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Acceleration-aware Fine-grained Channel Pruning
for Deep Neural Networks via Residual Gating

Kai Huang, Siang Chen, Bowen Li, Luc Claesen, Hao Yao, Junjian Chen, Xiaowen Jiang, Zhili Liu, and
Dongliang Xiong

Abstract—Deep Neural Networks have achieved remarkable
advancement in various intelligence tasks. However, the mas-
sive computation and storage consumption limit applications
on resource-constrained devices. While channel pruning has
been widely applied to compress models, it is challenging to
reach very deep compressions for such a coarse-grained pruning
structure without significant performance degradation. In this
article, we propose an acceleration-aware fine-grained channel
pruning (AFCP) framework for accelerating neural networks,
which optimizes trainable gate parameters by estimating residual
errors between pruned and original channels with hardware
characteristics. Our fine-grained concept consists of both al-
gorithm and structure levels. Different from existing methods
that leverage a pre-defined pruning criterion, AFCP explicitly
considers both zero-out and similar criteria for each channel and
adaptively selects the suitable one via residual gate parameters.
For structure level, AFCP adopts a fine-grained channel pruning
strategy for residual neural networks and a decomposition-based
structure, which further extends the pruning optimization space.
Moreover, instead of using theoretical computation costs such
as FLOPs, we propose the hardware predictor that bridges the
gap between realistic acceleration and pruning procedure to
guide the learning of pruning, which improves the efficiency
of model pruning when deployed on accelerators. Extensive
evaluation results demonstrate that AFCP outperforms state-of-
the-art methods, and achieves a favorable balance between model
performance and computation cost.

Index Terms—Deep learning system, model compression and
acceleration, pruning, neural networks.

I. INTRODUCTION

DEEP Convolutional neural networks (CNNs) have
demonstrated superior performance in computer vision

tasks. However, the significant improvement always comes at
the expense of massive computation and storage consumption,
limiting the deployment of neural networks in embedded
systems. Many efforts have been made to reduce CNN model
size as well as computational workload while still maintaining
high performance. On the one hand, optimization approaches
such as pruning [1]–[3], quantization [4], [5] and knowledge
distillation [6], [7] attract continuous attention, which produce
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a better tradeoff between compression ratio and performance.
On the other hand, various hardware accelerators such as
NVDLA [8] and Eyeriss [9], have been proposed to efficiently
process CNN models.

Pruning is a promising way for CNN model compression
by identifying and removing redundant weights with a negli-
gible performance drop. Recent researches on neural network
pruning can be divided into either non-structured [1], [10],
[11] or structured pruning [12]–[14], the former prunes weight
independently, resulting in structures that are unfriendly for
realistic hardware acceleration, while the latter aims at re-
moving parameters in units of structured weights. Among
the structured pruning methods, Channel pruning (a.k.a filter
pruning) is a typical strategy that directly eliminates neurons,
thus no specialized hardware design is required to support
customized structure or extra operations. Despite effectively
reducing the floating-point operations (FLOPs) of the network,
which serves as the main criterion of computational burdens,
channel pruning often suffers from more performance loss due
to its coarse-grained pruning structure. Therefore, selecting the
optimal criterion that discriminates the saliency of channels
accurately is an important step for channel pruning.

In addition to the algorithm-level challenge, it is even
more challenging when the pruned structure is taken into
consideration. While residual learning [15], [16] makes it
effective to train very deep networks, methods for pruning
plain networks like VGG [17] and AlexNet [18], however, can
not be applied to residual models directly. Traditional residual
neural networks assume that layers connected by residual
mapping must be pruned in the same pattern as others, which
raises the problem of constrained channel pruning. To this
end, prior works [19]–[22] adopt constrained pruning ratio
on these troublesome layers by either skipping or grouping
layers together, which unfortunately further limit the explo-
ration space of channel pruning. Thus, more effective pruning
strategy should be assigned for residual neural networks.

Although FLOPs is considered to be the main criterion
to measure the effectiveness of channel pruning methods,
reduction in FLOPs can not be translated to runtime accel-
eration directly. Realistic CNN model runtime depends on
various resource characteristics such as dataflow, number of
Processing Elements (PEs), buffer size, bandwidth, and so on.
Only considering the reduction in FLOPs is not efficient for
models deployed in real hardware. Therefore, it is difficult but
imperative to take all these factors into consideration when
applying pruning methods on neural networks.

Inspired by these insights, we propose an acceleration-
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Fig. 1. Our acceleration-aware fine-grained channel pruning framework.

aware fine-grained channel pruning framework that optimizes
channel pruning on both algorithm level and structure level,
and take advantage of hardware characteristics to improve
the efficiency of pruning, as depicted in Fig 1. Specifically,
different from existing pruning works that adopt only one
heuristic method, we employ trainable gate parameters guided
by resource constraints and performance loss, both magnitude-
based and similarity-based discrimination criteria are consid-
ered, which allows each channel to be zeroed-out or become
identical with the most similar channels automatically. Instead
of focusing on pruning original convolutional filters, we pro-
pose a finer-grained channel pruning structure, which includes
decomposing convolutional layers into small tensors as well
as allows channels between residual blocks to be pruned in a
block-wise manner, thus the learnable gate parameters can be
asserted into each channel between layers. Furthermore, state-
of-the-art pruning methods only consider the optimization
for the target FLOPs ratio, neglecting the real speedup for
various platforms. Therefore we propose the acceleration-
aware pruning method that given the pruned model structure
and target terminal device, a hardware performance predictor
is proposed to analyze the hardware acceleration, and further
guides the optimization of gate parameters, which improves
the pruning efficiency compared to other resource constraints
such as FLOPs.

Our contributions are summarized as follows:
1) We propose a learnable fine-grained pruning criterion,

which learns each channel to be zeroed-out or identical with
others automatically, thereby realizing reasonable tradeoffs
between compression ratio and performance.

2) We propose a fine-grained channel pruning structure
for residual neural networks, which allows channels between
residual blocks to be pruned in a block-wise manner. By
performing such a pruning strategy, we can obtain a novel
efficient residual network structure, of which connections can
fully skip the residual building block.

3) We further propose to decompose convolutional layers
into finer-grained tensors, which further extends the optimiza-
tion of space of pruning.

4) We leverage hardware characteristics to improve the
efficiency of pruning, a hardware performance predictor is
proposed to bridge the gap between hardware information
and pruning procedure, which helps to solve the constrained
pruning problem by utilizing widely used optimizers such
as stochastic gradient descent (SGD) and Adaptive Moment
Estimation (Adam).

II. RELATED WORK

A. Pruning Criterion

Extensive research efforts have been made to evaluate the
importance of filters in various ways. Some leverage the
static information of weights, the `1/`2-norm of weights [1],
[23], the average percentage of zero activations (APoZ) [24],
geometric median distance [25], and high rank of feature maps
[26]. Some induce sparsity constraints into the training of
models, Liu et al. [27] apply `1-norm based regularization
on the scaling factors of the batch-normalization (BN) layers
and prune channels of which factors are near zero, He et al.
[2] propose to select channels based on LASSO regression.
Similarly, group sparse regularization is imposed in order to
remove zero and near-zero value channels [12], [28]. These
works adopt the manually pre-defined criteria or determine
saliency scores with heuristic methods, which is sub-optimal
and always lead to large performance drop for deep compres-
sion ratios. Furthermore, with so many criteria to be selected, it
is hard to determine the optimal one for various networks and
resource constraints. Instead, the proposed AFCP introduces
trainable parameters to learn the appropriate network architec-
tures automatically, making it more convenient and optimal
to obtain the pruned model. Some recent works also adopt
learnable parameters to guide pruning. Taylor expansion is
utilized to estimate the loss of removing filters [22], [29]. Aux-
iliary parameters are trained to scale single weight or channel
by one or zero [30]. Ding et al. [31] introduce centripetal
SGD that trains filters to become identical. However, these
pruning methods only consider either zero-out or similar-based
criterion, and the similar-based pruning can only take the same
pruning ratio for each layer, which limits the optimization
space of learnable parameters. To solve these problems, the
AFCP allows selecting the proper criterion by adopting the
residual gating function. He et al. [32] take different feature
distributions in each layer into consideration and propose to
learn a filter pruning criterion for each layer, which is the most
similar to our pruning algorithm. The limitation of [32] is that
they still use heuristic methods and only consider different
criteria in a layer-wise manner, while the proposed AFCP
learns the criterion for each channel adaptively.

B. Pruning Structure

Recent efficient networks introduce complicated structures
like identity mapping and dense connection [15], [16], which
raises the problem of constrained channel pruning. To avoid
the misalignment problem due to the existence of skip con-
nections across layers, some avoid pruning these troublesome
layers [19], [20], [33]. Obviously, skipping these channels
limits the pruning exploration space. Thus the AFCP takes
these channels into consideration and provides a larger search
space for pruning. Liu et al. [27] prune pre-activation models
by inserting an additional channel selection layer before the
first convolution in each residual block. However they only
consider input channels for pre-activation models while we
allow both input and output channels to be pruned for any
residual networks. Lemaire et al. [34] use a mixed block
connectivity to avoid redundant computation, which can be
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treated as a subset of our method. Recently, a group pruning
strategy [21], [22], [31], [35] is proposed to assign those
layers into the same group, thus filters in the same group
can be pruned simultaneously. Unfortunately, pruning in a
group strategy requires that all connections of one pruned filter
should be removed simultaneously, of which the constraint is
so strong that limits the pruning performance at especially high
pruning ratios. Instead, the AFCP allows these troublesome
channels to be pruned in a finer-grained block-wise manner,
thus larger optimization space is provided while residual
information is still retained to obtain high performance.

C. Tensor Decomposition

Tensor decomposition is another way to reduce computa-
tional cost in neural network. Specifically, the original tensor
can be decomposed into a linear combination of smaller
tensors, thus parameters and computations can be significantly
reduced. Singular value decompositions (SVD) [36] or CP-
decomposition [37] is utilized to approximate the original
weight matrix. Jaderberg et al. [38] propose to decompose one
filter into two sub-kernels. Astrid et al. [39] further leverage
CP decomposition to compress filters into several smaller ones.
Decomposition from different tensor dimensions has also been
explored to enable more flexible structures [40], [41]. But the
problem in these works is that how to determine the optimal
rank of the decomposed tensors, which definitely impacts
the model performance. Thus we combine channel pruning
and decomposition to obtain the proper rank distribution
in models. Recently, Hinge [42] apply the pruning method
based on decomposed tensors to deal with the limitation on
channel pruning for residual neural networks. However, Hinge
only applies the one-step decomposition, and we realize that
more flexible and fine-grained decomposition structures can
be explored to further boost CNN pruning performance.

D. Hardware Acceleration

To accelerate the computation of neural networks, vari-
ous hardware accelerator architectures have been proposed,
including ASIC and FPGA designs. Compared to general-
purpose processors (CPU/GPU), these specialized accelerators
take the specific computation pattern of neural networks into
consideration, and achieve remarkable performance through
parallel computation and memory hierarchy optimization.
Apart from hardware resources, general accelerators such as
NVDLA [8], Eyeriss [9], Shi-dianano [43] mainly differ in the
dataflow mapping strategy, which reflects the schedule of data
operations. For example, NVDLA adopts a weight-stationary
dataflow while Eyeriss employs a row-stationary style.

Recently, hardware/software co-design has been explored
for its efficiency. Jiang et al. [44] propose to search archi-
tectures based on reinforcement learning which involves the
reward of FPGA performance. Hao et al. [45] explore the
DNN architecture based on basic blocks. Ren et al. [46] per-
form hardware-aware model compression by iterative binary
search.These works still fail to fuse the hardware feedback into
the training of networks by gradient descent, and can be time-
consuming for various models and platforms. As far as we

know, we are the first to consider optimizing channel pruning
and hardware implementation simultaneously.

III. MOTIVATION

A. Fine-grained Pruning Criterion
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Fig. 2. Prune tensors via criterion scores in two consecutive layers, tensors
with smaller scores are pruned out. Zero-out and similar-based criteria always
have different scores and pruning results, which are complementary to each
other. Here we use tensors rather than filters since the situation also applies
to any structured patterns.

We observe that the discrimination criteria always fall
into two categories: zero-out based and similarity-based. Ze-
roing filters out produces sparsity directly. However, while
the ”smaller-norm-less-important” is widely used in channel
pruning, it remains a question whether this criterion is optimal
[47]. Furthermore, learning a filter to be zero or not is a hard
decision, it is even more difficult to recover the performance
loss when the pruning ratio becomes large.

Some other prior works score channels via representative
election and remove the most similar channels [31], [48],
since similar or identical filters can be merged to one by
simply adding up the corresponding input channel parameters
of the next layer. However, while the ”global pruning ratio”
has been proved to be more effective than a fixed per-layer
ratio, determining a layer-specific pruning ratio has rarely been
investigated for such cases since it is hard to measure the
similarity of filters across layers.

As depicted in Fig 2, pruning results of the two criteria
can vary from each other. The remaining filter that is hard
to be zeroed-out can be easily transformed into similar filters
with less performance loss, and vice versa. Therefore, only
consider one criterion can be sub-optimal for finding redundant
channels. To this end, we propose a fine-grained criterion that
incorporates these two discrimination factors and adaptively
select the optimal criterion for each channel.

B. Fine-grained Channel Pruning Structure

Considering two consecutive blocks in ResNet, as shown in
Fig 3(a). To solve the vanishing gradient problem that prevents
neural networks from becoming deeper to demonstrate higher
performance, the element-wise addition operation is proposed
to connect feature maps between two residual blocks:

yl = h(xl) + F (xl,Wl), (1)
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Fig. 3. An illustration of (a): baseline structure. (b): structure pruned by
group strategy. (c): structure pruned by our fine-grained strategy. The red
letter denotes the channel number. For simplicity, pruning of channels inner
residual blocks is not considered here.

xl+1 = f(yl) (2)

Here xl denotes the input feature map of l-th Residual Unit. Wl

is the weight of the Residual Unit, F (·) is the residual function.
The function f(·) denotes the non-linear operation, and the
function h(·) is the identity mapping. Therefore, traditional
Residual networks assume that layers connected by residual
mapping have the same pattern as others.

Unfortunately, as shown in Fig 3(b), pruning in a group
technique leads to such a case that all corresponding con-
nections of one eliminated filter should be removed simulta-
neously, limiting the pruning performance at especially high
pruning ratios. And importance scores for these filters in
the same group are accumulated together, which makes them
harder to be pruned, thus always results in dense connections
between residual blocks and very few connections inner resid-
ual blocks.

To this end, we allow the residual pattern to be more flexible
as shown in Fig 3(c). In our fine-grained channel pruning
strategy, channels between residual layers can be removed in
a block-wise manner while the residual connections are still
retained, which enables individual connections to fully skip
the residual building block, and provides a larger search space
for important filter selections.

C. Flops vs Runtime

Input Input
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PE

Tensor

Pruned Tensor

Active PE
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Executed Tensor

Fig. 4. The motivation behind the acceleration-aware channel pruning. Despite
the reduction in FLOPs, the pruned model takes the same execution time as
the original model.

Although existing channel pruning methods all focus on
achieving a better tradeoff between FLOPs and performance,
this theoretical computational cost elimination cannot guaran-
tee real speedup when the pruned CNN is deployed on hard-
ware accelerators. Fig 4 shows an example weight-stationary

dataflow run on four PEs. The original model with 8 tensors
needs to take t1 times to complete all multiply-accumulate
operations (MACs). For the pruned model, if the theoretical
FLOPs of convolution drops from 8 tensors to 5 tensors, the
real runtime, however, is still the same as the original model
since PEs run in parallel, and three of four PEs are idle during
t0 - t1 which means a low utilization of hardware resources.

In addition to the impact of dataflow mapping, number
of PEs, latency of DRAM/buffer access and data read/write
bandwidth all significantly affect the execution performance
of DNN models. In this paper, we take all this information
into account when conducting pruning, and provide a more
hardware-friendly neural network architecture.

IV. PROPOSED METHODS

A. Learn Fine-grained Pruning Criterion via Residual Gating
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Fig. 5. The training process of the learned fine-grained pruning criterion.
Rectangles with different colors and dotted lines denote different channels
and pruned channels (tensors), respectively. The similar indices depend on the
results of the K-means cluster, tensors after selection are the corresponding
similarity centers.

The overall learning process is illustrated in Fig 5. For
each convolutional layer, we first divide tensors into clusters,
each cluster contains several similar tensors. We generate the
clusters by K-means [49], which partitions data into clusters by
minimizing the distance between each data point and the center
of the cluster. Since the convolution weight parameters are 4-
D tensors, we fix the target prunable dimension and flatten
other three dimensions for K-means clustering.

As stated in section III-A, identical tensors can be merged
into one without any performance loss. To allow tensors in the
same cluster to be identical, we define the most representative
tensor that has the minimum distance between the center of
the cluster as the similarity center τsc, and record the center
index of each tensor after clustering. Here we leverage τ to
denote the target prunable tensor.

There are two possible gating ways in our method, tensors
gated by either way can be removed. We define these two sim-
ilar gating and zero gating functions as follows, respectively:

sg(τ, θs) = τsc + (τ − τsc) · g(θs) (3)

zg(τ, θz) = τ · g(θz) (4)

Where the binary gating function can be expressed as:

g(θ) =

{
0, θ < 0.5

1, otherwise
(5)
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Here θ ∈ [0,1] is a trainable parameter for each tensor (chan-
nel), and is initialized to 1. In (3), θs is used to measure the
residual error between tensor and the corresponding similarity
center, and θz in (4) measures the residual error between tensor
and zero. θ moves under threshold which is 0.5 in our setting
when the residual error is small enough.

Combined with (3) and (4), we have the final gated tensor
after the two-step residual gating:

τg = zg(τ, θz) + sg(zg(τ, θs), θs) (6)

Specifically, when g(θs) is zero, it means the residual error
between the tensor and the corresponding similarity center
is small enough considering the sparsity requirement and
model performance, then the tensor is deactivated and the
corresponding similarity center tensor will substitute for the
forward propagation. Similarly, When g(θz) becomes zero, the
tensor is replaced by zero and can be removed directly. There
are three main advantages via this two-step residual gating.
Firstly, instead of estimating similarity scores based on static
information, our similar criterion is learned for each tensor
and allows a different pruning ratio across layers. Secondly,
each tensor has the chance to be removed by either zeroing-out
or becoming identical to others, depending on which residual
error is smaller. Finally, each pruned tensor that is estimated
to be important again can be recovered back as long as the
gate parameter is updated over threshold 0.5, this soft pruning
can maintain the model capacity compared to methods that
directly delete the pruned channels.

For a L-layer network, we aim to find the proper Θ =
(θ1,...,θL) that guide the pruning ratio and criterion for each
layer and each channel, where θl = { θs,l, θz,l }, θs/z,l =
[θ(s/z,1),...,θ(s/z,Cl) ] is the vector containing gate values in
l-th layer. Therefore, given a dataset D = {X,Y }, where X
denote the input vectors and Y are the corresponding labels,
we focus on minimizing the loss function under the sparsity
constraint on channels:

min
Θ,T
L = min

Θ,T
L(F(X;T,Θ), Y ) + λRprune(Θ) (7)

L(F(X;T,Θ), Y ) denotes the standard loss function (e.g.,
cross-entropy loss) based on residual gating forward of each
tensor as (6). Rprune(Θ) is the resource-aware regularization
function to induce sparsity. λ is a hyperparameter to control
the balance between these two losses. We first set FLOPs
as our desired computation loss, and further optimization for
hardware-specific regularization function will be discussed in
section IV-D. FLOPs can be calculated as:

Fcomp = (FLOPs) =

L∑
l=1

(rl · sl ·
Cl∑
cl=1

(g(θs,cl) · g(θz,cl))·

Cl−1∑
cl−1=1

(g(θs,cl−1
) · g(θz,cl−1

)) · wl · hl)

(8)
Where rl and sl are kernel sizes, wl and hl are width and

height of output feature maps. For simplicity, here we only
show the calculation of normal convolutions which occupy
most of the computation cost in CNNs, and the cost of other

types of layers can be represented by θ in the same way.
Then we can formulate the regularization loss based on target
compression ratio p:

Rprune(Θ) = log(|Fcomp − Fcomporg · p|+ 1) (9)

Fcomporg denotes the total FLOPs of the original model,
we select a logarithms form since we want the regularization
term to decrease fast in the early stage of pruning, then slow
down and always optimize near the target ratio.

So far, we have formulated the forward propagation function
for training the pruned model, and one question that remains
is how to learn θ via back-propagation. Since the binary
gating function g(θ) is non-smooth and non-differentiable, we
utilize the straight through estimator (STE) [50] that is used
in network quantization to enable gradient calculation:

∂L
∂θ

=
∂L
∂g(θ)

(10)

B. Fine-grained Pruning For Residual Neural Network

Next we will discuss the proposed fine-grained structure
for channel pruning. The biggest difference between our
pruned residual neural network and existing methods is that
we consider the problem of pruning from the perspective
of gating feature maps, the gate function is induced on
each channel while skip connections are always retained.
One simple strategy is to prune each channel independently
without any constraint among channels or layers, thus a
better trade-off between compression ratio and performance
should be achieved due to the larger search space of channels
than strategies such as group pruning [21], [22] or skipping
[19], [20]. However, too much freedom leads to irregular
distributions of pruned channels between residual blocks, and
during experiments we found the advantage of such strategy
over group pruning or skipping is not significant as expected
especially for more complex models and tasks. We believe that
the irregular remained channels make it more difficult to learn
the optimal network. Furthermore, input channels and output
channels of each block should be selected according to the
pruning indices, which increases hardware cost. Therefore, we
propose the fine-grained block-wise pruning strategy to enlarge
the search space of channels that allowed to be pruned while
still maintaining a regular residual structure.
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Fig. 6. The pruned and reorderd example structure intra-block. The gate
functions in the same color share the same gate parameters. The dotted lines
denote pruned channels.

For input channels and output channels of the residual block,
the gate function is shared for channels connected by the same
skip connection. As depicted in Fig 6, the gate function in
the same color share the same gate parameters. Both input
channels and output channels of channel 1 and channel 3
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are removed while the corresponding skip connections are
still retained. The remained skip connections will fully bypass
through this block and flow into the next block to produce the
residual information. After pruning, channels can be reordered
so that the remained channels are always continuous, thus only
a simple split and concate operation is needed for input and
output channels, respectively.
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Fig. 7. The pruned and reorderd example structure inter-block.

For channels between blocks, we apply a partial synchro-
nization strategy to guarantee that each block can be reordered
to a regular structure. Specifically, the channel of current block
is allowed to be pruned only when the corresponding channel
has been pruned in the previous block. As shown in Fig 7,
when channel 1 and channel 3 in Block 1 are pruned, only
chanenl 1 and channel 3 are allowed to be pruned in Block
2. In this way, all blocks can always be reordered so that the
remained channels are continuous no matter how the pruned
channel distributes in each block. There is a special case
when the skip connection contains a convolution instead of
being a pure connection (when channel number increases), the
input channels of such block are still partially synchronized
with the previous block while the output channels are not
limited. Note that the synchronization can also be performed in
reverse order, but we observe that channels begin to be pruned
from shallow layers during experiments, thus we perform the
sequential synchronization strategy in this work. To produce
such structure during training, the gating function of the input
and output channel in b-th block is denoted as:

gb = gb−1 + g(θ) · (1− gb−1) (11)

C. Fine-grained Decomposition for Rank Pruning

To further produce a fine-grained structure for pruning,
decomposition is applied to approximate the original filters by
low-rank matrices, which includes three stages in this work.
Assume that a convolution layer has c input channels and
n output channels, with kernel size of r × s. In the first
stage, parameters of a convolutional layer W ∈ <crs×n is
decomposed into:

W ≈ A ·B (12)

Where A ∈ <crs×d1 , B ∈ <d1×n, d1 denotes the rank size.
SVD or Principal Component Analysis (PCA) can be used

to solve this problem. While matrix A can be considered as
a convolutional layer with d1 filters of size r × s acting on
c input channels, matrix B is regarded as a 4-D convolution
parameter of size d1 × 1× 1× n.

In the second stage, We further operate decomposition on
matrix A along spatial dimension.

A ≈ A1 ·A2 (13)
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Fig. 8. The original convolutional layer is decomposed into three sequential
ones, which produces more dimensions for pruning.

Where A1 ∈ <cr×d2 , A2 ∈ <d2×sd1 . Similarly, matrix A1

is considered as a convolutional layer with d2 filters of size
r×1 acting on c input channels, matrix A2 is regarded as a 4-
D convolution parameter of size d2×1×s×d1. Therefore, as
shown in Fig 8, the original convolutional layer is decomposed
into three sequential ones: a horizontal basis layer followed by
a vertical basis layer and a linear combination layer.

Take one convolutional layer as an example, the compres-
sion rate of parameters after two stages is:

ratiocomp =
d2 · c · r + d1 · d2 · s+ n · d1

n · c · r · s
=

d2

n · s
+
d2 · d1

n · c · r
+

d2

c · r · s

(14)

A problem that now emerges is how to decide the size of
ranks. Given a compression ratio p, traditional decomposition
methods determine the rank configuration manually. Obvi-
ously, the significance of each decomposed matrix is different,
and share the same rank compression ratio is not optimal.
Therefore, model size and computation cost are not reduced
during our fine-grained decomposition, rank configuration of
each layer is determined by maintaining the original convolu-
tion size in our setting:

d1 = round(
n · c · r · s
c · r · s+ n

) (15)

d2 = round(
d1 · c · r · s
c · r + s · d1

) (16)

Although the decomposed matrices are attained by min-
imizing the reconstruction error of the original filters, this
optimization is data-independent and can not guarantee the
most optimized parameters for model performance. In the last
stage of our fine-grained decomposition, we aim at optimizing
model performance via fine-tuning:

min
τ
L = min

τ
L(F(X;TD), Y ) (17)
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Where TD denotes parameters of tensors after decomposi-
tion. The model after fine-tuning is employed as the pre-trained
model for pruning, which provides two additional dimensions
(d1 and d2) that allowed to be pruned for each convolutional
layer compared to the model before decomposition.

Note that tensor A1 or A2 can always be further decom-
posed with one of the tensors to be size of di×1×1×do, where
di and do are the induced approximated ranks, and this kind of
decomposition can be performed forever. However, the error
between the decomposed tensors and original weights will
become larger as the decomposition process continues. Thus,
there is a trade-off between the number of decompositions
and the pruning performance. Comparison evaluations are
conducted in our experiments to prove that the proposed two-
step decomposition achieves a best trade-off between accuracy
and compression ratio.

D. Acceleration-aware Channel Pruning

One of the advantages of our pruning method is that the
criterion can be learned end-to-end and updated efficiently
by gradient descent, which requires the target resource con-
straint function in (7) being differentiable to gate parameters.
A problem that arises is how to formulate a differentiable
function with respect to network architectures and accelerator
performance. Fortunately, many DNN analysis frameworks
have been studied to model the performance of different
accelerators [51], [52]. However, it is still challenging to fuse
such complex frameworks into the training process of neural
networks. Therefore, we propose a hardware performance
predictor to bridge the gap between architecture and hardware
performance, and feed it to the pruning process to select the
best fit.
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Fig. 9. The training process of hardware performance predictor.

As shown in Fig 9, the training of the predictor includes
two stages. In the first stage, we leverage DNN analysis
frameworks to generate dataset Dp = {Xp, Yp}, where Xp

denotes the input vector of a convolutional layer, which
contains both network architecture and hardware parameters,
the former includes network depth, kernel size, stride and
channel number of each convolution, as well as feature maps
size. Since the execution time of CNNs is calculated by adding
up the time of each layer, compared to covering the possible
pruned structures for all layers in the entire model, the cost
of generating possible structures of one convolutional layer is
much smaller. The hardware parameters are composed of the
number of PEs, buffer size, DRAM bandwidth/latency and

dataflow mapping. Yp is the corresponding output which can
be hardware-specific runtime, energy, throughput, and so on,
we mainly focus on optimizing runtime in this work.

In the second stage, given the dataset generated in stage
1, we construct f(·) as a continuous and differentiable neural
network parameterized by Wp to fit the function of the DNN
analysis framework, the objective can be formalized as:

arg min
wp

(L(f(Xp;Wp), Yp)) (18)

Where the loss function L(·) can be a typical regression
loss such as L1/L2 or MSE. The goal is to find an accurate
mapping from network architecture and hardware parameters
to hardware performance.
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Fig. 10. The overall training process of acceleration-aware pruning. Parame-
ters of the hardware performance predictor are fixed during training, gradients
for θ from computation cost loss propagate through the predictor.

After the training process, parameters of the predictor are
fixed, and the regularization function in (7) is substituted by
the output value of the predictor as shown in Fig 10:

Fcomp = f(M(Θ);Wp) (19)

M(Θ) denotes the input vector of predictor, which can be
transformed by the neural network architecture with trainable
parameters Θ. Specifically, for a L-layer neural network,
M(Θ) consists of L sequential architecture mappings by
concatenation:

M(Θ) = (m(θ1), ...,m(θL)) (20)

Take a convolutional layer as an example, m(θl) can be
expressed as:

m(θl) =[

Cl−1∑
cl−1=1

(g(θs,cl−1
) · g(θz,cl−1

)),

Cl∑
cl=1

(g(θs,cl) · g(θz,cl)), rl, sl, wl, hl, dl]

(21)

Where Cl is the channel number of l-th layer, rl and sl are
the kernel size, wl and hl are feature map size, dl is the stride
step. The first two vectors denote the remained input channels
and output channels respectively. It is worth noting that the
order of vectors depends on the definition of the predictor. By
feeding input vectors of each layer into the predictor, the total
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execution time can be approximated by adding up the output
vectors. Here we only list the formulation of the network
architecture vector, and hardware parameters can be either
concatenated with M(Θ) in one-hot encoding or as different
settings for selecting a hardware-specific predictor.

E. Implementation Details

Algorithm 1 Learning process of the proposed pruning
method.
Input: training data X , validation Y ; pre-trained model M

of layer L with weight parameters T ; trainable gate
parameters Θ; hardware performance predictor model P ;

Output: Compact model;
//Step1-Decomposition
for l = 1 to L do

Apply decomposition as described in IV-C with param-
eters TD

end for
for epoch = 1 to epochD do

for each (x, y) in (X,Y ) do
forward and update (T, TD)

end for
end for
//Step2-Learning criterion
for epoch = 1 to epochL do

for each (x, y) in (X,Y ) do
forward based on Equation 6 with regularization loss
defined in Equation (9) or (19), update (T, TD,Θ)

end for
end for
//Step3-Pruning and Fine-tuning
for l = 1 to L do

for c = 1 to Cl do
if (θs<0.5) or (θz<0.5) then

remove channel c
end if

end for
end for
for epoch = 1 to epochF do

for each (x, y) in (X,Y ) do
forward and and update (T, TD)

end for
end for
Return final pruned model

In this section, we describe the steps involved in the
proposed pruning method, as presented in Algorithm 1. Given
a pre-trained model, we first apply decomposition on each
convolution except the layer with kernel size 1x1, since this
kind of kernel is compact enough and further decomposition
will only result in a linear combination of convolutions with
the same structure, which on the contrary introduces more re-
dundancies. Fine-tuning is needed to recover the performance
loss after decomposition. Secondly, we train the model and
gate parameters based on (6) to learn the pruning criterion. The
predictor will be used in the regularization loss if the compres-
sion target is real hardware performance. Due to the induced

sparsity constraint in the training objective, the computation
cost of the pruned model will be always near the target
ratio, and models with the best validation performance will
be selected. Lastly, those channels of which gate parameters
are below threshold 0.5 will be removed following the pruning
strategy in section IV-B, and fine-tuning is again employed to
get the final compact model.

V. EXPERIMENTS

A. Experimental Setup

Evaluation Platforms. The model training and pruning
method are implemented by the deep learning framework
PyTorch [53]. For evaluating hardware performance, we lever-
age a cycle-accurate DNN accelerator simulator MAESTRO
[52], which can analyze the performance for various existing
accelerator designs such as NVDLA [8], Eyeriss [9], Shi-
diannao [43] and so on. We follow the default resource
parameter settings in MAESTRO of which the results are
highly consistent with original designs. And with the help
of mapping optimizers like GAMMA [54], more flexible and
optimal designs can be explored.

Benchmark Datasets. We evaluate the proposed method
on three standard image classification benchmarks: CIFAR-10,
CIFAR-100 [55] and ImageNet (ILSVRC-2012) [56]. CIFAR-
10 contains 50000 training images and 10000 testing images
of size 32 × 32, which are categorized into 10 different
classes. CIFAR-100 is similar to CIFAR-10 but has 100
classes. ImageNet contains 1.28 million training images and
50k validation images of 1000 classes.

Neural Network Models. While ResNet models show state-
of-the-art performance with efficient architectures, previous
works claim that it is more difficult to compress such struc-
tures. Therefore, besides plain neural networks like VGG, we
mainly focus on pruning the challenging ResNet. Both shallow
(ResNet-18,20) and deep (ResNet-50,56,110,164) versions are
evaluated on different datasets.

When real hardware performance is the target resource
constraint, we adopt a 4-layer fully-connected network as the
performance predictor, with hidden layer of width 200, 100,
80 and each followed by a Leaky ReLU activation function.
It is worth noticing that the predictor will only be used when
training and pruning, and no additional computation cost is
required for model inference.

Optimization Settings. For training baseline models on
CIFAR-10 and CIFAR-100, we follow the parameter settings
in [42]. Models are trained for 160 epochs using SGD opti-
mization with 0.9 momentum and 10−4 weight decay, batch
size is 64, initial learning rate is set to 0.1, and is multiplied
by 0.1 at 50% and 75% epochs. For ImageNet, baselines are
downloaded from the pretrained PyTorch model [57].

When performing criterion learning, trainable gate param-
eters are updated via Adam optimization with initial learning
rate set to 10−3 while weight parameters are still optimized by
SGD with initial learning rate 0.01. The learning rate scheduler
of both gate parameters and weight parameters are multiplied
by 0.1 at 50% and 75% epochs, training epochs are set to 80
and 50 for CIFAR-10/100 and ImageNet respectively. Given
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TABLE I
COMPARISON OF PRUNING RESULTS ON CIFAR-10. THE ”PARAMS” REPRESENTS THE NUMBER OF PARAMETERS. THE ”↓” DENOTES THE DROP

BETWEEN BASELINE AND THE PRUNED MODEL. A NEGATIVE VALUE IN ”ACC ↓” INDICATES AN IMPROVED MODEL ACCURACY OVER THE BASELINE
MODEL. THE ”-” DENOTES THAT RESULTS ARE NOT REPORTED IN ORIGINAL PAPERS. THE AFCP-40 DENOTES THAT THE TARGET FLOPS COMPRESSION

RATIO IS SET TO 0.4. OTHER TABLES AND FIGURES FOLLOW THE SAME CONVENTION.

Model Method Baseline
Acc (%)

Pruned
Acc (%) Acc ↓ (%) Params ↓ (%) FLOPs ↓ (%)

ResNet-20

SFP [20] 92.20 90.83 1.37 - 42.20
FPGM [25] 92.20 90.44 1.76 - 54.00
GBN [22] 92.07 91.39 0.68 36.08 44.53
Hinge [42] 92.54 91.84 0.70 55.45 54.50
AFCP-40 92.44 92.41 0.03 49.55 60.02
AFCP-30 92.44 92.19 0.25 59.75 70.05

ResNet-56

SFP [20] 93.59 92.26 1.33 - 52.60
FPGM [25] 93.59 93.49 0.10 - 52.60
LFPC [32] 93.59 93.24 0.35 - 52.90
GBN [22] 93.10 93.07 0.03 66.70 70.30

HRank [26] 93.26 90.72 2.44 68.10 74.10
Hinge [42] 92.95 92.65 0.30 79.20 76.00
AFCP-30 93.56 93.96 -0.40 59.24 70.01
AFCP-20 93.56 93.83 -0.27 76.88 79.89

ResNet-110

SFP [20] 93.68 93.38 0.30 - 40.80
FPGM [25] 93.68 93.74 -0.16 - 52.30
LFPC [32] 93.68 93.07 0.61 - 60.30

C-SGD [31] 94.38 94.41 -0.03 - 60.89
HRank [26] 93.50 92.65 0.95 68.70 68.60

AFCP-30 93.88 94.12 -0.24 61.9 70.00
AFCP-20 93.88 94.06 -0.18 74.00 80.01

VGG-16

Hinge [42] 94.02 93.59 0.43 80.05 39.07
HRank [26] 93.96 92.34 1.62 82.10 65.30

AFCP-15 93.89 94.07 -0.18 93.16 84.99
AFCP-05 93.89 92.30 1.59 97.04 95.01

the compression ratio p, the K-means cluster ratio for each
tensor is set to (p + 0.1). λ in (6) is set to 4. And all other
parameters are the same as training baseline models.

Fine-tuning for models after decomposition and pruning
follows the same setting as criterion learning, except that gate
parameters are frozen during fine-tuning.

For each hardware platform, the predictor is trained for
50 epochs with a batch size of 256 updated via the L1 loss
function, parameters are updated using the Adam optimizer
with initial learning rate set to 10−2 and multiplied by 0.1
at 15, 30 and 45 respectively. For generating datasets that are
used to train the predictor, we traverse all possible convolution
structures (input vector) in the pruned model and feed these
configurations to MAESTRO to get the corresponding accel-
erator runtime performance (output vector). It takes about 4
hours to obtain the training dataset for a specific platform. To
guarantee fast convergence, data vectors are linearly normal-
ized to [0,1] before training.

B. Evaluation

In this section, we first compare the performance of the
pruned model with state-of-the-art methods with respect to
FLOPs constraint. Then each step in the proposed method is
studied to show the improvement. Pruning performance with
the hardware performance predictor is further conducted to
demonstrate more efficiency than the FLOPs constraint. Lastly,
different settings of hyperparameters are analyzed.

1) Overall Comparison: We compare our proposed AFCP
with state-of-the-art channel pruning methods, including SFP

[20], FPGM [25], C-SGD [31], GBN [22], HRank [26],
Hinge [42] and LFPC [32]. For fairness, we mainly focus
on comparing the top-1 accuracy drop between the baseline
and the pruned model, since model performance is slightly
different due to different settings of hyper-parameters such
as weight decay and batch size. All the reference results
are directly cited from papers or produced by official public
codes. To compare with other pruning methods with various
compression ratios, we set different FLOPs budget in (9) to
achieve the target FLOPs.

Results on CIFAR-10 dataset are shown in Table I. We first
observe that the pruned model can accurately achieve the target
compression ratio, which shows that the proposed AFCP is
a budge-aware pruning method. Secondly, the AFCP always
outperforms other methods on various models. Take ResNet-56
as an example, SFP only optimizes the algorithm level with a
zero-out criterion, thus it shows the worst performance. FPGM
and HRank employ a more effective pre-defined criterion, and
the pruning results are better than SFP, but the improvement is
just incremental. LFPC learns the adaptive criterion of SFP and
FPGM in a layer-wise manner, thus can achieve higher perfor-
mance than SFP and FPGM, which indicates that the learned
criteria is better than a pre-defined one. GBN learns the zero-
out criterion and prunes residual networks in a group-wise
strategy, thus outperforms other methods that leverage the skip
strategy for residual networks, which shows the effectiveness
of the learned criterion and optimization of residual structure.
Hinge is the only method that adopts decomposition for
enlarging pruning space, and achieves better performance than
most of the existing works, which demonstrates the advantage
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TABLE II
COMPARISON OF PRUNING RESULTS ON CIFAR-100.

Model Method Baseline
Acc (%)

Pruned
Acc (%) Acc ↓ (%) Params ↓ (%) FLOPs ↓ (%)

ResNet-20
Hinge [42] 68.83 66.34 2.49 66.36 67.06
AFCP-30 68.24 68.39 -0.15 54.15 70.02
AFCP-20 68.24 67.40 0.84 64.98 80.09

ResNet-56

SFP [20] 71.41 68.79 2.61 - 39.30
LFPC [32] 71.41 70.83 0.58 - 51.60
FPGM [25] 71.41 69.66 1.75 - 52.60
AFCP-45 71.90 73.01 -1.11 22.30 54.99
AFCP-40 71.90 72.80 -0.90 51.70 70.01

ResNet-164 Hinge [42] 76.78 76.88 -0.10 23.43 44.68
AFCP-45 77.15 77.97 -0.82 36.18 54.98

TABLE III
COMPARISON OF PRUNING RESULTS ON IMAGENET.

Model Method Baseline
Acc (%)

Pruned
Acc (%) Acc ↓ (%) Params ↓ (%) FLOPs ↓ (%)

ResNet-18

SFP [20] 70.28 67.10 3.18 - 41.80
FPGM [25] 70.28 68.34 1.94 - 41.80
AFCP-40 69.76 70.05 -0.29 63.81 60.35
AFCP-30 69.76 69.99 -0.23 69.99 71.92

ResNet-50

SFP [20] 76.15 74.61 1.54 - 41.80
HRank [26] 76.15 74.98 1.17 36.66 43.76
Hinge [42] 76.15 74.70 2.49 - 53.45
FPGM [25] 76.15 74.83 1.32 - 53.50
GBN [22] 75.88 75.18 0.67 53.40 55.06

C-SGD [31] 75.33 74.54 0.79 - 55.76
LFPC [32] 76.15 74.46 1.69 - 60.80
AFCP-40 76.13 76.69 -0.56 52.45 60.01
AFCP-25 76.13 75.85 0.28 66.56 75.01

of pruning with decomposition. However, the proposed AFCP
considers both zero-out and similar criteria adaptively for each
channel, and leverages a finer-grained decomposition step as
well as a more flexible block-wise pruning manner for residual
networks. Therefore, AFCP shows a significant improvement
over all other pruning methods.

As shown in Table II, we also evaluate our method on
CIFAR-100. Compared to the CIFAR-10 dataset, classification
on CIFAR-100 is more challenging due to the larger number
of classes, which limits the performance of channel pruning.
When achieving a similar FLOPs ratio, models pruned by our
method show superior performance than others. For example,
while Hinge achieves 67.06% FLOPs reduction with 2.49%
accuracy drop on ResNet-20, AFCP shows even 0.15% higher
accuracy than the baseline with slightly fewer FLOPs, and
achieves 1.65% accuracy improvement over Hinge with even
13.03% FLOPs more reduction. On the pre-activation model
ResNet-164, AFCP can prune 10% more FLOPs than Hinge
with higher accuracy and the less accuracy drop.

Table III depicts the results on the ImageNet dataset. For
ResNet-18, AFCP obviously outperforms SFP and FPGM, a
higher compression ratio can be achieved with less accuracy
drop. While FPGM compresses ResNet-18 by 41.8% with
1.94% accuracy drop, our method prunes more than 70%
FLOPs with even higher accuracy. For ResNet-50, AFCP
can also achieve higher accuracy than existing methods with
similar computation cost elimination.

The above overall comparisons validate the effectiveness
of the proposed pruning framework on various datasets and
models. We show that our method can achieve superior perfor-
mance with comparable computation cost reduction, or reduce
more computation cost with similar accuracy degradation.

Fig. 11. Comparing the proposed criteron with two basic criteria when
employed on ResNet-20, ResNet-56 and VGG-16 models with datasets
CFIAR-10/100.

2) Effect of Learned Criterion: One of the reasons for our
superior results is that the proposed AFCP adaptively selects
a suitable criterion for each channel, Fig 11 demonstrates the
effect of this learned criterion. We compare the performance
of pruning by zero-out gate parameters, pruning by similar
criterion gate parameters and pruning by considering both cri-
teria, three criteria are evaluated under the same FLOPs ratio
with same hyper-parameters settings. For different models,
pruning ratios and datasets, the fine-grained criterion always
outperforms the other two methods, showing that the two
basic criteria are complementary to each other. The proposed
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similar criterion shows comparable performance with the zero-
out criterion, and always performs better at deep compression
ratio, which indicates that it is easier and more efficient to
make channels become identical than directly remove them.
As pruning ratio becomes larger, the performance gap also be-
comes larger, which validates the effectiveness of our method
especially for ultra-low computation cost.
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Fig. 12. Visualization of the learned criterion for ResNet-20 on CIFAR-100
with 90% FLOPs pruned. The green strip denotes the remained channels, the
blue and orange color denotes channels pruned by the similar criterion and the
zero criterion, respectively. When the similar and zero gate parameter values
are both below the pruning threshold (0.5), the channel is defined to be pruned
by the criterion with a lower value.

Visualization of the learned pruning criterion for ResNet-20
on CIFAR-100 is shown in Fig 12. Obviously, different chan-
nels and tensors adopt different criteria, which again validates
the benefit of considering both pruning criteria automatically.
Interestingly, we observe that deeper layers are totally pruned
with only the residual connections remained, which indicates
that AFCP not only finds the appropriate channel configura-
tions, but also learns the proper neural network depth under
the target budget constraint.
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Fig. 13. Comparing the proposed fine-grained structure with group and skip
strategies for ResNet-20, ResNet-56 models on datasets CIFAR-10/100.

3) Effect of Fine-grained Structure for Residual Neural
Networks: Another advantage of our proposed method results
from the fine-grained structure for residual neural networks.
Fig 13 shows the comparisons of different channel prun-
ing strategies for ResNet-20, ResNet-56 on CIFAR-10 and
CIFAR-100. In the figure,”AFCP-irregular” denotes pruning
each channel independently without any constraint, ”Group”
indicates the strategy that prunes channels connected by pure
shortcut connections together, ”Skip” denotes pruning only
channels inside the residual blocks. For fairness, we employ
the same pruning criterion and hyper-parameters for three
structure strategies. We find that the two proposed fine-
grained structures both achieve higher accuracy at the same
compression ratio, which comes from the fact that we consider
a larger prunable channel space. AFCP always shows the best
performance among these strategies. We explain that although
AFCP-irregular provides the largest search space of channels

that are allowed to be pruned, the irregular channel distribution
fails to fully exploit this advantage. Thus the improvements of
AFCP-irregular at some compression ratio are not significant.
Interestingly, the Group strategy has a lower accuracy than
the Skip strategy in our pruning framework, an explanation
is that the constraint that channels in the same group should
be pruned simultaneously is too hard that restricts the optimal
learning of gate parameters. The superior evaluation results
demonstrate the effectiveness of the proposed fine-grained
structure for residual neural networks.

Fig. 14. Comparison of pruning with different decomposition steps.

4) Effect of Decomposition: We further evaluate the benefit
of the proposed fine-grained decomposition, as depicted in Fig
14. The ”First Decomposition” denotes the step in (12) in
section IV-C, which is also used by [42]. And the ”Second
Decomposition” denotes performing the step in (13) on the
original filter independently. The ”Three-step Decomposition”
and ”Four-step Decomposition” denote further decomposing
tensor A1. The proposed fine-grained decomposition-based
pruning always shows the best performance for ResNet-20,
ResNet-56, VGG on CIFAR10/100. We find that the second
step has higher accuracy than the first step in most situations,
and these two steps are complementary to each other. For
example, for pruning results on ResNet-56, the basic two
steps have comparable performance, and the proposed method
shows a significant improvement in comparison to others.
As the decomposition step further increases, the performance
begins to drop due to the larger approximation error between
the decomposed tensors and original weights, which makes
it hard to recover the loss. Therefore, the proposed two-step
decomposition achieves the best trade-off between accuracy
and compression ratio.

5) Speed-up in Hardware: In this section, we evaluate the
performance of applying hardware-aware pruning instead of
considering theoretical computation cost. We compare the
realistic acceleration of the pruned model when deployed
on various devices including NVDLA [8], Shi-diannao [43],
Eyeriss [9] and GAMMA [54]. The decomposition step is not
performed when deployed on NVLDA, Shi-diannao and Eye-
riss, since these accelerators do not optimize the acceleration
for compact filters such as 1× 1 and 1× 3, and runtime can
not be efficiently reduced compared with the original 3 × 3
filters. GAMMA denotes the adaptive accelerator generated by
[54], which supports the acceleration for compact filters. The
inference runtime is reported with a batch size of 1.

Table IV depicts the results. While the model accuracy is
hard to control, to compare with the pruning with FLOPs
constraint, we set the resource budget of training with pre-
dictor a little lower than the FLOPs, and to show that better
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TABLE IV
COMPARISON OF PRUNING RESNET-20 ON CIFAR-100 WHEN DEPLOYED ON ACCELERATORS. IN ”HARDWARE OPT” COLUMN, ”X” AND ”×”
INDICATES WHETHER TO UTILIZE ACCELERATION-AWARE PRUNING OR NOT, RESPECTIVELY. ACCURACY OF THE ORIGINAL MODEL IS 68.24%.

Device Baseline
Time(cycle)

Hardware
Opt

FLOPs↓
(%)

Pruned
Time(cycle) Speedup Pruned Acc(%) Acc↓ (%)

NVDLA [8] 86069

× 69.86 51469 1.67× 66.36 1.88
X 60.23 33925 2.54× 67.94 0.30
× 79.72 28229 3.05× 66.18 2.06
X 73.52 25646 3.36× 67.43 0.81

Shi-diannao [43] 42045

× 69.86 19375 2.17× 66.36 1.88
X 65.93 19285 2.18× 67.62 0.62
× 79.72 10771 3.90× 66.18 2.06
X 74.22 9222 4.56× 67.25 0.99

Eyeriss [9] 120171

× 69.86 47385 2.54× 66.36 1.88
X 61.32 44117 2.72× 67.15 1.09
× 79.72 30907 3.89× 66.18 2.06
X 77.28 30207 3.98× 66.55 1.69

GAMMA [54] 30439

× 80.04 10300 2.96× 67.16 1.08
X 76.87 10031 3.03× 67.40 0.84
× 90.00 6212 4.90× 63.99 4.25
X 87.61 5961 5.11× 64.75 3.49

pruning performance should be obtained with the similar
or even less execution time, all other hyper-parameters are
set to the same values. There are three observations. First,
models pruned with the hardware predictor show superior
performance in comparison to models pruned by FLOPs
constraint with slightly higher acceleration ratio. For example,
pruning 20.28% FLOPs without hardware predictor accelerates
ResNet-20 by 3.05× with 2.06% accuracy drop, but pruning
with predictor achieves 3.36× speedup ratio with only 0.81%
accuracy drop. This validates the motivation that even if an
optimal pruning strategy is learned for a given FLOPs, it
may not be optimal for the corresponding execution time.
Therefore, by utilizing the hardware predictor, a better training
performance should be obtained under the same execution
time constraint, or the hardware cost should be lower with
nearly the same training accuracy. Second, as discussed in
the above section, there are gaps between the theoretical
(FLOPs) and realistic speedup ratios, 20% FLOPs reduction
can not translate into 5× speedup, however, the hardware
predictor can make pruning more efficient and achieve a
similar speedup ratio with fewer FLOPs elimination. Finally,
our method demonstrates improvement on different devices
and shows effectiveness for pruning both original filters and
decomposed tensors. These results demonstrate that with the
help of the hardware predictor, our method can produce a more
efficient compressed model.

We further perform the hardware-aware pruning on CPU
(Intel Xeon E5-2650) and GPU (NVIDIA TITAN Xp) to
show the effect on various platforms. The training datasets
for the predictor are built by collecting the realistic inference
time of convolutional layers with all possible architectures
covered in PyTorch. All evaluation results are averaged over
10 measurements. As depicted in Table V, similar to the results
on accelerators, pruning with hardware feedback achieves less
execution time with higher accuracy on both CPU and GPU.
Specifically, pruning with the predictor can reach nearly 20%
more speedup over the 30% FLOPs model on CPU, which
again validates the benefit of pruning guided by the predictor.

TABLE V
COMPARISON OF PRUNING RESNET-20 ON CIFAR-100 WHEN DEPLOYED

ON CPU/GPU. THE NUMBER OF THREADS IN CPU IS SET TO THE
DEFAULT VALUE 24. THE INFERENCE RUNTIME IS REPORTED WITH A
BATCH SIZE OF 64. ACCURACY OF THE ORIGINAL MODEL IS 68.24%.

Device Hardware
Opt

FLOPs↓
(%)

Pruned
Time(ms) Speedup Acc↓ (%)

CPU
(32.01ms)

× 69.86 22.48 1.42× 1.88
X 69.30 20.62 1.55× 0.64
× 79.72 17.58 1.82× 2.06
X 72.16 11.42 2.80× 1.07

GPU
(4.03ms)

× 69.86 3.38 1.19× 1.88
X 64.20 2.98 1.35× 0.98
× 79.72 2.58 1.56× 2.06
X 76.38 2.16 1.87× 1.57

We also observe that the speedup of GPU is smaller than
CPU under the same FLOPs reduction, the reason is that the
parallelism level of GPU is higher and the problem of under-
utilization is more severe for the pruned model.

6) Ablation Study: There are two hyper-parameters in our
pruning method, including K-means cluster ratio for each layer
and λ to control the balance between performance loss and
computation cost loss, ablation studies are conducted on these
two hyper-parameters.

Fig. 15. Sensitivity analysis about K-means cluster ratio for each layer on
CIFAR-10.

Effect of different K-means cluster ratio. Fig 15 shows
the model accuracy of different K-means cluster ratios for
ResNet-56 and VGG-16. Although the final pruned ratio for
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each layer is determined automatically by trainable gate pa-
rameters, the number of initial clusters is essential for learning.
Given a global pruning ratio p for each layer, the remaining
computation cost ratio can be simply estimated as (1 − p)2,
and we find model accuracy reaches the highest with cluster
ratio around p for each layer. Therefore, we set the K-means
cluster ratio to (p+ 0.1) in this work.

TABLE VI
SENSITIVITY ANALYSIS ABOUT BALANCING TERM λ FOR THE SPARSITY

LOSS ON CIFAR-10.

Model FLOPs↓ (%) λ Pruned Acc (%)

VGG-16 90

2 93.57
4 93.57
6 93.59
8 93.36

ResNet-56 80

2 93.88
4 93.88
6 93.81
8 93.74

Selection of λ. We compare the accuracy of the pruned
model with different λ ∈ {2, 4, 6, 8}, as shown in Table VI.
There is nearly no difference in pruned accuracy for different
selections under the same target computation cost constraint,
which indicates that our pruning algorithm is stable and robust
to this hyper-parameter. And we set λ to 4 in this work.

VI. CONCLUSION

In this article, we have proposed AFCP, a novel
acceleration-aware fine-grained channel pruning framework
for accelerating DNN models on accelerators, which optimizes
models from the perspective of both pruning algorithm and
structure. Different from existing methods, AFCP explicitly
considers both zero-out and similar criteria for each tensor and
adaptively selects the suitable one via residual gate parameters.
A Fine-grained channel pruning strategy for residual neural
networks and decomposition-based structure are proposed
to achieve ultra-deep compression. To further improve the
efficiency of model pruning when deployed on accelerators,
AFCP adopts a hardware predictor to guide pruning learning.
Experiments have shown that AFCP outperforms state-of-the-
art pruning methods, and demonstrate a favorable balance
between classification accuracy and computation cost.
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