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Ahbstract

The linear mixed-effects model (Verbeke and Molenberghs 20000 has become a standard
tool for the analysis of continnous hierarchical data such as, for example, repeated measures or
data from meta-analvses. However, In cerfain situations the model does pose insurmountable
computational problems. Precizely this has been the experience of Buvse ef al. (2000a) who pro-
posed an estimation- and prediction-based approach for evaluating surrogate endpoints. Their
approach requires fitting linear mixed models to data from several clinical trials. In doing so,
these authors built on the earlier, single-trial based, work by Prentice (1989), Freedman ef al.
(1992), and Buyvse and Molenberghs (1998). While Buyse ef al. (2000a) claim their approach
hias a pumber of advantages over the classical single-trial methods, a solution needs to be found
for the computational complexity of the corresponding linear mived model. In this paper. we
propose and study a number of possible simplifications. This is done by means of a simulation
study and by applving the various strategies to data from three clinical studies: Pharmacological
Therapy for Macalar Degeneration Study Group (1977}, Ovarian Cancer Meta-analysis Project
(19491} and Corfu-A Study Group (19495),

Some Kegwords: Linear mixed model; Macular degeneration; Meta-analytic approach; On-
cology; Random effects; Surrogate endpoint,

1 Introduction

Prentice (1989) and Freedman ef al. (1992] laid the foundations for the evaluation of surrogate

endpoints in randomized clinical studies. Precisely, Prentice proposed a definition as well as a sef



of operational criteria. Freedman et al. {1992) supplemented these criteria with a quantity called
proportion explained (PE). Buyse and Molenberghs (1998) proposed to use the relative effect {RE),
linking the effect of treatment on both endpoints and an individual-level measure of agreement
between both endpoints, after adjusting for the effect of treatment (adjusted assoctation). instead
of the PE. The adjusted association carries over when data are available on several randomized
trials, while the RE can bhe extended to a trial-level measure of agreement between the effects of
treatinent of both endpoints. As observed by Molenberghs ef al. [2002) and Alonso ef al. (2002)
there are serious issues surrounding the Prentice-Freedman framework. Let us briefly expand on
this. It has been asserted that the criteria set out by Prentice are too stringent (Fleming et al.
1996) and neither necessary nor sufficient for his definition to be fulfilled, except in the special case
of binary outcomes {Buyse and Molenberghs ). In addition, Freedman, Graunbard and Schatzkin
Freedman, (1992) showed that these criteria were not straightforward to verify through statistical
hypothesis tests. Therefore the PE was suggested but it is surrounded with difficulties, the most
dramatic one being that it is not confined to the unit interval { Buyse ef al, 2000a). Buyse et
al. (2000a) argued that some fundamental eriticisms towards the process of statistical validation
can be overcome by combining evidenee Fom several elinical trials, such as in a meta-analysis,
rather than from a single study. To this end, they needed to formulate a bivariate hierarchical
model, accommodating the surrogate and true endpoints in a multi-trial setting, In doing so, they
carry over the relative effect and adjusted association to a trial-level B* and an individual-level B2,
respectively. Similar routes of meta-analytic thinking have been followed by Daniels and Hughes

(1997) and Gail et al. (2000).

A thorough account on problems related to the Prentice Freedman framework is given in Molen-
berghs et al. (2002). Of course, the switch to a meta-analytic problem does not solve all problems,
surrounding surrogate marker validation, in a definitive way, First, one has to carefully reflect
upon the question as to how broad the class of units, to be included in a validation study, ean be,
Clearly, the issue disappears when the same or similar treatments are considered across units (e.g.,
in multi-center or multi-investigator studies, or when data are used from a Family of related study
such as in a single drug development line). In a more loosely connected, meta-analytic setting it

is important to ensure that treatment assignments are logically consistent. This is possible, for



example, when the same standard treatment s compared to members of a class of experimental

therapies.

While the previous issue is relevant, this paper is devoted to a different, very important, computationally-
oriented issue. A result of the change to meta-analysis is that computationally rather involved
statistical models have to be used, For the case of surrogates and true endpoints that are both
normally distributed, Buvse ef al. (2000a) employved linear mixed-effects models [Verbeke and
Molenberghs 2000), Even in this case, which from a statistical modeling point of view can be
considered a basic one, fitting such linear mixed models turns out to be surprisinglv diffienlt. The
thrust of their findings is that, when the between-trial variability is sufficiently large, little or no

convergence problems oceur except when the mumber of trials is very small,

Given the general importance of linear mixed models, going well bevond the surrogate marker
validation case, it is necessary to study convergence properties in more detail, and to contrast the
general linear mixed model, such as the one proposed by Buyse ef ol {2000a), with alternative
and /or simplified strategies. A onmber of such alternative strategies are proposed here and studied
in terms of their statistical and mmerical properties. To this end, a simolation stady s considered,

and the various methods are applied to the data studied in Buyse ef all {2000a).

The meta-analvtic setting, to be used throughout the paper, is introduced in Section 2. The
simplified approaches, organized along three “dimensions”, are presented in Section 3. Sections 4-6
are devoted to each of the three dimensions in turm. Case studies are introduced and analyzed in

Section 7 and a simulation study is reported in Section 8.

2 Setting

As stated earlier, we will focus on normally distributed endpoints. Let us introduce a set of notation
that will be used throughout the paper. Let Tj; and 5;; be random variables denoting the true
and the surrogate endpoints for subject j = 1,...n; in trial ¢ = 1,... N. Further, let Z;; denote a

binary treatment indicator.



The full random-effects model, as introduced by Buyse ef al. (2000a) is

Sy = ps b+ 0y & 0k £syp, )

T = pr+my+ 58285 + b2 + 21y, (2)

where i and pp are fixed intercepts, mg, and my, are random intercepts for trial i, o and 7 are
fixed treatment effects and o; and & are random treatment effects. The individual-specific error

terms are £, and Eryye
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The vector of random effects, (mg, . mr,, e, 0), 18 assumed to be zero-mean normally distributed

with covariance matrix
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The individual-level error terms (5, .27, )" are also zero-mean normally distributed with covariance
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Parameter estimation can be based on, for example, maximum fikelihood or restricted maxinmm

matrix

likelihood (Verbeke and Molenberghs, 20000, Next, suppose we consider a new trial, ¢ = 0 say, for
which data are available on the surregate endpoint but not on the tfrue endpoint. We are interested
in the estimated effect of Z on T, given the effect of Z on 5 for this particular trial. Subseript all
quantities pertaining to the particular trial under study with 0. It s easy to show (Buyse et al

2000a) that (3 + Iylmeg. o) follows a normal distribution with mean and varianee:
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Related to prediction equations (3)-{4), a measure to assess the quality of the surrogate at the trial
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A good surrogate, at the trial level, would have (5) close to 1. Intuition can be gained by considering
the simplified case where the prediction of by is done independently of the random intercept .

The coefficient {5) then reduces to

: of? :
R12r|-'|l r = R[fdm = dl:ll:':;bh- I'rﬁlll

This formmla is useful when the full random-cffects model is hard to fit but a reduced version,
excluding random intercepts, is easier to reach convergence. It is simply the square of the correlation
between a; and . Note that B2, . = 1 if the trial level treatment effects are simply multiples of
each other,

3 Simplified Modelling Strategies

Buyse et al. (20002} showed that fitting random-effects model (1)-(2) can be a surprisingly difficult
task in a number of sitnations, This is particularly true when the number of trials or the number of
patients per trial is small. Also. situations with extreme correlations pose problems. It is therefore
imperative to explore approximate strategies with better computational properties, These anthors
studied one alternative approach in the sense that they replaced the random effects by their fixed-
effect. counterparts. Such a two-stage approach is very similar in spirit to the original proposal of
Laird and Ware {1982}, We will now embed this ad-hoc stratezy in a more formally developed

system of model simplifications,

Precizsely, we consider three dimensions along which simplifications can be made:

Trial dimension: whether the trial-specific effects are treated as either random or fixed. A full

random-effects is then distinguished from a two-stage approach.

Endpoint dimension: whether the surrogate and true endpoints are modelled as a bivariate
onteome of two univariate ones. In the latter case the correlation between both endpoints
i= not incorporated into the modeling strategy, rendering the study of the individual-level
surrogacy more involved, However, as stated earlier, throughout this paper the focus is on

trial-level surrogacy.

Measurement error dimension: whenever the full random-effects model is abandoned, one is

]



confronted with measurement error since the treatment effects in the various trials are esti-
mated with error. The magnitude of this error is likely to depend on several characteristics,
such as trial size, which will vary across trials. We consider three ways to account for measure-
ment error: unadjusted (ie., no correction at all), adjustment by trial size, and an approach

sugzested by 1. Stijnen and explained in Section 5.

The combination of these three dimensions ave graphically represented in Figure 1 and gives rise to
twelve stratepies. However, some do not have to be considered. For exsonple, when one chooses for
a bivariate (endpoint dimension) random-effects (trial dimension) approach, measurement error is
antomatically accounted for, whenee explicit corrections are no longer needed. In the special case

when sample size is constant across trials, further simplifications arise {see Section 8).

Fiaure 1, AsouT HERE.

We will now discuss each of the three simplifving dimensions o turn,

4 The Trial Dimension

As stated before. the parameters of the full random-effects model (1)-(2) can be estimated by
maximim likelihood or restricted maximum likelihood, using standard linear mixed model software

such as the SAS procedure MIXED.

In case we treat the trial-level parameters as fixed, exactly as Buyse ef al. (2000a), we can rewrite

the model as

Sy = Mg+ wZy sy, (7)

Tii = pr+ G2y +sry, #

where pro, ., 0y, and 5 arve trial-specific intercepts and treatment effects. The assumption abouot
the error terms depends on the choice made on the endpoint dimension (Section 6). Indeed, when
the univariate approach is opted for, both errors are assumed independent, Otherwise, a bivariate

unstructured covariance matrix is considered.



At the second stage, a regression model is fitted to the treatment effects, estimated at the first
stage, for example:

-

Bi = Ao+ Mifls, + el + 5. )]

This model can then be employed to assess trial-level surrogacy, using theR2, | associated with
this regression. Precisely, this is not caleulated as in (5). but is merely the classical coefficient of

determination found by regressing A; on fis, and &;.

In case the trial-specific intercept from surrogate model (T} is not used, A would be dropped and

an R, . is obtained, similar in spirit to (6).

5 The Measurement Error Dimension

Recall that this dimension is irrelevant when the full random-effects model is assumed, bat is crocial
when a fixed-effects approach is selected on the trial dimension and /or when a univariate model is

chosen on the endpoint dimension.

We allow for three possible choices. First, a simple linear model can be assumed to determine
the relationship between 5. ay, and pe . whereby the errors in (9) are assumed to be zeroc-mean

normally distributed with constant variance o2,

Clearly, this approach ignores the fact that the estimated treatment effects o and 5 will typically
come from trials with large variations in size. One way to address this issue is by weighing the
contribufions according to trial size, resulting in a weighted linear regression. Such an approach
may account for some but not all of the heterogeneity in information content between trial-specific
confributions. A nice way to overcome this is T, Stijnen’s approach.

To this end, we introduce models for the estimated trial-specific treatment effects (fie., 6z, 3,0,

given the true trial-specific treatment effects (ps,, 04, 5"

ﬁ“s |u'$¢'
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Here, €} is the variance-covariance matriz of the estimated treatment effects. In case we assume

both treatinent-effect estimates to be independent {which would result from a nnbvariate cholee on



the endpoint dimension), O would be assumed to be diagonal, even though this may be unrealistic.

Further, we assume a normal model for the true trialspecific treatment effectz around the true

overall treatment effects:

u-“s .11.:?
a; | ~N a |[E]- (11}
G i}

The resulting marginal model, combining (10} and (11), is:

;}EF Hs
a; |~ N a | E+0]. (12)
B3 4

Maximum likelihood estimation for this model can be quite easily carried out by using mixed model
software, provided the values for O can be input and held fixed, as is the case in the SAS procedure

MIXED. An example program is provided in the Appendix.

6 Endpoint Dimension

It seems natural to assuwme both endpoints to be correlated, However, this assumption will almost
alwayz complicate modelling and corresponding parameter estimation. In addition, the bivariate
nature of the outcome is related for the better part with individual-level surrogacy whereas our
main goal is trial-level swrogacy. This suggests an additional simplification, i.e., by considering
separate, independent models for each of the endpoints. It then remains to be seen inhowfar such

a stmplification hampers estimation of trial-level surrogacy.

We need to make a distinetion between two cases, according to the corresponding choice on the freal
dimension. In the random-effects approach, this simplification would lead to a pair of univariafe
hierarchical models, one for each endpoint. In the fixed-effects approach, one would fit a separate
linear regression model per endpoint and per trial. 1t 35 easy to show that the parameter estimates
as well as the estimated variances are identical to the ones obtained from fitting a fixed-effects
bivariate model to each trial separately. This follows from standard multivariate normal theory

{Johnzon and Wichern 1992).



7 Case Studies

We consider three case studies. Sinee they were considered by Buvse ef al, (2000}, we are able to
compare their results with those obtained from a full set of computational approaches. Further, they
cover three important but different therapeatic areas, Finally, by considering three case studies,
we avoid the risk of mmning into resnlts that are interesting but too specialized to a particular

situation.

The first one, the Age Related Macular Degeneration Study, is an ophtalmologic studv. The
other two are from advaneed colorectal and advanced ovarian eancer. These examples have been
studied in Buyse ef al (2000a, 2000h). We will compare their results to the ones from the
simplified approaches proposed in this paper. Results are summarized in Table 1, following the

three dimensions of Figure 1. The focus is on triak-level surrogacy, captured by 82, . While. of

course, the individual-level smrrogacy is of interest when the focus is on predicting a particular
patient's behavior and, in some contexts, can even be of primary interest (Alonso et al. 2001), it
is fair to say that the clinical trialist will primarily be interest in this quantity, Further, since the

inclusion of the individual-level surrogacy forees the models to have a bivariate nature, the study

thereof comes at a computational cost.

In addition, we distinguish between “full” models where the trial level surrogacy B2 iy 15 caleulated
2

as in (5), and “reduced” models, where no random intercepts are included and hence R{_ | . as in
(6] is used. Combining all possibilities on three dimensions and furthermore distinguishing between
full and reduced models wonld, in principle, lead to 24 different approaches. However, the three
bivariate random-effects approaches coincide. The columns for the full approaches are numbered

for reference in the simulation study (Section 8).
TABLE 1, AouT HERE.

7.1 Apge Helated Macular Degeneration Study (ARMD)

These data arose from a randomized clinical trial comparing an experimental treatment (interferon-
i) to placebo in the treatment of patients with age-related macular degeneration. The aim of the

study was to compare placebo and the highest dose of interferon-n. The freatment indicator is



Zij = 1 for treatment and 0 for placebo. Since we have a single multi-centric trial, ¢ refers to center
and j to patient within center. The true endpoint in this study was the change in visual acuity
at 12 months after starting the treatment. The surrogate endpoint considered is visual acuity at @
months, Results from assessing the surrogate in terms of the Prentive-Freedman framework were

reported in Buyse et al. (2000a) and are not repeated here.

Buyse et al. (2000a) experienced problems in fitting the full random-effects models, irrespective
of whether standard statistical software or user-developed alternatives were used. Therefore, they
entertained a (unweighted) fixed-effects approach instead. This produced a moderate trial-level

surrogacy: B2,

= 0.692 (sa.e. L08T), The standard error has been calenlated by means of a
strajghtforward application of the delta method. Let us now compare their result to the ones

obtained from the approaches described o Section 3.

As mentioned earlier, for the fixed-effects approaches, univariate and bivariate results values are
equal. OF course, the univariate approach prohibits the assessment of individual-level surrogacy

but. as mentioned earlier. in many trials the main interest is on trial-level surrogacy.

For the B*

waal iy Stijnen’s approach is more difficult to fit in the sense that the random-effects values

cannot be obdained,

The reduced-model values are generally higher than the fullmodel values, suggesting that the
trial-specific intercept terms for the surrogate model does convey information and, if possible, full
models should be used. Within the reduced-model approach, Stijuen's univariate rundom-effects
approach vields a low value. This i= in line with intuition, since it corrects for measurement error
present in the estimated treatment effects. Sinmmlations will have to weigh costs and benefits from
this approach. In general computational terms, a choice for univariate models and /or fixed-effects

approaches is less expensive.

7.2  Advanced Colorectal Cancer

We consider data from two randomized multicenter trials in colorectal cancer. These constitute
the largest source of randomized data available in advanced colorectal cancer. All data were col-

lected and checked by the Meta- Analvsis Group In Cancer between 1990 and 1996 (Corfu-A Group,

10



1995; Greeo et al. 1996) to confirm the benefits of experimental fluoropyrimidine treatments with
5-fluorouracil (5FU) in advanced colorectal cancer. The principal investigators of all trials pro-
vided data for everv patient, whether eligible or not, and whether properly followed-up or not.
Previous publications provide full details on the trials included the treatments tested, the patient

characteristics, and the therapeutic results (Burevkowski et al. 2001}

In this example, we will use Z;; = ) to denote 5FU plus interferon and for 5FU alone. The final
endpoint Tj; will be survival time in years, The surrogate endpoint S will be progression-free
survival time, i.e., the vears between the randomization to clinical progression of the disease or
death, In agreement with previous anlyses, only centers with at least 3 patients on each treatment

arm are considered. The data include 48 centers. with a total sample size of 642 patients.

Using the bivariate unweighted fixed-effects approach model proposed by Buvse ef ol {20004) we

3 2 -
obtain B, =

0.ATS (s.e. (1108}, which is, of conrse, too low to be useful.

Results of fitting the varions approaches and reported in Table | largely confirm the results from
the ARMD study in terms of ease of convergence for the univariate and/or fxed-effects approaches,
All coefficients are relatively close to each other, although the reduced versions tend to be a hit

higher than the full versions.

7.3 Advanced Ovarian Cancer

These data arose [rom a meta-analysis of ovarian cancer (Ovarian Cancer Meta-Analysis Project,
1991). The comparison of two treatments was the principal aim of this study. We use Z; = 0
when cyclosphosphamide was applied and Z; = 1 when cyclosphosphamide plus cisplatin was
applied. We considered survival time in years as final endpoint T;;. The surrogate endpoint S;;
is progression-free survival time. We used center as the unit of analysis given that the number of
trials is insufficient to applied meta-analvtic methods, The number of patients distributed over a

total of 50 units varies from 2 to 254,

The bivariate fixed-effects approach used by Buyse ef al  (2000a) produces RZ, ,, = 0917
{s.e. 0OLT), which is much higher than in the colorectal cancer case. Arguably, this is due to

the relatively short time span that typically elapses between both endpoints. The difference be-

11



tween this result and those from the other approaches is even smaller than in the other two case
studies, Further, the relative computational complexity, suggested by the other case studies, is

confirmed here as well,

8 A Simulation Study

We studied performeance of the varions approaches, in terms of estimation (point and interval) of

K2 ey anel in terms of convergence through a simulation study. To make our results comparable

with those from Buyse ef al. {2000a), the same confignration setting is adopted.

Precisely, model {1)2) is considered with (mg , mr, a5, 5) ~ N0 D), pe = 50, pr = 45, mig, = 5,

My, = 3,
1 08 00
poga| 08 1 00 )
o o0 1 p
oo p 1
with p? = 0.5 or p* = 0.9, and (55087 ) ~ N{0,Z) with

=3 L B .
(L.

The parameter o was chosen to be either 3 or 10. Five hundred runs were completed for every
setting, consisting of 25 trials each. The true B2, following from (5) and {13) is set equal to either

0.5 or 0.9,
Results are presented in Tables 2-3. In all settings. convergence was 10007, which is slightly different
from the analysis of the examples,

TapLeEs 2-3, ApovuT HERE.

Stijnen’s approach exhibits a small amount of bias. In case B? = 0.9 and #% = 3, there is a hint of
underestimation in column 3, 6, and somehow also 9. The situation is more dramatic in the case of
R* = 0.5, where indeed we observe now overestimation in all but ene columns, the exception being

the full model {columns 10-12).

12



9 Concluding Remarks

L this paper, we have investigated several strategies to deal with the computational burden posed
bv nsing hierarchical linear models, primarily in the context of validating surrogate markers. These
strategies are ordered following three choices: (1) whether trial-specific parameters are treated
as random or fixed, (2] whether the endpoints are treated as correlated or not (bivariate versus

univariate approach) and {3) the method of dealing with measurement error.

As a result of this, we recommend simplified computational methods for two main reasons. First,
thev are penerally faster and easier to implement with standard software.  Second. we showed,
through simulations, that the simplified approaches often perform almost as good as the more
advanced methods, and mereover enjoy much better convergence properties, In particular, opting
for a fived-effects approach over a full random-effects approach is very beneficial since there is at
maost a minor loss in statistical efficiency, the method has extremely good convergence properties,

and is usually more than 10 times faster than the full approach.

We re-analyzed the three case studies considered by Buyse ef ol {2000}, from three therapentic
areas: ophtalmology, advanced colorectal cancer, and advanced ovarian cancer, In agreement with
the simulation study, the fixed-effects approaches have good convergence properties, but there are
problems with the random-effects approaches, In particular, none of the fully bivaciate random-
effects models converged, while there were also problems with their univariate and/or reduced
counterparts, While there are twelve versions of each fixed-effects approach, the results are generally
very similar across these, except that there is a noticeable but not a dramatic difference hetween
the full and reduced versions. Therefore, it is recommendable to use the full model version since,

in doing =0, full information = used towards estimation of the trial-level surrogacy.

13



Appendix

f/+ First stage: bivariate fixed-effects model =/

proc mixed data=mydata method=reml;
clazs trial subj endpoint;
model sutcome=endpoint=trial endpoint+trial+treat
/ neint & covb ddfm=bw;
repeated endpoint / subject=subj type=un r rcorr;
makxe ‘SolutionF’ ocut=effects;
make ‘CovParms® out=covparms;
make ‘covb® ocut=covar;
rin;

il

#* hzsembling trial-specific covariance matrices of estimated
#3 fixed effects. There iz cnme line per trial, each such line
#+ corresponding to a matrix.

*f

data cevi;
set covar;
drop _row
run;

_effect_ trial endpoint;

proc iml;
use covl;
ntrial=25;
read all into tempdat;
dummy=1{ntrial ,7,00;
de i=1 to ntrial;
dummy [{,1]=tenpdat [2+#1-1,2entrial+(225-1)];
dummy [1,2]=1;
dummy [1 ,3]=tenpdat [2si-1,2sntrial+dsi];
dummy [{ ,4]=tenpdat [Zentrial+2=i Zentrial+(2=1-13];
dummy [1 5] =tenpdat [2ei-1,2=i-1];
dummy [1 6] =tenpdat [Zentrials(2si-1) Denerial+(2ei-1)];
dummy [1,T]=tenpdat [Zentrial4fsi Denkrialtdei];
end ;
nme={"cmsal"™,"trial”®, "cusha"™,"calba","varms® ,"yaral", "varbe"}:
create coval from dummy [colname=nms];
append from dummy;
quit;

data effects;
zet effects;
keep _EFFECT_ _EST_ _se_ trial endpoint order int surro main;
int=0;
surro=Q0;
main=0;
if _effect_='TRIAL*ENDPODINT® then do;
if endpoint=1 then delete;
if endpoint=0 then do;

14



order=3;
int=1;
end;
end ;
if _affect_='TREAT*TRIAL#ENDPDINT' then do;
if endpoint=0 then do;

order=1,;
surro=1;
end;
if endpoint=1 then de;
ocrder=2;
nain=1;
end ;
end ;
rn,

proc sort data=effects;
by trial order;
run;

data atijnen;
gat affects:
drop _est_;
est=_ast_;
Tun;

proc sort data=stijnen;
by trial order;
T ;

data rowl;

set coval;

keep row col value trial;
col=trial;

row=i;

value=varal ;

run;

data rows;

set coval,

keep row col value trial,;
col=strial;

row=6;

value=varms:

run;

data matrix;
get rowl row? rowd rowd rowt rowg;
run;

proc sort datasmatrix;
by col row;
run;



/#+ Second stage: Stijnen’s regression »/

proc mixed data=stijnen order=data method=reml asycov scoring=2;
class trial order;
modal est = order / aclution noint ddfm=bw;
random order / subject=trial group=trial type=un gdata=matrix;
repeated order / subject=trial typesun;
pake ‘CovParms® out=covparms noprint;
pake ‘AsyCov’ out=asycov neprint;

run;
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Table 1: Results of the trial-level surrogacy analvsis for the three examples Rﬁ,h, (a — symbaol
indicates non-convergence ).

Full Model
Univariate Approach

Random-effects approach
Unweighted Weighted  Stijnen

Fixed-effects approach
Unweighted  Weighted  Stijnen

Study 1 2 3 4 5 &
ARMD (L HREHE] (] {1664 (LA -
Colorectal 0473 01488 0.4 2 - -
Cvarian (.93 a7 0857 0411 04905 -
Bivariate Approach
Fixed-effects approach Random-cffects approach
Tnweighted  Weighted  Stijnen

Study 7 & a 10-12

ARMD 0.692 0,653 0.G98 -

Colorectal 0.473 {1458 0.472 -

Ovarian 0.939 0917 0.932 -

Reduced Model

Univariate Approach

Fixed-effects spproach Random-effects approach
Sty Unweighted  Weighted  Stijnen Unweighted Weighted  Stijnen
ARMD 0.776 (L7585 0.775 L.6Ga0 (L7806 0.G25
Colorectal 0.527 0497 0.5 EH - - 2
Ovarian {1928 .90% 0.925 0.911 11.905 04900

Bivariate Approach

Fixed-effects approach Random-effects approach
Study Unweighted Weighted Stijnen
ARMID 0.77 0,758 0719 -
Colorectal 0.527 0.497 0.471 -
Olvarian (.02 0.909 (0.038 0.951
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Table 2: Means of the estimated trial-level surrogacy and 95% simulation-hased confidence intervals
for B% = 0.90. Column numbers refer to the columns of Table 1.

# Enh

4. 5

L+ 12

Variinee 10
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il
&0
i
1

(LBOE {0, BS54 002)
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(LR 1B, B
OLHEE {120
(LB {11,550 )
0.HE (113080 M2
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QLN (LT )
LULEL U A HERTTT
LHGD (L0500
LT [ B,
LI L0800
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OLHST [ EE 0L
0L [ 500;0, A
009G [(1.301;0.895)
OB (002060
O.HGT (1120400 ML}

0,306 (10,5140, 802}
L0 1152 0L THEE
LU [0, 500,02}
L3065 [1.504;0.H02)
LU A (T TR
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Ay (DS, o
5w (1L802;0.900)
03T (oS0, )
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W
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(R RN H R
CLHGE (. B0 EE ]
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Table 3: Means of the estimated trial-level surrogacy and 95% simulation-hased confidence intervals
for R = 0.50. Column mumbers refer to the cohmns of Table 1.

 Euh

4. 5

L+ 12

Variinee 10

5l
&l
il
&0
i
1

0627 {0, 5E50550)
OLEIE ILES0LGA)
0525 {0,.505;0.538)
0522 {11 B R
o3 {050 20.535)
LG {(LELAMLEIH)

0,506 (0,514;0.538}
WG {1510 0G40 )
524 {0.5012:0.537)
O.52E (1500 G
O0EE (0511;0.505)
OGES (LB )

LGS (0.5 160G
LR [1LE210.644)
(L5 [0.513;0. 508 )
(L2 (LE10G0.RIG)
R (05120506}
0LBET [{1L.514;0.55%)

0L5ES (051100635
0.529 (1151706400
0,522 (11,5010, 5:05)
CLRE0 (11506
0520 (050 BT}
0525 (115 1E0E5)

0,526 (0.514;0.53)

LD (ILATI0. AT,

0EZS (ILA1H:0.RIE)

A0 (uAsS;0,580)
L3502 (IAHEDGES)
4,500 (A8 T;0518)
408 (480511}
0500 [RABE0GEE)
.50 (LAU0.RLE)

Variags 3

ol
Lal]

E-1]
i
19H1

0L (0. RET A0
(U542 {00, 5E1LE54)
OLEHE [0 BE1LGAG])
0531 {0, 50T544)
OLGL 0. GEDG42)
53 {051 90544)

0.6 (15230647}
U539 (05270551}
QLR {ILETS LG )
529 [0,516;0.512)
0629 {0.51T0.0410)
1,50 {0,518;0.542%

L2 LES0.AGE )
OS5 80,55T
.5 (LE2E0.64T)
ORES (05150540
.04 (L5064}
0,5k (052150540

Q.G [LG20646}
LGS [0 0,550 )
RS (GGG}
ST (051406410}
OLGIT (051500608}
o508 (05160541 )

LGS [ 1LG20.RR0)
542 10550 0.555)
(LGE2 [ILA2;0.545)
0550 (051700545}
0.530 [1.018:0.642)
0551 (L 510;0.50:5)

Q4D (4810, 10)
0,501 [LasR0514)
0497 (L484;0.501)
0497 (ARG
0.500 ((LA8TI0.6LE)
0502 (ABGDS515)

2



Stijoen’s approach

Measurement

- Addjusted by trial siee

T Unndjusced

Trial

Fimed effects Randum effects

Endpoint Bivariato

Univariate

Figure 1: Graphical representation of the different approaches of this paper.
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