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Abstract. Feedback and feedforward are two fundamental mechanisms that sup-
port users’ activities while interacting with computing devices. While feedback 
can be easily solved by providing information to the users following the trigger-
ing of an action, feedforward is much more complex as it must provide infor-
mation before an action is performed. For interactive applications where making 
a mistake has more impact than just reduced user comfort, correct feedforward is 
an essential step toward correctly informed, and thus safe, usage. Our approach, 
Fortunettes, is a generic mechanism providing a systematic way of designing 
feedforward addressing both action and presentation problems. Including a feed-
forward mechanism significantly increases the complexity of the interactive ap-
plication hardening developers’ tasks to detect and correct defects. We build 
upon an existing formal notation based on Petri Nets for describing the behavior 
of interactive applications and present an approach that allows for adding correct 
and consistent feedforward.  

Keywords: Feedforward, formal methods, Petri nets, interactive systems engi-
neering. 

1 Introduction 

As applications are becoming increasingly more complex, it becomes harder to design 
user interfaces that are easy to understand. According to Norman’s action theory (Nor-
man 1988), Feedback and feedforward are two fundamental mechanisms during inter-
action that help cross the Gulf of Evaluation (Lee & Yamada 2010) and the Gulf of 
Execution (Schwarz et al. 2011) respectively. While feedback explains to the user what 
has happened as a result of an action, feedforward provides this information before-
hand, before the action is performed. Feedforward is particularly useful when the user 
is deciding which action to perform next or to assess the impact of the next action. 
Similar to the pending concept of a security function (Yoon et al. 2015) or a safety 
function (Lee & Yamada 2010), we argue that feedforward is a usability function. 
While a safety function can be defined as a function added to a system to prevent un-
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desired safety problems (for instance a safety belt in a car does not impact driving ca-
pabilities of the driver but only improves safety), we would define a usability function 
as a function added to an interactive system to prevent undesired usability problems 
and to globally improve usability (without altering the functionalities offered by the 
system). Within this context, feedforward can be considered as a usability function sim-
ilar to “undo”. Undo is known to be difficult to implement (Zhang & Wang 2000) due 
to its crosscutting nature (Bass et al. 2020) which is the main reason why it is not always 
available in interactive applications 

Similarly, despite the clear benefits, there is a lack of support for feedforward in 
existing GUI toolkits. There is no standardized way to specify and implement feedfor-
ward. As a result, developers often need to implement ad hoc solutions, which can lead 
to inconsistent feedforward behavior. In Microsoft Word (Office 2016) for example, 
when some text is selected, hovering over markup options such as text color will result 
in a preview (Fig. 1 a), while feedforward for other typesetting options such as bold is 
limited to a tooltip (Fig. 1 b). 

 

  
(a) Both tooltip and markup preview (b) Tooltip only and no markup preview 

Fig. 1. Inconsistent feedforward in Microsoft Word (Office 2016): (a) when hovering a color, a 
markup preview is rendered (text is shown green) in addition to the tooltip, (b) while hovering 
the ‘bold’ option, only a tooltip is provided and a markup preview is missing (text is not shown 
in bold). 

Such inconsistent feedforward demonstrates the need to support both designers and 
developers who need to provide that usability function. On the design side, this means 
providing a systematic way to support how to present feedforward (to let users know 
what the outcome of an action will be without committing to that action) and how to 
interact with feedforward functions. On the development side, this means providing a 
systematic way to support how to implement feedforward (e.g. providing developpers 
with implementation patterns (such as Model-View-Controller (Buschmann 1996) for 
managing multiple views on the same data or object-oriented patterns for undo (Berlage 
1994)). One can identify two main types of feedforward: automatic and user-triggered. 
Automatic feedforward is often available in well-designed interfaces and corresponds 
to the enabling and the disabling of user interface widget answering the question: 
“which functions are available?”. User-triggered feedforward provides localized, con-
textual information to the users related to the actions that they envision triggering (e.g. 
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part a) of Fig. 1). User-triggered feedforward is usually not available in user interfaces, 
as it requires computing the future state of the application (if a given action is per-
formed) and presenting this future state on the UI. 

In this paper, we significantly improve previous work from Coppers et al., which 
presented both a generic design for feedforward and its user evaluation in terms of user 
experience and usability (Coppers et al. 2019). Indeed, the paper proposes a formal 
approach for both specification and implementation of feedforward in a systematic way. 
We present how high-level Petri nets such as ICOs (Navarre et al. 2009) can describe 
feedforward and how the resulting models are amenable to verification (to remove de-
velopment faults and to identify and check properties on the interactive system offering 
feedforward). When WIMP interactive systems are developed following an ICO-based 
approach, an ICO model (i.e. a high-level Petri net) is produced that describes in a 
complete and unambiguous way the behavior, the interaction and the presentation for 
each window (Navarre et al. 2009). In this paper, we propose to produce a Petri net 
model (called Feedforward net) in addition to the model describing the application. To 
this end we propose a generic behavioral pattern for feedforward that eases the produc-
tion of the Feedforward net, that guarantees that feedforward will always exhibit the 
same behavior and prevent the addition of development faults. Lastly, we present how 
this pattern is applied on the formal model of the initial application refining it in a sys-
tematic way to provide feedforward functionality, thus reducing development cost of 
this usability function.  

 

Fig. 2. Taxonomy of faults in computing systems (adapted from (Avizienis et al. 2004) and as-
sociated issues for the dependability of these systems. 

To be able to ensure that the system will behave properly whatever happens, a system 
designer has to consider all the issues that can impair the functioning of that system. To 
this end the domain of dependable computing e.g. Avizienis et al. (Avizienis et al. 2004) 
have defined a taxonomy of faults. This taxonomy leads to the identification of 31 ele-
mentary classes of faults. Fig. 2 presents a simplified view of this taxonomy and makes 
explicit the two main categories of faults (top level of the figure): i) the ones made at 
development time (see left-hand side of the figure) including bad designs, programming 



7 

errors, … and ii) the one made at operation times (see right-hand side of the figure) 
including operator errors such as slips, lapses and mistakes as defined in (Reason 1990). 

The leaves of the taxonomy are grouped into five different categories as each of them 
bring a special problem (issue) to be addressed: 

 Development software faults (issue 1): software faults introduced by a human during 
system development. They can be, for instance, bad design errors, bugs due to faulty 
coding, development mistakes … 

 Malicious faults (issue 2): faults introduced by human with the deliberate objective 
of damaging the system. They can be, for instance, an external hack causing service 
denial or crash of the system. 

 Development hardware faults (issue 3): natural (e.g. caused by a natural phenome-
non without human involvement) as well as human-made faults affecting the hard-
ware during its development. They can be, for instance, a short circuit within a pro-
cessor (due to bad construction). 

 Operational natural faults (issue 4): faults caused by a natural phenomenon without 
human participation, affecting hardware as well as information stored on hardware 
and occurring during the service of the system. As they affect hardware faults are 
likely to propagate to software as well. They can be, for instance, a memory altera-
tion due to a cosmic radiation. 

 Operational human-errors (issue 5): faults resulting from human action during the 
use of the system. They include faults affecting the hardware and the software, being 
deliberate or non-deliberate but don’t encompass malicious ones. Connection be-
tween this taxonomy and classical human error classification as the one defined in 
(Reason 1990) can be easily made with deliberate faults corresponding to mistakes 
or violations (Polet et al. 2002) and non-deliberate ones being either slips or lapse.  

While such taxonomy has been used in other contexts to identify dependable mecha-
nisms for interactive systems (Fayollas et al. 2017), we use it to make explicit the link 
between usability functions and development faults. Indeed, the more designers add 
usability function to prevent human made errors (issue 5 of Fig. 2) the more complex 
the system to build and the more likely developers will add development faults (issue 
1 of Fig. 2). This paper proposes a UI design to support users interacting with the usa-
bility function Feedforward as well as a formal design pattern for feedforward to sup-
port developers’ activities (knowing what to implement , implementing always the 
same behavior and avoiding development faults) when implementing that function.  

The remainder of this paper is structured as follows. Section 2 presents the founda-
tions, interaction and one design for the Fortunettes concept for feedforward usability 
function. Section 3 presents the illustrative example of a simple widget-based interac-
tive application that is used throughout the paper. Section 4 presents the Petri nets based 
modeling approach for modeling interactive applications and its application to the mod-
elling of Fortunettes usability function. Section 5 focusses on the formal analysis of the 
application model and of the feedforward nets. Section 6 concludes the paper and high-
light paths for future work.  
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2 Fortunettes: Design, Foundations and Use 

2.1 Interaction 

In previous work, the concept of Fortunettes was introduced (Coppers et al. 2019) 
as follows: a structured and precisely defined approach to integrate feedforward infor-
mation about the future state of an application into standard GUI widget sets. In their 
user study with 104 participants, Coppers et al. found that the feedforward provided by 
Fortunettes helps users to understand what the outcome of an action will be, before they 
have performed that action. 
Similar to feedback, feedforward does not need to be presented permanently. Instead, 
it should only be presented when more confidence is needed (Coppers et al. 2019) to 
avoid cluttering the UI and to prevent visual overload. We identified three situations 
where users are interested in feedforward information:  

 when a high impact decision needs to be made (i.e. the user performs an action that 
is not reversible; there is no undo available for that action),  

 when the user interacts with lesser known parts of the user interface, 
 or when the user explicitly asks for additional information on what might happen 

when an action is executed.  

Based on these three situations, we introduce a three-step interaction pattern to ex-
plore the future state of an application (see Fig. 3): (1) peek into the future, (2) go to 
the future, and (3) return to the present. 

 

Fig. 3. Feedforward is presented in an intermediate state between the present and the future. 
Adapted from (Coppers et al. 2019). 

When the user is considering performing an action, s/he can peek into the future 
to run a simulation of what the outcome of that action will be. The user interface shows 
previews about this information and allows for one of two possible actions: the user is 
no longer considering an action and returns to the present, or the user actually con-
firms the action, in which case the action is actually executed and the application tran-
sitions to the future.  

In the remainder of this paper, we use mouse enter events (hover) to activate the 
feedforward layer and to peek into the future for all widgets, and we use mouse leave 
events to hide the feedforward layer and to return to the present. However, the feedfor-
ward mechanism can be adapted to become less intrusive by only showing feedforward 
for actions that are less likely to be understood by a user, or by choosing a different 
trigger to activate feedforward such as long hover. The feedforward mechanism could 
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also be optional (i.e. disabled by default), and only activated on-demand by holding 
`$CTRL$' on the keyboard, for example. 

2.2 Visualization 

The initial goal of this work is to inform users early about the outcome of an action. 
This outcome can be represented by a new application state, which consists of a set of 
new widgets states. We decided to embed information about the future widget states in 
the widgets themselves for high-cohesion, for scalability and for reusability in any 
widget-based application. Fig. 4 demonstrates how standard widgets look when the de-
sign language of Fortunettes is applied to them. The design language embeds an addi-
tional feedforward component behind the widget, without interfering with existing de-
sign conventions. In this design, the feedforward component presents information about 
the future availability of the widget and the future value. The border of the feedforward 
components shows whether the widget will become disabled (dashed) or will become 
enabled (solid) (Fig. 4a). The text content and background color present the future value 
of the widget (Fig. 4b). 

 

 

Fig. 4. A demonstration of what widgets looks like during the intermediary feedforward phase 
using the Fortunettes design language. The layer stacked behind the original widget provides 
information about the future availability and value of a widget. (a, left) Dashed borders means 
the widget will become disabled, whereas (a, right) a solid border means the widget will become 
enabled. (b) The background of the stacked layer represents the future value (Coppers et al. 
2019). 

The Fortunettes design language for widgets is intended as a proof-of-concept for 
our feedforward mechanism. The design can definitely be improved to reduce visual 
clutter (especially in more complex applications), for example by aggregating feedfor-
ward information. However, design variations do not have any impact on the contrib-
uted engineering perspectives and are beyond the scope of this paper.  
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2.3 Examples 

Later in this paper, we will revisit the simple login example and the more complex 
weather radar example presented in (Barboni et al. 2006) to discuss how they can be 
engineered using our novel model-based approach. For the sake of self-containment of 
this paper, we briefly summarize their (feedforward) behavior in the remainder of this 
section. 

 
2.3.1 Login 

The user interface of the login example is presented in Fig. 5. It is composed of four 
widgets (three buttons and a textbox). In Fig. 5 a), only the ‘Login’ button is enabled, 
and all other widgets are disabled. When a user hovers over the ‘Login’ button Fig. 5 
b), the feedforward component behind each widget becomes visible to show the state 
that would occur when the user would click the ‘Login’ button. The feedforward infor-
mation explains to the user that the ‘Login’ button will become disabled, and the ‘Log-
out’ button and the textfield will become enabled. Since the state of the ‘Send and 
Clear’ button does not change, we follow the parsimony principle of user interface 
designs by not showing any feedforward for this widget. Indeed, When the user clicks 
the ‘Login’ button, the interface transitions to the state depicted in Fig. 5 c). In that 
state, the ‘Login’ and the ‘Send and Clear’ buttons are disabled while the ‘Logout’ 
button and the textfield are enabled. In this state, the user can write a message but can-
not send when the text is empty. When the textfield is no longer empty, the interface 
transitions to the state depicted Fig. 5 d), in which the ‘Send and Clear’ button is ena-
bled. If the textfield becomes empty again (by removing characters or by pressing the 
‘Send and Clear’ button), the application transitions back to the state depicted in Fig. 
5 c). Pressing the ‘Logout’ button resets the interface to the initial state depicted in Fig. 
5 a). 
 

 
(a) The user is logged out.  
Only ‘Login’ is enabled. 

 

 
(b) When hovering ‘Login’, feedforward 
shows that ‘Logout’ and the textfield will 

enable, while ‘Login’ will disable. 
 

 
(c) When clicking ‘Login’, the future state 

shown in (b) becomes the new state. 

 
(d) The user has typed a message, which en-

ables ‘Send and clear’. 
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Fig. 5. Screenshots of the login application.  

2.3.2 Cockpit Weather Radar 

The weather radar (WXR) presented in this section is built upon an application cur-
rently deployed in many cockpits of commercial aircrafts. WXR provides support to 
pilots’ activities by increasing their awareness of meteorological phenomena during the 
flight journey. It allows them to determine the weather ahead of the aircraft which might 
end up in requesting a trajectory change, in order to avoid storms or precipitations for 
example. Fig. 6 presents a screenshot of the weather radar control panel, used to operate 
the weather radar application. This panel provides the crew with two functionalities.  
The first one is dedicated to the mode selection of the weather radar and provides in-
formation about the radar status, to ensure that it can be set up correctly. The mode 
change can be performed in the upper part of the panel. The second functionality, avail-
able in the lower part of the window, is dedicated to the adjustment of the weather radar 
orientation (Tilt angle). This can be done in an automatic or a manually way (Auto/man-
ual buttons). Additionally, a stabilization function aims at keeping the radar beam stable 
even in case of turbulences 

Fig. 6 (left-hand side) shows the initial state of the application. In that state (lower 
part of the Figure) the application is in the automatic mode, i.e. the only button available 
is the ‘Manual’ one. The upper part of the Figure presents the set of five radio buttons 
corresponding to the five states of the weather radar. In the interaction presented WXR 
mode is ‘Off’ which is graphically made visible by the selected radio button ‘Off’. The 
user is currently hovering the ‘WXA’ presenting feedforward information. If the user 
clicks on the ‘WXA’ radio button it will become selected and the ‘OFF’ radio button 
will become unselected. Fig. 6 (center) shows the feedforward display when the user 
hovers the ‘Manual’ button from Fig. 6 (left). In that state, feedforward information is 
presented for the widgets in the lower part of the window (the upper part of the window 
is not impacted by clicking on that button). Feedforward information on widgets in-
forms the user that clicking on ‘MANUAL’ will make buttons ‘AUTO’ and ‘OFF’ 
available and that ‘MANUAL’ will become unavailable. If the user clicks on 
‘MANUAL’ the application moves to the state represented in Fig. 6 (right-hand side) 
and if the user hovers the ‘OFF’ button feedforward information is presented. That 
feedforward information tells that clicking on the ‘OFF’ button will make the ‘ON’ 
button and the ‘TILT ANGLE’ text box available. In addition, the ‘OFF’ button will 
become unavailable.  
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Fig. 6. Screen shots of the weather radar application that can be found in airplane cockpits (Cop-
pers et al. 2019). 

Although both user interfaces have a simple graphical interface, the underlying behav-
ior for the weather radar is very complex. This is often the case for specialized applica-
tions that are targeted toward expert users. Even for expert users it is difficult to have a 
complete mental model of the behavior of the application, and some guidance may be 
very useful for interactions that influences the application state in a far-reaching way. 

3 Modelling of Fortunettes behavior 

To support the engineering of interactive applications that include feedforward, we pro-
pose an approach based on a formal description technique called Interactive Coopera-
tive Objects (ICO). The ICO formalism is a formal description technique, based on 
Petri nets, dedicated to the modeling and the implementation of event-driven interfaces 
(Navarre et al. 2009). We firstly present in this Section the formal description technique 
and how it can be used to model the behavior of an interactive application, then we 
present how it is possible to derive the feedforward behavior of the application from 
the existing model of the application behavior. 
3.1 ICO formal description technique 

The ICO formalism uses a decomposition of communicating objects to model the sys-
tem, where both behavior of objects and communication protocol between objects are 
described by the Petri net dialect Cooperative Objects (CO) (Navarre et al. 2009). In 
the ICO formalism, an object is an entity featuring four components: (1) a cooperative 
object which describes the behavior of the object, (2) a presentation part (i.e. the graph-
ical interface), (3) an activation function and (4) a rendering function. These functions 
are the connection between the behavior of the object and the presentation (including 
interaction). 

An ICO specification describes user interactions supported by the associated appli-
cation. The specification encompasses both the "input" aspects of the interaction (i.e. 
how user actions impact the inner state of the application, and which actions are enabled 
at any given time) and its "output" aspects (i.e. when and how the application displays 
state information that is relevant to the user).This formal description technique has al-
ready been applied in the field of Air Traffic Control interactive applications (Navarre 
et al. 2009), space command and control ground systems (Palanque et al. 2006), or 
military (Bastide et al. 2004)  as well as civil cockpits (Barboni et al. 2006).  
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The ICO notation is fully supported by a CASE tool called PetShop (Bastide et al. 
2002) and (Palanque et al. 2009). All the models presented in the two next Sections (3 
and 5) have been edited, simulated and analyzed using PetShop tool. 

3.2 Principle of Fortunettes feedforward modelling using ICO 

Engineering an interactive application that includes feedforward in its representation, 
requires handling additional special-purpose interaction events, which we call feedfor-
ward events. Indeed, when the user wants to know the impact of an action (for instance 
by clicking on a button called action, the feedforward events are:  

- an event for peeking into the future without changing the current application 
state, the name convention we use for this event is “FactionPerformed”;  

- an event to go to the future and committing to the future state that is presented 
and the name convention we use for this event is “InFactionPerformed”;  

- and an event to return to the present and omitting any possible future state that 
was shown and the name convention we use for this event is “UFactionPer-
formed”. 

These events need to be supported without affecting the behavior of the associated ap-
plication. It is obvious adding feedforward can never interfere with the intended inter-
active behavior of an application, since its sole purpose is to show the user what will 
happen according to the intended behavior. Although this is evident from an interaction 
design point of view, it has an important impact on how feedforward behavior can be 
modelled. Our approach uses two core principles for modeling an application that ex-
poses feedforward information: 

1. The feedforward behavior is modelled as an independent ICO specification, 
that includes a copy of the ICO model of the standard behavior. This ensures 
the added feedforward fully compatible with the original application behavior. 
This Petri net model is called the Feedforward net as it allows users to look 
into the future of the application. 

2. Access to feedforward from within the standard behavior is modeled by for-
warding the interaction to the Feedforward net when a future event occurs. 
We define a special purpose pattern described in Petri nets that models the 
transition from standard behavior to the behavior defined in a Feedforward 
net.  

By means of these two modelling principles, we can now exploit the behavior of the 
application to forecast the future states of the application if the user decides to use feed-
forward function. 
 
 
In Fig. 7. a simple example is shown of an ICO behavioral specification for a login 
action. In the model, rectangles (called transitions) represent actions the system can 
perform while ellipses (called places) represent state variables of the system. Places can 
hold tokens and the distribution of tokens in the places models the current state of the 
model. A transition is said to be fireable if each of its input places holds at least one 
token. When fired, a transition removes one token from each of its input place and sets 
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one token in each of its output places (see (Bastide & Palanque 1999) for a detailed 
explanation). The login transition is the event handler for an event called loginPer-
formed that represents the use of the button Login. When fired, this transition moves 
the token from place LoggedOut ( ) to place LoggedIn, setting the state of the ap-
plication to the new state following the execution of the login (corresponding code not 
represented here). 

 

Fig. 7. Excerpt from the Petri net model of the standard behavior of a login dialog. In the transi-
tion, the text on the left describes the name of the transition while the text on the right (preceded 
by ::) describes the name of the event associated the transition.  

When introducing the feedforward view on this action, three handlers for future 
events extra event handlers (peek into the future, go to the future and return to the pre-
sent) are included. Fig. 8. illustrates this for the login example: from the event handler 
loginPerformed the following additional event handlers {FloginPerformed, 
UFloginPerformed, InFloginPerformed} are generated. The name of the generated 
future event handlers are generated re-using the name of the corresponding event han-
dler, prefixed by F (that represents entering in Fortunettes mode, e.g. peek into the 
future), by UF (that represents exiting the Fortunettes mode, e.g. return to the present) 
and InF (that represents exiting the Fortunettes mode and go to the future). 

 

Fig. 8. Extracted from the feedforward behavior of the application: event handling of the login 
action and peek into its future. 

In Fig. 8. , transition f1login (event handler for FloginPerformed) represents the action 
of peeking into the future of the action login. Basically, it behaves in the same way as 
the original action (put a token in place LoggedIn) while the standard behavior is still 
in state LoggedOut. It additionally puts a token in place flogin that represents the en-
tering in feedforward mode (a dedicated rendering may occur). 

 
There are then two possibilities that need to be supported by the Fortunettes pattern: 

1. The user decides to perform the action, e.g. by clicking a button. in this case the 
login actionis triggered by clicking the login button, which results in the produc-
tion of two events: loginPerformed handled by the standard behavior (making it 
going to the state LoggedIn) and InFloginPerformed handled by the feedforward 
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behavior (discarding the token in place flogin, while the token in place LoggedIn 
does not move, placing it in the same state as the standard behavior). 

 The user decides not to perform the action, e.g. by moving the mouse away from the 
widget that is in focus. In this case the login action is not triggered by moving the 
mouse away from the login button, and an event UFloginPerformed. The standard 
behavior remains in the same state while in the feedforward behavior, the tokens 
from places LoggedIn and flogin are removed and a token goes back to the place 
LoggedOut, making it return to its previous state (leaving the feedforward mode). 

This pattern is particularly efficient when describing feedforward behavior for events 
that do not handle values or when the widgets are simple such as button. This pattern 
may need to be extended to cover a wider range of (more complex) cases: 

 When values are handled by the action performed by the widget, it is not always 
possible to peek into the future for these values. In this case, the pattern is extended 
with two steps: when entering the feedforward mode, an envisioned value must be 
produced (decided at design time for instance and presented to the user when feed-
forward is triggered) and when the user performs the action, a substitution must be 
presented between the envisioned value and the real value. In the feedforward be-
havior, this can be done when tokens are created. For instance, if such value was 
needed in the login application, the token set in place LoggedIn by transition f1login 
(see Fig. 8) would hold the design-time envisioned value, and when f3login would 
be fired, this token would have been removed and the correct value resulting from 
the performance of the action. 

 When the widget is more complex (meaning it might produce multiple events) extra 
event handlers may need to be introduced. For instance, when using a classical text-
box, one may be interested in validating the text only when the full text is entered, 
and not during the text input. According to the standard behavior of the application, 
the only event that would occur, is the last one (for instance, the event actionPer-
formed of the JTextField in Java Swing). On the feedforward behavior side, any 
text change may be relevant in order, for instance, to allow the rendering of text 
filtering after each key is pressed. This means that the feedforward net must exhibit 
a more complex behavior that has to be described at design time. This argues in favor 
of not automatically generating the feedforward net but to synthetize it (Badouel et 
al. 1995) while leaving space for tuning and refinement at design time.  

Fortunettes requires enhancing widgets with extra means to allow rendering feedfor-
ward states and to trigger dedicated events. In our implementation using Java Swing 
widgets, we embed them within a specialized decorator, but there are many other im-
plementation options at widget level or at application level. 

3.3 Application of the modeling principle to the illustrative example 

This Section presents the ICO models for both the standard application and its For-
tunettes enhancement. For each model, we present the behavioral part and the two user 
interface description functions: the activation part and the rendering part.  
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Standard behavior. 
Fig. 9.  presents the entire behavior of the illustrative example. It may be divided 

into two parts: the upper part deals with login actions while the lower part deals with 
messages handling. 

 

Fig. 9. Behavior of the Login example using the ICO formal description technique. 

The upper part of Fig. 9. models what has been explained in the beginning of the Sec-
tion (see Fig. 7. ) to introduce Fortunettes and the modelling approach, including the 
complete behavior of the application i.e. its functional code (inside the transitions). An-
other difference is the way back from place LoggedIn to place LoggedOut when log-
ging out that clears the edited message (modification of the value of the token held by 
place MessageToBeSent). 

The lower part of Fig. 9.  is dedicated to the message editing and to send it. Sending 
it (transition sendAndClear) can only occur if the message is not empty (precondition 
!message.isEmpty()). When it occurs, the token held by place MessageToBeSent 
is destroyed and a new token (with an empty string) is set to that place. The message 
editing is represented by the transition editMessage that receives an event called edit, 
and this event holds a string value called sourceMessage. This sourceMessage is 
then filtered resulting in a string message that only contains characters that belongs 
to [a-z] and [A-Z] (For instance “a1b2c3” will be transformed into “abc”) by the exe-
cution of the function replaceAll.  

Table 1. represents the activation function of the application. It relates the event 
production from the application and event handlers described using ICO. When the 
event occurs, the corresponding transition is fired. If the transition is not available, the 
corresponding event source must be disabled. This part of the functioning is assumed 
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by the activation rendering method (last column of Table 1. ) that is provided by the 
application: for instance, setLoginEnabled changes the enabling of the button Login. 

Table 1. Activation function for the ICO model of the Login example. 

User Event Event handler Activation Rendering 

Edit editMessage setEditEnabled 
Login login setLoginEnabled 
Logout logout setLogoutEnabled 
Send sendAndClear setSendEnabled 

Table 2. represents the rendering function of the application. It relates any state 
change within the application behavior to rendering methods call. For instance, when a 
token enters place MessageToBeSent, the string of this message is set in the text box 
widget by calling the method showMessage. 

Table 2. Rendering function for the ICO model of the Login example. 

ObCS node name ObCS event Rendering method 

MessageToBeSent marking_reset showMessage 
MessageToBeSent token_enter showInitialMessage 

Feedforward behavior. 
Fig. 10. illustrates how feedforward information can be displayed using Fortunettes. 
Fig. 11 and Table 4. fully describe the feedforward part of the application. The behav-
ior presented by Fig. 11. is structured similarly to the standard behavior (of Fig. 9), the 
upper part being dedicated to the login actions and the lower part, to the message edit-
ing.  

 

Fig. 10. Illustration of the text filtering while typing in feedforward mode 

This Feedforward net behaves according to the pattern explained in the previous Sec-
tion with the particularity of the filtering of the text while it is being typed in and not 
only at the end of the interaction with the text box (transition f4editMessage in the 
lower part of Fig. 11. ). This allows to present to the user what will happen to the edited 
value if it is validated (e.g. press ENTER), as illustrated by Fig. 10.  
 
Table 3. presents the activation of the feedforward behavior of the application. The 
interesting part of this function is that the activation rendering is not related to the im-
mediate availability of the events, but to their availability in the future. Therefore, it 
does not directly impact the application widgets but only calls functions that have been 
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added to render their Fortunettes appearance. For instance, on Fig. 10. , if the edited 
text is validated (e.g. pressing ENTER), the button “Send and Clear” will become avail-
able (represented by the rectangle around it, in the background). 

Table 3. Activation function for the ICO model of the feedforward behavior of the example. 

User Event Event handler Activation Rendering 
Edit editMessage setFortunettesEditEnabled 
Login login setFortunettesLoginEnabled 
Logout logout setFortunettesLogoutEnabled 
Send sendAndClear setFortunettesSendEnabled 

 

Fig. 11. The Feedforward net describing the feedforward behavior of the Login example using 
the ICO formal description technique. 

Table 4.  presents the rendering function of the feedforward behavior of the application. 
This function first aims at making the application entering in feedforward mode (a to-
ken enters any of the places prefixed f) or at exiting the feedforward mode (a token exits 
any of the paces prefixed by f). This function ensures too that when a new message is 
under editing, it is rendered on the feedforward part of the interface (each time a token 
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enters the place MessageToBeSent, showFortunettesMessage is called modifying 
what is rendered in the ENTER rectangle of the text box as illustrated on Fig. 10. ).  

Table 4. Rendering function for the ICO model of the feedforward behavior of the example. 

ObCS node name ObCS event Rendering method 
MessageToBeSent marking_reset showFortunettesMessage 
MessageToBeSent token_enter showFortunettesInitialMessage 
fEditMessage token_enter startRenderFortunettes 
fEditMessage token_exit stopRenderFortunettes 
fLogin token_enter startRenderFortunettes 
fLogin token_exit stopRenderFortunettes 
fLogout token_enter startRenderFortunettes 
fLogout token_exit stopRenderFortunettes 
fSendAndClear token_enter startRenderFortunettes 
fSendAndClear token_exit stopRenderFortunettes 

This joint, carefully coordinated behavior between the standard behavior of the ap-
plication and its Fortunettes ones is highlighted on Fig. 10. Indeed, when the user types 
some text in, it is rendered directly in the text box while the Fortunettes rendering dis-
plays the text, as it will appear if the validation key is pressed. In the case of the login 
application, we see that all the non-textual characters will be removed and the current 
text “He43llo” will appear as “Hello” in the future.  

4 A Model-Based Engineering Process for Feedforward nets 

Our approach requires the creation of additional models, that would not be necessary 
when building an interactive system without feedforward. In this section, we present 
the overall process that can be followed in order to include feedforward information to 
support the use of safety-critical systems. Since this has important impact on the engi-
neering process for building an interactive system, feedforward is often only included 
for the parts of the interactive system where users could perform an unintended se-
quence of interactions that lead to a failure and comes with a large cost. This means 
that during development time, we want to enable designers and developers to harness 
the user interface against “issue 5: Operational Human Errors” (see Fig. 2). As a side 
effect, considering feedforward information during the design and development stages 
of the engineering process helps both designers and developers to explicitly consider 
complex and possibly confusing situations in the user interface and empower the user 
to take informed actions. 
 
The benefits of having feedforward included in an interactive system comes with the 
cost of extra modeling work and managing more complex models. However, our ap-
proach ensures (1) consistency, by using the same notation for the feedforward net and 
defining a pattern of how to generate a feedforward net, (2) independence of feedfor-
ward, by separating the feedforward net from the application behavior, and (3) strong 
validation during development, by allowing for formal analysis and by providing a 
sandbox model to execute and test the models. Furthermore, we build on top of existing, 
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proven tools to specify, validate and execute ICO models. We start from a standard ICO 
model that describes the behavior of an interactive system. A feedforward net, also 
using the same ICO notation, is generated based on this model. Fig. 12 depicts the 
overall process. The developer can iterate over the ICO model, applying changes and 
corrections. These changes might imply updates that need to be propagated to the Feed-
forward net too. However, in our current approach we rely on the developer to decide 
whether it is necessary to adapt the feedforward net. Automated suggestion on how to 
update the Feedforward net could be useful here, and might help the developer to deal 
with the complex relationship between the ICO model and the Feedforward net. How-
ever, the Feedforward net is used to specify and design the selected feedforward infor-
mation that needs to be included, and not all aspects of a user interface benefit from 
adding feedforward. 

The developer can also iterate over the Feedforward net separately. This is necessary 
since not all aspects of an interactive application require feedforward, and some other 
parts of the system might require more extensive feedforward behavior. Our approach 
does not limit these independent adaptations in both models, however, offers a basic 
sanity check through the application of the aforementioned patterns.  

 
Fig. 12. The proposed process for producing ICO feedforward nets from ICO models of in-

teractive applications  

When the design and development of the application reaches a state in which it can 
be executed, we can test and validate it using the ICO runtime environment. Fig. 13. 
depicts how the runtime environment comes into play. User events are transmitted to 
both the standard ICO model as well as the ICO feedforward model. In this case a click-
event triggers an action and progresses both the standard ICO model as well as the ICO 
feedforward model. A hover, on the other hand, triggers the ICO feedforward net thus 
computes and presents what the potential outcome is if one would confirm the action 
with a click. Notice the trigger to show feedforward, i.e. a hover action, can be replaced 
by any other actions supported by ICO. The Petshop environment (Bastide et al. 2002) 
and (Navarre et al. 2009) is used for editing and for the interpretation of the ICO mod-
els, presenting the embedded user interface and for managing user interaction. PetShop 
supports direct communication between the ICO models and the application logic, thus 
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can be used both as a development as well as a runtime environment. A screenshot of 
the environment being used during development time can be found in Fig. 14. 

 
Fig. 13. Runtime architecture of ICOs and ICOs fortunettes models in PetShop environment, 

where a hover action is used to trigger feedforward. Sequence 1-2-3 presents what happens when 
an actual interaction is triggered. Sequence 1’-2’-3’ presents what happens when feedforward is 
triggered. 
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Fig. 14. The PetShop environment being used to create and validate the Fortunettes ICO 
model during development. The screenshot shows the standard ICO model (left) and the feedfor-
ward ICO model (right), and the associated user interface (top left). 

It is important to note tht we support both the simulation and the execution of ICO 
models. Thus both ICO-based specification of the regular behavior as well as the feed-
forward model are concurrently executed at runtime: during usage of an interactive ap-
plication. 

5 Formal Analysis on the illustrative example 

This Section is dedicated to the formal analysis of the models presented above. The fact 
that we produce two different models for the same application (the standard application 
model and the Feedforward net) has multiple implications. First, the standard applica-
tion models must exhibit some properties and it is important to check that they are true. 
An example of such property could be that a given Button of the application remains 
always available. Second, the Feedforward net also needs to exhibit some properties 
(e.g. each time the user triggers the “peek into the future” there must be two actions 
available: one to go into that peeked future and one to come back to the current present. 
Third, the Feedforward nets must implement a “similar” behavior as the standard ap-
plication and thus we must demonstrate their compatibility. For instance, it is important 
to demonstrate that all the actions available in the models of the standard application 
are also available in the Feedforward net. This is an example of the development faults 
that could be added by developers when the feedforward usability function is added to 
an application.  
With ICOs, as detailed in (Silva et al. 2013) and (Palanque et al. 1995), there are two 
different formal analysis techniques:  

- The analysis of the underlying Petri net using results from Petri nets theory. This 
analysis can be performed using methods and algorithms from the Petri nets 
community such as the ones presented in (Murata 1989).  

- The analysis of the high-level Petri net (ICO) but this requires manual demon-
strations as some of the properties are undecidable (Dietze et al. 2007).  

Due to space constraints, we only present here properties that are based on the un-
derlying Petri net model. Some interesting results demonstrate that the high-level nature 
of the Petri nets in the ICO notation only reduce the availability of transitions (for in-
stance when they feature pre-conditions) and thus in order for the high-level Petri net 
to be live, the underlying Petri net must be live (Bastide et al. 1993).  
5.1 Formal analysis of the model of the standard behavior (Fig. 9. ) 

Table 5.  presents the list of traps and siphons of the model in Fig. 9. 1. In a Petri net a 
siphon is a set of places that never gain tokens whatever transition is fired while a trap 
is a set of places that never lose tokens (David & Alla 1992). The fact that all the places 
                                                           
1 The computation of the results in those tables was done using Petshop tool and are not presented 

due to space constraints. How this computation is performed  is presented in (Bastide et al. 
2002). 
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in the model are both traps and siphons demonstrate that the number of tokens in the 
model will remain the same as the one in the initial state i.e. two tokens (see Fig. 9. ).  

Table 5. Siphons and Traps from the standard behavior of the application. 

Siphons Traps 
MessageToBeSent  MessageToBeSent  

LoggedIn, LoggedOut  LoggedIn, LoggedOut  

Table 6. analysis is based on the calculation of transition invariants and place invari-
ants. As can be seen all the places in the model belong to a place invariant which means 
that the total number of tokens in the places of the models will remain the same. One 
interesting piece of information is that place MessageToBeSent is a single place in a P-
invariant. This means that whatever transition is fired the number of tokens in that place 
will always be the same as the one of the initial marking. In the current example, this 
means that the place MessageToBeSent will always be marked by a single token.  

Table 6. Transitions and Place Invariants from the standard behavior of the application. 

T-Invariants P-Invariants 

1 sendAndClear  1 LoggedIn, 1 LoggedOut  

1 editMessage  1 MessageToBeSent  

1 login, 1 logout   

In terms of behavior, transitions Login and Logout belong to the same t-invariant 
which means that, if they can be made available from the initial state, there always 
exists a sequence of transitions in the Petri net to make them available again. Their 
connection with the P-invariant {1 LoggedIn, 1 LoggedOut} (with a bounded value of 
one token) demonstrates that always one of the two transition will be available and they 
will never be available at the same time.  

5.2 Formal analysis of the Feedforward net (Fig. 11. ) 

We will not detail the analysis of the Feedforward net, but it is important to check that 
the properties true in the application model are still holding in the Feedforward net.  

If we take as example the property of the mutual exclusion of login and logout tran-
sitions, we can easily see in Table 7.  and Table 8.  that the places and the transitions 
belong are also listed in siphons, traps, P-invariants and T-invariants.  

Table 7. Siphons and Traps from the feedforward behavior of the application. 

Siphons Traps 
MessageToBeSent  MessageToBeSent  

LoggedIn, LoggedOut  LoggedIn, LoggedOut  

Of course, the Feedforward net is more complex and should also exhibit specific prop-
erties related to its own semantics. A very simple but important one is that whenever 
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the user triggers a transition to peek into the future (name starting with f1) immediately 
after a transition to come back to present (name starting with f2) and a transition to go 
into the future (name starting with f3) will be available. The analysis results in Table 
8.  demonstrate that a Feedforward net always verifies this fundamental property (any 
of such transitions is always in a T-Invariant with each other). If the results were dif-
ferent, it would have meant that developments faults have been added by the engineer 
when building the Feeforward net. In turn, the model would have to be modified so that 
the desired properties are present.  

Table 8. Transitions and Place Invariants from the feedforward behavior of the application. 

T-Invariants P-Invariants 

1 f4editMessage  1 LoggedIn, 1 LoggedOut  

1 f1logout, 1 f3logout, 1 login  1 MessageToBeSent  

1 f1login, 1 f2login   

1 editMessage   

1 f1editMessage, 1 f2editMessage   

1 f1sendAndClear, 1 f3sendAndClear   

1 f1sendAndClear, 1 f2sendAndClear   

1 f1logout, 1 f2logout   

1 login, 1 logout   

1 f1login, 1 f3login, 1 logout   

1 f1login, 1 f1logout, 1 f3login, 1 f3logout   

1 sendAndClear   

1 f1editMessage, 1 f3editMessage   

1 f1login, 1 f1logout, 1 f2login, 1 f3logout, 1 login   

1 f1login, 1 f2login, 1 login, 1 logout   

5.3 Formal Analysis of Fortunettes net and Interactive Application net 
Cooperation  

Previous sections have demonstrated how formal analysis can be performed on for for-
mal model of the Interactive Application and the formal model of Fortunettes inde-
pendently. However, these two models communicate with eachother as explained in 
Fig. 13. Some adverse conditions must be avoided:  

- The evolution of Fortunettes net does not alter the behavior of the interactive 
application (e.g. consuming resources (tokens) that would lead to starvation and 
thus deadlock of transitions)  

- The evolution of the interactive application does not alter the behavior of For-
tunettes rendering (e.g. as above consuming resources that would made this ren-
dering unavailable after some interactions have occurred (wearing out)).  
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While identifying design solutions for the formal engineering of Fotunettes. Some op-
tions considered were to include Fortunettes pattern presented at the beginning of sec-
tion 3.2 and instantiated for Login in Fig. 8, inside the Interactive Application net. 
While this would have simplified the overall structure of an application featuring For-
tunettes feedforward, it would have:  

- Made more complex the behavior of the entire application as fortunettes behav-
ior would be merged with the one of the application; 
Made modification of the application behavior more cumbersome as only some 
part of the merged net describe the application;  

- Might have introduced side effects on the behavior of the application (due to the 
evolutions of the Fortunettes net;  

- Required deep formal analysis to demonstrate that the Fortunettes patterns 
added do not modify the initial behavior of the application and that the behavior 
of the application does not alter the expected Fortunettes behavior.  

To avoid all these issues, we decided for two, independent models. Fig. 8 explains how 
this independence (at model level) is bypassed at runtime by distributing the user events 
produced on the user interface to each model:  

- User events performed directly on the user application widgets are distributed 
to both application and Fortunettes nets so they evolve concurrently and remain 
in synchronized (plain lines in Fig. 8); 

- Fortunettes events are only distributed to the Fortunettes nets thus not impacting 
the behavior of the interactive application (dotted lines in Fig. 8).  

6 Related work   

6.1 User Experience and Feedforward  

When users have a limited understanding of an application interface, they do not know 
in which cases to trust the application (Antifakos et al. 2005) (Muir 1994). To improve 
the user understanding, applications should provide in-situ explanations such as what 
has happened (feedback) and what will happen (feedforward) (Assad et al. 2007) , (Bel-
lori & Edwards 2001) and (Lim & Dey 2010). Even though feedforward can present 
similar information as feedback, support for feedforward is less common. Nevertheless, 
feedforward has high potential to enhance the user experience since it can improve trust 
and prevent mistakes before the user action becomes final (Djajadiningrat  et al. 2002) 
and (Schwarz et al. 2011). 

Feedforward is often limited to basic labels or icons that only provide little amounts 
of information. More informative feedforward can be presented dynamically, based on 
the user’s needs (Lafreniere et al. 2015). For example, ToolClips (Grossman & Fitz-
maurice 2010), Stencils (Kelleher & Pausch (2005), and  Side Views (Terry & Mynatt 
2002) provide advanced tooltips based on hover events. In the context of gestural inter-
faces, OctoPocus (Bau & Mackay 2008) and Gestu-Wan (Rovelo et al 2015) dynami-
cally visualize the next gestures available to the user to accommodate in-situ learning, 
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while TouchGhosts (Vanacken et al.) visualize the effects of user actions on the current 
system state.  

6.2 Models for Generating Feedforward 

In order to provide feedforward in a systematic way, a formal approach is needed. As 
highlighted in (Oliveira et al. 2017), many formal approaches to support the design, 
specification and verification of interactive systems have been proposed. That book 
chapter highlights four criteria to compare those approaches: 1) Modeling coverage 
(how much of the interactive systems can the notation describe); 2) Properties (and their 
type) supported; 3) Application of the methods in which domain; 4) Scalability (is the 
notation able to deal with large scale interactive systems).  

In the past, a large number of models and notations have been contributed to support 
such formal approaches, including task models (Luyten et al. 2003) and (Martinie et al. 
2015), finite state machines (Wood 1970), and Petri nets (Palanque et al. 1993). With 
respect to the modelling need of Fortunettes, the expressive power of the notation to be 
used heavily depends on the interactive application itself and does not require specific 
modelling power. In that regard, if the interactive application does not feature concur-
rent behavior, dynamic instantiation of objects and does not exhibit quantitative time 
behavior, automata would be adequate for describing Fortunettes behavior as demon-
strated in (Coppers et al. 2019). If more complex behaviors need to be represented, 
more expression power will be required. The table 1 from the book chapter (Oliveira et 
al. 2017) would be then of great help to select the most adequate modeling notation 
depending on the features of the application and its interactions.  

As Fortunettes feedforward concept is meant to be applied in a systematic way to all 
the interactions in an interactive system, Feedforward Nets need to cover all the com-
ponents of the interactive systems (from the low-level interaction technique to the func-
tional core) presented in the MIODMIT architecture (Cronel et al. 2018).  

 

7 Limitations 

This paper has presented one mean of engineering feedforward based on Fortunettes 
graphical and interaction design. The proposed solution involves the production of two 
ICO models for a single application. This increases significantly the modeling work 
even though part of the Feedforward Petri net is produced from the standard ICO model 
using the pattern presented above.  
The use of a formal model based on Petri nets aims at detecting and recovering from 
development faults that might have been added to the standard application while adding 
the usability function feedforward. While the analysis section presented above demon-
strates how this detection can be performed, it is important to note that the analysis only 
takes into account the underlying Petri net (as stated at the beginning of section 5). 
Going beyond that would require developing dedicated analysis methods for ICO mod-
els and more generally for high-level Petri nets. While some results have already been 
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published (Evangelista 2005), more work needs to be done and these contributions must 
be added to the analysis module of PetShop.  
The proposed approach requires the use of PetShop at runtime. This might be seen as a 
limitation especially when the application has to be deployed and does not require mod-
ification of its appearance and behavior anymore. An alternative approach would be to 
translate the ICO models into event-based code, that would be compiled and deployed. 
Such a compilation approach is similar to what has been presented with automata in-
stead of Petri nets (Coppers et al. 2019) or following the generic approach Petri nets 
compiling to event code (Palanque et al. 1993).  
The current visual design of Fortunettes condenses feedforward information in a feed-
forward layer stacked behind each widget that will change. In order to prevent visual 
clutter in more complex applications with many interdependent widgets, we recom-
mend designing more elaborate visualizations that can hierarchically aggregate feed-
forward information. To further reduce the burden on the user, feedforward could be 
limited to actions that the user is unfamiliar with, or only be shown when high confi-
dence is desirable, by holding ‘CTRL’ on the keyboard for example. 

8 Conclusion and perspectives  

While research in the field of HCI focuses on adding more functionalities to the user 
interface, the interaction techniques and the interactive applications to improve usabil-
ity and user experience, very little effort is devoted to transferring these improved in-
teractions to the developers of interactive systems. For instance, papers proposing bub-
ble cursor for improving target acquisition (Grossman & Balakrishnan 2005) or mark-
ing menus (Kurtenbach & Buxton 1994) to improve command selection do not present 
means for engineering these interaction techniques in a reliable and systematic way. 
We would argue that this is the reason for the limited take up of such HCI important 
contributions into real applications.  

This paper has proposed an engineering method based on a formal description tech-
nique to support the systematic integration of Fortunettes concepts to provide interac-
tive application with feedforward mechanisms. While the graphical and interaction de-
sign of Fortunettes might be improved and could be subject of future research, we have 
demonstrated that the use of a Petri nets-based approach limits the complexity of adding 
Fortunettes behavior to an existing application. We have also demonstrated that a for-
mal approach can provide benefits in ensuring that the application with the additional 
feedforward behavior remains behaviorally compatible with the initial application.  

The work presented in the present paper leads to extensions that will be addressed 
in future work. First, the current design of Fortunettes only deals with WIMP interac-
tion techniques based on a set of identified widgets. While this can be seen as a strong 
limitation for current user interfaces targeting at better user experience, it is important 
to note that many applications are still widget-based. In some critical domains it is even 
not possible to embed other types of interfaces as required by the ARINC 661 specifi-
cation standard (Arinc 2013) for user interfaces of cockpits of large civil aircrafts. We 
have previously worked on the formal description of User Application, user interface 
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widgets and user interfaces servers using Petri net based description (Barboni et al. 
2006) and that early work can directly benefit from the work presented in the paper. 
This means that adding the feedforward usability function to those user applications 
will result in very limited work (as the Feedforward net is built upon the original be-
havior and is described with the same language) and would come with assurance means 
to guarantee their correct behavior. Beyond, we can also exploit the Petri net models to 
assess the usability of Fortunettes interaction technique as introduced in (Palanque et 
al. 2011) for other interaction techniques.  

Second, the current behavior of Fortunettes is to offer the possibility to the user to 
look only one step into the future. The model-based behavior presented in the paper 
could be exploited further to look into several step or even to look at the eventual end 
of the execution, as introduced in (Palanque et al. 1995). For instance it would be pos-
sible to identify a widget (via formal analysis) that would become unavailable forever 
in five steps from the current state of the application .While graphical design and inter-
action will be clearly a difficult challenge, the engineering of such applications could 
be reachable via the analysis of the formal models.  
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