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Abstract—Although conformance checking is great at detecting
process deviations, it still poses challenges that hinders adoption
in auditing practice. A major challenge is that in real life a
large number of deviating cases is often detected of which only
a small amount are true anomalies and thus of real interest
to auditors. The number of deviations are often too large to
inspect one by one, which explains why auditing requires a
sample-based approach. This paper contributes to the research
on the practical feasibility of continuous auditing and studies the
potential of weak supervision to classify deviations into anomalies
and exceptions, allowing auditors to do a full-population analysis
of the identified deviations. The Snorkel framework is applied
which uses a set of imperfect domain expert rules to classify
the set of deviations into anomalies and exceptions. A controlled
and artificial experiment has been set up to explore the relation
between the performance of this approach and the number and
quality of domain expert rules. The results demonstrate the
potential of this approach as a limited number of medium to
high quality domain expert rules succeeds to classify deviations
with acceptable accuracy.

Index Terms—auditing, conformance checking, declare, pro-
cess deviation, snorkel, weak supervision

I. INTRODUCTION

Process mining is a family of process analysis techniques
that discovers a process model from real process executions
(process discovery), detects deviations between a normative
model and the real process (conformance checking) and en-
hances the process (process enhancement) [1].

Process mining can be useful for auditing purposes to get
a better understanding of the audited company’s business
environment, including the business processes. Mainly con-
formance checking has great potential in auditing [2] as it
provides a tool to automatically discover deviations between
the normative process model and the actual process [1]. How-
ever, various challenges remain which hinder full adoption in
practice.

A major challenge relates to the nature of identified de-
viations. Deviations can be classified into two types, i.e.
exceptions which are deviations from the normative model
but acceptable because of specific conditions that hold 1 and

1Because normative models are typically simplified and idealized represen-
tations of how a process should look like, such specific conditions are often
not modeled along, which results deviations that are only exceptions rather
than anomalies.

anomalies which represent deviations that are an issue and
require follow-up by the auditor [3], [4]. Theoretically, the
auditor could check each deviating case to verify it can be
classified as an exception or anomaly, but in practice this
quickly becomes infeasible because of the large number of
deviations identified by conformance checking [5]. Therefore,
current conformance checking approaches do not entirely
simplify the auditor’s work, which prevents the realization of
full-population auditing [4].

In this paper, we study the potential of a combination of
conformance checking, weak supervision and domain expert
rules as a step forward towards auditing the complete set of
transactions of a specific business process, replacing up-front
sampling methods [4]. The specific problem at hand is where
the auditor is confronted with a large set of deviating cases, as
identified by the conformance checking approach, which need
to be classified as exceptions or anomalies. In the envisaged
solution, the auditor only needs to provide a limited set of
rules they would use to label deviating cases as exceptions or
anomalies in combination with a weak-supervision approach
to use this domain knowledge to label all deviations in the
initial set. Weak supervision is a branch of machine learning
that uses noisy, limited, or imprecise sources and while labels
derived from such sources are also ’weak’ (but inexpensive),
weak supervision manages to construct powerful prediction
models [6], [7].

We build upon the weak supervision framework Snorkel
[8], to classify process deviations into anomalies and ex-
ceptions based on a limited set of expert rules. We analyze
its potential in an experimental and artificial setting which
replicates the context of a procure-to-pay process. For our
approach, we opted for the Snorkel Framework as it allowed
the injection of domain knowledge in a machine learning
model by means of rules and we could extract the labeling
model functionality from the larger framework. Auditor’s
expertise, encoded as labeling functions, is used to guide the
classification process [8].

Our study shows how a realistic set of deviating cases can
be classified into anomalies and exceptions without the need
for manually evaluating each case individually or the need
for a large set of labeled cases to train a classification model



(which also requires manual labeling work). The contribution
of this paper is three-fold:

1) We demonstrate the potential of weak supervision, and
the Snorkel framework in particular, to bring full-
population based auditing closer to reality.

2) We demonstrate that Snorkel’s labeling model has a
higher performance, in terms of accuracy, than a major-
ity voting regardless of the quality of the expert rules.

3) We indicate that six high to medium quality rules per
label category suffice to identify 60% of the anomalous
cases and reach an overall accuracy of 80%.

This paper is structured as follows. In Section II, we explain
how the weak supervision system Snorkel can be used in
auditing practice. Our research design is explicated in III.
Section IV shows the quantitative results of our study. Sec-
tion V discusses our findings and highlights the implications.
In Section VI, we provide some related work. The paper is
concluded in Section VII.

II. SNORKEL FOR AUDITING

The machine learning system Snorkel can help to overcome
the challenges related to conformance checking in auditing.
Traditional supervised machine learning models need a large
set of labeled training data to train predictive models. Snorkel
does not. Instead, it combines weak supervision sources for
training [8]. In this section, we explain how Snorkel can be
used to classify process deviations in the context of auditing.

A. Theoretical background

A recent paradigm for weak supervision that does involve
domain knowledge in machine learning models is data pro-
gramming. Data programming combines the labels from many
weak supervision sources, like heuristic rules, to label datasets
programmatically without using any ground truth [9]. Snorkel
is a system that implements the idea of data programming.
It trains models without manually labeling any training data.
The main principle behind Snorkel is that domain knowledge,
encoded as labeling functions, is used for labeling purposes
[8].

In this study, we implement Snorkel in the context of
labeling cases as either anomalous (1) or exceptional (0). The
labeling procedure needs deviating cases detected by confor-
mance checking, in the form of an event log, as input. The
event log contains a set of cases, which represent sequences
of one execution of a process [1]. The log consisting of only
deviating cases is unlabeled, meaning that the cases are not
yet labeled as 0 or 1. The objective of applying Snorkel to
an unlabeled set of deviating cases is to identify which cases
are anomalous and which are exceptional. In what follows we
explain how Snorkel works by walking through two steps: (1)
Add a label to each case for each labeling function, and (2)
Combine labeling function outputs in a generative model.

1) Add a label to each case for each labeling function: In
the first step, auditors need to provide Snorkel with labeling
functions. Labeling functions are rules that encode domain
knowledge. They enable auditors to inject their knowledge into

machine learning models. Therefore, it is important that the
auditor has enough knowledge to explicitly determine rules
that identify anomalous and exceptional cases. A more formal
representation of a labeling function λi is given below.

λi 7 −→ {−1, 0, 1}

Each λi takes a deviating case and labels it as either
exceptional (0), anomalous (1) or it can abstain (-1) from
labeling. To illustrate the concept of abstaining, we define
the following labeling function: “if a signature is missing,
then the case is anomalous.”. The example labeling function
identifies whether a case is anomalous (1) or not. If the case
is not anomalous, according to this labeling function, it is
not necessarily exceptional (0). The abstain label (-1) enables
modeling that type of behaviour.

One specific labeling function labels a subset of the data.
More labeling functions can overlap (agree) or conflict (dis-
agree) with each other. Notice that each labeling function
labels each case in the given event log. The output label that
an individual labeling function provides for a specific case, is
stored in a j×i labeling matrix L, with j being the number of
cases in the event log and i the number of labeling functions.
The labeling matrix L is used as input for the next step.

In Algorithm 1, we provide the pseudo-code that illustrates
how we implemented this step in Snorkel.

Algorithm 1
Given:
cases: set of deviating cases in event log

Let:
l(i) be a labeling function with index i, defined by an auditor
L(i,j) be a label outputted by labeling function l(i) for case j

for labeling function l(i) do
for case j do

if labeling function l(i) outputs anomaly then
Store 1 in L(i,j)
else if labeling function l(i) outputs exception then
Store 0 in L(i,j)
else Store -1 in L(i,j)

end if
end for

end for

2) Combine labeling function outputs in a generative
model: In the previous step, each of the j case is labeled
by each of the i labeling functions as either an anomaly (1),
an exception (0) or unknown (-1), resulting in an j×i labeling
matrix L. As these labeling functions are imperfect and often
local rules, labels for a specific case can contradict and two
random cases are often labeled by a partially differing set of
labeling functions. The goal of a labeling model is to take the
i labels for a specific case and map it to a final predicted label.

A first naive approach is to use a ‘majority vote’ labeling
model, which predicts the label most often assigned by the
labeling functions to the specific case. This approach can
become particularly troublesome as labeling functions are



correlated as this increases the weight of some rules in the set.
In other words, correlated labeling functions are together more
influential when assigning the final label than uncorrelated
labeling functions. Furthermore, this also ignores the fact that
these labeling functions are of varying quality and some rules
should not receive too much weight.

The Snorkel framework follows a different approach by
estimating a generative model for the unlabeled data, in order
to derive the appropriate weights for each labeling function.
Intuitively, Snorkel models the true label for a case as a
latent variable in a probabilistic model. It encodes a generative
model using parameters which represent the probability that
a rule either labels a case as an anomaly or exception rather
as unknown and the probability that a rule makes a correct
prediction. Next, these parameters are learned on the unlabeled
data set by minimizing the negative log marginal likelihood.
Ultimately, the generative model uses the accuracies and
correlations of the labeling functions to combine the individual
output labels into a single confidence-weighted label per case.
For technical details on data programming and Snorkel, we
refer to works of [8], [9].

In Algorithm 2, we provide the pseudo-code of this step.

Algorithm 2
Given:
j: case index
i: labeling function index
L: i× j label matrix, consisting of labeling function outputs

Let:
y(j) be the final output label for case j

for labeling function l(i) do
for case j do

Learn labeling function accuracies
Learn labeling function correlations
Reweigh labeling functions
Calculate final label
Add final label to y(j)

end for
end for

B. Assumptions

With Snorkel, we aim to label the unlabeled event log by
using labeling functions. Since labeling functions represent the
auditor’s domain knowledge, the auditor’s role is essential in
our study. Consequently, an important assumption in testing
whether weak supervision systems can be used to classify
deviations, is that an auditor is capable of defining labeling
functions that identify anomalous and exceptional cases. No-
tice that this shifts the auditor’s role from checking individual
cases on anomalies or exceptions to providing high level rules
that identify anomalous or exceptional cases.

C. Implementation

Snorkel requires Python 3.6 or a later version. We im-
plemented Snorkel and the algorithms from Sections II-A

in Python 3.6 for Linux. The codes are stored in a GitHub
repository2

III. EXPERIMENTAL DESIGN

This section explicates the research design of our study.
First, we explain our research goal and design. Next, we de-
scribe how data were artificially generated. Final, we provide
some background on how we constructed labeling functions.

A. Research goal and design

We define a set of deviating cases that needs to be classified
as anomalous or exceptional. More specifically, we generate
an unlabeled set of deviating cases and a labeled validation
set that is used to validate our results. Subsequently, we use
heuristics, representing auditing knowledge, as sole input to
label the unlabeled set of deviating cases.

In order to test how good the weak supervision system
Snorkel performs at classifying deviating cases as anomalous
or exceptional, we run a set of computational tests under
controlled conditions. We want to measure whether following
parameters have an impact on the model’s performance:

• The quality of the labeling functions, expressed in terms
of accuracy

• The number of labeling functions
Above parameters are both associated with labeling func-

tions. To determine their quality, we first construct three
sets of different quality levels of labeling functions: high
(> 80%), medium (60% − 80%) and low (< 60%) accuracy
labeling functions. Every set consists of at least 10 labeling
functions. A labeling function is a proxy for the auditor’s
domain knowledge. Therefore, respectively, a high, medium
and low accuracy labeling function represents that an auditor
is very good, medium or not good at all at defining labeling
functions that accurately express their knowledge.

We chose for an artificial setting because this research is still
in an exploratory phase. It is expensive to collect data when
it is unclear which relations we are looking for. Therefore,
it is more logical to start with an artificial, but realistic,
setting in which we can control the data. Building upon this,
it is important to know what the data comprises, because
there is a high risk that some patterns in the data point to
correlations (rather than causal relations). This can lead to a
wrong interpretation of the results. Furthermore, the artificial
setting enables us to simulate auditors of different expert levels
by defining different quality levels of rules. Nevertheless we
call the artificial setting ‘realistic’, because we start from a
specific and realistic setting: a procure-to-pay process.

B. Data

The set of deviating cases, including exceptions and anoma-
lies, that is used in this study is artificially generated. This
allows, amongst other things, for a set-up with a validation
set. To this purpose, we start from three declarative process
models. We created a normative, an auditor and a real process

2https://github.com/manallaghmouch/snorkelforauditing

https://github.com/manallaghmouch/snorkelforauditing


model for a procure-to-pay process; the first being the most
restrictive, and each of the latter two being a less restrictive
version of the previous one. The models consist of eight
activities: create purchase request, approve purchase request,
create purchase order, sign, receive goods or services, receive
invoice and pay.

The normative process model represents the process that
a company desires to follow and holds the most restrictions.
It contains 14 declarative constraints in our design. Deleting
some of these constraints results in the auditor process model
(7 constraints). This model contains the process paths that the
auditor would accept, even if they deviate from the normative
process model. Deleting again some declarative constraints
from the auditor model results in the real process model. This
is the least restrictive model of the three, and consists of
the lowest number of declarative constraints (3 constraints).
Behaviour that fits in this model, but not in the auditor
model, are examples of deviating cases that are anomalies.
The declarative constraints in the real model simulate the
user constraints that are imposed by the information system’s
configuration. As such, the behaviour that is modeled in the
real process model represents the as-is process.

Fig. 1: The designed normative process model.

To get a better understanding of how the designed Declare
models look like, we show the normative process model in
Figure 1. An example of a declarative constraint in this model
is a chain response between the activities Create PR and
Approve Pr. This means that if Create PR occurs, then Approve
PR directly follows. The auditor model is not visualised, but
consists of seven constraints that are a subset of the normative
process model. Following the same rationale, the real process
model is a subset of the auditor model and consists of three
constraints. For more information on the DECLARE template,
we refer to the work of [10].

Recall that the declarative process models were designed
with the sole purpose to artificially create an unlabeled event
log and a validation set. We used the real process model to
artificially generate two event logs using the MinerFUL Log
Generator from [11]: one log of 2000 cases and another log
of 1000 cases. Both logs contain cases of 3 to 10 events per
case. The first event log represents the unlabeled event log,
meaning that this set consists of cases that are not yet labeled
as anomaly or exception. The second event log is used to
obtain the validation set. Because the validation set is used

to validate the outcomes of the labeling algorithm, it should
consist of only labeled cases. We obtain the labels of the
validation set cases by performing a conformance check in
the following two steps:

1) The event log of 1000 cases is compared with the norma-
tive process model. The result is a binary classification
into deviation and no deviation. The cases that contain
at least one deviation are extracted as ’deviating cases’.

2) The deviating cases from step 1 are compared with the
auditor process model. The result of this conformance
check is a binary classification into anomaly and excep-
tion.

The cases that are labeled as ‘anomaly’ or ‘exception’
constitute the validation set. After the two-step conformance
check, we obtain the following two datasets. (1) An unlabeled
event log consisting of 2000 deviating cases, and (2) A
balanced, validation set consisting of 1000 deviating cases
(452 anomalies, 548 exceptions). Note that none of the 1000
artificially generated traces of the real process model fell
within the constraints of the normative process model. As a
consequence, all 1000 cases are deviating cases and are part
of the validation set.

C. From rule sets to labeling functions

We define a rule set as a grouping of one or more rules
that identify a concept. Because we are dealing with a binary
classification problem, we need two key rule sets, respectively
a set of rules that identify an anomaly (Rule Set Anomaly -
RSA) and a set of rules that identify an exception (Rule Set
Exception - RSE). In order to obtain the two key rule sets, we
construct four additional rule sets: Rule Set Normative (RSN),
Rule Set Auditor (RSAU), Rule Set Real (RSR) and Rule
Set Deviations (RSD). RSN is the collection of declarative
rules that constitute the normative process model. RSAU is
the collection of declarative rules of the auditor process model.
RSR is the collection of declarative rules of the real process
model. RSD is the difference between the declarative rules
in the normative process model and the declarative rules
in the real process model. Mathematically, the rule sets are
formulated as follows.

RSN = {x : x is declarative rule from normative model}
RSAU = {x : x is declarative rule from auditor model}
RSR = {x : x is declarative rule from real model}
RSD = RSN \ RSR

RSA and RSE are then as follows.
RSA = RSD \ RSAU
RSE = RSAU \ RSN

IV. RESULTS

In this section, we show the results of our experiments. First,
we describe the effect of the quality of the labeling functions
on the accuracy of Snorkel’s labeling model, the LabelModel.
Subsequently, we show the effect of the amount of labeling
functions on the accuracy of the LabelModel.



A. Effect of the quality of labeling functions on performance

As described in the previous section, we constructed three
sets of different quality levels of labeling functions: high,
medium and low. Furthermore, we distinguished between
anomaly and exception rules.

To test the effect of labeling function quality on the per-
formance of the LabelModel, we limit the amount of labeling
functions to a balanced set of five anomaly and five exception
functions that were randomly chosen. How the labeling func-
tion sets are composed in terms of quality level, differs over
the experimental runs.

We executed 66 experimental setups in total. We can divide
this in six parts of 11 setups. The 11 setups were structured as
follows. We fixed the amount of the anomaly (exception) rules
to five at a constant level of quality, while gradually decreasing
the quality of the exception (anomaly) rules. For example, we
start with 5 high quality anomaly rules and 5 high quality
exception rules. In the second setup, we still have 5 high
quality anomaly rules, but 4 high quality exception rules and
1 medium quality exception rule. In the third setup, we again
still have 5 anomaly rules, but 3 high quality exception rules
and 2 medium quality exception rules. We keep on replacing
higher level exception rules by lower level exception rules until
we are left with 5 low quality exception rules.

Each setup was repeated 15 times to obtain an average
accuracy. The mean accuracies of Snorkel’s LabelModel and
the naive approach of majority voting were calculated. Figure 2
visualizes our findings. Notice that the ‘lift’ in the Figures
should be interpreted as the improvement the LabelModel
offers relative to the naive approach of majority voting. To
get an understanding of the behaviour of labeling function
quality per category on the accuracy of the models, we kept
one category fixed, while decreasing the quality of the labeling
rules of the other category. For example, in (a), we show the
effect of the quality of exception rules on the accuracy, keeping
anomaly rules at a constant level of high quality.

Figure 2 shows that Snorkel’s LabelModel performs sig-
nificantly better in classifying deviating cases than the naive
approach of majority voting (t = 0.00, p < 0.01). High- and
medium-quality anomaly rules are robust to changes in quality
of the exception rules (Figure 2 (a) and (b)). Furthermore,
for the fixed medium- and low-quality anomaly rules, the
LabelModel decreases abruptly at the point where the quality
level of exception rules shifts from high quality to medium/low
quality. The same reasoning holds for the fixed high- and
medium-quality exception rules, where the quality level of the
anomaly rules shifts from high quality to medium/low quality.
This effect is mainly noticeable for the LabelModel. It suggests
that the LabelModel loses most performance when the set of
labeling functions consists of about 25% low-quality rules.
However, adding even more low-quality rules to the model at
the expense of high-quality rules does not have an additional
decreasing effect on accuracy. All figures have about the same
gradient, except for (c). This figure shows that majority voting
may perform better than the LabelModel in some specific

cases. A possible explanation for this behaviour in our setting
is that the set of low quality exception rules contains rules
with a zero accuracy, while the set of anomaly rules does not.

B. Effect of the number of labeling functions on performance

In order to test the effect of the number of labeling functions
on the performance of the LabelModel and the majority voting
approach, we increase the number of randomly chosen labeling
functions gradually. We do this for an equal mix of high
and medium quality labeling functions from the anomaly and
exception categories. Since Snorkel requires a minimum of
3 labeling functions, our minimum is set to 4 (to keep a
balanced set of anomaly and exception rules). For every setup,
we increased the number of labeling functions per category by
one.

First, we test the sensitivity of our model by showing how
many anomalies the model classifies correctly with a balanced
set of only high- and medium-quality anomaly rules as input.
We focus on anomaly rules, because discovering anomalous
cases is highly important from an auditing perspective. Second,
we perform a similar analysis on a balanced combination of
both anomaly and exception rules. In Figure 3, we graphically
present our results.

As both (a) and (b) show, the LabelModel is better at
identifying anomalous cases than majority voting, regardless
of the number of labeling functions and regardless the use of
only anomaly rules or a combination of anomaly and exception
rules (lift). When only using anomaly rules, the LabelModel
correctly classifies 65% to 80% of the anomalies (a), when
using both anomaly and exception rules, the LabelModel cor-
rectly classifies 50% to 75% of the anomalies (b). Furthermore,
for both setups, is significantly better at correctly classifying
anomalies than majority voting (t = 0.00, p < 0.01). The dif-
ference is more noticeable when both anomaly and exception
rules are taken into account. However, the LabelModel labels
more anomalous cases correctly when the model is provided
with anomaly rules only. This might indicate that including
additional exception rules, on top of the anomaly rules, in the
model has a negative impact on correct classification.

Although from an auditing point of view, we focus on
correctly classifying anomalous cases, we are still interested
in predicting both anomalies and exceptions. Classifying both
is important because at the end of the classification, a limited
amount of cases might still be unlabeled. In the case of audit-
ing, we would see these cases as ‘potentially anomalous’, to
depict that the model was unsure about the label and therefore
abstained from making a final decision on the label. To avoid
the negative effect of having a balanced set of anomaly and
exception rules on correctly classifying anomalies, we could
provide the model with more anomaly rules than exception
rules or assign more weight to the anomaly rules.

We also have to take into account that adding more rules
to the model diminishes the added value when the model
already consists of about 12 rules. With 12 rules consisting
of a balanced set of high- and medium-quality rules, the
LabelModel identified about 60% of the anomalous cases
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(b) Medium-quality anomaly rules.
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(c) Low-quality anomaly rules.
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(b) Medium-quality exception rules.

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11

A
cc

u
ra

cy

Quality level anomaly rules

 Accuracy Majority Vote  Accuracy LabelModel Lift

High Medium Low

(c) Low-quality exception rules.

Fig. 2: The effect of decreasing the quality of rules on accuracy.

correctly (twice as much than majority voting), the other 40%
were not identified (i.e. the model abstained from labeling).
The overall model accuracy at this point was 80%, meaning
that many cases were correctly classified as anomalous or
exceptional.

V. DISCUSSION

This section points out the relevance and implications of our
results in a broader perspective. We discuss the implications
for research and practice and provide an overview of some
research limitations.

A. Implications

Our work has implications for the research field of contin-
uous auditing. Research in this area focuses on automation
of tasks that highly require domain expertise. A general
question here is to what degree full automation is practical in
auditing practice. Recent studies suggest that automation could
have a powerful effect on today’s accounting practices [12].
However, it is less likely that auditing tasks will be fully
automated. Rather, auditors will work together with machines
to complete a task [13], [14]. The findings of our research
implicate the same. Computational tools and techniques will
only be valuable in auditing as long as using them significantly
simplifies current auditing tasks, which is currently not the
case. Conformance checking results in a large set of process
deviations and forces an auditor to take samples [4], [5], [15].

Our study shows that weak supervision can offer a solution
for the problem of alarm floods in auditing, enabling full
population testing. We demonstrate that the weak supervision

system Snorkel smoothly integrates domain knowledge, in
the form of rules, in a machine learning model. Our results
suggest that the provided rules have to be of medium to high
quality to obtain reasonable results. Furthermore, with only six
high- to medium-quality labeling rules for both anomalies and
exceptions, the Snorkel model reaches an acceptable accuracy.

B. Limitations

Our study has some limitations that are inherent to its
artificial setup. First, the generated event logs are based on a
procure-to-pay process. While we designed a realistic process
model and obtained powerful results, future research has
to investigate the potential effect of using different process
models. A reasonable starting point for such research can be
changing the complexity of the declarative model and explore
its effect on model performance.

Second, although the declarative rules are a good proxy of
an auditor’s knowledge, it does not fully account for an actual
auditor. Now we know weak supervision potentially holds a
solution for continuous auditing, a follow-up fine-tuning of
our research direction might be as follows. As a first step, we
can design a semi-artificial experiment in which auditors have
to verify rules from the auditor model. Subsequently, we let
auditors design rules from scratch and use these as labeling
functions.

Third, to label the generated set of deviating cases, we
used Snorkel’s generative model. While this model effectively
labeled our dataset, a discriminative model could generalize
beyond the provided heuristics without losing precision [8].
The obtained (labeled) event log can serve as input to train a
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Fig. 3: The effect of increasing the number of rules on correct classification of anomalies.

discriminative model on unseen data. The possibilities in the
context of auditing have to be further investigated in future
research.

VI. RELATED WORK

This section describes background literature that is relevant
to our research. We start with discussing prior research on
conformance checking in auditing. Thereafter, we provide
some background on weak supervision and Snorkel.

A. Continuous auditing of business processes

The increased availability of digital data and information
systems is changing the current way of auditing [16]–[18].
Continuous Auditing is the idea of automating audit pro-
cedures. Such techniques can assist auditors in objectively
auditing a company [4], [16], [19], [20]. Continuous auditing
enforces traditional auditing to change. Auditors who are
familiar with the flow of transactions and related control
activities become essential, as they can now analyze business
processes based on digital transactions [21].

Many continuous auditing tools and techniques can be
used to analyze business processes [22], [23]. In particular,
process mining is a family of process analysis techniques that
provides an objective view on the process. It uses an event log
as input to initialize automatic analysis [1]. Conventionally,
process mining is divided in three types: process discovery,
conformance checking and process enhancement. With process
discovery, a process model is discovered from real process
executions. With conformance checking, a normative process
model is compared with the real process to detect process
deviations. With process enhancement, additional analysis like
time and resource analysis are performed with the objective
to enhance the actual process. Using solely an event log
as input, process mining techniques can provide insightful
information about a business process, like sequence, duration
and interaction information [1], [24].

Mainly the type conformance checking is useful for more
in-depth auditing analyses [2], [4]. Although conformance

checking smoothly automates the identification of a large set of
process deviations, using this in auditing practice bears some
challenges. Since the normative process model is a simplified
representation of how the process should look like, an alarm
flood of process deviations is detected. This set consists of a
relatively small set of deviations that are important from an
auditing point of view (anomalies) and a relatively large set
of technical deviations that do not matter from an auditing
perspective (exceptions) [4]. Current conformance checking
output does not simplify the auditor’s work, with the conse-
quence that sampling is still necessary. Some studies propose
frameworks that could provide a solution for alarm floods
in continuous auditing [4], [15], [25]. However, a practical
integration of existing techniques is not yet tested. In this
paper, we demonstrated and experimentally tested how a weak
supervision system can be leveraged to classify deviating cases
as anomalous or exceptional.

B. Weak Supervision

Machine learning based systems are getting increasingly
more attention nowadays. With deep learning techniques,
can effectively be used to predict the labels of unseen data
instances. However, those techniques require large training sets
of labeled examples to reach high predictive performance. Ob-
taining these large sets of labeled data is time consuming and
costly [26]. Because of this, weak supervision is gaining more
attention. It is a branch of machine learning in which cheaper
sources of heuristic or noisy labels are used [27]. Some
popular forms of weak supervision are distant supervision
[28], [29], crowd-sourced labeling [30], [31], and heuristics
for labeling data [32]. Although these weak supervision forms
are inexpensive, they have a rather limited accuracy [27].

A recent paradigm for weak supervision that has been
proposed in literature is data programming. Data programming
combines the labels from many weak supervision sources,
without using ground truth labels, to increase the accuracy and
coverage of training data. Furthermore, probabilistic training
labels that represent the lineage of individual labels, are



generated. Consequently, with only a generative mode, source
accuracies and correlation structures are recovered without
using labeled training data Snorkel is a system that implements
data programming to train machine learning models without
manually labeling any training data. For this purpose, it uses
a set of labeling functions (i.e. rules) as input [8]. A labeling
function encodes domain knowledge and other supervision
sources programmatically. After defining a set of labeling
functions, the labeling functions are combined in a machine
learning model to build labeled training sets that can be used
to train a discriminative model [8], [27]. Since domain knowl-
edge is very crucial in auditing and Snorkel provides a way
of injecting domain knowledge into machine learning models,
we used the Snorkel system in this paper to demonstrate its
potential to classify process deviations.

VII. CONCLUSION

In this paper, we show how weak supervision effectively
labels deviating cases as anomalous or exceptional. We did
this by implementing the weak supervision system Snorkel.
We ran a set of computational experiments on a realistic, but
artificially generated, event log of a procure-to-pay process,
along with a normative and auditor model, representing the
desired business process on the one hand and the acceptable
process on the other hand. The results of this study suggest
that Snorkel’s labeling model performs better than the naive
approach of majority voting. With each six high- to medium-
quality labeling functions for both anomalies and exceptions,
the Snorkel model reaches a relatively high accuracy of 80%
and identifies at least 60% of the anomalous cases.
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