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SUMMARY

Recently, a lot of concern has been raised about assumptions needed in order to fit
statistical models to incomplete multivariate and longitudinal data. In response,
research efforts are being devoted to the development of tools that assess the
sensitivity of such models to often strong but always, at least in part, unverifiable
assumptions. Many efforts have been devoted to longitudinal data, primarily in
the selection model context, although some researchers have expressed interest
in the pattern-mixture setting as well.

A promising tool, proposed by Verbeke et al. (2001), is based on local influence
(Cook, 1986). These authors considered the Diggle and Kenward (1994) model,
which is based on a selection model, integrating a linear mixed model for contin-
uous outcomes with logistic regression for dropout. In this paper, we show that
a similar idea can be developed for multivariate and longitudinal binary data,
subject to non-monotone missingness. We focus on the model proposed by Baker,
Rosenberger, and DerSimonian (1992). The original model is first extended to
allow for, possibly continuous, covariates, whereafter a local influence strategy is
developed to support the model building process. The model is able to deal with
non-monotone missingness but has some limitations as well, stemming from the
conditional of the model parameters. Some analytical insight is provided into the
behavior of the local influence graphs.

Key words: Contingency Table; Influence Analysis; Longitudinal Binary Data;
Non-random Missingness; Sensitivity Parameter.



1 INTRODUCTION

Categorical data modeling has received a lot of attention during the past decades (Agresti,
1990). One distinguishes between three modeling families: (1) marginal models (Bahadur,
1961; Ashford and Sowden, 1970; Molenberghs and Lesaffre, 1994, 1999); (2) conditional
models where parameters associated with a particular set of outcomes are interpreted relative
to values for (a subset of) the other outcomes (Cox, 1972; Rosner, 1984; Liang and Zeger,
1989; Molenberghs and Ryan, 1999); (3) random-effects approaches (Stiratelli, Laird, and
Ware, 1984; Breslow and Clayton, 1993; Wolfinger and O’Connell, 1993). For reviews see

Pendergast et al. (1996) and Fahrmeir and Tutz (1994).

When referring to the missing-value, or nonresponse, process we will use terminology of
Little and Rubin (1987, Ch. 6). A nonresponse process is said to be missing completely at
random (MCAR) if the missingness is independent of both unobserved and observed data
and missing ot random (MAR) if, conditional on the observed data, the missingness is in-
dependent of the unobserved measurements. A process that is neither MCAR nor MAR is
termed nonrandom (MNAR). In the context of likelihood inference, and when the parameters
describing the measurement process are functionally independent of the parameters describ-
ing the missingness process, MCAR and MAR are ignorable, while a nonrandom process is

nonignorable.

A model for incomplete data starts from the joint distribution of the outcomes, Y say, and
the non-response process, R say. Model families can be distinguished based on the way this
joint distribution f(y,r) is factorized (parameters are suppressed from notation). A selection
model is based on the factorization f(y)f(r|y), whereas the reverse factorization is referred
to as a pattern-mixture model. When a common set of random-effects is thought to influence

both the Y and R processes, conditional upon which these processes are independent, then



the so introduced model is referred to as a shared-parameter model. For reviews, see Little
(1995), and Kenward and Molenberghs (1998). Baker, Rosenberger, and DerSimonian (1992,
henceforth referred to as BRD) proposed a model for bivariate binary data subject to non-

random non-response.

There has been a growing awareness of the sensitivity of such models with respect to the
underlying model assumptions. It turns out in practice that there are numerous subtle issues
not encountered with complete tables. Some of these issues are purely technical (nonunique,
invalid, or boundary estimates), others are of a more interpretational and philosophical
nature (e.g., models that yield the same or similar fits to the observed data can produce
qualitatively different predictions for the unobserved data; Molenberghs et al., 1999a). In
response, several authors have illustrated the need of and/or proposed tools for sensitivity
analysis (Rubin, 1977; discussion of Diggle and Kenward, 1994; Draper, 1995; Glynn, Laird,
and Rubin, 1986; Scharfstein, Robins, and Rotnitzky, 1999; Molenberghs, Kenward, and

Goetghebeur, 2001).

Verbeke et al. (2001) and Thijs, Molenberghs, and Verbeke (2000) developed a local-influence
based approach for the detection of subjects that strongly influence the conclusions. These
authors focused on the Diggle and Kenward (1994) model for continuous outcomes. Van
Steen et al. (2001) adapted these ideas to the model of Molenberghs, Kenward, and Lesaffre

(1997), for monotone repeated ordinal data.

In this paper, we focus on the model family proposed by BRD. A number of contributions
are made. First, the model is reformulated such that its membership of the selection model
family is unambiguously clear. Second, the original model is extended to accommodate
for, possibly continuous, covariates, turning the model into a regression tool for several

categorical outcomes. Third, a parameterization is proposed that avoids the risk of invalid



solutions. In other words, all combinations of the natural parameters produce probabilities
between 0 and 1. As a consequence, the closed-form solutions of BRD no longer apply; given
the focus on continuous covariates, the derivation of closed-form solutions should not be of
primary concern. Fourth, a local influence approach is coupled with the model strategy,
to assess which observations have a strong impact on the comparison of two nested models
within the BRD family. Finally, some insight is provided into the behavior of the derived
local influence measures. In spite of the advantages, there are some limitations, stemming
from the conditional nature of parameter interpretation. This is especially the case when

planned sequences are of unequal length and/or time-varying covariates are present.

The rest of the paper is organized as follows. Section 2 introduces the data from a psychiatric
study. In Section 3 we sketch the BRD models, extended to incorporate covariate effects,
and its application to the psychiatric study is presented in Section 4. In Section 5, the local
influence methodology as introduced by Cook (1986) is reviewed. Finally, this method is

exemplified on the psychiatric data in Section 6.

2 THE PSYCHIATRIC STUDY

These data come from a multicenter, postmarketing study involving 315 patients that were
treated by fluvoxamine for psychiatric symptoms described as possibly resulting from a
dysregulation of serotonine in the brain. The data are discussed in Molenberghs and Lesaffre
(1994), Kenward, Lesaffre, and Molenberghs (1994), Molenberghs, Kenward, and Lesaffre

(1997), Michiels and Molenberghs (1997), and Molenberghs et al. (1999D).

After enrollment into the study, a number of baseline characteristics was scored, and the
patient was assessed at four follow-up visits. The therapeutic effect and the extent of wors-

ening side effects were scored at each visit on an ordinal scale. A side effect occurs if new



symptoms appear while there is therapeutic effect if old symptoms disappear. We will fo-
cus on a dichotomized version (present/absent) of side effects at the first and the last visit.
While this may appear to be a limitation, it will allow us to highlight all features of the
model and its associated influence analysis (including the effect of covariates, non-monotone

missingness, boundary solutions, and several qualitative features of the influence analysis).

Accumulated experience with fluvoxamine in controlled clinical trials has shown that it is
effective as a conventional tricyclic antidepressant (Burton, 1991). However, many patients
who suffer from depression have concomitant morbidity with conditions such as obsessive-
compulsive disorder, anxiety disorders and, to some extent, panic disorders. In most trials,
patients with comorbidity are excluded and therefore, it is of interest to gather evidence as to
the importance of such factors, with a view on improved diagnosis and treatment. A useful,
easy to obtain and quantitative covariate, strongly related to the history of comorbidity, is
duration of the mental illness, prior to inclusion in the trial (prior duration). Its effect on the
clinical outcomes of the study is therefore of scientific importance (Lesaffre, Molenberghs,

and Dewulf, 1996) and will be studied here.

The observed data are given in Table 1, both without stratification for covariate levels
and broken up by binary duration category (below and above 4 years). A small subgroup
has missing information on the duration covariate. The entire set of data, with duration
in continuous format, is available from the authors upon request. There are two patients
with a non-monotone pattern of follow-up while 14 subjects have no follow-up data at all.
Therefore we will need models which can handle non-monotone missingness patterns, as will

be described in Section 3.



3 MODELS FOR NON-MONOTONE PATTERNS

Baker, Rosenberger, and DerSimonian (1992) considered a log-linear type of model for two
possibly binary outcomes, subject to non-monotone missingness. Let ¢ = 1,...,n index
distinct covariate levels. In this section, the index ¢ will be suppressed from notation. Let
4,k = 1,2 correspond to the outcome categories of the first and second measurement, re-
spectively and let 71,79 = 0,1 correspond to the missingness indicators (1 for an observed
and 0 for a missing measurement ). This leads to a four-way classification as in Table 1. The
complete data and observed data cell probabilities m,,,, j» for this setting are presented in
Table 2. To accommodate (possibly continuous) covariates, we will use a selection model

parameterization, differing from and extending the original one:

7r'r19"2,jk — pjkan"ﬂ"g‘jlm (31>

where pj;, parameterizes the measurement process and g,,,,|;» describes the missingness mech-

anism, conditional on the measurements. In particular, we will assume

exp(0;
D = S ( Jk> 7 (32)
Zj,lczl exp(0;1)

_explGir(l — o) + age(l — 7)) + (1 —r1) (1 — 1) (3.3)
1+ exp(Bji) + explage) + exp(Bi + e +7) '

Q'r"l'r"g‘jk)

No a priori ordering is imposed on the outcomes. The advantage is that genuine multivariate
settings (e.g., several questions in a survey) can be handled as well. When deemed necessary,
the implications of ordering can be imposed by considering specific models and leaving out
others. For example, one may want to avoid missingness on future observations. In the
current bivariate case, the index k would have to be removed from « in the above model.
To identify the model, we set @22 = 0 and further 8, = X;,m. This allows inclusion
of covariate effects which, together with (3.2), is related to the multigroup logistic model

(Albert and Lesaffre, 1986). Even though the parameters 1 are conditional in nature and



therefore somewhat difficult to directly interpret in case planned sequences are of unequal
length, (3.2) allows easy calculation of the joint probabilities. Note that observed sequences
could be of unequal length. The conditional interpretation of the parameters will be a major
obstacle in the presence of time-varying covariates, as is often the case in longitudinal studies
with longer measurement sequences. Arguably, in such a case, a different model may be more
suitable. Generally, computational advantages become increasingly important as the length
of the response vector grows. If necessary, specific functions of interest, such as a marginal
treatment effect, can be derived. They will typically take the form of non-linear functions.
Arguably, a model of the type here can be most useful as a component of a sensitivity

analysis, in conjunction with the use of different (e.g., marginal) models.

In many examples, the design matrices X, will be equal. Stacking all parameters leads to
0 — Xn and similarly to 8 = Zap, where the vector § stacks the 5,., oy, and v and Z is
a design matrix. The vector ) groups the parameters of interest. For example, if MCAR
would be considered, the o and 3 parameters do not depend on neither j nor k& and hence

' = (o, 3,7). Both designs can be combined into one, using & = (87,877,

X 0
W = ( 0z ) and ¢ = (g pHT. (3.4)
The corresponding log-likelihood function can be written as:
2 2
¢ = Z Yugelnm e + Zy10j+ln(7r10jl + T1052)
=1 j=1

+ Z y01+k111(7T011k + 7T0121c)

k=1
+yoo++hl(7roo11 + Too12 + Too21 + 7T0022)
Y115k 2 Y105+ 2 Yoi+k YOO+ +
= E g In7yj, + E E In7yo;4 + g E In7oi 45 + E In7ooy 4
J,k=1 s=1 j=1 s=1 k=1 s=1

Computation of derivatives is straightforward. A technical report can be obtained from
the authors upon request. To include individual-specific covariates, a subscript ¢ has to be

introduced to the vector &, and the matrix W, and hence to their constituent components.



BRD consider nine identifiable models, setting o, and 3, constant in one or more indices:

BRD1 : («a_,f8.) BRD4 : (o, fBk) BRD7 : (o, Br)
BRD2 : («a_,f;) BRD5 : (oy,05.) BRD8 : (aj, (%)
BRD3 : (ax,3.) BRD6 : (o;,8,) BRD9 : (au,3;).

The nesting structure of these models is schematically represented in Figure 1. BRD con-
sidered these using the original parameterization, but carry over to parameterization (3.3)
is immediate. Interpretation is straightforward. For example, BRD1 is MCAR, in BRD4
missingness in the first variable is constant, while missingness in the second variable depends

on its value.

4 MODELS FITTED TO THE PSYCHIATRIC STUDY

In the analysis all patients with known duration level are considered, leaving a total of 310
out of 315 subjects in the study. In the measurement model, the effect of duration is held
constant over both visits. Regarding the missingness model, an effect of duration is assumed
in both the ae and the F parameters. Each of the 9 models is represented by a specific choice

for the design and the corresponding parameter vector.

We will consider three sets of BRD models in detail. Table 3 presents models (estimates, s.e.,
negative loglikelihoods) without duration. In Table 4, duration is added as a covariate to the
measurement model only, whereas in the final set (Table 5) the effect of duration is included
in both measurement and missingness parts. Sampling zeroes in some of the cells forces
certain parameters to lie on the boundary of their corresponding parameter space which,
due to the parameterization, is equal to co. This should not be seen as a disadvantage of our
model, since boundary solutions are a well known feature of MNAR models (Rubin, 1996).
The advantage of our parameterization is that either an interior or a boundary solution is

obtained, and never an invalid solution.



From Table 3, the likelihood ratio tests fails to reject BRD1 in favor of a more complex
model, implying MCAR would be adequate. However, this conclusion changes when duration
is included in the measurement model (Table 4). The effect of duration is highly significant,
whichever of the BRD models is chosen to conduct a likelihood ratio test. Further, within
Table 4, not BRD1 but rather BRD4 provides the most adequate description. The likelihood
ratio test statistic for comparing BRD1-4 equals 7.10, while those for BRD4—-7 and BRD4-8
are 2.10 and 1.52, respectively. Thus, from this set of models, one observes that duration
improves the fit and apparently duration, included in the measurement model, has the effect
of changing the nature of the missingness mechanism, by making it more complex, even
though it is often believed that including explanatory variables may help explaining structure
in the missingness mechanism. BRD4 states that missingness at the second occasion depends
on the (possibly unobserved) value at that same occasion, a so-called type I model, in the
typology of Baker (2000), in contrast to type Il models, where missingness in a variable
depends at least also on other, possibly incomplete, assessments. Obviously, such models
are particularly vulnerable to assumptions. Up to this point, no covariate effects have been
considered on the missingness parameters. When switching to Table 5, including duration in
the missingness part, the conclusions change drastically. First, all evidence for non-MCAR
missingness disappears and BRD1 comes out as the most adequate description. Second,
comparing corresponding BRD models between Tables 4 and 5 (p-values in bottom line of

Table b), it is clear that the effect of duration on the missingness model cannot be neglected.

Important modeling and data analytic conclusions can be drawn. First, it clearly does not
suffice to consider covariate effects on the measurement model, but one has to carefully
contemplate such effects on the missingness model as well. Therefore, the models in Table 5,
should be regarded as the ones of primary interest. Second, it is found that a longer duration

implies a less favorable side effects outcome, as well as an increased change of missing visits.



Obviously, duration acts as a confounding variable which, unless included in both parts of
the model, may suggest a relationship between the measurement and missingness models
and thus one may erroneously be led to believe that the missing data are MNAR. Third,
it should be noted that the parameter estimates of duration in the measurement part are
remarkably stable. This implies that, in case one is primarily interested in the effect of
duration on the occurrence of side effects all 18 models containing this effect provide very
similar evidence. While this need not be the case in general, it is a comforting aspect
of this particular data analysis. However, while we have reached plausible conclusions, one
should still exercise caution, since non-random missingness models heavily rely on untestable
assumptions (Verbeke and Molenberghs, 2000). Therefore, it is important to search for
observations which may drive these conclusions (Verbeke et al., 2001). This naturally leads

to sensitivity analysis, a form of which will be undertaken in the next section.

5 LOCAL INFLUENCE

Due to the sensitivity of parametric MNAR models (Kenward, 1998; Molenberghs et al.,
1999a; Scharfstein, Rotnitzky, and Robins, 1999) it is imperative to study this phenom-
enon, for example by means of local influence, as proposed by Verbeke et al. (2001) and
Molenberghs et al. (2001). Local influence studies the effect of infinitesimally small model
perturbations around a given null model. It contrasts with the more familiar case-deletion

schemes (Cook and Weisberg, 1982).

Verbeke et al. (2001) studied local influence in the context of the Diggle and Kenward (1994)
model where a linear mixed measurement model is combined with logistic models for dropout.
They studied the effect of perturbing a MAR dropout model in the direction of MNAR. We
will consider perturbations of a given BRD model in the direction of a model with one more

parameter in which the original model is nested, implying that perturbations lie along the



edges of Figure 1: for each of the nested pairs in Figure 1, the simpler of the two models
equates two parameters from the more complex one. For example, BRD4 includes 3, (k =
1,2), whereas in BRD1 only 3 is included. For the influence analysis, w; is then included
as a contrast between two such parameters; for the perturbation of BRD1 in the direction
of BRD4, one considers 7. and 7. + w;. Such an w; is not a subject-specific parameter, but
rather an infinitesimal perturbation. The vector of all w;’s defines the direction in which such
a perturbation is considered. Clearly, other perturbation schemes are possible as well, or
one could consider a different route of sensitivity analysis altogether. Ideally, several could
be considered within an integrated sensitivity analysis. The BRD family provides a versatile
environment for sensitivity analysis, as opposed to the Diggle and Kenward model where,
in its basic form, only a few missingness parameters are present. This is due in part to the
ability to handle non-monotone missingness. Note that the influence analysis focuses on the
missingness model, rather than on the measurement model parameters. This may be seen
as slightly odd since often scientific interest focuses on the measurement model parameters.
However, it has been documented (discussion to Diggle and Kenward, 1994; Kenward, 1998;
Verbeke et al., 2001) that the missingness model parameters are often the most sensitive ones
to take up all kinds of misspecification and influential features. These may then, in turn,
impact conclusions coming from the measurement model parameters (e.g., time evolution)

or combinations from both (e.g., covariate effects for certain groups of responders).

We will give a brief summary of local influence; see also Verbeke et al. (2001). Denote
the log-likelihood corresponding to model (3.2)-(3.3) by £(¢p|w) = S | li(P|w;), in which
£;(@|w;) is the contribution of the ith individual. The parameter ¢ is as in (3.4). Assume
that w belongs to an open subset 2 of IRY. For w equal to wo = (0,0,...,0), #(¢p|we) is

the log-likelihood corresponding to the simpler of the two BRD models.

Let $ be the maximum likelihood estimator for ¢, obtained by maximizing £(¢|wo), and



let ¢, denote the maximum likelihood estimator for ¢ under {(¢p|w). The local influ-
ence approach compares aﬁw with aﬁ Similar estimates indicate that the parameter es-
timates are robust w.r.t. perturbations in the direction of the extended model. Cook
(1986) proposed to measure the distance between aw and 2) by the likelihood displace-
ment: LD(w) = 2[0(p|wo) — £(w|wo)]. LD (w) will be large if £(¢p|wo) is strongly curved at
$7 which means that ¢ is estimated with high precision, and small otherwise. Therefore, a
graph of LD(w) versus w contains essential information on the influence of perturbations.
Since this so-called influence graph can only be depicted when N = 2, Cook (1986) proposed
to consider local influence, i.e., at the normal curvatures Cy, of £(w) in wy, in the direction
of some N dimensional vector k of unit length. Let A; be the s dimensional vector defined

by
2 . .
A, — Il (p|w;) R
Qw0 o=, w; =0

and define A as the (s x N) matrix with A, as its ith column. Let L denote the (s X s)
matrix of second order derivatives of £(¢|wy) with respect to ¢, also evaluated at ¢ = é.

Cook (1986) has then shown that C}, can be easily calculated by Cf, = 2|R' A’L 1 Ah|.

Cp, can be calculated for any direction k. One choice is the vector h; containing one in the
ith position and zero elsewhere, corresponding to the perturbation of the ith subject only,
reflecting the influence of allowing the ith subject to drop out in a more general fashion
than the others. The corresponding local influence measure is C; = 2|AL"'A,|. Another
important direction is the direction R, of maximal normal curvature Ch... It shows how
to perturb the model to obtain the largest local changes in the likelihood displacement. It is
readily seen that Ciay is the largest eigenvalue of —2 A’ L=! A, with .y the corresponding
eigenvector. Calculation of local influence measures reduces to evaluation of A and L and
a convenient computational scheme can be used whenever a program is available to fit the

full alternative model, i.e., the model at the end of edge in Figure 1 since it then suffices to



compute the second derivative at (c,zASjw@ = 0), for each observation separately, from which

the A, = (¢, w) subvector is selected.

6 INFLUENCE ANALYSIS OF THE PSYCHIATRIC STUDY

We will apply the local influence ideas to the BRD models in order to contradict or strengthen
the conclusions of Section 4. Whereas all comparisons along the edges of Figure 1 are possible,
we focus on the comparison BRD1-4 (Figure 2), since the first one was the most adequate
model when no duration effect is included and when duration is included in both parts of
the model, while the second one was the model of choice when duration is included in the
measurement model only. In addition, we will consider the comparisons BRD4-7 (Figure 3)
and BRD4-8 (plot not shown), the supermodels of BRD4. The symbols used in these Figures
are: +: both observations are available, (1,1) type; A: only the first observation is available,
(1,0) type; B only the second observation is available, (0,1) type; e: both measurements

are missing, (0,0) type.

We consider C; and hp.x. The top right panel in Figure 2 essentially shows no structure,
while in the top left there are two important observations. First, a layering effect is present.
This is not surprising, since there are quite a number of discrete features to the model:
the responses and the missingness patterns. On the other hand, the continuous covariate
duration is included in the measurement model. In this case, mainly the missingness patterns

are noticeable, although the top layer shows a good deal of variability.

Two views can be taken. Either, focus is on two observations, #184 and #185, that stand
out. These subjects have no measurements at all for side effects. Alternatively, the entire
pattern without follow up measurements can be studied. We will return to this issue later

in this section. This phenomenon is in contrast to the analyses made by Verbeke et al.



(2001) and Molenberghs et al. (2001) who found that the influential observations are invari-
ably completers. In this case, the situation is different since the “empty” observations are
explicitly modeled in the BRD models. Therefore, assumptions about the perturbations in
the direction of such observations have an impact on the values such an individual would
have had had the measurements been made; hence a strong sensitivity. This illustrates that
studying influence by means of perturbations in the missingness model may lead to important
conclusions regarding the measurement model parameters. Indeed, the measurement model
conclusions depend, not only on the observations actually made, but also on the expectation
of the missing measurements. In an MNAR model, such expectations depend on the missing-
ness model as well, since they are made conditional on an observation being missing. A high
level of sensitivity means that the expectations of the missing outcomes and the resulting
measurement, model parameters strongly depend on the missingness model. Based on this
consideration, Verbeke et al. (2001) showed that, in spite of the fact that completers cannot
have a direct influence on the measurement model parameters, they still can do so implicitly.
Given the strong level of dependence of missingness models on assumptions, it is crucial to
investigate the sensitivity of the measurement model conclusions, using local influence that
targets the missingness model. As stated earlier, the only continuous characteristics of the
observations are the levels for duration. These are 38 and 41, respectively, the largest values
within the group without observations and the 91st and 92nd percentile values within the

entire sample. Thus, the conclusions are driven by a very high value of duration.

Consider the bottom panels of Figure 2. The right hand panel still shows little or no struc-
ture. On the left hand side, the layering has been blurred due to the occurrence of duration
as a continuous feature into the missingness model. The fact that no sets of observations
stand out as such, confirms the impression that a good fit has been obtained by including

duration in both parts of the model. Consider Figure 3. A qualitative difference with Fig-



ure 2 (top left panels) is that the entire group with no follow-up measurements shows more
influential than all other subjects. In this case, hn.x displays the same group of subjects
with no follow-up. However, all of this disappears when one turns to the bottom panels,
again underscoring the importance of duration in the missingness model. The consequence
of these findings is that, as soon as duration is included in the missingness model, reasonable
confidence can be put into the conclusions. Nevertheless, based on the comparison BRD1-4,
it seems wise to further study the effect of subjects #184 and #185, as well as from the group
without follow up. To this effect, three additional analyses are considered: two sets pertain
to removal of subjects #184 and #185: without (1) and with (I1) duration as a covariate
in the measurement model. We do not consider removal in case duration is included in the
missingness model since, in this case, these two subjects did not show up as locally influen-
tial. Finally, removing all subjects without follow-up measurements and using duration as

covariate in the measurement model is reported as family 1I1.

Analysis I prefers BRD1 and analysis Il prefers BRD4, although slightly less extreme than
before: likelihood ratio test statistics for BRD1-4, BRD4-7, and BRD4-8 are 6.60, 3.64, and
3.08, respectively, compared with 7.10, 2.10, and 1.52 obtained initially. However, while the
two subjects deleted in I and II cannot explain the apparent non-random missingness, the
same conclusions are reached when all subject in pattern (0,0) are deleted (analysis I11), since
then a few likelihood ratios are significant (7.17, attained for BRD3-7 and for BRD5-8; and
7.32 for BRD1-4). Thus, removing these subjects does not change the conclusions about the
non-random nature of the data. This is useful supplemental information: it confirms that
the largest impact on the conclusion regarding the nature of missingness is coming from the
inclusion of duration, and neither from isolated individuals, nor from a specific missingness
pattern. It is pleasing that the final analysis encompasses all subjects and therefore avoids

the need of subject deletion.



Subjects in an influence graph are displayed without a particular order. Several alternatives
are possible. For example, one could order the subjects by covariate level, but this method
cannot be considered when there are several covariates. Alternatively, the subjects could be

ordered by C; or h; level, but then different orderings would exist on different plots.

7 CONCLUDING REMARKS

We have presented a set of analyses for incomplete binary data. Apart from considering
several plausible model strategies (depending on the inclusion of duration as a covariate
in the measurement and/or missingness models), a number of sensitivity tools have been
proposed and used to strengthen the findings. We have proposed a possible method to
assess influence, using local influence (Cook, 1986) in the case of selection models for a
bivariate binary outcome subject to non-monotone missingness. To this end, a joint model
for outcomes and non-response has been proposed in which (possibly continuous) covariates
are allowed. The model is based on an extension of Baker, Rosenberger, and DerSimonian
(1992) towards the inclusion of covariates. While we focus on bivariate binary outcomes,
the model can be extended to more than two assessments. To this end, extensions of (3.2)
and (3.3) would have to be entertained. For both, log-linear type as well as marginal models
can be considered. It should be emphasized that similar sensitivity analysis ideas could be
developed within other, very interesting, model families, such as the one proposed by Baker
(1996). This model would be particularly attractive in the case of ordered missingness.
This is an important feature since the particular model considered in this paper suffers from
interpretational problems when planned sequences are of unequal length and /or time-varying

covariates are included.

In our case study, it turned out that the inclusion of a key covariate in both the measurement

model and the missingness model, has to ability to substantially improve the fit of the model



and to explain missingness in the sense that an otherwise seemingly MNAR mechanism is
brought back to MCAR. The latter implies a number of methodological and interpretational
advantages. A sensitivity analysis, conducted to challenge these findings, has led us to an

increased confidence in the data analytic findings.

Similar concepts, in the context of a selection model for continuous longitudinal data subject
to dropout, have been used by Verbeke et al. (2001) and Verbeke and Molenberghs (2000)
and by Van Steen et al. (2001) for discrete longitudinal data, also subject to dropout. These
authors place the perturbation within the logistic regression for dropout, whereas in our case,
a family of identified models is considered. These models have been put into an hierarchy
(Figure 1) and then infinitesimal perturbations are studied for each model in the direction of
all models that have exactly one more parameter in the missingness models. This approach
allows detection of several possible patterns. First, different subsets of patients may be
influential for different model extensions or, as was the case here, several comparisons may
point to the same pair of influential observations. Second, in an influence graph, some
subgroups of patients may almost lie on a straight line, while others tend to form a cloud.
This is due to the combination of categorical aspects (outcomes, non-response patterns) with
continuous aspects (covariates). These can lead to different actions, ranging from design and
protocol changes in future studies to removal of observations or groups of observations from
the analysis of the current study. However, the latter seemed unnecessary in our analysis,
given that including duration as a covariate in the missingness model led to apparently very

stable conclusions.

The authors have developed GAUSS code which is available upon request.
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Table 1: Data from a psychiatric study. Side effects (yes/no) at two occasions.

yes |89 13 26

no 57 65 49 ‘20‘ ‘14‘

Table 2: Theoretical distribution over complete and observed cells of a bivartate binary out-
come. Tables correspond to completely observed subjects and subjects with the second, the
first, and both measurements missing, respectively.

711,11 | 711,12 710,11 | 710,12 701,11 | To1,12 700,11 | 700,12
711,21 | 7M11,22 710,21 | 710,22 701,21 | 701,22 7000,21 | 7100,22
711,11 | 711,12 7710,1+
‘ To1,+1 ‘ To1,+2 ‘ ‘ T00,++ ‘
711,21 | 711,22 710,2+

Table 3: Maximum likelihood estimates and standard errors of BRD models. All observations
included. No covariates.

Effect BRD1 BRD2 BRD3 BRD4 BRD5 BRD6 BRD7 BRDS8 BRD9

Measurement model

Int.11 0.22(0.15) 0.20(0.15) 0.28(0.15) 0.03(0.17) 0.32(0.15) 0.32(0.15) 0.14(0.16) 0.16(0.17) 0.27(0.15)
Int.12 -1.72(0.30)  -1.74(0.30) -1.72(0.30) -1.61(0.30) -1.62(0.30) -1.62(0.30) -1.61(0.30) -1.44(0.32) -1.72(0.30)
Int.21 -0.12(0.18)  -0.12(0.18) -0.05(0.18) -0.42(0.23) -0.13(0.18) -0.13(0.18) -0.31(0.21) -0.39(0.22) -0.04(0.17)

Dropout model

« -4.72(0.71)  -4.72(0.71) -4.72(0.71)

a1, -3.87(0.71)  -3.93(0.71) -3.93(0.71)

Q2. -00 -00 -00

a1 -4.27(0.71) -4.29(0.71) -4.29(0.71)
a9 -00 -00 -00
5 -1.09(0.13) -1.09(0.13) -1.09(0.13)

51, -1.37(0.22) -1.37(0.22) -1.37(0.22)
B2, -0.91(0.17) -0.91(0.17) -0.91(0.17)
B -1.57(0.38) -1.57(0.38)  -1.56(0.37)

B2 -0.55(0.29) -0.56(0.29)  -0.56(0.29)

¥ 3.04(0.77) 3.04(0.77) 3.04(0.77) 3.04(0.77) 3.04(0.77) 3.31(0.79) 3.51(0.84) 3.31(0.79) 3.11(0.77)

- loglik 565.96 564.55 565.07 564.55 565.34 563.97 563.70 563.97 563.70




Table 4: Maximum likelthood estimates and standard errors of BRD models.

included. Duration as covariate in the measurement model.

All observations

Effect BRD1 BRD2 BRD3 BRD4 BRD5 BRD6 BRD7 BRDS8 BRD9
Measurement model

Int.11 0.46(0.17) 0.45(0.17) 0.53(0.17) 0.23(0.20) 0.57(0.17) 0.57(0.17) 0.35(0.18) 0.36(0.19) 0.52(0.18)
Int.12 -1.46(0.31)  -1.48(0.31) -1.46(0.31) -1.26(0.32) -1.37(0.31) -1.37(0.31) -1.26(0.32) -1.06(0.33) -1.46(0.31)
Int.21 0.10(0.20) 0.10(0.19) 0.17(0.20)  -0.25(0.23) 0.09(0.21) 0.09(0.20) -0.13(0.21) -0.21(0.22) 0.18(0.20)
Duration  -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)
Dropout model

@ -4.71(0.71)  -4.71(0.71) -4.71(0.71)

o, -3.85(0.71)  -3.92(0.71) -3.94(0.71)

2. -00 -00 -00

@1 -4.24(0.71) -4.28(0.71) -4.26(0.71)
&2 -00 -00 -00
8 -1.11(0.13) -1.11(0.13) -1.11(0.13)

3. -1.44(0.23) -1.44(0.23) -1.44(0.23)
B32. -0.90(0.17) -0.90(0.17) -0.90(0.17)
81 -1.86(0.45) -1.87(0.46)  -1.86(0.45)

B2 -0.43(0.25) -0.43(0.25)  -0.43(0.25)

¥ 2.98(0.77) 2.98(0.77) 2.98(0.77) 2.98(0.77) 2.98(0.77) 3.31(0.79) 3.74(0.89) 3.39(0.79) 3.07(0.77)
- loglik 550.15 548.31 549.12 546.60 549.39 547.57 545.55 545.84 547.30




Table 5: Maximum likelihood estimates and standard errors of BRD models. All observations
included. Duration as covariate in both measurement and missingness model.

Effect BRD1 BRD2 BRD3 BRD4 BRD5 BRD6 BRD7 BRDS8 BRD9
Measurement model

Int.11 0.46(0.18) 0.45(0.17) 0.53(0.18) 0.30 (0.20) 0.57(0.17) 0.57(0.17) 0.41(0.18) 0.43(0.19) 0.52(0.18)
Int.12 -1.46(0.31)  -1.48(0.31) -1.46(0.31) -1.37 (0.31) -1.37(0.31) -1.37(0.31) -1.37(0.31) -1.22(0.33)  -1.46(0.31)
Int.21 0.10(0.20) 0.10(0.20) 0.17(0.20)  -0.15 (0.24) 0.09(0.20) 0.09(0.21)  -0.04(0.22) -0.13(0.23) 0.18(0.20)
Duration  -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)  -0.02(0.01) -0.02(0.01) -0.02(0.01) -0.02(0.01)  -0.02(0.01)
Dropout model

., -4.57(0.72)  -4.57(0.72) -4.57(0.72)

o, -3.82(0.73)  -3.87(0.73) -3.88(0.73)

2. -00 -0 -00

@ -4.20(0.72) -4.23(0.73) -4.22(0.72)
o -00 -00 -00
Cdur -0.02(0.02)  -0.02(0.02) -0.01(0.02) -0.02(0.02) -0.01(0.02) -0.01(0.02) -0.01(0.02) -0.00 (0.02) -0.01(0.02)
B.. -1.40(0.16) -1.40(0.16) -1.40(0.16)

3. -1.63(0.24) -1.63(0.24) -1.63(0.24)
B32. -1.22(0.20) -1.22(0.20) -1.22(0.20)
81 -1.79(0.36) -1.79(0.36) -1.77(0.35)

B2 -0.87(0.33) -0.88(0.33) -0.88(0.33)

Baur 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02 (0.01) 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.01) 0.02(0.01)
¥ 3.10(0.78) 3.10(0.78) 3.10(0.77) 3.10(0.78)  3.09 (0.78) 3.33(0.79) 3.50(0.84) 3.32(0.79) 3.16 (0.78)
- loglik 543.78 542.74 542.86 542.63 543.14 542.14 541.77 542.05 541.86
pf 0.0017 0.0038 0.0019 0.0189 0.0019 0.0044 0.0228 0.0226 0.0043

 p-value for the comparison with the corresponding BRD model in Table 4, to test the null
hypothesis of no effect of duration in the missingness model.

Table 6: Negative loglkelihood values for three additional sets of analysis.

I: #184 and

#185 removed, no covariates; 1I: #184 and #185 removed, duration as covariate in the
measurement model; 111: all observations in the (0,0) group removed, duration as covariate
in the measurement model.

Set BRD1 BRD2 BRD3 BRD4 BRD5 BRD6 BRD7 BRD8 BRD9
I 559.59 558.18 55870 558.18 55897 557.59 557.32 557.59 557.32
I 543.65 541.87 542.16 540.35 54243 540.61 538.53 538.81 540.34
111 496.19  494.33  495.26 492.53 49553 493.71 491.67 491.95 493.43




Figure Captions

Figure 1. Graphical representation of the BRD model nesting structure.

Figure 2. Index plots of C; (left panels) and of the components of the direction Ay of
maximal curvature (right panels) for comparison BRD1-4, without (top panels) or

with (bottom panels) duration as a covariate in the missingness models.

Figure 3. Index plots of C; (left panels) and of the components of the direction Ay of
maximal curvature (right panels) for comparison BRD4-7, without (top panels) or

with (bottom panels) duration as a covariate in the missingness models.
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