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Abstract. – The escape rate from a point attractor across an unstable fixed point is studied
for a noisy map dynamics in 1 dimension. It is shown that for additive white noise ξ with a
distribution proportional to exp[−|ξ|α] , α > 1, the escape rate is dominated by an exponentially
leading Arrhenius-like factor in the weak-noise limit. However, with the exception of Gaussian
noise (α = 2), the pre-exponential contribution to the rate still depends more strongly than any
power law on the noise strength.

Low-dimensional discrete-time models have proven to provide valuable qualitative and even
quantitative insight for many systems, though their original setting may be higher dimensional
and continuous in time [1]. Specifically, deterministic chaos can be observed already in 1
dimension, offering a relatively easy analytical and numerical investigation of these phenomena.
On the other hand, for a satisfactory description of real systems one often has to include also
the effect of a small amount of noise. In one-dimensional maps, the prominent role of weak
noise near bifurcations, the onset of chaos, crises, or intermittency is well known [1]. From
a different point of view, noisy one-dimensional maps are of particular interest as one of the
simplest examples that generically violate the so-called condition of detailed balance [2]. Here,
we will focus on a further important aspect, namely that weak noise acting on a map with
coexisting attractors may render some of them metastable and hence dramatically change the
long-time behaviour of trajectories starting inside the corresponding deterministic basins of
attraction [3]. We will restrict ourselves to the simplest case of noise-assisted escape from
a metastable point attractor across an unstable fixed point, which may be considered as a
discrete-time variant of the celebrated Kramers escape problem [4].

We consider the following one-dimensional noisy dynamics of a particle x in discrete time n:

xn+1 = f(xn) + σξn , (1)

where f(x) is a (sufficiently smooth) map of the real axis with a single stable and unstable
fixed point at x = 0 and x = 1, respectively. In order to keep things simple only, we further
assume that 0 < f ′(x) < 1 for x ≤ 0 and f ′(x) > 1 for x ≥ 1, implying that, in addition to
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the point attractor at x = 0 with basin x < 1, there is a second “attractor” at x = +∞ with
basin x > 1. A simple example is the piecewise linear map

f(x) = max{s x , 1 + u(x− 1)} , (2)

where s and u are parameters satisfying 0 < s < 1 and u > 1. The noise ξn in (1) is given by
independent, identically distributed random numbers with probability density

P (ξ) =
α

2Γ (1/α)
exp[−|ξ|α|], α > 1 , (3)

and the coupling strength σ of the noise is assumed to be small. This distribution (3) has
become a standard example for studying the effects of white noise with exponentially decaying
but not necessarily Gaussian tails on a map dynamics [5].

The point attractor x = 0 of the deterministic dynamics becomes metastable upon addition
of a small amount of noise (1) and the probability distribution of the particles approaches a
quasi-invariant density W (x) for large times n, satisfying∫ ∞

−∞
P (x|y)W (y) dy = (1− k)W (x) . (4)

Here, k is the decay rate of the metastable state x = 0 and the one-step transition probability
P (x|y) from y to x is given by

∫∞
−∞ δ(x−f(y)−σξ)P (ξ) dξ. Integrating (4), one finally obtains

k =

∫ 1

−∞[W (x)−
∫∞
−∞ P (x|y)W (y) dy] dx∫ 1

−∞W (x) dx
, (5)

showing that k can also be interpreted as the escape rate of particles from the basin x < 1 of
the point attractor x = 0 in the quasi-stationary state.

Next we highlight the calculation of the rate (5) for a particularly simple map f(x), namely
the piecewise linear example (2) in the limit u→∞. To this end, we first consider the globally
linear map f(x) = sx (x ∈ R, 0 < s < 1). In this case, a “true” invariant density W̃ (x) is
reached for large times n, satisfying the master equation (4) with k = 0. It is sufficient
to determine a solution W1(x) of this equation (4) for σ = 1 and x ≥ 0 since obviously
W̃ (x) = W1(x/σ)/σ and W̃ (−x) = W̃ (x). We want to show that for xÀ 1 such a solution is
given by

W1(x) = Q1x
β ln x+γ1 exp[−φ(x)] , (6)

where Q1 is a normalization constant and

φ(x) := xα
[
1− s α

α−1
]α−1

, (7)

β :=
(2− α)(α− 1)

4 ln s−1
, (8)

γ1 :=
α− 2

4
+

α− 1
2 ln s−1

ln
( απφ(1)

2−α
α−1

2(α− 1)Γ (1/α)2

)
, (9)

see also fig. 1. To demonstrate the validity of this approximation, we note that for large x the
integral in (4) is dominated by the exponentially leading part exp[−ψ(x, y)] of P (x|y)W1(y),
where ψ(x, y) := |x− sy|α + φ(y). This exponent ψ(x, y), considered as a function of y, takes
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Fig. 1. – Numerical solution W1(x) of the master equation (4) with f(x) = s x, k = 0 and σ = 1 at the
parameter values s = 1.5, α = 1.5 (a)) and s = 0.5, α = 3 (b)). The solid lines show these numerical
solutions W1(x) multiplied by exp[φ(x)] according to (8). The dashed lines are the corresponding
asymptotic approximations (6) with Q1 = 0.57 in a) and Q1 = 0.43 in b) .

its absolute minimal value φ(x) at y = g(x) := xs1/(α−1) and can be expanded about this
minimum as

φ(x) + ∆y2α(α− 1)xα−2

2
(
φ(1)s

) 2−α
α−1

+O(∆y3 xα−3) , (10)

where ∆y := y−g(x). Thus, for large x the main contributions to the integral (4) stem from a
region about y = g(x) with the extension of a few x1−α/2. In this region the term O(∆y3xα−3)
in (10) and the variation of the pre-exponential factor Q1y

β ln y+γ1 of W1(y) (see (6)) are
negligible. A straightforward calculation then shows that (6) is indeed a consistent solution
of the master equation (4) (with k = 0, σ = 1) for xÀ 1. Note that the normalization factor
Q1 in (6) depends on α and s, but obviously not on σ. However, its explicit value cannot be
determined analytically except for Gaussian noise (α = 2), see also ref. [6] and fig. 1.

We now return to the piecewise linear map (2) in the limit u → ∞. It is not difficult
to verify [3] that the numerator of the escape rate (5) can be rewritten as a flux of par-
ticles

∫∞
1

dx
∫ 1

−∞ dy P (x|y)W (y) from [−∞, 1] into [1,∞] minus a back-flow
∫ 1

−∞ dx
∫∞

1
dy ·

P (x|y)W (y) from [1,∞] into [−∞, 1]. The latter becomes negligible for u→∞, implying that

k =

∫∞
1

dx
∫ 1

−∞ dy P (x|y)W (y)∫ 1

−∞ dx W (x)
. (11)

Further, one can show by a similar line of reasoning as in the preceding paragraph that in the
domain −∞ < x < 1, the quasi-invariant density W (x) can be approximated by the “true”
invariant density W̃ (x) associated to the globally linear map. Hence, the denominator in (11)
asymptotically approaches 1 for small σ and in the numerator one can substitute W (x) by
W1(x/σ)/σ. Using (6), a straightforward calculation then yields

k = Qσβ ln σ+γ exp[−φ(1)/σα] , (12)

where γ := α − 1 − γ1 and Q is asymptotically σ-independent but explicitly known only for
Gaussian noise [6]: Q = [4π(1− s2)]−1/2 for α = 2.
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Fig. 2. – Arrhenius plot of the numerical rate (crosses) determined according to (4), (11) for the
piecewise linear map (2) with s = 0.5, u → ∞ (a)) and s = 0.5, u = 2 (b)). The noise distribution
is given by (3) with α = 5. The numerical uncertainty is a few percent. The solid and dashed lines
represent the theoretical estimates σβ lnσ+γ exp[−φ(1)/σα] and exp[−φ(1)/σα], respectively, see (12).

Thus, the escape rate (12) is exponentially dominated by the Arrhenius-like factor e−φ(1)/σα .
However, for non-Gaussian noise (α 6= 2) the pre-exponential “correction” Qσβ lnσ+γ still
depends more strongly than any power law on the noise strength σ. To the best of our
knowledge, such an extreme behaviour of the prefactor in a Kramers-like escape problem [4] is
observed here for the first time, see fig. 2 a). Note that the limit s→ 0 is not admitted in (12)
unless α = 2 since it does not commute with the limit x→ 0, in which the approximation (6)
becomes exact. Similarly, one can see that the limit α→ 1 is not admitted.

We finally sketch the extension of our approach for a general noisy map (1). Close to the
stable fixed point x = 0, the quasi-invariant density W (x) can be approximated by the solution
W̃ (x) for the corresponding globally linear map. In particular, W (x) = W1(x/σ)/σ follows
from (6) for σ ¿ x ¿ 1 and symmetrically for negative x. For more general x, we adopt a
WKB-ansatz W (x) = Z(x) exp[−φ(x)/σα], where the so-called generalized potential φ(x) is
required to satisfy the functional equation [2]

φ(x) = min
y
{φ(y) + |x− f(y)|α} . (13)

To make φ(x) unique, we further require that φ(0) = 0. It turns out [2], [6] that there
still remain infinitely many different solutions of (13), each being uniquely characterized
by its value at the unstable fixed point x = 1. Within our WKB-ansatz the appropriate
choice is to select the one with the largest value of φ(1). For piecewise linear maps, as for
instance (2), this solution of (13) can be obtained analytically, while for more general f(x)
approximation schemes and powerful numerical methods are available [2], [3], [6]. Once the
generalized potential φ(x) is known, the prefactor Z(x) can be determined recursively by means
of a saddle-point approximation in the master equation (4), provided the noise strength σ is
sufficiently small. In this recursion relation, the above-mentioned approximation for W (x) in
the domain σ ¿ x¿ 1 is needed as initial condition. However, close to the unstable fixed point
x = 1 the saddle-point approximation and hence the recursion relation are no longer valid. In
this region, one has to determine a proper local solution of the full master equation (4) which
correctly matches the already known solution W (x) outside this region. For Gaussian noise
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(α = 2), these concepts have been elaborated in [6]. For α 6= 2, the calculations become more
involved. The main steps follow by combining the line of reasoning from [6] and [7].

Given the quasi-invariant density W (x), the evaluation of the escape rate (5) is straightfor-
ward. One recovers exactly the same result as in (12), except that now β is of the form

β =
(2− α)(α− 1)
4 ln f ′(0)−1

+
(2− α)(α− 1)

4 ln f ′(1)
, (14)

whereas γ now depends on α and on global properties of the map f(x) but not on σ. Similarly
to φ(1), the explicit value of γ can be determined analytically only in special cases. An example
is the piecewise linear map (2) for which one finds after a rather lengthy calculation that

φ(1) =
( (1− s α

α−1 )(u
α
α−1 − 1)

u
α
α−1 − s α

α−1

)α−1

, (15)

γ =
α

2
−
( α− 1

2 ln s−1
+
α− 1
2 ln u

)
ln
( απφ(1)

2−α
α−1

2(α− 1)Γ (1/α)2

)
, (16)

see fig. 2 b). In addition to the limits s→ 0 and α→ 1 (cf. the discussion after eq. (12)) also
u → ∞ is not admitted here unless α = 2. Finally, for Gaussian noise (α = 2) one can show
[6] that γ = 1 for arbitrary f(x) and that Q = [4πφ(1)]−1/2 for the piecewise linear map (2).

In summary, we have demonstrated that for a large class of very simple noisy maps (1), (3)
the escape rate (12) is dominated for small σ by an exponentially leading Arrhenius factor.
However, the pre-exponential contributions to the rate still depend more strongly than any
power law on σ whenever α 6= 2, see eq. (14). Therefore, this prefactor is not at all a
negligible “correction” in many cases: For instance, when the true escape rate is about 10−8,
the leading-order estimate exp[−φ(1)/σα] may still differ by more than a factor 1000, see fig. 2.

One can show [2] that the stochastic process (1), (3) with Gaussian noise α = 2 fulfils the
condition of detailed balance if and only if f(x) is a globally linear map, f(x) = s x, satisfying
−1 < s < 1. Similarly, for non-Gaussian noise α 6= 2, detailed balance is found to hold only
for the identically vanishing map f(x) ≡ 0. This explains why even the globally linear map
f(x) = s x with s > 0 turned out to be a non-trivial problem for non-Gaussian noise.

It is possible to extend our approach to much more general maps f(x) than those specified
below eq. (1). Not only one can of course relax the conditions on f ′(x), but also maps with
periodic or chaotic attractors and repellers may be included [7]. Further, a large class of
multiplicative couplings of the noise in (1) is also admissible. While the technical difficulties
considerably increase, the general form (12) of the escape rate remains unchanged in all these
cases.
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