposure, time spent in the study, gender, social environment and neighbourhood 11 

building density) indicated that Örebro was the safest city for cycling, London the riskiest, and 12 

the remaining cities similar in terms of safety. Notably, Örebro was the least risky city and has 13 

the highest cycling mode share of our seven cities (25%). Antwerp was riskier than Barcelona, 14 

and was similar in risk to Rome, Vienna, and Zürich. Antwerp’s population bicycles between 3.8 15 

to 23 times more than Barcelona, Rome, Vienna or Zürich, which suggests that self-selection 16 

may play a role in risk differences. For example, Rome is known for highly challenging traffic 17 

conditions, reflected in the least extensive cycling network amongst the seven cities, and the 18 

lowest bicycle mode share (1%) (Mueller et al., 2018). Despite this, our model suggests a similar 19 

level of overall crash risk between participants in Antwerp and Rome. These results should be 20 

interpreted with some caution, as they reflected a definition of crashes that include those that 21 
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resulted in no medical treatment. When we excluded crashes that did not result in an injury 1 

that required medical treatment, the differences between cities were much smaller, with the 2 

exception that Orebro was still far safer.  3 

Individual level cyclist crash risk is a complex phenomenon comprised of interactions 4 

between individuals and their road environment in both space and time (Schepers et al., 2014). 5 

At the individual level, we found that crash risks varied based on frequency of cycling. Those 6 

that reported higher cycling were at a lower risk, compared to those that reported lower rates 7 

of cycling. The non-linear relationship between average cycling per month and number of 8 

expected crashes suggest a “safety in exposure” effect, such as safety from being a more 9 

experienced cyclist. This is consistent with the “safety in numbers” effect observed at 10 

aggregated spatial units (Elvik and Bjørnskau, 2015; Jacobsen, 2003), suggesting an individual 11 

level component to this phenomenon. The “safety in numbers” effect has been attributed to 12 

behavioural aspects, such as drivers being more used to cyclists in high cycling environments, as 13 

well as structural aspects, such as safer cycling infrastructure attracting higher numbers of 14 

cyclists (Götschi et al., 2016). Our findings suggest that one contributing factor to “safety in 15 

numbers” might be a lower number of inexperienced or infrequent cyclists and/or the 16 

improvement of safety-relevant cycling skills with increasing experience/frequency (Elvik and 17 

Bjørnskau, 2015; Fyhri et al., 2017).  18 

Previous research has also found differences in crash risks between different 19 

sociodemographic groups, such as between men and women or older and younger adults 20 

(Vanparijs et al., 2015). In prospective studies, the relationship between gender and crash risk 21 
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has been mixed, with women having higher crash rates in Belgian (Degraeuwe et al., 2015) and 1 

Australian cohorts (Poulos et al., 2015), but lower crash rates in a New Zealand cohort 2 

(although not statistically significant) (Tin Tin et al., 2013). Women have also been found to be 3 

at higher risk for serious or fatal injuries while cycling using the bike share scheme of London 4 

(Woodcock et al., 2014), but have similar risks across the UK (Aldred and Dales, 2017). In our 5 

study, our parsimonious model suggests that men had a crash risk 1.43 times higher than 6 

women. These same cohorts also had mixed results concerning the relationship between age 7 

and crash risk, with one study finding that the risk of a minor crash decreases with age 8 

(Degraeuwe et al., 2015), another that it is lower for the youngest and oldest age groups 9 

(Poulos et al., 2015), and another that the directionality depends on whether the collision 10 

occurred on-street (risk increases with age) or with a motor vehicle (risk decreases with age) 11 

(Tin Tin et al., 2013). In this study we observed that crash risk was lower amongst older cyclists, 12 

but the trend was not statistically significant. The overall sample of PASTA participants 13 

(including non-cyclists) were broadly representative of gender distribution, but tended to be 14 

relatively younger compared to city census data (Gaupp-Berghausen et al., 2019).   15 

We can only speculate on the reasons behind why certain sociodemographic groups are 16 

lower risk than others, but we suggest lower risk is an association between belonging to a given 17 

sociodemographic group and a tendency to cycle at lower speeds, and/or engage in fewer risky 18 

behaviours (e.g. cycle in safer areas and/or cycle more cautiously). For example, our finding 19 

that women and older adults were at lower risk for a crash relative to men and younger adults, 20 

may reflect the fact women have been found to cycle at lower speeds than men (Aldred and 21 
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Crosweller, 2015) and have a stronger preference towards using safer infrastructure than men 1 

(Aldred et al., 2016). Similarly older adults may be more cautious when bicycling compared to 2 

younger adults (Bernhoft and Carstensen, 2008). 3 

A new contribution of this research is an inquiry on the association between differences 4 

in social environment and crash risk. We found that individual perceptions of social norms 5 

around cycling were associated with crash risk, where those who agreed that cycling was a well-6 

regarded mode of transport in their neighborhood were at lower risk for a crash than those 7 

that were neutral (1.16 times higher) or disagreed (1.28 times higher risk). The perception 8 

question was asked at baseline, so preceded any reported crashes. We suggest this variable 9 

may be in part capturing different built environment conditions, where those participants who 10 

think cycling is well regarded may live and travel in safer areas for cyclists, within their 11 

respective cities. A part of this may also be the safety in numbers effect, where a higher level 12 

agreement corresponds to an area with more cyclists due to the presumably more supportive 13 

social environment for cycling. 14 

Prospective studies such as this one indicate that cyclist crashes (including non-injury 15 

crashes) are more common than would be suggested by more conventional analyses of police 16 

or insurance data and travel surveys (Amoros et al., 2006; de Geus et al., 2012; Elvik and Mysen, 17 

1999; Juhra et al., 2012; Langley et al., 2003; Veisten et al., 2007; Watson et al., 2015; Winters 18 

and Branion-Calles, 2017). In this study, we found that on average across the cities, one crash 19 

occurs for every 725 hours bicycled. In contrast, a study in France that combined police 20 

recorded crashes and travel survey data found 1 crash per 93,023 hours of cycling (Blaizot et al., 21 
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2013). Only 3.9% of crashes reported to PASTA were recorded by police, at a rate of 1 per 1 

18,475 hours of cycling. Of course, police, insurance and hospital data capture more severe 2 

(less frequent) events, resulting in lower rates of crashes (Amoros et al., 2006; Blaizot et al., 3 

2013; Elvik and Mysen, 1999; Juhra et al., 2012; Veisten et al., 2007; Winters and Branion-4 

Calles, 2017). While less severe crashes are under-reported in police records, it is likely more 5 

severe events are under-reported in the PASTA dataset as it is not possible to self-report a 6 

fatality and we cannot ascertain if a participant has dropped out due to severe injury. However, 7 

non-injury events may not result in direct healthcare costs, but have important implications for 8 

cycling in terms of perceived safety, and potentially future uptake (Aldred et al., 2016; Aldred 9 

and Crosweller, 2015; Sanders, 2015), which consequently may have costs from non-10 

materialized health benefits from prevented cycling.  11 

Our study has several strengths and limitations. The prospective design enabled the 12 

collection of detailed exposure data, as well as data on a range of different crash types 13 

including falls and non-injury events, for a large number of individuals. The data collection was 14 

consistent across cities, enabling more valid comparisons. Furthermore, the study design 15 

allowed for multivariable analysis to assess impacts of individual factors on crash risks, a 16 

refinement over what can be done with aggregate data. The relationships we found between 17 

the selected explanatory variables and crash risk should not be interpreted as causal. The 18 

extent to which our sample of cyclists are representative of the broader cycling population is 19 

not known, and results should be interpreted with some caution. PASTA participants are more 20 

educated and younger than the general population (Gaupp-Berghausen et al., 2019), although 21 
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recruitment specifically oversampled cyclists, so there may be better representation of the 1 

cycling populations. The fact that our results show a lower risk of a crash with increasing time in 2 

the study may indicate some bias from loss to follow-up. There may be some reporting bias in 3 

crashes, although the repeated surveys (as little as 2 weeks apart) was designed to limit recall 4 

issues. This study primarily collected non-injury crashes and did not observe many serious 5 

injuries and is not able to record fatalities. We did not have traffic condition data to further 6 

explain neighbourhood level risks, and limitations to statistical power did not warrant further 7 

investigations of crash location attributes. The objective GIS measures of built environment 8 

(bike lane density, street density, building density, NDVI) only represent conditions within 300m 9 

of a participant’s residence and may not reflect the route conditions in which participants 10 

typically ride, especially for longer trips. Spatially resolved exposure data would allow for 11 

further important analyses, such as risks associated with specific route characteristics, but at 12 

the beginning of PASTA large scale collection of spatially resolved route data from participants 13 

was not feasible due to limitations of available tracking apps at the time. Passive detection of 14 

cycling routes through mobile tracking apps (Geurs et al., 2015) could enable the widespread 15 

collection of spatially resolved exposure data and more detailed investigation of policy relevant 16 

risk factors in future studies.  17 

5 Conclusions 18 
The PASTA design provides comparable crash risks for cyclists, adjusted for differences in age 19 

and gender and other variables, across the diverse set of seven European cities. The large 20 

variations in crash risks indicate that cyclists’ safety can still be improved considerably. 21 
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Longitudinal study designs can provide important insights into crash risk factors within cities, 1 

neighbourhoods, and population groups, in particular for minor crashes. Future research should 2 

focus on representative datasets that can integrate the most policy relevant crash risk factors 3 

such as route infrastructure and exposure to motorized modes, with individual characteristics 4 

and perceptions, benefitting from rapid progress in the collection of spatially resolved exposure 5 

data.  6 

Declaration of Competing Interest 7 
None. 8 

Funding sources 9 
This work was supported by the European PASTA project. PASTA is a 4-year project funded by 10 

the European Union's Seventh Framework Program under EC-GA No. 602624-2 (FP7-HEALTH-11 

2013-INNOVATION-1). The funders had no role in study design, analysis, or writing of this 12 

manuscript. MBC is supported by a SSHRC Doctoral Fellowship. MW holds a Scholar Award from 13 

the Michael Smith Foundation for Health Research.  14 

  15 



   

 

37 

 

 1 

References 2 
Aertsens, J., De Geus, B., Vandenbulcke, G., Degraeuwe, B., Broekx, S., De Nocker, L., Liekens, I., 3 

Mayeres, I., Meeusen, R., Thomas, I., Torfs, R., Willems, H., Panis, L.I., 2010. Commuting by 4 
bike in Belgium, the costs of minor accidents. Accid. Anal. Prev. 42 6 , 2149–2157. 5 
doi:10.1016/j.aap.2010.07.008 6 

Aldred, R., Crosweller, S., 2015. Investigating the rates and impacts of near misses and related 7 
incidents among UK cyclists. J. Transp. Heal. 2 3 , 379–393. doi:10.1016/j.jth.2015.05.006 8 

Aldred, R., Dales, J., 2017. Diversifying and normalising cycling in London, UK: An exploratory 9 
study on the influence of infrastructure. J. Transp. Heal. 4, 348–362. 10 
doi:10.1016/j.jth.2016.11.002 11 

Aldred, R., Elliott, B., Woodcock, J., Goodman, A., 2016. Cycling provision separated from motor 12 
traffic: a systematic review exploring whether stated preferences vary by gender and age. 13 
Transp. Rev. 1647 July , 1–27. doi:10.1080/01441647.2016.1200156 14 

Amoros, E., Martin, J.-L., Laumon, B., 2006. Under-reporting of road crash casualties in France. 15 
Accid. Anal. Prev. 38 4 , 627–635. doi:10.1016/j.aap.2005.11.006 16 

Azur, M.J., Stuart, E.A., Frangakis, C., Leaf, P.J., 2011. Multiple imputation by chained equations: 17 
what is it and how does it work? Int. J. Methods Psychiatr. Res. 20 1 , 40–49. 18 
doi:10.1002/mpr.329 19 

Beck, L.F., Dellinger, A.M., O’Neil, M.E., 2007. Motor vehicle crash injury rates by mode of 20 
travel, United States: Using exposure-based methods to quantify differences. Am. J. 21 
Epidemiol. 166 2 , 212–218. doi:10.1093/aje/kwm064 22 

Bernhoft, I.M., Carstensen, G., 2008. Preferences and behaviour of pedestrians and cyclists by 23 
age and gender. Transp. Res. Part F Traffic Psychol. Behav. 11 2 , 83–95. 24 
doi:10.1016/j.trf.2007.08.004 25 

Blaizot, S., Papon, F., Haddak, M.M., Amoros, E., 2013. Injury incidence rates of cyclists 26 
compared to pedestrians, car occupants and powered two-wheeler riders, using a medical 27 
registry and mobility data, Rhône County, France. Accid. Anal. Prev. 58, 35–45. 28 
doi:10.1016/j.aap.2013.04.018 29 

Castro, A., Kahlmeier, S., Gotschi, T., 2018. Exposure-Adjusted Road Fatality Rates for Cycling 30 
and Walking Fatality Rates for Cycling and Walking in European Countries Cycling and 31 
Walking in European Countries, in: International Transport Forum. Paris. 32 

Cerin, E., 2011. Statistical Approaches to Testing the Relationships of the Built Environment 33 
with Resident-Level Physical Activity Behavior and Health Outcomes in Cross-Sectional 34 
Studies with Cluster Sampling. J. Plan. Lit. 26 2 , 151–167. doi:10.1177/0885412210386229 35 

de Geus, B., Vandenbulcke, G., Int Panis, L., Thomas, I., Degraeuwe, B., Cumps, E., Aertsens, J., 36 
Torfs, R., Meeusen, R., 2012. A prospective cohort study on minor accidents involving 37 



   

 

38 

 

commuter cyclists in Belgium. Accid. Anal. Prev. 45, 683–693. 1 
doi:10.1016/j.aap.2011.09.045 2 

de Hartog, J.J., Boogaard, H., Nijland, H., Hoek, G., 2010. Do the health benefits of cycling 3 
outweigh the risks? Environ. Health Perspect. 118 8 , 1109–1116. 4 
doi:10.1289/ehp.0901747 5 

Degraeuwe, B., de Geus, B., Thomas, I., Vandenbulcke, G., Meeusen, R., Int Panis, L., 2015. 6 
Cycling Behaviour and Accident Risk of Utilitarian Cyclists in Belgium. Cycl. Futur. From Res. 7 
into Pract. 8 

Dons, E., Götschi, T., Nieuwenhuijsen, M., de Nazelle, A., Anaya, E., Avila-Palencia, I., Brand, C., 9 
Cole-Hunter, T., Gaupp-Berghausen, M., Kahlmeier, S., Laeremans, M., Mueller, N., 10 
Orjuela, J.P., Raser, E., Rojas-Rueda, D., Standaert, A., Stigell, E., Uhlmann, T., Gerike, R., Int 11 
Panis, L., 2015. Physical Activity through Sustainable Transport Approaches (PASTA): 12 
protocol for a multi-centre, longitudinal study. BMC Public Health 15 1 , 1126. 13 
doi:10.1186/s12889-015-2453-3 14 

Elvik, R., 2009. The non-linearity of risk and the promotion of environmentally sustainable 15 
transport. Accid. Anal. Prev. 41 4 , 849–55. doi:10.1016/j.aap.2009.04.009 16 

Elvik, R., Bjørnskau, T., 2015. Safety-in-numbers: A systematic review and meta-analysis of 17 
evidence. Saf. Sci. 0349 . doi:10.1016/j.ssci.2015.07.017 18 

Elvik, R., Mysen, A.B., 1999. Incomplete Accident Reporting: Meta-Analysis of Studies Made in 19 
13 Countries. Transp. Res. Rec. J. Transp. Res. Board 1665, 133–140. 20 

Fyhri, A., Sundfør, H.B., Bjørnskau, T., Laureshyn, A., 2017. Safety in numbers for cyclists—21 
conclusions from a multidisciplinary study of seasonal change in interplay and conflicts. 22 
Accid. Anal. Prev. 105, 124–133. doi:10.1016/j.aap.2016.04.039 23 

Gaupp-Berghausen, M., Raser, E., Anaya-Boig, E., Avila-Palencia, I., de Nazelle, A., Dons, E., 24 
Franzen, H., Gerike, R., Gotschi, T., Iacorossi, F., Hossinger, R., Nieuwenhuijsen, M., Rojas-25 
Rueda, D., Sanchez, J., Smeds, E., Deforth, M., Standaert, A., Stigell, E., Cole-Hunter, T., Int 26 
Panis, L., 2019. Evaluation of Different Recruitment Methods: Longitudinal, Web-Based, 27 
Pan-European Physical Activity Through Sustainable Transport Approaches (PASTA) 28 
Project. J. Med. Internet Res. 21 5 , e11492. doi:10.2196/11492 29 

Gerike, R., de Nazelle, A., Nieuwenhuijsen, M., Panis, L.I., Anaya, E., Avila-Palencia, I., Boschetti, 30 
F., Brand, C., Cole-Hunter, T., Dons, E., Eriksson, U., Gaupp-Berghausen, M., Kahlmeier, S., 31 
Laeremans, M., Mueller, N., Orjuela, J.P., Racioppi, F., Raser, E., Rojas-Rueda, D., 32 
Schweizer, C., Standaert, A., Uhlmann, T., Wegener, S., Götschi, T., 2016. Physical Activity 33 
through Sustainable Transport Approaches (PASTA): a study protocol for a multicentre 34 
project. BMJ Open 6, e009924. doi:10.1186/s12889-015-2453-3 35 

Geurs, K.T., Thomas, T., Bijlsma, M., Douhou, S., 2015. Automatic trip and mode detection with 36 
move smarter: First results from the Dutch Mobile Mobility Panel. Transp. Res. Procedia 37 
11, 247–262. doi:10.1016/j.trpro.2015.12.022 38 



   

 

39 

 

Götschi, T., de Nazelle, A., Brand, C., Gerike, R., 2017. Towards a Comprehensive Conceptual 1 
Framework of Active Travel Behavior: a Review and Synthesis of Published Frameworks. 2 
Curr. Environ. Heal. reports 4 3 , 286–295. doi:10.1007/s40572-017-0149-9 3 

Götschi, T., Garrard, J., Giles-Corti, B., 2016. Cycling as a Part of Daily Life: A Review of Health 4 
Perspectives. Transp. Rev. 36 1 , 45–71. doi:10.1080/01441647.2015.1057877 5 

Hautzinger, H., Pastor, C., Pfeiffer, M., Schmidt, J., 2007. Analysis Methods for Accident and 6 
Injury Risk Studies. 7 

Heinen, E., van Wee, B., Maat, K., 2010. Commuting by Bicycle: An Overview of the Literature. 8 
Transp. Rev. 30 1 , 59–96. doi:10.1080/01441640903187001 9 

Hilbe, J.M., 2014. Modeling Count Data. Cambridge University Press, New York. 10 
Jacobsen, P.L., 2003. Safety in numbers: more walkers and bicyclists, safer walking and 11 

bicycling. Inj. Prev. 9 3 , 205–209. doi:10.1136/ip.9.3.205 12 
Juhra, C., Wieskötter, B., Chu, K., Trost, L., Weiss, U., Messerschmidt, M., Malczyk, A., Heckwolf, 13 

M., Raschke, M., 2012. Bicycle accidents – Do we only see the tip of the iceberg? Injury 43 14 
12 , 2026–2034. doi:10.1016/j.injury.2011.10.016 15 

Langley, J., Dow, N., Stephenson, S., Kypri, K., 2003. Missing Cyclists. Inj. Prev. 9 4 , 376–379. 16 
doi:10.1136/ip.9.4.376 17 

Mindell, J.S., Leslie, D., Wardlaw, M., 2012. Exposure-Based, “Like-for-Like” Assessment of Road 18 
Safety by Travel Mode Using Routine Health Data. PLoS One 7 12 , 1–10. 19 
doi:10.1371/journal.pone.0050606 20 

Mueller, N., Rojas-Rueda, D., Cole-Hunter, T., de Nazelle, A., Dons, E., Gerike, R., Götschi, T., Int 21 
Panis, L., Kahlmeier, S., Nieuwenhuijsen, M., 2015. Health impact assessment of active 22 
transportation: A systematic review. Prev. Med. (Baltim). 76, 103–114. 23 
doi:10.1016/j.ypmed.2015.04.010 24 

Mueller, N., Rojas-Rueda, D., Salmon, M., Martinez, D., Ambros, A., Brand, C., de Nazelle, A., 25 
Dons, E., Gaupp-Berghausen, M., Gerike, R., Götschi, T., Iacorossi, F., Int Panis, L., 26 
Kahlmeier, S., Raser, E., Nieuwenhuijsen, M., 2018. Health impact assessment of cycling 27 
network expansions in European cities. Prev. Med. (Baltim). 109 January , 62–70. 28 
doi:10.1016/j.ypmed.2017.12.011 29 

Nunan, D., Aronson, J., Bankhead, C., 2018. Catalogue of bias: attrition bias. BMJ Evidence-30 
Based Med. 23 1 , 21–22. doi:10.1136/ebmed-2017-110883 31 

PASTA Consortium, 2018a. Facts on Active Mobility: Örebro/Belgium [WWW Document]. URL 32 
http://www.pastaproject.eu/fileadmin/editor-33 
upload/sitecontent/Publications/documents/AM_Factsheet_Oebrebro_WP2.pdf (accessed 34 
6.1.19). 35 

PASTA Consortium, 2018b. Facts on Active Mobility: Antwerp/Belgium [WWW Document]. URL 36 
http://www.pastaproject.eu/fileadmin/editor-37 



   

 

40 

 

upload/sitecontent/Publications/documents/AM_Factsheet_Antwerp_WP2.pdf (accessed 1 
6.1.19). 2 

PASTA Consortium, 2018c. Facts on Active Mobility: Vienna/Austria [WWW Document]. URL 3 
http://www.pastaproject.eu/fileadmin/editor-4 
upload/sitecontent/Publications/documents/AM_Factsheet_Vienna_WP2.pdf (accessed 5 
6.1.19). 6 

PASTA Consortium, 2018d. Facts on Active Mobility: Zürich/Switzerland [WWW Document]. 7 
URL http://www.pastaproject.eu/fileadmin/editor-8 
upload/sitecontent/Publications/documents/AM_Factsheet_Zurich_WP2.pdf (accessed 9 
6.1.19). 10 

PASTA Consortium, 2018e. Facts on Active Mobility: Barcelona / Spain [WWW Document]. URL 11 
http://www.pastaproject.eu/fileadmin/editor-12 
upload/sitecontent/Publications/documents/AM_Factsheet_Barcelona_WP2.pdf 13 
(accessed 6.1.19). 14 

PASTA Consortium, 2018f. Facts on Active Mobility: Rome / Italy [WWW Document]. URL 15 
http://www.pastaproject.eu/fileadmin/editor-16 
upload/sitecontent/Publications/documents/AM_Factsheet_Rome_WP2.pdf (accessed 17 
6.1.19). 18 

Poulos, R.G., Hatfield, J., Rissel, C., Flack, L.K., Murphy, S., Grzebieta, R., McIntosh, A.S., 2015. 19 
An exposure based study of crash and injury rates in a cohort of transport and recreational 20 
cyclists in New South Wales, Australia. Accid. Anal. Prev. 78, 29–38. 21 
doi:10.1016/j.aap.2015.02.009 22 

Poulos, R.G., Hatfield, J., Rissel, C., Grzebieta, R., McIntosh,  a. S., 2012. Exposure-based cycling 23 
crash, near miss and injury rates: The Safer Cycling Prospective Cohort Study protocol. Inj. 24 
Prev. 18 1 , e1–e1. doi:10.1136/injuryprev-2011-040160 25 

Raser, E., Gaupp-Berghausen, M., Dons, E., Anaya-Boig, E., Avila-Palencia, I., Brand, C., Castro, 26 
A., Clark, A., Eriksson, U., Götschi, T., Int Panis, L., Kahlmeier, S., Laeremans, M., Mueller, 27 
N., Nieuwenhuijsen, M., Orjuela, J.P., Rojas-Rueda, D., Standaert, A., Stigell, E., Gerike, R., 28 
2018. European cyclists’ travel behavior: Differences and similarities between seven 29 
European (PASTA) cities. J. Transp. Heal. January , 0–1. doi:10.1016/j.jth.2018.02.006 30 

Reynolds, S., Tranter, M., Baden, P., Mais, D., Dhani, A., Wolch, E., Bhagat, A., 2017. Reported 31 
Road Casualties Great Britain 2016. London. 32 

Rojas-Rueda, D., De Nazelle, A., Andersen, Z.J., Braun-Fahrländer, C., Bruha, J., Bruhova-33 
Foltynova, H., Desqueyroux, H., Praznoczy, C., Ragettli, M.S., Tainio, M., Nieuwenhuijsen, 34 
M.J., 2016. Health impacts of active transportation in Europe. PLoS One 11 3 , 1–14. 35 
doi:10.1371/journal.pone.0149990 36 

Sanders, R.L., 2015. Perceived traffic risk for cyclists: The impact of near miss and collision 37 
experiences. Accid. Anal. Prev. 75, 26–34. doi:10.1016/j.aap.2014.11.004 38 



   

 

41 

 

Santamarina-Rubio, E., Perez, K., Olabarria, M., Novoa, A.M., 2014. Gender differences in road 1 
traffic injury rate using time travelled as a measure of exposure. Accid. Anal. Prev. 65, 1–7. 2 
doi:10.1016/j.aap.2013.11.015 3 

Schepers, P., Hagenzieker, M., Methorst, R., Van Wee, B., Wegman, F., 2014. A conceptual 4 
framework for road safety and mobility applied to cycling safety. Accid. Anal. Prev. 62, 5 
331–340. doi:10.1016/j.aap.2013.03.032 6 

Scholes, S., Wardlaw, M., Anciaes, P., Heydecker, B., Mindell, J.S., 2018. Fatality rates associated 7 
with driving and cycling for all road users in Great Britain 2005–2013. J. Transp. Heal. 8 8 
September 2017 , 321–333. doi:10.1016/j.jth.2017.11.143 9 

Teschke, K., Anne Harris, M., Reynolds, C.C.O., Shen, H., Cripton, P.A., Winters, M., 2013. 10 
Exposure-based traffic crash injury rates by mode of travel in British Columbia. Can. J. 11 
Public Heal. 104 1 , e75–e79. 12 

Tin Tin, S., Woodward, A., Ameratunga, S., 2013. Incidence, risk, and protective factors of 13 
bicycle crashes: Findings from a prospective cohort study in New Zealand. Prev. Med. 14 
(Baltim). 57 3 , 152–161. doi:10.1016/j.ypmed.2013.05.001 15 

van Buuren, S., 2018. Flexible imputation of missing data, Second edi. ed, Interdisciplinary 16 
statistics. Boca Raton, FL : CRC Press, Taylor & Francis Group. 17 

van Buuren, S., Groothuis-Oudshoorn, K., 2011. mice : Multivariate Imputation by Chained 18 
Equations in R. J. Stat. Softw. 45 3 , 1–67. doi:10.18637/jss.v045.i03 19 

Vanparijs, J., Int Panis, L., Meeusen, R., de Geus, B., 2016. Characteristics of bicycle crashes in 20 
an adolescent population in Flanders (Belgium). Accid. Anal. Prev. 97, 103–110. 21 
doi:10.1016/j.aap.2016.08.018 22 

Vanparijs, J., Int Panis, L., Meeusen, R., de Geus, B., 2015. Exposure measurement in bicycle 23 
safety analysis: A review of the literature. Accid. Anal. Prev. 84, 9–19. 24 
doi:10.1016/j.aap.2015.08.007 25 

Veisten, K., Sælensminde, K., Alvær, K., Bjørnskau, T., Elvik, R., Schistad, T., Ytterstad, B., 2007. 26 
Total costs of bicycle injuries in Norway: Correcting injury figures and indicating data 27 
needs. Accid. Anal. Prev. 39 6 , 1162–1169. doi:10.1016/j.aap.2007.03.002 28 

Watson, A., Watson, B., Vallmuur, K., 2015. Estimating under-reporting of road crash injuries to 29 
police using multiple linked data collections. Accid. Anal. Prev. 83, 18–25. 30 
doi:10.1016/j.aap.2015.06.011 31 

Wegman, F., Zhang, F., Dijkstra, A., 2012. How to make more cycling good for road safety? 32 
Accid. Anal. Prev. 44 1 , 19–29. doi:10.1016/j.aap.2010.11.010 33 

Willis, D.P., Manaugh, K., El-Geneidy, A., 2015. Cycling Under Influence: Summarizing the 34 
Influence of Perceptions, Attitudes, Habits, and Social Environments on Cycling for 35 
Transportation. Int. J. Sustain. Transp. 9 8 , 565–579. doi:10.1080/15568318.2013.827285 36 

Winters, M., Branion-Calles, M., 2017. Cycling safety: Quantifying the under reporting of cycling 37 



   

 

42 

 

incidents in Vancouver, British Columbia. J. Transp. Heal. 7, 48–53. 1 
doi:10.1016/j.jth.2017.02.010 2 

Woodcock, J., Tainio, M., Cheshire, J., O’Brien, O., Goodman, A., 2014. Health effects of the 3 
London bicycle sharing system: Health impact modelling study. BMJ 348 February , 1–14. 4 
doi:10.1136/bmj.g425 5 

World Health Organization, 2019. Global Physical Activity Surveillance [WWW Document]. URL 6 
http://www.who.int/ncds/surveillance/steps/GPAQ/en/ (accessed 6.15.19). 7 

Yannis, G., Papadimitriou, E., Chaziris, A., Broughton, J., 2014. Modeling road accident injury 8 
under-reporting in Europe. Eur. Transp. Res. Rev. 6 4 , 425–438. doi:10.1007/s12544-014-9 
0142-4 10 

 11 

  12 


