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SUMMARY

This paper describes likelihood methods of analysis for multivariate categorical data. The joint distribution
is speci"ed in terms of marginal mean functions, and pairwise and higher order association measures. For
the association, the emphasis is on global odds ratios. The method allows #exible formulation of a broad
class of designs, such as repeated measurements, longitudinal studies, interrater agreement and cross-over
trials. The proposed model can be used for parameter estimation and hypothesis testing. Simple "tting
algorithms are proposed. The method is illustrated using a data example. Copyright ( 1999 John Wiley
& Sons, Ltd.

1. INTRODUCTION

Repeated measures studies, and in particular longitudinal studies, are important tools in epi-
demiological, clinical and social science research. In such studies, the response at each occasion is
often recorded as a categorical variable. Further, a categorical outcome frequently specializes to
an ordinal variable (for example, no, mild, moderate, or complete relief of pain). Various types of
models have been developed, and a wide variety of estimation techniques are proposed. We will
consider likelihood methods for estimating the parameters in marginal models, in which the
distribution of the marginal responses is modelled as a function of covariates, and, in longitudinal
studies, also of time. These models are opposed to conditional models, such as log-linear and
graphical models, where the parameters are interpretable in terms of outcome probabilities for
a set of outcomes (usually a single outcome), conditional on the outcomes for the other variables.

Consider the following clinical trial. A group of 498 medical students, between 17 and 29 years
of age (median 21 years) are randomized to two treatment groups. Those in the HI group receive
hepatitis B vaccination (H), followed by in#uenza vaccination (I), while the reverse order is
applied in the IH group. For each type of vaccination, vaccines from both company A and
company B are used. In each treatment period, the vaccines are evaluated with respect to the
side-e!ects they caused. We are interested in the outcomes headache and respiratory problems.
Since both outcomes are measured in each of the two periods, we obtain a four-dimensional
response variable. It is of interest to assess the strength of the association between both headache



outcomes, between both respiratory outcomes, as well as determining whether both complaints
are dependent. In addition, a three-point ordinal variable, level of pain, is recorded for six days in
a row during the "rst period, supplementing the cross-over study with a longitudinal one. The
"rst three days will be evaluated here. In order to analyse these data, we need tools for
longitudinal categorical data, as well as tools for more complex designs, such as cross-over trials
with several outcomes in each period. Whereas the association between outcomes is often
considered a nuisance characteristic in longitudinal studies, it is usually of direct interest in
multivariate settings, such as the bivariate cross-over study considered here.

The choice between conditional and marginal models frequently arises when analysing multi-
variate categorical data. Contributions to this discussion can be found in Neuhaus et al.1 and in
Liang et al.2 A choice between various models should be guided by the scienti"c question that
needs to be answered. If a model is chosen, simple expressions are provided for either conditional
or marginal probabilities, while the marginal and conditional probabilities, respectively, are
complicated functions of the natural parameters of the model.

In fully marginal models, the parameters characterize the marginal probabilities of a subset of
the outcomes (ordinarily of a single outcome), without conditioning on the other outcomes. As
a result, the e!ect of an explanatory variable on a particular outcome can be investigated directly,
without having to stratify one outcome variable over the others. Further, the design is reproduc-
ible in the following sense. If a set of ¹ outcomes Y"(>

1
, 2 , >

T
)T satis"es a marginal model,

then so does every subvector of Y. Also, in a marginal model, the meaning of the parameters does
not depend on the number of outcomes; it also does not depend on the presence of higher order
parameters (although the numerical value will change). This means that, for example, the result of
logistic regressions for each outcome separately is consistent with the picture obtained from
a multivariate marginal analysis with logistic marginal distributions.

An advantage of log-linear models is that the parameter vector describing the dependence is
not restricted, in the sense that the joint parameter space is the set theoretical product of
one-dimensional parameter spaces. The simplest marginal counterexample is the multivariate
probit model,3 where the correlations must represent a positive (semi)de"nite matrix. Further,
"tting marginal models tends to be a non-trivial computational task.

Non-likelihood marginal models are considered to be less sensitive to distributional assump-
tions, in particular about the association structure. In contrast, full likelihood methods require
correct speci"cation of the main e!ects as well as of the association structure to ensure consist-
ency. Moreover, non-likelihood methods are usually easier to "t. Koch et al.4 suggested empirical
generalized least squares. Unfortunately, this technique requires each covariate pattern to be
non-sparse and hence continuous covariates lead to the breakdown of this method. Liang and
Zeger5 proposed generalized estimating equations (GEEs). They di!er from likelihood equations
in that they only model the "rst moments (describing the marginal probabilities) of the joint
distribution, and apply working assumptions to construct the information needed from the higher
order moments. GEEs are regression models, and therefore easily handle continuous covariates.
A drawback is that only when non-response is due to a missing completely at random mechanism6

do GEEs retain their consistency. For more general missing data mechanisms, special versions of
GEEs have been developed.7

In many studies, questions about the marginal parameters are not the only ones of scienti"c
interest, whence also the association parameters and/or the union probabilities are to be
estimated. A few examples: &What is the probability of failing on all outcomes?', &What is the
probability of having at least moderate relief during three visits in row?', &What is the probability
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for two raters to classify an individual in the same category or into &&close'' categories?'. In such
cases a full likelihood analysis seems necessary.

Several full likelihood methods that directly model the marginal mean functions have been
proposed. Bahadur8 proposed a marginal model which combines classical logistic regression for
the marginal responses with two-way and higher order correlation coe$cients to capture the
association. Cox9 introduced an exponential family model for multivariate binary data, the
parameters of which are interpreted as conditional logits, conditional log-odds ratios etc. While
this model is easy to "t, it su!ers from interpretational di$culties, since most often scienti"c
questions are formulated in terms of marginal rather than conditional quantities. Compromises
between full likelihood and GEE as introduced by Liang and Zeger5 have been proposed by
Prentice,10 Zhao and Prentice,11 Zhao et al.12 and Liang et al.2 These families, broadly referred
to as GEE2, do not con"ne modelling to the marginal means but include the pairwise association
structure (using correlations or odds ratios) in the modelling process, thereby still avoiding the
need to model higher order association parameters. Fitzmaurice and Laird13 construct a model
which combines the computational ease of a conditional model (Cox9) with the interpretational
convenience of a marginal model. Because the parameter vector consists partly of marginal and
partly of conditional parameters, it is called a mixed marginal-conditional parameterization
in Fitzmaurice et al.14 Kauermann15 considers a similar approach, based on the work of
Barndor!-Nielsen.16 Ekholm17 builds a marginal model purely using logit links. Precisely,
logit links are assumed for the probability of a success, the probability of two successes
simultaneously etc.

Ashford and Sowden3 suggested considering a vector of ordinal variables as a discrete
realization of a multivariate normal variable. Their approach is known as the multivariate probit
model. Dale18 de"ned the bivariate global odds ratio model, combining logit links for the
marginal probabilities at each of two occasions with odds ratios to quantify the association. She
resorts to the bivariate Plackett distribution19 to compute the joint probabilities required to "t
her model. The Plackett distribution is also used in solving GEEs when the odds ratio is used to
measure the association.20 Several extensions of the Dale model from bivariate to multivariate
outcomes have been proposed. Molenberghs and Lesa!re21 generalized the computations of the
bivariate Plackett distribution in order to establish the multivariate cell probabilities. Their
method involves solving polynomials of high degree and computing the derivatives thereof.
McCullagh and Nelder22 de"ned a generalized linear model that incorporates the model of
Molenberghs and Lesa!re in the case of a logit link for the marginal mean functions. They wrote
the link function in terms of the joint probabilities, Xb"g"C ln(Al), with X a design matrix,
l the vector of joint probabilities, A a matrix consisting solely of zeros and ones, so that Al

contains the marginal probabilities of all orders: the probabilities of each outcome separately, the
probabilities for the cross-classi"cation of all pairs of outcomes, for all triples, etc. Contrasts of
log-probabilities are equated to a vector of linear predictors g using the contrast matrix C (of
which elements are either 0, 1 or !1). Contrasts of log-probabilities encompass many commonly
used links for both marginal probabilities and associations. Within this model formulation, the
marginal means can be modelled via baseline-category logits, adjacent category logits, continua-
tion ratio logits, or cumulative logits. The association can be described in terms of, for example,
local or global odds ratios. As counterexamples, modelling the marginal distribution via the
probit or the complementary log-log link is excluded.

Still, a marginal model is only useful if an e$cient way to compute the joint probabilities is
available. Besides the multivariate Plackett probabilities, Lang and Agresti23 and Balagtas et
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al.24 consider the modelling process as equivalent to imposing restrictions on the multinomial
probabilities. Hence, "tting can be done using undetermined Lagrange multiplier.25 This method
seems to work best in cases with a restricted set of covariate levels. Alternatively, the cell
probabilities can be "tted using a Newton iteration scheme, as suggested by Glonek and
McCullagh.26 In this paper, we present a simple generalized linear model formulation for
marginal modelling of multivariate categorical data. Di!erent types of categorical data and
a wide class of marginal and association models "t in the presented framework. For a detailed
model presentation, we focus on ordinal data and prefer to describe the association in terms of
marginal global odds ratios. An appealing feature of this formulation is that a series of seemingly
ad hoc proposals for handling multivariate categorical data, such as the odds ratio model, the
probit model and the Bahadur model, are uni"ed.

We propose an easy to implement and fast "tting algorithm, avoiding the use of higher order
polynomials (that lead to numerical problems for high dimensional contingency tables). It can be
viewed as an adaptation of the iterative proportional "tting algorithm.27 It is an e$cient and
stable tool to determine the joint probabilities when the association is in terms of marginal odds
ratios. Its advantage over undetermined Language multipliers28 is that the dimensionality of the
parameter vector does not increase with the number of covariate levels. In contrast to the high
dimensional polynomials that need to be solved to determine the Plackett probabilities,21 the
IPF seems to enjoy good numerical stability properties. Note that the IPF was also applied by
Fitzmaurice and Laird13 with conditional odds ratios for binary data. Here, we show its
usefulness with (global or local) marginal odds ratios.

Section 2 is devoted to the generic model formulation, while parameter estimation is discussed
in Section 3. The psychiatric study is analysed in Section 4. A contingency table analysis is
presented in Section 5.

2. MODEL FORMULATION

For each individual, subject, or experimental unit in a study, a series of measurements > is
recorded, together with covariate information x. The notation is as follows.

Let i"1, 2 , N indicate the covariate (design) level, containing n
i
subjects. The outcome for

subject r in the ith level (group) is a series of measurements >
irt

(t"1, 2 , ¹
i
). Assume that

variable >
irt

can take on c
t
distinct (possibly ordered) values. Without loss of generality, denote

them by 1, 2 , c
t
. All information about the responses on the units in the ith group is contained in

a cross-classi"cation of the outcomes>
irt

into a c
1
]2]c

Ti
dimensional contingency table with

cell counts

Z*
i
(k),Z*

i
(k

1
, 2 , k

Ti
) . (1)

Along with the outcomes, a vector of explanatory variables x
it
is recorded. The covariate vector is

allowed to change over time. It can include continuous and discrete variables. Available covariate
information, along with other relevant design features, are incorporated in the design matrix X

i
,

further discussed in Appendix I.
In harmony with the possibility of using cumulative measures, construct the table of cumulat-

ive counts:

Z
i
(k)" +

l)k

Z*
i
(l) . (2)
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Thus, Z
i
(k), where k"(k

1
, 2 , k

Ti
), is just the number of individuals in group i whose observed

response vector is k , and likewise for Z
i
(k)*. The corresponding probabilities are

k*
i
(k)"pr(Y

ir
"k DX

i
, b) (3)

and k
i
(k)"pr(Y

ir
)k DX

i
, b). Let Z

i
be the vector of all cumulative cell counts with l

i
the

corresponding vector of probabilities. Note that Z
i
(c

1
, 2 , c

Ti
)"n

i
and k

i
(c

1
, 2 , c

Ti
)"1.

Therefore, omitting these two entries from Z
i
and l

i
, respectively, yields non-redundant sets.

Similarly, Z*
i

and l*
i

are de"ned, and simple matrix equalities

l*
i
"B

i
l
i
, Z*

i
"B

i
Z
i

(4)

hold. As an example, consider a bivariate binary outcome vector, with counts
l*
i
"(k*

11
, k*

12
, k*

21
, k*

22
) and a similar ordering of l

i
. The matrix B

i
is found by

B~1
i

"A
1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1 B .

The marginal counts are given by all counts for which all but one indexes are equal to their
maximal value: Z

itk
,Z

i
(c

1
, 2 , c

t~1
, k, c

t`1
, 2 , c

Ti
). Bivariate cell counts, that is, cell counts of

a cross-classi"cation of a pair of outcomes, follow from setting all but two indexes k
s
equal to c

s
.

Therefore, this description very naturally combines univariate, bivariate and multivariate in-
formation. The ordering needed to stack the multi-indexed counts and probabilities into a vector
will be assumed "xed. Several orderings of both Z

i
and l

i
are possible. A natural choice is the

lexicographic ordering, but this has the disadvantage of dispersing the univariate marginal counts
and means over the entire vector. Therefore, we will group the elements "rst by dimensionality.

2.1. Choices of Link Functions

For the vector of links g
i
we consider a function, mapping the C

i
-vector l

i
(C

i
"c

1
, c

2
, 2 , c

Ti
) to

g
i
"g

i
(l

i
), (5)

a C@
i
-vector. Often, C

i
"C@

i
, and g

i
and l

i
have the same ordering. A counterexample is provided

by the probit model, where the number of link functions is smaller than the number of mean
components, as soon as ¹

i
'2 (see (13)}(15)). As already indicated in the introduction, an

important class of link functions is discussed by McCullagh and Nelder:22

g
i
(l

i
)"C ln(Al

i
) (6)

a de"nition in terms of contrasts of log probabilities, where the probabilities involved are linear
combination Al.
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We consider particular choices of link functions. Let us abbreviate the univariate marginal
probabilities by k

itk
"k

i
(c

1
, 2 , c

t~1
, k, c

t`1
, 2 , c

Ti
) , then the logit link becomes g

itk
"

ln(k
itk

)!ln(1!k
itk

)"logit(k
itk

). Some link functions that are occasionally of interest, such as the
probit or complementary log-log link, are not supported by (6). They can easily be included in (5).
The probit link is g

itk
"'~1

1
(k

itk
), with '

1
the univariate standard normal distribution.

However, univariate links alone do not fully specify g
i
, and hence leave the joint distribution

partly undetermined. Full speci"cation of the association requires addressing the form of pairwise
and higher-order probabilities. First, we will consider the pairwise associations. Let us denote the
bivariate probabilities, pertaining to the tth and sth outcomes, by

k
i,ts,kl

"k
i
(c

1
, 2 , c

t~1
, k, c

t`1
, 2 , c

s~1
, l, c

s`1
, 2 , c

Ti
) .

Some association parameterizations are summarized in Table I.
The success probability parameterization of Ekholm17 consists of choosing a link function for

the univariate marginal means (for example, a logit link) and then applying the same link function
to the two and higher order success probabilities (that is, the probabilities for observing a single
success when looking at one outcome at a time, a pair of successes when looking at pairs of
outcomes, 2). For categorical data, a logit link for two-way probabilities is given by

g
i,ts,kl

"ln(k
i,ts,kl

)!ln(1!k
i,ts,kl

)"logit(k
i,ts,kl

) (7)

for k"1, 2 , c
t
!1 and l"1, 2 , c

s
!1. The marginal correlation coe$cient8 is de"ned as

o
i,ts,kl

"

k
i,ts,kl

!k
itk

k
isl

JMk
itk

(1!k
itk

)k
isl

(1!k
isl

)N
. (8)

It is convenient to equate the corresponding element in the link function to Fisher's z-transform
of o

i,ts,kl
or a simple function of it: g

i,ts,kl
"ln(1#o

i,ts,kl
)!ln(1!o

i,ts,kl
). Higher order &correla-

tions' are de"ned in terms of standardized cumulants. This de"nition extended the use of the
marginal correlations from multivariate binary data (its classical use) to multivariate ordinal
data.

We will mainly be concerned with the marginal global odds ratio, de"ned by

t
i,ts,kl

"

(k
i,ts,kl

) (1!k
itk
!k

isl
#k

i,ts,kl
)

(k
isl
!k

i,ts,kl
) (k

itk
!k

i,ts,kl
)

(9)

and usefully modelled on the log scale as

g
i,ts,kl

"ln(k
i,ts,kl

)!ln(k
itk
!k

i, ts,kl
)!ln(k

isl
!k

i,ts,kl
)#ln(1!k

itk
!k

isl
#k

i,ts,kl
) .

Higher order global odds ratios are easily introduced using ratios of conditional odds (ratios). Let

k
itDs

(z
s
)"pr(Z

irtkt
"1 DZ

irsks
"z

s
, X

i
, b) (10)

be the conditional probability of observing a success at occasion t, given the value z
s
is observed

at occasion s, and write the corresponding conditional odds as t
itDs

(z
s
)"k

itDs
(z

s
)/1!k

itDs
(z

s
). The
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Table I. Association structure of selected marginal models

Name Association structure Equation

Success probability Logit of joint probability (7)
Bahadur model Marginal correlation coe$cients (8)
Dale model Global marginal odds ratio (9)}(11)

Local marginal odds ratio (12)
Probit model Polychoric correlation (13)}(15)

pairwise marginal odds ratio, for occasions t and s, is de"ned as

t
its
"

Mpr(Z
irtkt

"1, Z
irsks

"1)N Mpr(Z
irtkt

"0, Z
irsks

"0)N
Mpr(Z

irtkt
"0, Z

irsks
"1)N Mpr(Z

irtkt
"1, Z

irsks
"0)N

"

t
itDs

(1)

t
itDs

(0)

in accordance with (9). This formulation can be exploited to de"ne the higher order marginal odds
ratios in a recursive fashion:

t
it12tmtm`1

"

t
it12tmDtm`1

(1)

t
it12tmDtm`1

(0)
(11)

where t
it12tmDtm`1

(z
m`1

) is de"ned by conditioning all probabilities occurring in the expression for
t
it12tm

on Z
irtm`1

"zt
m`1

. The choice of the variable to condition on is immaterial. Observe that
multi-way marginal global odds ratios are de"ned solely in terms of conditional probabilities.

Another type of marginal odds ratios are the marginal local odds ratios. This changes (9) to

t*
i,ts,kl

"

k*
i,ts,kl

k*
i,ts,k`1, l`1

k*
i,ts,k`1,l

k*
i,ts,k,l`1

(12)

with the cell probabilities as in (3). Higher order marginal local odds ratios are constructed in the
same way as their global counterparts. Various types of odds ratios will be discussed in Section 3.2.

Observe that the multivariate probit model3 also "ts within the class de"ned by (5). Let
g"h~1. For three categorical outcome variables, the inverse link is speci"ed by

k
itk
"'

1
(g

itk
) (13)

k
i,ts,kl

"'
2
(g

itk
, g

isl
, g

i,ts,kl
) (14)

k
i,123,klm

"'
3
(g

i1k
, g

i2l, gi3m, g
i,12,kl

, g
i,13,km

g
i,23,lm

) (15)

where the notation for the three-way probabilities is obvious. The association links g
i,ts,kl

repres-
ent any transform (for example, Fisher's z-transform) of the polychoric correlation coe$cient. It is
common practice to keep each correlation constant throughout a table, rather than having it
depend on the categories: g

i,ts,kl
,g

i,ts
. Relaxing this requirement may still give a valid set of

probabilities, but the correspondence between the categorical variables and a latent multivariate
normal variable is lost. Finally, observe that univariate links and bivariate links (representing
correlations) fully determine the joint distribution. This implies that the mean vector and the link
vector will have di!erent length, except in the univariate and bivariate cases.

In summary, marginal models are characterized by jointly specifying marginal response
functions and marginal association measures. Models can be classi"ed by the association
measures, as exempli"ed in Table I.
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Finally, model formulation is completed by constructing appropriate design matrices. An
example is given in Appendix I.

3. MAXIMUM LIKELIHOOD ESTIMATION

We "rst discuss the form of the likelihood equations and introduce algorithms to obtain the
maximum likelihood estimator, as well as a way to estimate its precision. Then, the algorithm to
determine the joint probabilities is presented.

3.1. Score equations and maximization

Under a multinomial sampling scheme, the kernel of the log-likelihood, in terms of the observa-
tions Z*

i
and the corresponding cell probabilities l*

i
, is

l(b ; Z*)"
N
+
i/1

Z*T
i

ln(l*
i
(b)).

When working with the cumulative counts Z
i
and the cumulative probabilities l

i
, and knowing

that relations (4) hold, we can rewrite the log-likelihood as

l(b; Z)"
N
+
i/1

(B
i
Z
i
)T ln(B

i
l
i
(b)) . (16)

The derivative of the contribution of group i to (16) with respect to l
i
is then given by

Ll

Ll
i

"MBT
i
[diag(l*

i
)]~1B

i
N (Z

i
!n

i
l
i
)

"MBT
i
cov(Z*

i
)~1B

i
N (Z

i
!n

i
l
i
)

"cov(Z
i
)~1(Z

i
!n

i
l
i
) . (17)

Given (17), the score function becomes

U(b)"
Ll

Lb
"

N
+
i/1
A
Lg

i
LbB

T

CA
Lg

i
Ll

i
B
T

D
~1
<~1S

ii
(18)

with S
i
"Z

i
!n

i
l
i
, and <

i
"cov(Z

i
). A typical element of <

i
is

cov(z
i
(k

12
k
Ti

), z
i
(l
1
, 2 , l

Ti
))"k

i
(m

1
, 2 , m

Ti
)!k

i
(k

1
, 2 , k

Ti
) .k

i
(l
1
, 2 , l

Ti
)

where m
t
"min(k

t
, l

t
).

Computation of the matrix Q
i
"Lg

i
/Ll

i
is extremely simple if the link is of the form (6), because

then29

Q
i
"CMdiag(Al

i
)N~1A. (19)

This motivates our choice to compute Q
i
and invert it, rather than computing Q~1

i
directly, as was

done by Molenberghs and Lesa!re.21
Replacing the univariate marginal link functions in (6), g(1)

i
say, by any other inverse cumulative

distribution function F~1 with probability density function f, and retaining the speci"cation of
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the association in terms of a form satisfying (6), yields the expression

g"g(l)"A
F~1(l(1))

C
2
ln(Al)B

with corresponding derivative

Q
i
"A

diagM f (g(1))N~1 ; 0

C
2
Mdiag(Al)N~1A B . (20)

The matrix C
2

is similar to the matrix C in (6), but now only applies to the association part of the
model. Choosing F"' and f"/ (the standard normal distribution and density functions), we
obtain a global odds ratio model with univariate probit links.

As discussed in the previous section, the multivariate probit model also "ts within the proposed
framework. In this case, one prefers to compute the matrix Q~1

i
, rather than its inverse, unlike

with the global odds ratio model, or any other model of the form (6). Although in the probit case
the matrix Q~1

i
is easier to compute than Q

i
, the computations are still more complex than

calculating (20). The components are the derivatives of multivariate standard normal distribution
functions. The evaluation of multivariate normal integrals is required. Lesa!re and Molen-
berghs30 chose to use the algorithm proposed by Shervish.31 In the common case of linear
predictors, the derivative of the link vector with respect to b is the design matrix X

i
.

The maximum likelihood estimator satis"es U (bK )"0. Two popular "tting algorithms are
Fisher scoring and the Newton}Raphson algorithm. In the case of Fisher scoring, one starts with
a vector of initial estimates b(0) and updates the current value of the parameter vector b(t) by

b(t`1)"b(t)#=(b(t))~1U(b(t)) (21)

with

=(b)"
N
+
i/1

n
iA

Lg
i

LbB
T

CA
Lg

i
Ll

i
B
T

D
~1
<~1

i CA
Lg

i
LlBD

~1

A
Lg

i
LbB .

The expected information matrix assumes the form =(b), estimated by =(bK ) . A Newton}
Raphson iteration scheme is found by substituting the matrix=(b) in (21) by H(b), the matrix of
second derivatives of the log-likelihood. An outline of this procedure for cumulative counts is
presented in Appendix II.

3.2. Determining the Joint Probabilities

In order to compute the score equations and to implement the updating algorithm, knowledge of
the multivariate cumulative probabilities l

i
is required. The choice of a "tting technique will

strongly depend on the choice of link functions. For multivariate odds ratio models (also referred
to as multivariate Dale models) several proposals have been made, such as the use of multivariate
Plackett probabilities,21 the use of Lagrange multipliers,23 and a Newton iteration mechanism.26
With the Plackett probability approach, we found that for four and higher dimensional problems,
the derivatives of high dimensional polynomials can become numerically unstable. Here, the
iterative proportional "tting (IPF) algorithm is adapted to produce a quick and reliable tool to
compute the cumulative probabilities. A similar use of the IPF algorithm was proposed by
Kauermann.15 Owing to the use of score function (18), there is no need to compute the derivatives
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of the probabilities directly since Q
i
easily follows from (19), leaving only the probabilities to be

computed.
Given the marginal probabilities and the odds ratio parameters, our IPF algorithm produces

a multidimensional table of cell probabilities. The IPF algorithm is known from its use in "tting
log-linear models,32 where the association is described using conditional odds ratios. The
algorithm was also applied by Fitzmaurice and Laird13 for their mixed marginal-conditional
models. In our fully marginal models, marginal odds ratios are used. We distinguish between two
types. Global odds ratios, given in (9)}(11), are relevant for ordinal responses,33 while local odds
ratios, as in (12), are a natural choice for nominal outcomes. Of course, both sets coincide for
binary responses.

We will describe our algorithm for global odds ratios "rst, and then discuss the local odds ratio
version in the concluding paragraph of this section. We need to determine the cumulative
probabilities k

i
(k

1
, 2 , k

Ti
) which correspond to cumulative cell Z

i
(k

1
, . . . , k

Ti
). Recall that this

notation encompasses not only ¹
i
-way classi"cations, but also one-way, two-way etc. classi"ca-

tions, by setting an appropriate set of indices k
t
"c

t
. Omitting indices for which k

t
"c

t
, we

assume without loss of generality that we need to determine a K-way probability k
i
(k

1
, 2 , k

K
),

with k
t
(c

t
for all t.

We will proceed recursively. First, note that the cumulative probabilities k
i
(l
1
, 2 , l

K
), with

l
t
3Mk

t
, c

t
N for t"1, 2 , K, completely describe a 2K contingency table. Secondly, as soon as at

least one l
t
"c

t
, we obtain a lower order probability. Our recursion will be based on the

assumption that these lower order probabilities have been determined. The starting point of the
inductive construction is obtained by setting all but one l

t
"c

t
, whence we obtain univariate

probabilities k
itk

, which are of course easy to determine from the marginal links g
itkt

. Drop the
index i from notation.

From the cumulative probabilities, we determine the cell probabilities kj12jK
k12kK

, with j
t
"1, 2 and

adopt the convention that the K-way cumulative cell probabilities are incorporated as

k121
k12kK

"k(k
1
, 2 , k

K
) . (22)

We will explicity need the cell probabilities of dimension K!1:

kj12jt~1j1`1
2jK

k12kt~1kt`1
2kK

"

2
+

jt/1

kj12jK
k12kK

.

The IPF algorithm is started by choosing a table of initial values:

kj12jK
k12kK

(0)"G
t

i
(k

1
, 2 , k

K
) if ( j

1
, 2 , j

K
)"(1, 2 , 1) ,

1 else

with t
i
(k

1
, 2 , k

K
)"exp(g

i
(k

1
, 2 , k

K
)), the corresponding global odds ratio. The table clearly

has the correct association structure, but the marginals are incorrect and the sum of the cell
counts is not equal to one. Updating cycle (m#1) requires K substeps, to match each of the
K!1 dimensional marginal tables:

kj12jK
k12kK Am#

t

KB"kj12jK
k12kK Am#

t!1

K B
kj12jt~1j1`1

2jK
k12kt~1kt`1

2kK
kj12jt~1jt`1

2jK
k12kt~1kt`1

2kK
(m#t~1

K
)

(t"1, 2 , K), the argument of k indicating the iteration subcycle. Upon convergence, (22) can be
used to identify the required K-way probability.

2246 G. MOLENBERGHS AND E. LESAFFRE

Copyright ( 1999 John Wiley & Sons, Ltd. Statist. Med. 18, 2237}2255 (1999)



Convergence of the IPF algorithm is established in Csiszar.34 However, the parameter space of
the marginal odds ratios is constrained, unless in the special case of a constant odds ratio for
a bivariate outcome.2 A violation of the constraints will be revealed by a cumulative probability
vector with negative entries. If this occurs in the course of an updating algorithm, appropriate
action (for example, step halving) has to be taken. Note that the authors never encountered
problems of this kind, suggesting that the constraints are very mild.

For marginal local odds ratios a slightly adapted and simpler procedure is proposed. Instead of
considering subsets of binary variables, we now consider the whole marginal multi-way table
directly. With a similar recursive argument, we assume that the full set of marginal tables up to
dimension K!1 is determined. Then, we construct a K-dimensional initial table

k*
i
(k

1
, 2 , k

K
) (0)" <

ct;l
t
*kt

t*
i
(l
1
, 2 , l

K
)

for all cells (k
1
, 2 , k

K
). This table clearly has got the required K-way local association structure.

The updating algorithm matches the entries to the K sets of K!1-dimensional marginal tables.

4. ANALYSIS OF PSYCHIATRIC STUDY

We analyse the cross-over and longitudinal parts of the in#uenza study in turn.

4.1. Cross-over study

We analyse presence/absence of headache (H) and presence/absence of respiratory problems (R),
measured in both trial periods. We combine marginal logits with marginal log-odds ratios. The
modelling is in stages. First, period e!ect is included. Then, a contrast between the two
companies, a contrast between the two vaccinations, and an interaction term between companies
and treatments is added. Further, the baseline covariates AGE (in years) and SEX (0"male,
1"female) are included. There are three types of two-way association: between the two headache
outcomes; between the two respiratory problems outcomes; and between a headache and
a respiratory outcome. The two-way associations are graphically depicted in Figure 1. Three-way
and four-way associations are assumed to be constant throughout. The results are presented in
Table II.

A positive parameter decreases the odds for headache/respiratory problems. Respiratory
problems are on average very infrequent, as can be seen from the high value of the intercept. For
both outcomes, there is a signi"cant period e!ect; there are fewer headaches and respiratory
problems in the second period. Also, the in#uenza vaccination causes fewer headaches, but more
respiratory problems. Headaches are more frequently seen in younger people, while the opposite
holds for respiratory problems. Men su!er more from headaches after vaccination than women.
The odds ratio between two respiratory problems is high (7)9), while a somewhat smaller
association is seen between the pair of headache measures (3)1) and between the mixed pair (3)0).
This is due to the fact that respiratory problems are more severe and probably more strongly
related with vaccination than headache, which can have various causes. Extending the two-way
association structure to include a company A e!ect was not signi"cant. We found no higher order
association.
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Figure 1. Association structure for in#uenza cross-over study

Table II. Parameter estimates (standard errors) for
the in#uenza data cross-over trial

Parameters for headache

Intercept 0)055 (1)092)
Period e!ect 0)434 (0)140)
Company A e!ect !0)341 (0)221)
In#uenza e!ect 0)132 (0)212)
Company A}in#uenza interaction !0)053 (0)281)
Age 0)052 (0)054)
Sex 0)875 (0)217)

Respiratory problems
Intercept 5)217 (1)297)
Period e!ect 0)167 (0)156)
Company A e!ect !0)229 (0)267)
In#uenza e!ect !0)119(0)226)
Company}in#uenza interaction 0)257 (0)312)
Age !0)159 (0)063)
Sex 0)133 (0)243)

Association (log-odds ratios)
Headache}headache 1)130 (0)251)
Respiratory}respiratory 2)061 (0)309)
Headache}respiratory 1)090 (0)191)
Three-way interaction 0)219 (0)395)
Four-way interaction 2)822 (1)462)

4.2. The longitudinal study

Pain was measured on six consecutive days after vaccination. Changes in response are mainly
observed during the "rst three days. Signi"cant predictors for the evolution of pain level are SEX,
AGE, the use of medication (MED), and the actual vaccination. The e!ect of all covariates is
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Table III. Parameter Estimates (Standard Errors) for the In#uenza Longitudinal Data

Parameter Marginal parameters

average linear quadratic

Intercept 1 !2)344 (0)995) 1)236 (0)928) !0)599 (0)361)
Intercept 2 0)340 (0)995) 0)893 (0)926) !0)803 (0)365)
Age 0)147 (0)049) !0)013 (0)046) 0)047 (0)018)
Sex 0)427 (0)185) !0)307 (0)169) !0)014 (0)066)
Medication !0)469 (0)216) !0)256 (0)186) 0)074 (0)079)
Company A e!ect 1)226 (0)274) 0)367 (0)270) !0)393 (0)105)
In#uenza e!ect !0)739 (0)213) 0)082 (0)192) !0)111 (0)074)
Company}in#uenza interaction !1)055 (0)336) !0)259 (0)316) 0)343 (0)124)

Associations (log-odds ratios)
Time 1}time 2 1)809 (0)208)
Time 1}time 3 0)976 (0)258)
Time 2}time 3 3)402 (0)405)
3-way interaction 0)878 (0)625)

allowed to change over time. As there are four vaccinations, we decompose them into two factors
(company A, in#uenza, and the interaction). At each measurement time, there are two intercepts,
corresponding to two cumulative logits (no pain (0) versus pain (1 and 2); no or mild pain (0 and 1)
versus moderate pain (2)). All covariates are allowed to have a di!erent e!ect at each measure-
ment, presented as SEX(overall), SEX(linear), and SEX(quadratic). The results are presented in
Table III. We observe strong quadratic time e!ects for company A and for the interaction
between company A and in#uenza. Considering the hepatitis vaccine for company B as the
baseline, the di!erences (for each measurement time) on the logit scale between each vaccine and
the baseline are: for the in#uenza vaccine of company A, !5)33, 0)85 and !1)10; for the
in#uenza vaccine of company B, !1)36, 1)95 and 0)43; for the hepatitis vaccine of company A,
!4)18, !1)15 and !1)71. The combination of a strong interaction between company and type
of vaccine and of the change of the e!ects over time, yields a complex picture. As the outcomes are
modelled via marginal logits, they are interpreted using standard logistic regression methodology.
Making comparisons for the three measurement times, we are able to study the evolution of
di!erences over time.

5. A LOCAL CROSS-RATIO MODEL

Goodman35 studied association models for two-way contingency tables with ordered categories.
The cross-classi"cation of eye colour and hair colour of 5387 children is reproduced in Table IV.
Goodman treated these responses as ordinal which, although sensible, might be open to dis-
cussion. His association models were conditional in nature but arguably marginal models are
easier to interpret. We combine marginal probabilities, one set for each variable, with local odds
ratios to describe the association. We consider two models. The "rst one (8 parameters) assumes
a constant local odds ratio. The simpler model which assumes independence between both
responses has been shown by Goodman to provide a poor "t and will not be considered here. The
second, saturated, model allows an unstructured 3]4 table of local odds ratios. The marginal
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Table IV. Eye colour and hair colour of 5387 children in
Caithness (Goodman35)

Eye colour Hair colour

Fair Red Medium Dark Black

Blue 326 38 241 110 3
Light 688 116 584 188 4
Medium 343 84 909 412 26
Dark 98 48 403 681 85

probabilities for both models are (0)13, 0)29, 0)33, 0)25) for eye colour and (0)27, 0)05, 0)40, 0)26,
0)02) for hair colour. The common local odds ratio for the "rst model equals 1)50. The deviance is
131)10 on 11 degrees of freedom, rejecting the constant (or uniform) association model. Note that
Goodman's conditional model for uniform association exhibited a much poorer deviance of
265)03 on 11 degrees of freedom. The 12 local odds ratios, organized as an association table, are:

1/2 2/3 3/4 4/5

1/2 1)45 0)79 0)71 0)78
2/3 1)45 2)15 1)41 2)97
3/4 2)00 0)78 3)73 1)98

6. CONCLUDING REMARKS

We have presented a general framework to construct marginal models for multivariate categori-
cal data. Although we focused on ordinal data, we also indicated how nominal outcomes can be
analysed. A wide range of models for the responses, as well as measures for the association
between the responses, can be incorporated in the model. We emphasized the use of marginal
global odds ratios. The approach allows for the incorporation of covariates and a wide class of
designs (clustering, longitudinal data, cross-over trials, etc.).

For the special case where the association is described in terms of marginal odds ratios, we
developed a #exible, easy and stable "tting algorithm, using the iterative proportional "tting
technique. The advantage over other implementations is that we are able to "t models with
a relatively large number of outcomes. We encountered no problems for about seven repeated
measurements. Still, the exponentially increasing number of parameters in full likelihood models
will always impose constraints on the feasibility. Arguably, for very long series of measurements,
non-likelihood modes of inference need to be sought. Although not our primary goal, our
approach also results in computation time gain, as we only need to determine the probabilities,
avoiding the direct computation of their derivatives. The relative time gain increases with the
number of categories and cutpoints. For a model with three ordinal outcomes on a 5-point scale,
our approach is 15 times faster than the Plackett probabilities method. Further, "tting models
with continuous covariates poses no problems.

Model speci"cation can be investigated by goodness-of-"t methodology, especially in the case
of a bounded number of possible covariate levels. Person's X2 or deviance G2 statistics can be
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used. Also, empirical corrections to routine inferential procedures as advocated by White36 are
also possible.

Problems involving missing data can be tackled with the same ease as described in Molen-
berghs and Lesa!re21 and Kenward et al.37 Indeed, an attractive property of fully marginal
models is their reproducibility.2 Even if the number of outcomes is by design the same for each
unit, rendering a conditional approach plausible in theory, this balance is often destroyed due to
missing data. Fully marginal models can easily deal with this type of unbalanced data, whether
arising by design or unplanned missingness. An example of such an approach is given in
Molenberghs et al.38

APPENDIX I: DESIGN

A complete model description requires the introduction of a design matrix. It will be indicated
how model assumptions are re#ected by choosing particular types of design. We deliberately
restrict ourselves to linear predictors, while, in principle, there is no obstacle to include non-linear
e!ects. The design matrix X

i
for the ith individual includes all information which is needed to

model both the marginal mean functions and associations. Each row corresponds to an element
in the vector of link functions g

i
. Its generality is best illustrated using an example.

Consider the case of three outcomes, recorded on a three-point scale. Let the measurement
times be t

1
,0, t

2
and t

3
. Assume the recording of four explanatory variables, x

1
, 2 , x

4
, with

only x
3
and x

4
time-varying. We "rst turn our attention to the marginal distributions. Let x

1
have

a constant e!ect on each outcome, that is, a single parameter describes the e!ect of x
1

on the
cumulative logits of the three outcome probabilities. On the other hand, the e!ect of x

2
is allowed

to change over time. We also introduce a single parameter to describe the e!ect of x
3

and three
separate parameters to account for the in#uence of x

4
. These assumptions call for the following

parameter vector:

b
1
"(a

1
, a

2
, q

2
, q

3
, b

1
, b

21
, b

22
, b

23
, b

3
, b

41
, b

42
, b

43
)T

with a
k
intercepts, q

t
the e!ect of measurement time t, b

1
and b

3
the parameters needed to describe

the e!ect of x
1

and x
3
, respectively, and b

jt
the parameter describing the e!ect of x(t)

j
at time

t ( j"2, 4; t"1, 2, 3). Next, assume that the two-way associations depend on the pair of variables
they refer to, as well as on the cumulative category within that variable. Finally, assume
dependence on the covariate x

1i
. This introduces extra parameters

b
2
"(c, c

11
, c

12
, c

21
, c

22
, c

31
, c

32
, /

1
, /

2
, /

3
)T

with c the intercept, c
tk

the dependence on category k of outcome t (t"1, 2; k"1, 2), and /
t
the

dependence on x
1
. Finally, assume a constant value for the three-way associations, b

3
say. The

entire parameter vector is denoted as b"(bT
1
, bT

2
, b

3
)T. The design matrix for subject i, X

i
, is block

diagonal with blocks X
i1

(mean functions, shown in Figure 2(a)), X
i2

(pairwise association, shown
Figure 2(b) and X

i3
(three-way association).

Observe that, apart from the intercepts a
j
, the design is identical for each cumulative logit in

Figure 2(a). This re#ects the proportional odds assumption when marginal logits are used. If this
assumption is considered unrealistic, the design can be generalized without any di$culty.
Nominal covariates and interactions between covariates are also easily included.

The second block of the design matrix, X
2i

, corresponds to the pairwise associations and is
given by Figure 2(b). Finally, the design for the three-way associations in our example is a 8]1
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Figure 2. Design matrix for marginal means and pairwise associations

column vector of ones, corresponding to the eight link functions g
i
(k

1
, k

2
, k

3
) (k

t
"1, 2;

t"1, 2, 3). Replacing the elements of this vector by zeros has the e!ect of setting higher order
association components equal to one (zero on the log scale).

Generalizations include non-block diagonal designs, and structured association such as ex-
changeable association, temporal association (as introduced by Fitzmaurice and Lipsitz39), and
banded association. In many circumstances, the association structure of a given table, represent-
ing a two- or multi-way classi"cation of several variables is of direct interest, rather than the
dependence of the outcomes on covariates. Association measures are extensively studied in
Goodman.35 With our approach, we are also able to explore the association structure of
contingency tables. A typical form for the linear predictor, pertaining to a two-way association, is
given by g

i, ts,kl
"c#c

ts
#c

tk
#c

sl
#d

tk
d
sl
, including an overall intercept, e!ects speci"c to times

t and s: c
ts
, &row' and &column' e!ects c

tk
and c

sl
and multiplicative interactions. Obviously, this

model is overparameterizing the association, making the use of restrictions necessary.

APPENDIX II: NEWTON}RAPHSON ALGORITHM

Replacing the matrix=(b) in (21) by the matrix of second derivatives H(b) of the log-likelihood
(16) implements a Newton}Raphson algorithm. We present an expression for H"H(b). From
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McCullagh40 if follows that the (p, q) element of H is
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where d is the Kronecker delta function and n(t, h)"s if min(t
j
, h

j
)"s

j
for all components of the

index vectors, we can separate the terms involving S
i
in the expression for H(b):
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+
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S
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.

Obviously, the second term has expectation zero.
The "rst and second derivatives of k

i
with respect to l

i
follow from the identities

d
rs
"

Lk
ir

Lg
it

Lg
it

Lk
is

L2k
ir

Lg
it
Lg

ih

"! +
s, t,v

L2g
is

Lk
it
Lk

iv

Lk
ir

Lg
is

Lk
it

Lg
it

Lk
iv

Lg
ih

.

Note that the "rst identity merely rephrases that Q
i
Q~1

i
"I .

If we opt for linear predictors, we obtain
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i

Lb
"X

i

L2g
it

Lb
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We are now able to rewrite the Hessian in a concise matrix form

H (b)"
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i
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Finally, if we again choose a link function of the type (6) we can use simple forms

Q
i
"

Lg
i

Ll
i

"CMdiag(Al
i
)N~1A"CB

i
A
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and
L2g

ij
Lk

i
kT
i

"!ATB(2)
ij

A

where the matrix B(2)
ij

is obtained by multiplying all rows of B2 with the jth row of C.
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