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SUMMARY

Recently, pattern-mixture modelling has become a popular tool for modelling incomplete longitu-
dinal data. Such models are under-identified in the sense that, for any drop-out pattern, the data
provide no direct information on the distribution of the unobserved outcomes, given the observed
ones. One simple way of overcoming this problem, ordinary extrapolation of sufficiently simple
pattern-specific models, often produces rather unlikely descriptions; several authors consider iden-
tifying restrictions instead. Molenberghs et al. (1998) have constructed identifying restrictions
corresponding to missing at random. In this paper, the family of restrictions where drop-out does
not depend on future, unobserved observations is identified. The ideas are illustrated using a clinical

study of Alzheimer patients.

Some key words: Drop-out; Longitudinal data; Missing at random; Missing data; Repeated mea-

surements; Selection model.

1. INTRODUCTION

In this paper, we will restrict missingness to be of monotone, drop-out type, and our main focus

will be on longitudinal studies. Rubin (1976) and Little & Rubin (1987, Ch. 6) make important



distinctions between different missing-values processes. A drop-out process is said to be completely
random if the drop-out is independent of both unobserved and observed data and random if,
conditional on the observed data, the drop-out is independent of the unobserved measurements;
otherwise the drop-out process is termed nonrandom. If a drop-out process is random then it is
to use a likelihood-based analysis that ignores the drop-out mechanism, provided the parameter
describing the measurement process is functionally independent of the parameter describing the
drop-out process, the so-called parameter distinctness condition. This situation is termed ignorable

by Little & Rubin (1987). For reviews see Little (1995) and Kenward & Molenberghs (1999).

Historically, many methods have been formulated within the selection modelling frame (Little &
Rubin, 1987) as opposed to pattern-mixture modelling (Little, 1993, 1994). A selection model
factorises the joint distribution of the measurement and response mechanisms into the marginal
measurement distribution and the response distribution, conditional on the measurements. This
is intuitively appealing when the marginal measurement distribution of the complete data is of
interest. Furthermore, Little and Rubin’s taxonomy is most easily developed in the selection
setting. However, it is often argued that, especially in the context of nonrandom missingness
models, selection models, although identifiable, should be approached with caution (Glynn et al.,
1986). Therefore, there has been renewed interest in pattern-mixture models in recent years (Little,
1993, 1994; Hogan & Laird, 1997). A small literature review is given in Thijs et al. (2002). Another
family of models, where random effects are driving both the outcome and missingness processes,
was given attention by Wu & Carroll (1988) and Wu & Bailey (1988, 1989). These models are also
referred to as shared-parameter models. Little (1995) combines the concepts of pattern-mixture

models and shared parameters.

An important issue is that pattern-mixture models are by construction under-identified. Little
(1993, 1994) solves this problem through the use of identifying restrictions: inestimable parameters
of the incomplete patterns are set equal to functions of the parameters describing the distribution
of the completers. Thijs et al. (2002) contrasted simplified models, that can be extrapolated beyond

the time of drop-out with identifying-restrictions-based models. We will discuss these in turn.

If models are sufficiently simple, then extrapolation beyond the time of drop-out can be very



easy. One such example arises when simple polynomial time trends within patterns are considered
(Hogan & Laird, 1997). Alternatively, ‘pattern’ can be used as a covariate. For example, rather than
estimating a separate time trend within each pattern, one could assume that the time evolution
within a pattern is unstructured, but time evolutions are parallel across patterns. While these
strategies are computationally simple, there a nontrivial price must be paid: the form of the drop-
out mechanism, implied by extrapolating a simple mean profile, comes as an arbitrary by-product
that may or may not be appropriate or sensible and is usually left unassessed. Thijs et al. (2002)
deemed the identification-restrictions strategy to be the more promising one. Little (1993, 1994)

presented a number of examples.

Since we are restricting attention to monotone missingness, we can easily indicate a drop-out pattern
by the numbers of observations made. In that sense, pattern ¢ collects all individuals with the first ¢
measurements taken (¢ = 1,...,7). Thijs et al. (2002) constructed a general identifying-restrictions
framework in which the distribution of the (¢ + 1)th measurement, given the earlier measurements,
in pattern ¢, y:11 say, is set equal to a linear combination of the corresponding distributions in
patterns £ + 1 to T'. Since this family is characterised by the use of observable distributions to
identify the unobservable ones, we term it the ‘interior’ family of identifying-restrictions. Three
members of this family are studied in detail by Thijs et al. (2002): complete-case missing value
restrictions (Little, 1993), where information is borrowed from the completers only, available-case
missing values, equivalent to missing at random (Molenberghs et al., 1998), for which one particular
linear combination needs to be considered, and neighbouring-case missing value restrictions, where

information is borrowed from the closest available pattern.

The equivalence of available-case missing values and missing at random is important in that it
enables us to make a clear connection between the selection and pattern-mixture frameworks. By
implication, the other members of the interior family are of missing not at random type, but there
do exist missing not at random type restrictions that are not captured by this family. Whatever
framework chosen, the collection of missing not at random mechanisms is huge. The selection mod-
eller often restricts attention to the set of missing not at random mechanisms in which missingness

is allowed to depend on past measurements and on the present, possibly unobserved measurement,



but not on future ones. We will term such mechanisms non-future dependent. While they are
natural and easy to consider in a selection model context, there exist important examples of mech-
anisms that are not non-future dependent, such as shared-parameter models (Wu & Bailey, 1989;

Little, 1995).

In this paper, we will characterise the class of pattern-mixture models that corresponds to miss-
ing non-future dependent. It will be shown that this class intersects with the interior family,
available-case missing values being part of the intersection, but neither is a subset of the other.
The formulation of this characterisation does not imply prejudice against those pattern-mixture
modelling strategies that do allow for dependence on future outcomes. Rather, it should be viewed
as a step in refining the missingness mechanism taxonomy. Indeed, the classification based on
missing completely at random, missing at random, i.e. available-case missing values, and missing
not at random is expanded by further splitting missing not at random into non-future-dependent
and future-dependent mechanisms. Thus, our characterisation gives us more control, within the
pattern-mixture framework, over the implied missing-value mechanism, lack of which has in the

past been a major source of criticism.

2. DATA SETTING

Let us assume that we have r = 1,---,7T drop-out patterns, where r = { indicates the number of

measurements actually obtained. A selection model factorisation is given by

f(y17"'7yT77':t):f(y17"'7yT)f(T:t|y17"'7yT)~

Pattern-mixture models are based on the reverse factorisation, given by

f(ylv"'vyTvr:t) - f(y177yT|T:t)f(T‘:t)

fi(y, - yr) f(r =1)

= Jlyr, -y fryealyn, -y fr(yeez, - yrlya, - ye) fr = 1), (1)

where fi(yi, - ,yr) = f(y1, - ,yr|r = t). The first three factors in (1) are referred to as the
distributions of past, present and future measurements, respectively. Only the first and the fourth

factors are identifiable from the data.



3. NoN-FUTURE DEPENDENCE

In the selection model context, we can formulate missing non-future dependent as

=1ty yr) = f(r =ty ye). @

Note that missing at random is a special case of missing non-future dependent, which in turn is a

subclass of missing not at random.

Within the pattern-mixture framework, we define non-future dependent missing value restrictions

as follows:
f(yt|y17' L Y—1,T :.]) - f(yt|y17 Y1, T Z t— 1)7 (3>

for all £ > 2 and all j < ¢ — 1. Non-future missing values is not a comprehensive set of restrictions,

but rather leaves one conditional distribution per incomplete pattern unidentified:

Sf@eralyrs s yer =1). (4)

In other words, the distribution of the ‘current’ unobserved measurement, given the previous ones,
is unconstrained. This implies that the non-future missing values class contains members not
contained in the interior family, where every restriction takes the form of a linear combination
of observable distributions. Conversely, (3) excludes such mechanisms as complete-case missing
values and neighbouring-case missing values, showing that there are members of the interior family
that are not of non-future missing values type. Finally, choosing (4) of the same functional form
as (3) establishes available-case missing values as a member of the intersection of the interior and
non-future missing values families. The latter is particularly important since it shows, because of
the equivalence of available case missing values and missing at random, that missing at random

belongs to both families.

The following theorem establishes the equivalence between missing non-future dependence and non-
future missing values, showing the non-future missing values restrictions correspond to non-future

dependence, just as available-case missing values corresponds to missing at random.

Theorem 1. For longitudinal data with drop-outs, missing non-future dependence s equivalent to

non-future missing values.



The proof of Theorem 1, following arguments similar to those in Molenberghs et al. (1998), is given

in the Appendix.

A consequence of using (3) is that the joint distribution will not typically have a simple analytical
representation. This is to be understood in the sense that covariate effects would not necessarily be
linear on an appropriate scale. However, this is not to say there is no analytical form. Moreover,
it does not have to be a major disadvantage, provided the resulting distribution is empirically
reasonable. Such a requirement may help guide the choice for (4). As will be seen in the next

section, this feature does not prevent the formulation of a tractable analysis strategy.

4. UsING IDENTIFYING RESTRICTIONS

For pattern ¢, the complete data density is given by

fis - ur) = filys - u) fiee v ) fe(eeos - urlyn, - ye)- (5)

It is assumed that the first factor is known or, more realistically, modelled using the observed data.
Then, identifying restrictions are applied in order to identify the second and third components.
The user has full freedom to choose fi(yi+1|yi, -+, yt). Substantive considerations can be used to
identify this density, or a family of densities can be considered by way of sensitivity analysis. Based
on (3), the densities fi(y;|y1,--,y;-1), ( = ¢ + 2) are identified. This identification involves not
only the patterns for which y; is observed, but also the pattern for which y; is the current, the first

unobserved measurement.

From the discussion about the first two factors in (5), it follows that f;(y1, -+, yer1) is identified

from modelling and choice. Next, non-future missing values states that

Je(slyr, - ys—1) = foem ) Wsly1, -+ Ys— 1), (6)

for s=t+2,...,T. We can transform (6) as follows:

ft(y5|y17 e 7y5*1)

= f(zsf1)(ys|y17 s Yso1)
S 1 fi, - ys)
ZgT:sfl ajfj(ylv s 7y5*1)
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T

_ ajfj(ylw"?ySfl) ) 8
j:zszl Zgzsfl afff(yh s 7y571) fj (y5|y17 o ysjl). ( )

Thus, a general expression is

T

ft(y5|y17"'y571>: Z wsj(y17"'7y571)fj(y5|y17"'y571>7 S:t+27"'7T7 (9>
j=s—1
with
o [ (Y1, o, Ys—
wsj(y17'~' 7y571) — jfj(yl Ys 1) (10)

T ey ys 1)

When wg; are modelled to differ from those specified in (10) using, for example, techniques such as in
Rubin (1977), then missing data mechanisms are obtained that do depend on future observations.
In a sensitivity analysis, it can be envisaged that the impact of such departures on substantive
conclusions might be explored. Indeed, in the general missing not at random case, the conditional
distribution of the unobserved measurements given the observed ones needs to be determined by
means of assumptions. Under non-future missing values, only the conditional distribution of the
first, i.e. current, unobserved outcome given the observed ones needs to be identified by assumption.
Thus, when missing non-future dependence is deemed plausible, one combines the flexibility of a
broad class of models with a sensitivity space that is reasonably easily managed. In the special
case of missing at random, the conditional distributions of the unobserved outcomes are completely
identified by means of available-case missing values and there is no further room for sensitivity

analysis.

To get a grasp on the differences and similarities between the interior and non-future missing value

families, we focus on the special case of four measurements and four patterns.

The interior family takes the following form, in which, for ease of notation, y; is replaced by ¢:

£2(1234) = f4(1234), (11)
f3(1234) = f3(123)f1(4|123), (12)
£0234) = [012) (12 /612) T {1 - w(12)} G112 f1(4]123), (13)
£11231) = (1) {wi2() 2(201) + wia() f2(201) + wu (1) f2(21)}

X [w(12) f3(3[12) + {1 —w(12)}f2(3[12)] f2(4123). (14)



To facilitate comparison, we will consider three special cases.

Case 1. Complete-case missing values: w = w2 =wiz =0 and wiy = 1.

Case 1. Neighbouring-case missing values: w = wj9 = 1 and w1z = wyy = 0.

Case 1. Available-case missing values: we set

B aszf3(12)

©(12) = asf3(12) + ay f1(12)’
() — as f2(1)

agfo(1) + as f3(1) + asfa(l)’
oa(l) = as f3(1)

agfo(1) + as f3(1) + asfa(l)’
o) — ay f4(1)

s fo(1) + as fa(1) + g fa(1)

For the non-future missing values restrictions, the counterparts to (11)—(14) are

Ja (1234) = f4(1234)7 (15)
f3(1234) = f3(123)93(4|123)7 (16)
[2(1234) = f2(12)g2(3|12) [6(123) g3 (4[123) + {1 — 6(123) } f4(4]123)], (17)
S1(1234) = fi(1)g1(2[1) {612(12)g2(3|12) + 013(12) f3(3[12) + 014(12) f4(3[12) }
X [5(123)93(4|123) + {1 — 5(123)}f4(4|123)]7 (18)
with
B as f3(123)
oa%:) = a3 f3(123) + g f4(123)°
B ag fo(12)
o2(12) = g f2(12) + a3 f3(12) + ay f4(12)°
B as f3(12)
f012) =  f2(12) + a3 f3(12) + aq f2(12)
- Ck4f4(12)
na(12) = o2 f2(12) + s f3(12) + o f2(12)

The dependence of the w’s and §’s on the y follows the same notational conventions. Note that one

may or may not want them to depend on covariate levels. To avoid confusion with the interior-



family counterparts, the w’s have been changed to § in this case. The freedom of choice is on the

distributions g1, go and g3 and not on the d-weights, which are fixed by assumption (3).

Theorem 1 has made a formal connection between certain selection models, missing non-future
dependent, and certain pattern-mixture models, non-future missing values. The models used in the
examples of Diggle & Kenward (1994), where the drop-out model is built up from logistic regressions
with dependence on the present and previous measurements only, and not on the full history, are
members of the missing non-future dependence family. Equations (15)—(18) allow us to derive the
missing non-future dependence counterparts of this type of model. Suppressing arguments, assume
that d; is the selection-model probability of drop-out at time ¢ + 1. Then the selection model

factorisations corresponding to (15)—(18) are

f1(1230)ay = f(1234)(1 — do)(1 — d3)(1 — dy), (19)
f2(1230)as =  f(1234)(1 — do)(1 — da)dy, (20)
f2(1230)ay = f(1234)(1 — do)ds, (21)
A(1230)a, = f(1234)dy. (22)

Taking the ratio of (19) and (20) produces, upon rearranging,

wi = (127) (2) (i) @)

If d4 has been completely specified, for example a logistic regression in y4 and ys, we can see exactly

from (23) how g3(4|123) depends on dy4. On the other hand, if dy is subject only to the generic

constraint that it depends only on y4 and ys, g3(4[123) can be written generically as

f3(123)

The other g functions follow from similar logic.

While such links are important in considering how structure in a selection framework is reflected
in a pattern-mixture framework, and vice versa, it is obvious that particular models expressed in
one framework will typically produce awkward representations in the other and may therefore be
hard to implement. It follows that the modeller should not be seeking exact correspondence in the

two frameworks, but rather be guided by equivalences between subclasses, such as available case



missing values and missing at random, or missing non-future dependence and non-future missing

values.

Next, we will consider a few special cases. This is done by making specific choices for g1, g» and

gs.

Case J. The g functions are selected in the spirit of complete-case missing values; that is they
are set equal to their f; counterparts. To be explicit, g1 (2[]1) = f1(2|1), ¢2(3]12) = f4(3]|12)
and g3(4[123) = f4(4]123).

Case 5. The g functions are determined in the spirit of neighbouring-case missing values:

9121 = fo(2]1), 92(3[12) = f3(3[12) and g3(4[123) = f4(4]123).

Obviously, one could consider a choice where the g functions are in line with available-case missing
values. It is easy to show that available case missing values is then obtained as it should be, since

available-case missing values is in the intersection of both families.

Let us now see what the pattern-specific choices reduce to for the five special cases. Of course,

there is no room for choice in fy and in all five cases f3(1234) = f3(123)f1(4]/123). In the second

pattern,
f2(12) f1(34]12) (Cases 1 and 4),
f2(1234) = ¢ f2(12)f3(3[12) f2(4]123) (Cases 2 and 5),
fo(12) { 2BEEZR a0 ) £ (4)123)  (Case 3).

While some distributions coincide for the second pattern, all five are different in the first:

J1(1) f4(234]1) ( )
Ji(D)f2(2[1) f3(3]12) f4(4]123) ( )
(1) {azfz(12)+a3f3(12)+a4f4(12) } {Otsfs(123)+a4f4(123) } f4(4]123) (Case 3),
( ( )
( ( )

S~y

f11234) = fi

azf2(1)+oas fa(1)+ou fa(l) a3 f3(12)+aa f4(12)
fl 1)f4(2|1> { a2 f2(12) f4(3]12) a3 f3(123)+cg £4(123) } f4 (4|123)

a2 f2(12) a3 f3(12) +aq f4(12)

S F2I) { 2R P B R fa(4[123)

This illustrates that neighbouring-case missing values and complete case-missing values, while in the

interior family, are outside the non-future missing values family. Conversely, cases 4 and 5 do belong

10



to the intersection of the interior and non-future missing values families, together with available
case missing values. Examples of non-future missing values restrictions that are not interior are
readily found by making arbitrary choices about at least one of the g functions. In summary,
both the interior and non-future missing values families are subclasses of general missing not at
random mechanisms, extending the available case missing values class. The interior family is of
value when no restriction beyond those produced by the observed data is deemed appropriate. The
non-future missing values family is in place when one wants to consider restrictions that avoid the
corresponding drop-out mechanism to depend on future, unobserved measurements. Importantly,
both families have a nontrivial intersection, in the sense that, apart from available-case missing

values, mechanisms such as those in cases 4 and 5 are included.

5. OVERALL STRATEGY

Having outlined how non-future missing value restrictions can be constructed in practice, we can
now outline an overall strategy for analysis. A similar route has been followed for the interior

family by Thijs et al. (2002). Our strategy will be applied to the case study in the next section.

Step 1. Specify and fit a model to the pattern-specific identifiable densities, fi(y1, -, y)-

This results in a parameter estimate, 4;.

Step 2. Choose a model for fi(y;11|y1, -, y:). If this is done in a data-independent way, then
a prior can be placed on the corresponding parameters. Otherwise, one can use procedures

of the sort described in §4.

Step 3. Using the non-future missing values identification method, determine the conditional

distributions of the unobserved outcomes, given the observed ones,

filyero, o yrlyl, - o, Yer1)- (24)

Step 4. Once the full distributions are specified, inferences are required based on observed
quantities. In principle, this requires some form of integration with respect to the distribution
of the unknown quantities. In practice, simulation-based approaches are needed. One familiar

route, with the advantage that the simulation and fitted models need not coincide, is multiple

11



imputation (Rubin, 1987; Schafer, 1997; Verbeke & Molenberghs, 2000). Multiple imputations
are drawn for the unobserved components, given the observed outcomes and the correct

pattern-specific density (24). For inferences to be correct, imputations have to be proper in

the sense of Rubin & Schenker (1987), Rubin (1987, 1996) and Schafer (1997).

Step 5. The multiply-imputed sets of data are then analysed using the method of choice.
This can be another pattern-mixture model, but can also be a selection model or any other
desired model. However, one should carefully consider the implications of posited differences
between the model for imputation and the final analysis model. For example, if the analyst
deems the normality assumption to be important, it may be best to retain essentially the
same model for the imputed sets of data. The situation will be different for categorical data

with, for example, sufficiently rich multinomial models.

Step 6. Inferences can be conducted in the standard multiple imputation way (Rubin, 1987;
Schafer, 1997; Verbeke & Molenberghs, 2000), by averaging point estimates and combin-
ing within- and between-imputation variability in order to obtain the asymptotic variance-
covariance matrix of the estimates. Usually, this will still be a pattern-mixture model whereas
substantive interest can be geared towards marginal quantities, such as overall treatment
effect. In such a case, marginal effects follow from weighted linear combinations of pattern-
specific effects, the variance of which follows from a straightforward application of the delta
method. Details can be found in Verbeke & Molenberghs (2000, Ch. 20). We will briefly

summarise the main steps.

Let the parameter of interest be denoted by 0. Suppose M imputations are drawn and let 0" be its

estimator from completed dataset m. The M within-imputation estimator for 8 are pooled to give

the multiple imputation estimator:

- 1 &
0" = Mﬂ;e . (25)

Suppose that complete data inference about @ would be based on (6 —#) ~ N(0,U). Then one can

make normal-based inferences for  based upon

0—6") ~ N(O,V), (26)

12



where

is the average within-imputation variance, and

~

. M@ 9@ — oty

is the between-imputation variance (Rubin, 1987). These formulae allow calculation of multiple
imputation based standard errors. At first sight, testing hypotheses could be based on the asymp-
totic normality results (26) and (27). However, the rationale for using asymptotic results and hence
x? reference distributions is not just a function of the sample size, N, but also of the number of
imputations, M. Therefore, Li et al. (1991) propose the use of an F' reference distribution. To test

the hypothesis Hy : = g, they advocate calculating p-values by
p = pr(Flw > F) (30)

where k is the length of the parameter vector 6, I,, is an F' random variable with k& numerator

and w denominator degrees of freedom, and

(0 — o) W—L(0* — 0o)

Eo= k(L1 7) : &)
_ 2

w = 4+(T—4){1+(1_TL1)}7

ro= %<1+%)tr(BW*1)7 (32)

T = k(M-1).

It is interesting to note that, when M — oo, the reference distribution of I approaches an Fj o =
x2/k-distribution, in line with intuition. Good operational characteristics of this procedure are

reported in Li et al. (1991), combining nicely with computational ease.

Clearly, procedure (30) can also be used when not the full vector 8, but a single component, a

subvector or a set of linear contrasts is the subject of hypothesis testing. When a subvector is of

13



interest, a single component being a special case, the corresponding submatrices of B and W need
to be used in (31) and (32). For a set of linear combinations L6, one should use the appropriately
transformed covariance matrices, W = LWL/, B = LBIL/ and V = LV /. This will be the case
for the analysis of the example, where scientific interest is directed towards a pair of treatment

contrasts in a three-armed clinical trial.

6. CASE STUDY

The data come from a three-armed clinical trial involving patients with Alzheimer’s disease (Reis-
berg et al., 1987), conducted by 50 investigators in 8 countries. The outcome is a dementia score,
ranging from 0 to 43. Treatment arm 1 is placebo, with 114 patients, while arms 2, with 115
patients, and 3, with 115 patients, involve active compounds. Of the patient population, 56.4% are
female. There are 341 Caucasians, 2 Orientals and 1 black subject. Age ranges from 56 to 97 years
with a median of 81 years. Measurements are taken at baseline, at weeks 1, 2 and then every two
weeks until week 12. Individual profiles are plotted in Fig. 1. In agreement with the protocol, we
will analyse change versus baseline. This outcome is sufficiently close to normality, unlike the raw

score.

Figure 1, about here.

Attrition over time is fairly steady for each treatment arm. The sample size per drop-out pattern
and per treatment arm is displayed in Table 1. In each of the arms, about 40% drop out before
the end of the study. Unfortunately, very little is known about the reasons for drop-out, in this
particular study. While such information is generally important, one also needs to be able to

analyse incomplete data in the absence of such knowledge.

A linear mixed model (Verbeke & Molenberghs, 2000) was fitted to the outcomes, in which the
variance structure was modelled by means of a random subject effect, an exponential serial corre-
lation process and measurement error. The fixed effects considered in the model were, apart from
treatment effect, those of age, time, investigator and country, as well as 2- and 3-way interactions.

From an initial model-selection exercise, only main effects of age, time, time? and treatment group

14



were retained.

Scientific interest is in the effect of treatment. Since there are three arms, we consider two treatment
contrasts of the experimental arms versus the standard arm. Our focus here will be on estimates
and standard errors for these contrasts, as well as on tests for the null hypothesis of no treatment

effect.

We first consider the selection model approach. As in Diggle & Kenward (1994), we combine the
measurement model with a logistic regression for drop-out with either only an intercept, corre-
sponding to missing completely at random, and also an effect for previous outcome, corresponding
to missing at random, or even an effect of the current possibly unobserved measurement, corre-
sponding to missing not at random. The fitted average profiles are plotted in Fig. 2. Parameter
estimates and standard errors for the treatment contrasts, as well as the associated test results, are
reported in Table 2. Treatment effects are nonsignificant. The likelihood ratio statistic for com-
paring the missing at random and missing not at random models is 5.4 on 2 degrees of freedom.
While this might be taken as some evidence for nonrandom drop-out, such a conclusion is strongly
model dependent; see the discussion of Diggle & Kenward (1994) and Verbeke & Molenberghs
(2000, Ch. 19). More reasonably it can be taken as some evidence against this particular missing

at random model.

Table 2 and Figure 2, about here.

Next, we turn attention to the pattern-mixture models, using the strategy outlined in §5. We briefly
describe each of the six steps. First, pattern-specific linear mixed models are fitted to the data. The
fixed-effects structure comprises treatment indicators, time and its square, and age. The covariance
structure is captured by means of a random subject effect, an exponential serial correlation process
and measurement error. Secondly, the five special cases outlined at the end of §4 are used to define
the identifying restrictions. In 84, the focus was on four measurements since this enabled us to
highlight differences between all of them; here we will use all seven measurements for analysis.
Thirdly, from these choices, the conditional distributions of the unobserved outcomes, given the

observed ones, are constructed. Fourthly, five imputations are drawn from these conditionals.

15



Fifthly, the resulting multiply imputed datasets are analysed, using the same pattern-mixture
model as was applied to the incomplete data. Finally, multiple-imputation inference is conducted.
Admittedly, the set of restrictions considered here is far from exhausting the entire space of possible
restrictions and hence leaves room for additional sensitivity analyses. However, it allows us to
compare future and non-future dependent mechanisms, as well as a comparison with the selection
models fitted earlier. Also there, different routes of sensitivity analysis could be chosen, such as
replacing the parameter describing the dependence of drop-out on the current, possibly unobserved

measurement by a sensitivity parameters.

Multiple imputation inference can be based upon the average estimate (25), the asymptotic ‘total’
covariance matrix (27), and the associated testing procedure (30). However, we have to reflect
carefully on the implications of fitting a pattern-mixture model. Since there are seven drop-out
patterns, there are also seven pairs of treatment contrasts. As indicated in Thijs et al. (2002)
and Verbeke & Molenberghs (2000), either one can focus on a stratified analysis, in which the null
hypothesis is directed to all 7x 2 contrasts simultaneously, or one can construct the marginal effects,
here a single pair of marginal treatment contrasts. For the first approach, the theory provided in the
previous section is sufficient. For the marginal route, some extension is needed. Let 6y represent
the treatment contrasts £ = 1,2 in pattern ¢ =1,...,7, and let m; be the proportion of patients in

pattern ¢, easily derived from Table 1. Then the marginal contrasts are
7
0p = > Oum, 6=1,2. (33)
=1

Of course, covariates can be assumed to be present or absent in the mixing distribution. For ex-
ample, if drop-out differs among treatment arms, it seems imperative to let the mixing distribution
depend on treatment. In the current example, the effect of treatment on the mixing probabilities is

not significant. The marginalised within-imputation variance is obtained using the delta method:

W= (A1]42) ( I/(I)/ I Var(()m) > < ﬁ:; )’ (34)

where
9(04,0 (0,6
u 00 L 00u8)
0(011,012,021,. .. ,072) o(rm,...,m7)
Similarly, the between-imputation variance is
B = A,BA,. (35)
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Expressions (34) and (35) are combined to produce the total marginal variance V as in (27). These

quantities can be used for precision estimation and hypothesis testing, as outlined at the end of §5.

The results of our analysis are reported in Table 2. The marginal treatment effect assessments are
all nonsignificant, in line with the results from the selection model analysis. However, all stratified
treatment assessments produce significant p values, although to various levels of strength. Strong
evidence is obtained from the available-case missing values model. Of course, the complete-case
missing values analysis provides even stronger evidence, but this assumption may be unrealistic,
since even patterns with few observations are completed using the set of completers, corresponding
to pattern 7. Both of the other non-future missing values mechanisms, corresponding to Cases 4
and 5, where drop-out does not depend on future unobserved values, provide mild evidence for
treatment effect. Importantly, we are in a position to consider which patterns are responsible for
an identified treatment effect. Note that the contrasts are nowhere near significant in the complete
pattern 7, while patterns 4 and 6 seem to contribute to the effect, consistently across patterns. The
first contrast of pattern 3 is significant only under complete-case missing values, perhaps explaining

why this strategy yields the most significant result.

Figure 3 graphically summarises the fit of these models for the first treatment arm; very similar
displays for the other arms have been omitted. Clearly, the chosen identifying restrictions have a
strong impact, especially for the patterns with earlier drop-out. Of course, from Table 1 it is clear
that the earlier patterns are rather sparsely filled. Tt is striking to see that the missing non-future
dependence patterns are not all grouped together. An important and perhaps counterintuitive
feature is that the fitted averages depend on the identification method chosen, even at time points
prior to drop-out. The reason for this is that, after imputation, a parametric model is fitted to the
completed sequences as a whole, as opposed to, for example, change point models with change point
at the time of drop-out. Hence, the smoothing induced by the parametric model applies across the

entire sequence, before and after drop-out.

Figure 3, about here.

7. CONCLUDING REMARKS
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Thijs et al. (2002) argued that pattern-mixture models, supplemented by identifying restrictions
that specify the conditional distribution of the unobserved measurements given the observed ones
in a given pattern, is a potentially useful way of modelling incomplete longitudinal data. Such
restrictions allow one to reflect carefully on the nature of the assumptions made. Thijs et al. (2002)
put forward one particular class of such restrictions, termed here the interior family. By looking
at the implications of pattern-mixture models for the nature of the drop-out mechanism, we have
been able both to answer criticisms of restrictions of the interior type and to formulate a new
class of pattern-mixture models, called non-future missing values, corresponding to those drop-
out mechanisms in which drop-out does not depend on future unobserved measurements. Such a
class is useful since in practice one may often want to prevent drop-out from depending on the
future. At the same time, the non-future missing values family provides a sensible restriction on
the vast collection of missing not at random models, while containing the important subfamily of
missing at random models. Such classes are important in the construction of sensitivity analyses

for incomplete data.

While this is useful, undoubtedly in cases where substantive information is available on the nature
of and reasons for drop-out, it is equally true when such information is not available, but general
considerations can be made using knowledge about the nature of the problem. Indeed, parallel to
the selection model case, the developments made here permit one to consider a taxonomy within

the pattern-mixture model family as well, as presented in Fig. 4.

Figure 4, about here.

Hence, one can decide to limit the restrictions to whatever class is deemed appropriate. This
map also enables us, to a large extent, to compare selection and pattern-mixture models. For
example, available case missing values and missing at random models are similar in spirit, but
they do not have to be the same since the corresponding models may include different effects; for
example, effects for the drop-out pattern are typically absent in a selection model. Also, Cases 4
and 5 are at the same level as the typical Diggle & Kenward (1994) model, which is missing non-

future dependent. External information about the reason for drop-out varies greatly from study
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to study. The taxonomy in Fig. 4 allows the researcher to reflect both what is known about the
drop-out mechanism and the patterns of behaviour that will be allowed in the sensitivity analysis.
In particular, we noted that restriction to either the non-future missing values family, in which
drop-out does not depend on future measurements, or to the interior family, in which restrictions
depend on the observed patterns only, or to both may be desirable, depending on the context. We
have shown they have a nontrivial intersection, including not only available case missing values,

but also Cases 4 and 5.

In addition, pattern-mixture models allow for an easy distinction between marginalised inference
and inference stratified over drop-out pattern. While the primary analysis of a clinical trial will
usually be the marginal analysis, the stratified view allows a more detailed consideration of the
treatment effect. In our case study, it was seen that patients with an intermediate length of follow-

up are primarily responsible for the observed treatment effect.
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APPENDIX

Technical details

The missing non-future dependence assumption states that
f(rzﬂyla"'vyT) :f(T:ﬂylv"'vytJrl) (Al)
and the non-future missing values assumption corresponds to

f(ytkylv" Y1, T :]) - f(yt|y17 Y1, T =>1— 1)7 (AZ)
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forall t > 2 and all j <¢—1.

Lemma Al. In a longitudinal setting with drop-out, non-fulture missing values s equivalent to

TWelyi, - ge—1,r = 73) = felyr, -+ ye—1), forallt =22 and all j <t — 1.

Remark. This lemma assumes strictly one fewer identification than the corresponding lemma in

Molenberghs et al. (1998).

Proof of Lemma Al. Take t > 2,5 <t — 1. Then non-future missing values leads to

f@elyr, - 1) = ;f(ytlyb---,ytq,r:i)f(r:i)+f(yt|y1,---,yt71,rZt—l)f(rZt—l)
- ;f(ytlyu-'-,ytfl,r =)=+ [y =)= t=1)

i—2
= f(ytlyh---,ytl,rj){ZfrZ)+fr>t—1)}
=1

= felys, - ye1,m = ).

Conversely, again for £t > 2, j < {— 1,

t—2
Sy, g r =t=0fr=t=1) = fluwly,-m 1) =D fWlyr, - 1, = i) f(r = 1)
=1
t—2
= Sy =D fWelyn ) f(r = 4)
=1

i—2
= f(ytlyl,---,ytl){l—Zf(Ti)}
=1
t—2
= f(ytlyl,---,ytl,rj){l—Zf(TZ’)}
=1

- f(ytkylv"'vyt*lv/r :j)f(r >t— 1)

Proof of Theorem 1.
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(i) Missing non-future dependence implies non-future missing values.

Consider the ratio @ of the complete data density to the density involving only the previous and

current measurements. This gives, under the missing non-future dependence assumption,

S, yn)f(r =iy, - i)
. = fWivos - YTV -+ Ui 1) (A3)
f(ylv"'vyiﬂLl)f(r:Z|y17"'7yi+1) - -

Furthermore, one can always write,

JWiva, - yrlys, -y r =) f Wi, - yialr = 9) f(r = 1)
S, yicalr =) f(r = i)
= fWira, - yrlys, oo Ysrr,r = 0). (A4)

Q =

Equating (A3) and (A4), we obtain

JWivos - yrlyn, - ¥, = 8y = W2, - Y7y, -+ Yir1)- (A5)

To show that (A5) implies the non-future missing values conditions (3), we proceed by induction

on t. If t = 2, non-future missing values imposes no restriction and the result holds trivially.

Suppose by induction that non-future missing values holds for all £ <i. We will prove the hypothesis
for t =74 1. Choose j < 4, arbitrary but fixed. Then, from the induction hypothesis and Lemma
A.1, it follows that, forall j <t—1 <17 —1,
f(yt|y17"'7yt7177“:j) - f(yt|y17"'7yt71:r2t_1)
= flyr, - ye-1)-

Taking the product over t = j + 2,---,¢ then gives

TWie2, - ulyn, Y m =9 = f@i+2, Uy, Yin)- (A6)
After integration over y; o, -, y7, equation (A5) leads to
fWis2s - Yir1lyns Y =) = f@e2 Y1y, - Yi). (AT)

Dividing (A7) by (A6) and equating the left- and right-hand sides, we find that

JWirtlys, - yir = ) = f@artly, -+ 0:)-

This holds for all j < ¢ — 1, and Lemma A.1 shows that this is equivalent to non-future missing

values.
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(ii) Non-future missing values implies missing non-future dependence.

Starting from the non-future missing values assumption and Lemma A.1, we have that, for all £ > 2
and all j <?¢—1,

Jelys, - ye1,m = 3) = f@Welyr, - ye 1) (A8)

We now factorise the full data density as

f(ylv'“7yT7T:i) - f(ylv"'vyiJrlvT:i)f(yi+27"'7yT|y17"'7yi+177°:Z.)
T
= S Y, r =10) H flyr, -y, = 9).
t=142

Using (A8), we obtain that

T
far - yrr =1 = flp e yimlr =00 =19 T fly, - ve1)
t=i+2

= fW - yialr =00 =0 f Wiz, yrlyn, - Y1)

fylv"'vyi 1T:Z'f7":i
[ 1] R )f(yh"',yi+1)f(yi+2a"‘vyT|y1""’yi“)

f(yla---;yiﬂ) .
- o B ORE D )
= for=idlyi,- y0)f 1, y). (A9)
An alternative factorisation of f(y,r) gives
Ju - yrr =i = fr =iy yn) f (Y- yr)- (A10)

It follows from (A9) and (A10) that

f(r :Z.|y17"'7yT) :f(T :/L’|y1’-”’yi+1)7

completing the proof of Theorem 1.
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Table 1: Sample size per treatment arm and drop-out pattern in the Alzheimer’s study.

Pattern 1 2 3 4 5 6 7

Treatment1 4 5 16 3 9 6 71
Treatment2 4 9 7 6 3 5 81
Treatment 3 12 4 15 9 5 3 67
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Table 2: Inference for treatment contrasts for the case study. For the contrasts, parameter estimates
and standard errors, in parentheses, are reported.

Selection Models

Pattern-mixture Models

Pat. Cont. MAR MNAR ACMV CCMV NCMV FD1 FD2
Stratified Analysis
1 1 0.27(6.42) 584(5.16) -4.10(6.27)  4.90(8.29)  5.44(6.52)
2 8.19(6.58) -6.92(6.15) 2.56(5.12) -T.T8(7.62) -4.48(7.76)
2 1 2.78(4.75) -0.00(2.90) -4.43(3.54) 0.61(4.88) -1.49(4.07)
2 -3.57(4.53)  -5.08(3.92) -1.37(4.12) -6.48(5.22) -4.54(5.46)
3 1 6.78(4.20)  6.95(2.66)  0.10(2.40)  4.18(2.64)  0.18(3.65)
2 175(2.76)  -3.44(2.12)  0.83(2.14)  -2.66(2.29)  -0.10(2.20)
4 1 11.05(3.21)  10.87(2.85) 6.59(3.09) 9.65(3.56) 9.97(2.90)
2 -3.84(4.09) -6.55(3.88) -3.23(4.09) -6.84(3.78) -4.30(4.24)
5 1 0.15(5.71)  -2.05(6.29) -5.60(6.46) -3.02(5.92) -6.13(6.42)
2 0.74(3.99)  -0.87(4.51)  0.92(4.68) -0.53(4.24)  1.05(4.57)
6 1 14.16(3.75) 12.91(3.71) 13.44(3.72) 13.28(3.82) 12.72(3.79)
2 -5.24(3.48)  -4.74(3.69) -4.95(3.79) -4.71(3.63) -4.77(3.70)
7 1 ~0.99(0.85)  -0.99(0.85) -0.99(0.85) -0.99(0.85) -0.99(0.85)
2 1.68(0.88)  1.68(0.88)  1.68(0.88)  1.68(0.88)  1.68(0.88)
F value 245 2.96 1.76 1.92 1.77
p value 0.0024 0.0002 0.0407 0.0225 0.0413
Marginal Analysis

1 055(0.71) 0.45(0.71) 1.07(1.05)  1.47(0.87) -0.48(0.85)  1.05(1.04)  0.37(0.96)
2 0.64(0.71) 0.69(0.71)  -0.24(0.81) -0.56(0.86)  0.91(0.77) -0.59(1.01)  0.19(0.84)
F value 2.82 2.68 2.15 1.23 0.66 0.52 0.19
p value 0.2446 0.2619 0.1362 0.3047 0.5208 0.6043 0.8276

Pat., pattern; Cont., contrast; MAR, missing at random; MNAR, missing not at random; ACMV,
available-case missing values; CCMV, complete-case missing values; NCMV, neighbouring-case missing

values; FD1, Case 4; FD2, Case 5.
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Figure 2: Selection models in the case study. Fitted average profiles. MAR, missing at random;
MNAR: missing not at random; TRT, lreatment.
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Figure 3: Pattern-mazture models. Filled average profiles for each of the five identification strate-
gees.  Treatment arm 1. ACMV, awvailable-case missing values; CCMV, complete-case missing
values; NCMV, neighbouring-case missing values; FD1, Case /; FD2, Case 5.
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Figure 4: Relationship between nested families within the selection model, SEM, and pattern-mizture
model, PMM, families. MCAR: missing completely at random; MAR: missing at random; MNAR:
massing nol at random; MNFD: missing non-future dependence; ACMYV: available-case missing
values; NFMV: non-future missing values.
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