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Abstract  

Robustness studies on integrated urban public transport networks have attracted growing 
attention in recent years due to the significant influence of robustness on the overall performance 
of multimodal networks. In this paper, topological properties and robustness of a bus-subway 
coupled network in Beijing, composed of both bus and subway networks as well as their 
interactions, are analyzed. Three new models depicting cascading failure processes of the coupled 
network are proposed,  based on an existing binary influence modelling approach. Simulation 
results show that the proposed models are more accurate than the existing method in reflecting 
actual passenger flow redistribution in the cascading failure process. Moreover, it was found that 
the larger the network size (measured by the number of nodes and edges), the more robust the 
coupled network is. The traffic load influence between nodes also plays a vital role in the 
robustness of the network. The proposed models and derived results can be utilized to improve 
the robustness of urban integrated public transport systems in traffic planning.  
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1. Introduction 

Complex network theories have made a significant contribution to the understanding of 
complex networks [1-3]. A number of natural and artificial systems can be described as complex 
networks, such as food web, social networks, transport networks, and communication networks. 
In a complex network, nodes are the basic component of the system, whereas edges represent 
links between nodes. Research of complex networks has achieved rapid development after the 
discovery of small-world network effects and scale-free characteristics [3], and robustness of 
complex networks has become an essential research direction. Ref. [4, 5] investigated the 
difference in robustness between ER and scale-free networks, influenced by random failure and 
targeted attacks respectively. The studies show that scale-free networks are more vulnerable to 
targeted attacks but with high robustness to random crashes. The high robustness comes from 
extreme heterogeneity of node degree distribution of networks. In a scale-free network, the 
majority of the nodes have a small degree, with only a minority being featured with a large degree. 
Meanwhile, Holme et al. [6] studied the response of networks to certain attacks on nodes and 
edges. They found that removing essential nodes or edges would lead to changes in network 
structures and considerable decreases in robustness. 

Many urban public transport networks have been investigated based on complex network 
theories, and robustness has been considered as an important measure of performance of  
networks [7,8,9]. The existing studies mainly focus on cascading failure modeling and single-mode 
transport networks, manifested by the following research. Wu et al. [10] analyzed the robustness 
of the bus system in Beijing under random failure and intentional attacks, Derrible et Kennedy [11] 



compared the robustness of subway systems among 33 cities worldwide, and Zhang et al [12] 
studied the robustness and topological characteristics of the Shanghai subway network. Alongside, 
Rodríguez-Núñez et al.  [13] introduced a methodology and examined the criticality and 
robustness of the Madrid subway system, while Ferber et al. [14] adopted different attack 
strategies on 14 cities’ bus transport networks and examined the influence of removing critical 
nodes on the structures and robustness of the networks. Moreover, Schafe et al. [15] proposed a 
proactive measure to enhance the robustness of heterogeneously traffic loaded networks against 
cascading failure, based on load-dependent weights. Zhang et al. [16,17,18] studied cascading 
failure of a weighted public transit network with a two-layer (including a physical and a logical 
layers) structure. They proposed a cascading-failure-based mesoscopic reliability model that 
takes congestion effects and user equilibrium evacuation into consideration. All the above-
described studies improve the understanding of robustness of different urban public transport 
systems from the perspective of transportation science.  

However, from passengers’ perspectives, public transport networks, including buses, trams, 
light rail trains, subways, etc. are linked together forming a multimodal integrated transport 
environment, in which travelers can transfer between stops and stations of different networks. 
Research has also been conducted for the analysis of robustness of integrated networks. The 
representative work includes the followings. Cats et al. [19] studied the robustness of an 
integrated public transport system consisting of subway lines, trunk bus lines, and light rail train 
lines. Dynamic and stochastic robustness measures were developed with the consideration of 
interactions among traffic flows of the different lines (networks) in the system. Berche et al. [20] 
examined the robustness of the urban public transport systems across 14 cities around the world 
under both random and intentional attacks. In each city, the stations of different networks were 
regarded as homogeneous nodes in the integrated system. Moreover, Ferber et al. [21] merged 
urban bus, subway, and tram networks into one system based on the L space model, and compared 
the robustness of the systems between London and Paris. Jin et al. [22] investigated ways to 
enhance the robustness of a subway network through the integration of localized bus services. In 
the study, a two-stage stochastic programming model was developed, aimed at  evaluating the 
inherent robustness of the subway network and improving the localized bus-subway integration 
strategy.  

The studies on the robustness of integrated multimodal transport systems have provided 
great values in understanding interactions among different networks and identifying strategies to 
improve robustness. Nevertheless, there are certain limitations regarding the existing 
research. ???.  In an integrated multimodal network, any disruption or event occurring on a station 
in one network (e.g., a bus network) will cause passengers to transfer to a station in another 
network (e.g., a nearby station in a subway network). Since the traffic flow volume varies in 
different networks, the spreading strength of disruption or events from one network to another 
is different. Thus, it is more accurate to describe multimodal transport networks as multi-layer 
complex networks, in order to reflect the uneven transfers and interactions between different 
networks. The importance of adopting multi-layer networks has been demonstrated by the 
research [23], in which the bus-subway coupled network in Beijing was represented as a two-
layer network. To investigate the cascading failure process of the two-layer network, the authors 
developed a binary influence modelling approach which takes into account the uneven transfers 
and interactions between bus and subway systems. The experimental results showed the 
effectiveness of the approach in revealing the mechanism of the cascading failure process in the 
coupled system. 



However, in the approach [23], once a node 𝑗 in a network (e.g., a station in the subway system) 
fails, the whole potentially redistributed passengers on station 𝑗  will be redirected to a 
neighboring node 𝑖 in the other network (e.g., a station in the bus system). This leads to the load 
influence (i.e., the total potentially redistributed passenger volume) of node 𝑗 all being re-imposed 
on node 𝑖. It’s not true in real transport circumstances. In most cases, the passengers on station 𝑗 
will travel to the different neighbor stations of 𝑗, including station 𝑖, since travelers have different 
destinations. Therefore, the influence of node 𝑗  on node 𝑖  should only be a part of the total 
influence of node 𝑗 on all its (i.e. node 𝑗′𝑠) neighbor nodes. To address the problems, in this paper, 
we extend the existing modelling approach by introducing three new strategies to more 
accurately reflect the load influence between nodes of different layers in the coupled network.  

The fundamental contributions of this work lie in the following areas. (1) Three new models 
characterizing cascading failure processes of a coupled two-layer network (i.e., the bus-subway 
network in this study) are proposed, and the results are analyzed and compared between these 
models and the existing approach. (2) Variables including network sizes and traffic load influence 
have been identified as important factors affecting the robustness of the coupled network. The 
larger the coupled network size (i.e., the total number of nodes and edges), the more robust the 
network is. The load influence between nodes of different layers also plays an essential role in the 
cascading failure process. (3) One of the proposed models, which considers both the network size 
and load influence, was found to have the best performance in estimating the final relative 
cascading size (i.e., the fraction of the finally failed nodes to all nodes in the coupled network). 
This model can be utilized to improve the robustness of coupled networks in traffic planning. 

The rest of this paper is organized as follows. In section 2, a two-layer coupled public transport 
network is presented, and the existing modelling approach [23] as well as the new models are 
described. In Section 3, simulation of the cascading failure process on the Beijing bus-subway 
coupled network is performed, and the results are analyzed. Finally, in Section 4, major 
conclusions are drawn and the application of the proposed models is discussed. 

 
2. Methods and Models 

2.1 Public transport network (PTN) representations 

There are two common network representations for a public transport system: Space P and 
Space L. In the Space L scenario, a node is a station, and an edge is a route link between two nodes. 
If two nodes are adjacent at least on one route, there will be an edge between the two nodes. In 
the Space P scenario, a node is a station too, an edge links any two nodes on one route. This leads 
to all nodes on a route forming a complete network, i.e., a subgraph of the whole network. In this 
study, the Space L scenario is adopted to describe the topology of bus or subway systems. 

Even with a comprehensive public transport system of buses or subways, in most cases, 
passengers cannot yet accomplish an entire trip from origins to destinations traveling only by bus 
or by subway. It’s still necessary to consider a travel plan that combines both types of modes 
(given that both types of systems are established in a city). For rational travelers, transfers 
between buses and subways are constrained by an acceptable walking distance from a bus 
(subway) station to a subway (bus) station. Based on the above consideration, a public transport 
network (PTN) consisting of both bus and subway systems is modeled as a two-layer unweighted 
and undirected network. The two layers represent the bus and subway systems respectively, and 
they are independently represented by the Space L scenario. The interlayer links between the two 
systems are determined by a radius parameter 𝛾. In this paper, 𝛾 = 0.5km for Beijing, according 



to China Urban Street Traffic Planning Standard (GB50220-1995) and China Subway Design 
Standard (GB50157-2013). Any bus stations, no further than 𝛾  away from a certain subway 
station, are connected to the subway station, and vice versa. 

The data of the bus and subway systems in Beijing were collected in November 2019 from the 
website of the Beijing public transport company [24, 25]. The bus system consists of 1135 bus 
routes with 7797 stations, while the subway network is comprised of 24 subway lines 
accommodating 333 stations. According to the transfer restriction (𝛾 = 0.5km), 311 interlayer 
(transfer) links between bus and subway stations in the coupled network are derived.  

 
2.2 Cascading failure modelling 

PTN is a typical real-world complex network, facing the challenge of cascading failure. In case 
of  function failure occurring on one station (node), the passenger flow passing through the failed 
station will be redistributed to its neighbor stations. If the passenger flow on a neighbor station 
exceeds the capacity of the station, the neighbor station fails too and its passenger flow will be 
redistributed again, and so on. As the redistribution process gradually expands outward from the 
original failure station (node), it could cause, in the worst condition, all stations in the PTN to fail.  

In this study, we first adopt the existing binary influence modelling approach [23], and refer it 
as M1 model. It should be noted that the passenger flow influence between two nodes in different 
layers varies from that between two nodes in the same layer. For instance, the passenger flow 
redirected from a subway station to a bus station is normally greater than that from a bus to a 
subway stations, since the per hour volume of passenger flow on a subway station is generally 
larger than that on a bus station. M1 model introduced an influence parameter (i.e., coupling 
strength) to reflect the difference of the influence between nodes. A node can be found in only two 
states: 0 and 1. State 0 is a normal state, while state 1 is a fail state in which the node is broken 
down. Each node has a given capacity (𝛿). If the traffic load on a node is larger than its capacity, 
the node fails (state = 1); otherwise, the node works as normal (state = 0). Initially, all the nodes 
are assumed to be in normal states. When a small number of nodes breaks down, it will cause 
traffic flow redistribution on related nodes, potentially triggering further cascading failure in a 
larger scale of the network. The cascading failure of M1 model can be detailed as follows. 

(1) Initialization. Set 𝑡 = 0 and the states of all the nodes as 0. 
(2) State changing. For each node with state = 0, if the traffic load on the node is greater than 

its capacity 𝛿, the state of the node will change to 1. Otherwise, the state remains 0. 
(3) Stationary state. Once the state of a node turns to 1, the state remains stationary and will 

never change back during the cascading failure process. 
(4) End. The cascading process will continue until no more state changes happen in the 

network.  
In the coupled network, the state changing of a node 𝑖 is described as 

𝑥 =
0 𝑖𝑓:
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             (0 < 𝛿 < 1)                            (1) 

where, 𝑥  is the state of node 𝑖 in M1 model, 𝑗 is a neighbor node of 𝑖 , Γ  is the neighborhood 
(node set) of 𝑖, 𝑘  is the degree (i.e., the number of adjacent nodes) of 𝑖. Variable 𝜌 is the coupling 
strength, reflecting the extent to which a node 𝑗 affect its neighbor node 𝑖, and representing the 
redistribution of passenger flow from node 𝑗 to node 𝑖. This variable is defined as 



𝜌 =
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ℎ 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁
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                                           (2) 

where, 𝑁  and 𝑁  represent the node (station) set of the bus and subway layers, 
respectively. Variable ℎ is a transfer factor, defined as the ratio between the passenger volume 
transferring from subway to bus stations and that from bus to subway stations. This variable 
reveals the extent of the asymmetry of the transfer volume on the interlinks between the bus and 
subway layers. Yang et al. [23] found that the cascading size (i.e., the number of nodes that fail) 
grows with coupling strength, and when the capacity 𝛿 ≤ 0.3, the cascading size will spread to the 
whole network.  

It was noted that M1 model takes 𝜌 𝑥  as the influence of node 𝑗 on node 𝑖. This implies 
that in the coupled network, the whole potentially redistributed passengers on station 𝑗 will be 
redirected to station 𝑖. As described in Section 1, this is not realistic in actual public transport 
situations. In most cases, the passengers on station 𝑗 will travel to the different neighbor stations 
of 𝑗, including station 𝑖 , since travelers have different destinations. Therefore, the influence of 
node 𝑗 on node 𝑖 should only be a part of the total influence of node 𝑗 on all the neighbor nodes of 
𝑗. To address the problems, three new models are proposed based on M1 model, in order to more 
accurately characterize the influence between nodes in the coupled network. 

(1) an equalized redistribution model (M2). It’s assumed that the passenger volume on node 𝑗 
is evenly redistributed onto the neighbor nodes of 𝑗. Accordingly, the coupling strength from 𝑗 to 
𝑖 is defined as 

𝜌 = .                                                                              (3) 

(2) a degree preferential redistribution model (M3). It’s assumed that the passenger volume on 
node 𝑗 is preferentially redistributed onto the neighbor nodes of 𝑗, according to the degree of the 
neighbor nodes. The coupling strength from 𝑗 to 𝑖 is defined as 

𝜌 =
∑ ∈

.                                                                         (4) 

(3) a degree and M1 coupling strength preferential redistribution model (M4). It’s assumed that 
the passengers on node 𝑗 is preferentially redistributed onto the neighbor nodes of 𝑗, according to 
the degree and coupling strength of the neighbor nodes. The coupling strength from 𝑗  to 𝑖  is 
defined as 

𝜌 =
∑ ∈

 .                                                                    (5) 

The state changing rule for models M2, M3, and M4 has a similar form to that for M1, i.e.,  

𝑥
(∗∗)

=
0 𝑖𝑓: ∑ 𝜌

𝑖𝑗

(∗∗)
𝑥𝑗

(∗∗)
∈ < 𝛿

1 𝑖𝑓: ∑ 𝜌
𝑖𝑗

(∗∗)
𝑥𝑗

(∗∗)
∈ ≥ 𝛿
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where (∗∗) represents one of the models M2, M3, and M4.   
It was noticed that, compared to M1, more and more real features of the passenger redistribution 
process are accommodated into the models M2, M3 and M4, with models M2 and M3 considering 
the topology of the network while model M4 depicting both the topology and load influence 
between nodes.   



 
3. Results 

To understand the structural characteristics of the Beijing bus-subway coupled network, four 
variables including degrees, clustering coefficient (i.e., ?), node betweenness (i.e., ?), and shortest 
path length (i.e., ?) are computed based on the data described in Section 2, and the distribution of 
the variable values are presented in Fig. 1. The coupled network consists of 8130 nodes and 12650 
edges in total. Fig. 1 (a) shows the degree distribution with the maximum degree 𝑘 = 18 and 
the average degree 𝑘=3.11. The 𝑝(𝑘) reaches its peak at 𝑘 = 2, which means there are about 50% 
nodes in the coupled network. Fig. 1 (b) describes the cumulative distribution of clustering 
coefficient with the average clustering coefficient 𝑐 = 0.128.  According to Fig. 1 (c), the longest 
shortest path length is 𝑙 = 165, and the probability distribution of shortest path length falls a 
Poisson distribution with the distribution parameter (=110). In Fig. 1 (d) the probability 
distribution of node betweenness with the log-binning horizontal axis is displayed. These results 
reveal that although each subway station couples with several bus stations, the topological-trip-
distance of passengers is still unchanged, and we could find that the introduction of the subway 
network to the bus network did not change the randomly connected manner. 

 
Fig. 1.  Topological characteristics of the Beijing bus-subway coupled network. (a) probability 
distribution of degrees, (b) cumulative distribution of cluster coefficient, (c) probability 
distribution of shortest path length, (d) probability distribution of betweenness (log-binning). 

 
Simulation of the cascading failure process on the Beijing bus-subway coupled network is 

performed, based on the above four models M1, M2, M3, and M4 respectively. In this process, the 



capacity 𝛿 is set as 0.5, and the influence parameter ℎ as an integer chosen from the range [1, 50]. 
Since the per hour passenger volume on a subway station is usually larger than that on a bus 
station, the simulation is focused on the initial failure of subway stations. To measure the failure 
process, we define 𝑝 as the fraction of the initial failure subway nodes to all nodes in the subway 
network, and define the relative cascading size as the fraction of the final bus and subway failure 
nodes to all nodes in the coupled network. Fig. 2 and Fig. 3 present the simulation results, with 
each data point corresponding to an average over ten times of independent simulation. 

Fig. 2(a)-2(d) show the relative cascade size as a function of 𝑝 and ℎ (ℎ = 1,2,3,4, 50) for the 
four models respectively. For each model, as the initial failure 𝑝 increases, the relative cascading 
size rises until reaching the extremum at 𝑝 = 1.0. This is straightforward, as the larger the initial 
failure triggered by random or intentional events on the subway system, the worse the final 
damage of the whole bus-subway system. Nevertheless, it was observed that the rate of the rise 
in the cascading size slows down as 𝑝 increases. Similarly, for each model, as ℎ increases, the 
relative cascading size grows too. But the growth rate decreases for M1 and M2, fluctuates for M3, 
and remains almost unchanged for M4. 

In the existing study [23], the same model M1 was applied to the same bus-subway network 
in Beijing, but the data of the coupled network were collected in 2013, 6 years older than the year 
(i.e. 2019) when the data in the current study were gathered. When the results obtained in [23] 
are compared with the ones (in Fig. 2 (a)) derived from M1 using the current data, these two 
groups of results show consistency in terms of the general changing trend of the cascading size 
as 𝑝 or ℎ changes. However, there is a large difference in the absolute extremum of the cascading 
size for each given value of ℎ. For example, when ℎ = 50, the extremum is about 0.35 (Fig. 2 (a)), 
which is less than half of the corresponding extremum value (i.e., 0.735 for ℎ = 50) obtained in 
[23]. Actually, in Beijing, the bus system increases from 611 routes (3845 stations) in 2013 [23] 
to 1135 routes (7797 stations) in 2019, while the subway increases from 8 lines (144 stations) in 
2015 [23] to 24 lines (7797 stations) in 2019. It’s an encouraging result that, with the growth of 
the bus-subway coupled system, its total robustness increases more than doubled. The derived 
results also imply that the larger the size of the coupled network, the more the failure tolerance 
(robustness) is. 



 
Fig. 2. Relative cascading failure size as a function of initial failure nodes. 
 

When all the four models are compared with each other, differences were also noticed. Fig. 3 
illustrate the differences among the models for ℎ = 1 and ℎ = 50 respectively. When the transfer 
volume on the interlinks between the bus and subway networks is almost symmetric (ℎ = 1) (Fig. 
3(a)), the final relative cascading size for each given value of 𝑝 is similar (i.e., the extremum being 
in the range of 0.041-0.049) across the models. Particularly, M2 and M3 have almost the same 
cascading performance (i.e., both having 0.044). When the transfer volume is asymmetric 
remarkably (ℎ = 50) (Fig. 3(b)), the cascading size of M2 and M3 is almost the same still (the 
extremum as 0.17 and 0.18 respectively), but about the half of that (0.35) for M1. The cascading 
size (0.08) of M4 is about one fifth of M1. This suggests that the final relative cascading size is 
overestimated by M1 model. Because M1 model [23] focused on revealing the mechanism of the 
cascading process in the bus-subway coupled system, some real traffic transfer details were not 
taken into account. In this paper, we propose M2, M3 and M4 models by introducing more 
passenger redistribution features on the bus-subway transfer stations. The aim is to improve M1 
model and fill in the gap between the existing modeling approach and the real bus-subway 
coupled system. 



 
Fig. 3. Relative cascading failure size as a function of initial failure nodes. 
 
4. Conclusions 

In this paper, the cascading failure process of the Beijing bus-subway coupled network is 
analyzed, and three cascading failure models are proposed. The new models overcome the weak 
point of the existing modelling approach (M1 model), by characterizing  the mechanism of the 
passenger flow redistribution in a way that is more consistent with the real transport situations. 
Simulation results show that the new models predict the final relative cascading size more 
realistically, whereas M1 model overestimates the total damage. Moreover, it was found that, the 
larger the coupled network size (i.e. the number of nodes and edges), the more robust the network 
is. The load influence between nodes of different layers also plays an important role in cascading 
failure processes. Accordingly, the model (M4) that considers both the network size and load 
influence shows the best performance in estimating the final cascading size, and the model can be 
utilized to improve the robustness of coupled networks in traffic planning. 

The developed models and the results arisen from this study can be applied to the analysis of 
cascading failure of other combined public transport systems (apart from the bus-subway coupled 
network). They also provide practical suggestions on how to estimate the influence of cascading 
failure triggered by a tiny number of initial  failure nodes as well as on how to engineer a more 
robust networked public transport system. 
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