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Abstract

FEven though models for incomplete longitudinal data are in common use, they are surrounded
with problems, largely due to the untestable nature of the assumptions one has to make regarding
the missingness mechanism. T'wo extreme views on how to deal with this problem are (1) to
avoid incomplete data altogether and (2) to construct ever more complicated joint models for
the measurement and missingness processes. In this paper, it is argued that a more versatile
approach is to embed the treatment of incomplete data within a sensitivity analysis. Several
such sensitivity analysis routes are presented and applied to a case study, the milk protein trial
analyzed before by Diggle and Kenward (1994). Apart from the use of local influence methods,
some emphasis is put on pattern-mixture modeling. In the latter case, it is shown how multiple-
imputation ideas can be used to define a practically feasible modeling strategy.

Some Key Words: Local Influence, Multiple Imputation, Missing Data, Pattern- Mrixture Model,
Selection Model.

1 Introduction

The problem of dealing with missing values is common throughout statistical work and is almost
everpresent in the analysis of longitudinal, or repeated measurements data. Early work on missing
values was largely concerned with algorithmic and computational solutions to the induced lack
of balance or deviations from the intended study design. See for example the reviews by Afifi
and Elashoff (1966) and Hartley and Hocking (1971). More recently general algorithms such as
the expectation-maximisation (EM) (Dempster, Laird, and Rubin 1977), and data imputation and

augmentation procedures (Rubin 1987), combined with powerful computing resources have largely



provided a solution to this aspect of the problem. There remains the very difficult and important
question of assessing the impact of missing data on subsequent statistical inference. Conditions
can be formulated, under which an analysis that proceeds as if the missing data are missing by
design, that is, ignoring the missing value process, can provide valid answers to study questions.
The difficulty in practice is that such conditions can rarely be assumed to hold. In this paper we
review model-based approaches to the analysis of longitudinal data that explicitly allow departures
from such conditions. We make a key point here, and return to it repeatedly: however we approach
such analyses, assumptions will be required that cannot be assessed from the data under analysis.
Hence in this setting there cannot be anything that could be termed a definitive analysis, and we

shall argue that the appropriate statistical framework is one of sensitivity analysis.

Certain important concepts are now in common use in the missing value literature. We
begin by introducing these. When referring to the missing-value, or non-response, process we will
use terminology of Little and Rubin (1987, Chapter 6). A non-response process is said to be
missing completely at random (MCAR) if the missingness is independent of both unobserved and
observed data and missing at random (MAR) if, conditional on the observed data, the missingness
is independent of the unobserved measurements. A process that is neither MCAR nor MAR is
termed non-random (MNAR). In the context of likelihood inference, and when the parameters
describing the measurement process are functionally independent of the parameters describing the

missingness process, MCAR and MAR are zgnorable, while a non-random process is non-ignorable.

Most methods are formulated within the selection modeling frame (Little and Rubin 1987)
as opposed to pattern-mixture modeling (PMM; Little 1993, 1994). A selection model factors the
joint distribution of the measurement and response mechanisms into the marginal measurement
distribution and the response distribution, conditional on the measurements. This is intuitively
appealing since the marginal measurement distribution would be of interest also with complete
data. Further, Little and Rubin’s taxonomy is most easily developed in the selection setting.
Based on the model of Diggle and Kenward (1994), we show how local influence ideas (Cook 1986)
can be used as a sensitivity analysis tool for incomplete longitudinal data, in a selection model

context.

This will underscore that, especially in the context of non-random missingness models, se-
lection models, although identifiable, should be approached with caution (Glynn, Laird, and Rubin
1986). Therefore, pattern-mixture models, employing the reverse factorization, have gained re-
newed interest in recent years (Little 1993, 1994, Hogan and Laird 1997). Note that a further

framework consist of shared random-effects models (e.g., Wu and Carroll 1988).

An important issue is that pattern-mixture models are by construction under-identified.

Little (1993, 1994) solves this problem through the use of identifying restrictions: inestimable



parameters of the incomplete patterns are set equal to (functions of) the parameters describing the
distribution of the completers. Identifying restrictions are not the only way to overcome under-

identification and we will discuss alternative approaches as well.

The milk protein content trial is introduced in Section 2. Selection models and sensitivity
analysis tools based on local influence are described in Section 3. Section 4 is devoted to pattern-

mixture models. The milk protein content data are analyzed, in several ways, in Section 5.

2 The Milk Protein Content Trial

The milk protein data were introduced by Verbyla and Cullis (1990) and re-analyzed by Diggle
(1990) and Diggle and Kenward (1994). In this experiment 79 cows were randomized, after calving,
to either of three diets: barley, lupins, or a mixture of both. The sampling plan envisaged to follow
all 79 cows for 19 weeks and to determine protein content from a milk sample once in each study
week. All cows remained on study during the first fourteen weeks, whereafter the sample reduced

to 59, 50, 46, 46 and 41 respectively, due to dropout.

The interest in these data arises from the fact that several analyzes have been performed
before. Diggle (1990) for example, assumed random dropout whereas Diggle and Kenward (1994)
concluded that dropout was non-random. However, several authors have remarked that the model
of Diggle and Kenward (1994) should not be used to conclusively determine whether or not a
dropout process is non-random. Indeed, Little (1995) says that “estimates rely heavily on normal
assumptions and the correct specification of the dropout model, about which little is often known”.
Laird (1994) warns that “estimating the ‘inestimable’ can be accomplished only by making modeling
assumptions,. ... The consequences of model misspecification will probably be far more severe in
the non-ignorable case”. Rubin (1994) indicates that “even inferences for the data parameters gen-
erally depend on the posited missingness mechanism, a fact that typically implies greatly increased
sensttivity of inference to reasonable model specifications”. Molenberghs, Kenward, and Lesaffre
(1997) claim that “conclusions are conditional on the appropriateness of the assumed model, which

in a fundamental sense is not testable”.

In addition, serious doubts have been raised about even the appropriateness of the “dropout”
concept in this study. Cullis (1994) warned that the conclusions inferred from the statistical model
are very unlikely since usually there is no relation between dropout and a relatively low level of
milk protein content. The real reason for dropout is human intervention. Cows entered the trial
as they calved and the experiment was terminated when feed availability declined in the paddock
in which the animals were grazing. Thus, there are actually no dropouts but rather five cohorts
representing the different starting times. Together with Cullis (1994), we conclude that especially

with incomplete data a statistical analysis should not proceed without a thorough discussion with



the experimenters.

3 Selection Models and Local Influence

In modeling missing data one is interested in f(y;,d;|@,v) which is the joint distribution of the
measurements Y; and the dropout indicators D; defined by adding 1 to the time of the last measure-
ment. A first and most popular approach is by using selection models based on the factorization
fly;, d;|10.¢) = f(y;10)f(di|y;, ). In this framework standard missing data concepts such as
MCAR, MAR, MNAR (Rubin 1976, Little and Rubin 1987) can be constructed. Recently more
interest is put in the opposite factorization f(y;,d;|0,v) = f(y,|d;,0)f(d;|1) being the basis for
pattern-mixture models. Molenberghs, Michiels, Kenward, and Diggle (1998) showed that pattern-
mixture models allow for a natural analog of MAR, hence enabling a similar classification of missing
data mechanisms. We will use a popular model for repeated measurements, incorporating random

effects and serial correlation. A linear mixed-effects model with serial correlation can be written as
Y, = X;B8+ Z;b, + W, + ¢, )

(Verbeke and Molenberghs 2000) where Y, is the n dimensional response vector for subject i,
1 <i< N, N is the number of subjects, X; and Z; are (n x p) and (n x ¢) known design matrices,
B3 is the p dimensional vector containing the fixed effects, b; ~ N (0, D) is the ¢ dimensional vector
containing the random effects, €; ~ N(0,0%1,,) is a n dimensional vector of measurement error
components, and by, ..., by, €1, ..., ex are assumed to be independent. The serial correlation
is captured by the realization of a Gaussian stochastic process, W, which is assumed to follow
a N(0,72H;) law. The serial covariance matrix H; only depends on i through the number n of
observations and through the time points ¢,; at which measurements are taken. The structure of
the matrix H; is determined through the autocorrelation function p(t;; — t;;). Two popular choices
for p(.) are the exponential and Gaussian models defined respectively as p(u) = exp(—¢u) and
p(u) = exp(—u?), with u = [t;; —t;.| and ¢ > 0. Finally, D is a general (¢ X ¢) covariance matrix
with (7,7) element d;; = dj;. Inference is based on the marginal distribution of the response Y;

which, after integrating over random effects, can be expressed as
Y, ~ N(X;8,2,DZ +3,). (2)
Here, 3}; = 021, + 72H; is a (n x n) covariance matrix grouping the measurement error and serial

components. Random effects in model (1) stem from heterogeneity between subjects.

We assume that incompleteness is due to dropout only, and that the first measurement Y;;
is obtained for everyone. The model for the dropout process is based on a logistic regression for

the probability of dropout at occasion j, given the subject is still in the study. We denote this



probability by g(hi;, yi;) in which h;; is a vector containing all responses observed up to but not

including occasion j, as well as relevant covariates. We then assume that g(h,;,y;;) satisfies
logit[g(hijs, yi;)] = logit [pr(D; = j|D; = j,y;)] = hijb + wyij, i=1,...,N. 3)

When w equals zero, the dropout model is random, and all parameters can be estimated using
standard software since the measurement model for which we use a linear mixed model and the
dropout model, assumed to follow a logistic regression, can then be fitted separately. If w #£ 0, the

dropout process is assumed to be non-random.

Model (3) is now used to construct the dropout process:

H 1 — g(hij, yis)] for a complete sequence (d; = n; + 1),
j=2
S(dsly;, ) = 4)
d—1
H 1 — g(hij, yij)lg(Rsa, ysq)  for a dropout (& = d < n;).
j=2

Let us now shift attention to sensitivity and influence analysis issues. Whereas a global
influence approach is based on case-deletion, a local influence based sensitivity assessment of the
relevant quantities, such as treatment effect or time evolution parameters, with respect to assump-

tions about the dropout model is based on the following perturbed version of (3):
logit(g(hij,9i5)) = logit [pr(D; = j|D; = j,y,)| = kijrb + wiyss, i=1,...,N, (5)

in which different subjects give different weights to the response at time d to predict dropout at
time d. If all w; equal zero, the model reduces to a MAR model. Hence (5) can be seen as an
extension of the MAR model, which allows some individuals to drop out in a “less random” way
(|w:| large) than others (|w;| small). It has to be noted that, even when w; is large, we still cannot
conclude that the dropout model for these subjects is non-random. Rather, it is a way of pointing
to subjects which, due to their strong influence, are able to distort the model parameters such that
they can produce, for example, a dropout mechanism which is seemzngly non-random. In reality,
many different characteristics of such an individual’s profile might be responsible for this effect. As
mentioned earlier, such sensitivity has been alluded to by many authors, such as Laird (1994) and

Rubin (1994).

3.1 Influence Diagnostics

Cook (1986) suggests that more confidence can be put in a model which is relatively stable under
small modifications. The best known perturbation schemes are based on case-deletion (Cook and

Weisberg 1982, Chatterjee and Hadi 1988) in which the effect is studied of completely removing



cases from the analysis. They were introduced by Cook (1977, 1979) for the linear regression
context. Denote the log-likelihood function, corresponding to measurement model (2) and dropout
model (3) by

y) = > L) (6)
=1

in which ¢;(+) is the contribution of the N individual to the log-likelihood, and where v = (8,4}, w)
is the s-dimensional vector, grouping the parameters of the measurement model and the dropout
model. Further, we denote by

(o) @)

the log-likelihood function, where the contribution of the ith

subject has been removed. Cook’s
distances are based on measuring the discrepancy between either the maximized likelihoods (6) and
(7) or (subsets of) the estimated parameter vectors 4 and 7(_;), with obvious notation. Precisely,
we will consider both

CDy; = 2(0 =0 ,) (8)

as well as
CDy(y) = 2(v— ’AY(fz‘))/Lfl (¥ =) )
Formulation (9) easily allows to consider the global influence in a subvector of ~, such as the

dropout parameters 1/, or the non-random parameter w. This will be indicated using notation of

the form CDsy; (), CDsy;(w), ete.

In linear regression, global influence is conceptually simple, computationally straightforward
and well studied. The latter two of these features do not carry over to more general settings.
To overcome these limitations, local influence methods have been suggested. The principle is to
investigate how the results of an analysis are changed under infinitesimal perturbations of the
model. In the framework of the linear mixed model Beckman, Nachtsheim, and Cook (1987) used
local influence to assess the effect of perturbing the error variances, the random-effects variances
and the response vector. In the same context, Lesaffre and Verbeke (1998) have shown that the
local influence approach is also useful for the detection of influential subjects in a longitudinal
data analysis. Moreover, since the resulting influence diagnostics can be expressed analytically,
they often can be decomposed in interpretable components, which yield additional insights in the

reasons why some subjects are more influential than others.

Verbeke et al (2001) studied the influence the non-randomness of dropout exerts on the

model parameters. Let us briefly sketch the principles of local influence and then apply them to
our MNAR problem.



We denote the log-likelihood function corresponding to model (5) by
N
Cylw) = > (v|ws) (10)
i=1

in which 4;(v|w;) is the contribution of the i*1 individual to the log-likelihood, and where v = (8,)
is the s-dimensional vector, grouping the parameters of the measurement model and the dropout
model, not including the N x 1 vector w = (w1, ws,...,wy) of weights defining the perturbation
of the MAR model. Let 4 be the maximum likelihood estimator for «, obtained by maximizing
L(~|wo), and let 7, denote the maximum likelihood estimator for 4 under £(v|w). Cook (1986)
proposed to measure the distance between 4, and & by the so-called likelihood displacement, defined
by LD(w) = 2({{(F|wo) — €(H,|w)). Since this quantity can only be depicted when N = 2, Cook
(1986) proposed to look at local influence, i.e., at the normal curvatures Cp, of £(w) in wo, in the

direction of some N dimensional vector h of unit length. Tt can be shown that a general form is

given by
r /
54, " 2L,
. _op! iw -1 iw
Ch(6) = =2k | 55a wo] L7(0) [80&% wo] h
- /
8¢, " 54,
- / 2w —1 W

evaluated at v = &, where indeed the influence for the measurement and dropout model parameters
split, since the second derivative matrix of the log-likelihood, Lis block-diagonal with blocks L(B)
and L(1). Verbeke et al (2001) have decomposed local influence into meaningful and interpretable

components.

4 Pattern-Mixture Modeling Approach

Fitting pattern-mixture models can be approached in several ways. It is important to decide
whether pattern-mixture and selection modeling are to be contrasted with one another or rather

the pattern-mixture modeling is the central focus.

In the latter case, it is natural to conduct an analysis, and preferably a sensitivity analysis,
within the pattern-mixture family. We will explicitly consider three strategies to deal with under-

identification.

Strategy 1. Little (1993, 1994) advocated the use of identifying restrictions and presented a.
number of examples. One of those, ACMYV (available case missing values), is the natural counterpart

of MAR in the PMM framework.

Strategy 2. As opposed to identifying restrictions, model simplification can be done to

identify the parameters. Thijs et al (2001) discussed several sub-strategies in detail.



While the second strategy is computationally simple, it is important to note that there is
a price to pay. Indeed, simplified models, qualified as “assumption rich” by Sheiner, Beale and
Dunne (1997), are also making untestable assumptions, just as in the selection model case. In the

identifying restrictions setting on the other hand, the assumptions are clear from the start.

Pattern-mixture models do not always automatically provide estimates and standard errors
of marginal quantities of interest, such as overall treatment effect or overall time trend. Hogan and
Laird (1997) provided a way to derive selection model quantities from the pattern-mixture model.

An example of such a marginalization is given in Section 5.

4.1 Identifying Restriction Strategies

In line with the results obtained by Molenberghs, Michiels, Kenward, and Diggle (1998), we restrict
attention to monotone patterns. In general, let us assume we have { = 1,...,T dropout patterns
where the dropout indicator, introduced earlier, is d = ¢ + 1. For pattern ¢, the complete data

density is given by

S yr) = Ly y) i@t - yrlyn, - ) (11)

The first factor is clearly identified from the observed data, while the second factor is not. It is
assumed that the first factor is known or, more realistically, modeled using the observed data.

Then, identifying restrictions are applied in order to identify the second component.

While, in principle, completely arbitrary restrictions can be used by means of any valid
density function over the appropriate support, strategies which relate back to the observed data
deserve privileged interest. One can base identification on all patterns for which a given component,

Ys say, is identified. A general expression for this is

T
Jewslyr, - oys 1) =D _wsi fiwslyr, - s 1), s=t+1,....T. (12)

7=s
We will use w; as shorthand for the set of ws;’s used. Every w, which sums to one provides a valid

identification scheme.

Let us incorporate (12) into (11):

T—t—1 T
Sy, ue) = L) T | DD wrsifi@e sy oy s 1) | - (13)
s=0 |5=T-s

Let us consider three special but important cases. Little (1993) proposes CCMYV (complete

case missing values) which uses the following identification:

JeWslys, - ys—1) = frysly, - ys—1), s=t+1,...,T. (14)



In other words, information which is unavailable is always borrowed from the completers. Alterna-

tively, the nearest identified pattern can be used:

JeWslyt, - Ys—1) = fs@Wsly1, - - Ys—1), s=t+1,...,T. (15)

We will refer to these restrictions as neighboring case missing values or NCMV.

The third special case of (12) will be ACMV. Thus, ACMYV is reserved for the counterpart

of MAR in the PMM context. The corresponding ws vectors can be shown to have components:

a 'f'(ylv e ysfl)
wsj = T] J y (16)
Si=sefe(yr, o Ys—1)
where a; is the fraction of observations in pattern j (Molenberghs, Michiels, Kenward and Diggle
1998).

This MAR-ACMYV link connects the selection and pattern-mixture families. It is further of
interest to consider specific sub-families of the MNAR family. In the selection model context, (3)
restricts attention to a class of mechanisms where dropout may depend on the current, possibly
unobserved, measurement, but not on future measurements. The entire class of such models will be
termed non-future dependent (MNED). While they are natural and easy to consider in a selection
model context, there exist important examples of mechanisms that do not satisfy MNFD, such as
shared-parameter models (Wu and Bailey 1989, Little 1995).

Kenward, Molenberghs, and Thijs (2001) have shown there is a counterpart to MNFD in

the pattern-mixture context. The MNFD selection models obviously satisfy

f(’)“:tkyl’---’yT):f(?“:t|y17"'7yt+1)' (17)

Within the PMM framework, we define non-future dependent missing value restrictions (NFMV)

as follows:

Vt227v] <t—1f(yt|y177yt7177“:]):f(yt|y177yt*17r2t_1) (18)

NFMYV is not a single set of restrictions, but rather leaves one conditional distribution per incom-

plete pattern unidentified:
f(yt+1|y17"'7yt7T :t) (19)

In other words, the distribution of the “current” unobserved measurement, given the previous
ones, is unconstrained. Note that (18) excludes such mechanisms as CCMV and NCMV. Kenward,
Molenberghs, and Thijs (2001) have shown that, for longitudinal data with dropouts, MNFD and
NFMYV are equivalent.

For pattern ¢, the complete data density is given by

Jewi,ye) = feiyr - y) feyer ity - ye) feyera, - yrlyn, - o) (20)



It is assumed that the first factor is known or, more realistically, modeled using the observed data.
Then, identifying restrictions are applied in order to identify the second and third components.

First, From the data, estimate fi(y1,---,y:). Second, the user has full freedom to choose

Sy, - ye)- (21)

Substantive considerations can be used to identify this density. Or a family of densities can be
considered by way of sensitivity analysis. Third, using (18), the densities fi(y;|y1,---,yj—1), (F =
t+ 2) are identified. This identification involves not only the patterns for which g; is observed, but

also the pattern for which g; is the current, the first unobserved measurement.

Two obvious mechanisms, within the MNFD family but outside MAR, are FD1, i.e., choose
(21) according to CCMV, and FD2, i.e., choose (21) according to NCMV. FD1 and FD2 are strictly
different from CCMYV and NCMV.

4.2 How to Use Restrictions 7

We will briefly outline a general strategy. Several points which require further specification will be
discussed in what follows. (1) Fit a model to the pattern-specific identifiable densities: fe(y1, ..., yt).
This results in a parameter estimate, 4,. (2) Select an identification method of choice. (3) Using
this identification method, determine the conditional distributions of the unobserved outcomes,

given the observed ones:
Je(@eer, o Y|y, ) (22)
(4) Using standard multiple imputation methodology (Rubin 1987, Schafer 1997, Verbeke and

Molenberghs 2000), draw multiple imputations for the unobserved components, given the observed
outcomes and the correct pattern-specific density (22). (5) Analyze the multiply-imputed sets of
data using the method of choice. This can be another pattern-mixture model, but also a selection
model or any other desired model. (6) Inferences can be conducted in the standard multiple
imputation way (Rubin 1987, Schafer 1997, Verbeke and Molenberghs 2000).

We have seen how general identifying restrictions (12), with CCMV, NCMV, and ACMYV as
special cases, lead to the conditional densities for the unobserved components, given the observed
ones. This came down to deriving expressions for w, such as in (16) for ACMV. In addition, we

need to draw imputations from the conditional densities.

Let us proceed by studying the special case of three measurements first. To this end, we
consider an identification scheme and we start off by avoiding the specification of a parametric form
for these densities. The following steps are required: (1) Estimate the parameters of the identifiable
densities: from pattern 3, fs(y1,y2,ys3); from pattern 2, fo(y1,y2);, and from pattern 1 fi(y1). (2)

To properly account for the uncertainty with which the parameters are estimated, we need to draw

10



from them as is customarily done in multiple imputation. It will be assumed that in all densities
from which we draw, this parameter vector is used. (3) For pattern 2. Given an observation in
this pattern, with observed values (y1, y2), calculate the conditional density f3(ys|yi,y2) and draw

from it. (4) For pattern 1. We now have to distinguish three substeps.

1. There is now only one w involved: for pattern 1, in order to determine fi(y2|y1), as a com-
bination of fa(y2|y1) and fs(yz2|y1). Every w in the unit interval is valid. Specific cases are:
for NCMV, w = 1; for CCMV, w = 0; for ACMV, w is calculated from (7?). Note that,
given y1, this is a constant, depending on ay and as. For FD1 and FD2, the first unidentified

conditional density can be chosen freely, thereafter a system of w’s has to be chosen as well.

In order to pick one of the two components fy or f3, we need to generate a random uniform

variate, U say, except in the boundary NCMV and CCMYV cases.
2. If U < w, calculate fa(y2]y1) and draw from it. Otherwise, do the same based on f3(y2|y1).

3. Given the observed y; and given ys which has just been drawn, calculate the conditional

density f3(ys|ly1,y2) and draw from it.

All steps but the first one have to be repeated M times, to obtain the same number of imputed
datasets. Inference then proceeds as outlined Rubin (1987), Schafer (1997) and Verbeke and Molen-
berghs (2000).

In case the observed densities are assumed to be normal, the corresponding conditional

densities are particularly straightforward.

In several cases, the conditional density is a mixture of normal densities. Then an additional

and straightforward draw from the components of the mixture is necessary.

5 Analysis of Milk Protein Trial Data

In this section we will present several analyses of the milk protein trial, introduced in Section 2. We
will start by briefly reconsidering the analyses done by Diggle and Kenward (1994) and Kenward
(1998) where a first attempt was made towards sensitivity analysis. Thereafter, a sensitivity analysis

will be presented using global influence, local influence, and pattern-mixture modeling.

Diggle and Kenward (1994) considered a linear mixed-effects measurement model, including
separate intercepts for the barley (u1), mixed (u9) and lupins (ug) groups, and a common time effect
(8) which is linear during the first three weeks and constant thereafter. The covariance structure

is described by a random intercept, an exponential serial process, and measurement error. For

11



example, for the barley diet group:
Yij = pa 4 b; + Bty I (ti; < 3) + wyj + &4,

where b, ~ N(0,d), the w;; have variance 72 and serial correlation p, and g;; ~ N(0,0%). The
dropout model includes dependence on the previous and current, possibly unobserved, measure-
ments. Since dropout only happens from week 15 onwards, Diggle and Kenward (1994) chose to
set the dropout probability for earlier occasions equal to zero. Thereafter, they allowed separate
intercepts per time point, but common dependencies on previous and current measurements. Their

model can be expressed as follows:

logit[g(¥ij—1,yi5)| = oy + Y1vig1 +2ysy, (5= 15,16,17,19).

To acknowledge the fact that dropout starts from week 15 onwards, the product in (4) is over

j=15,...,n; instead of over j = 2,...,n;.

Diggle and Kenward (1994) found that the dropout is non-random. In view of the comments
by Cullis (1994) and the sensitivity of conclusions to model assumptions, great care is needed.
Curran, Pignatti, and Molenberghs (1998) assessed sensitivity of this conclusion by means of two
alternative modeling strategies. First, they acknowledged the possibility of ragged entry and a fixed
termination date, rather than more conventional dropout. To this end, the individual profiles were
reversed and right aligned. The conclusions thus obtained do not contradict those from Diggle
and Kenward (1994). Second, they considered dropout occasion as an (imperfect) surrogate for
paddock to which diet was assigned. This leads naturally to a stratified analysis based on dropout
occasion (weeks 15, 16, 17, or 19). In other words, a pattern-mizture analysis (Little 1993, 1994)
was conducted. One then obtains dropout pattern specific diet effects, which can be combined
to yield the marginal diet effects. Again, these results were in good agreement with those from
Diggle and Kenward (1994). However, it is still possible that a set of observations is responsible for,
e.g., conclusions about the dropout mechanism, in all analyses performed thus far. This provides
additional motivation for an influence analysis. We will return to a more formal pattern-mixture
analysis later, and now introduce two models which use the same measurement model as Diggle
and Kenward (1994) but different dropout models. This will allow us to illustrate how the choice

of dropout model can have an important impact on the substantial conclusion.

A first dropout model is closely related to the one of Diggle and Kenward (1994) who defined
occasion-specific intercepts o; (j = 15,16,17,19), assumed common slopes and set the dropout
probability equal to zero at other occasions. We also model dropout from week 15 onwards but we
will keep the intercepts constant for occasions 15 to 19. Precisely, our first model contains three

parameters (intercept g, dependence on the previous measurement 7, and dependence on the

12



current measurement t2), which produces:

logit[g(%s,5—1,Yis)] = Yo + V1ys -1+ Y2y (23)

As in the Diggle and Kenward (1994) model, the product in (4) is over j = 15,...,n; instead of
over j = 2,...,1n;.

Parameter estimates for this model under both MAR and MNAR, are listed in Tables 1 and
1. A number of additional analyses, based on deletion of certain subgroups, will be discussed in
Section 5.4. The fitted model is qualitatively equivalent to the model used by Diggle and Kenward
(1994), who concluded overwhelming evidence for non-random dropout (likelihood ratio statistic
13.9). In line with these results we also could decide in favor of a non-random process (likelihood

ratio statistic 14.59).

In our second dropout model we allow dropout to start from the second week. More precisely,
model (23) is retained, while the product in (4) is over j = 2,...,n;, in agreement with the original
definition. Careful reflection on the status of this model is needed. While on the one hand it may
seem a natural choice, given also the availability of this model in standard software packages such
as Oswald (Smith, Robertson, and Diggle 1996), it may raise doubts since no dropout was observed
during the first 14 weeks. Therefore, it is interesting to study this model and its impact on model

parameters as well as on the conclusions from an influence analysis.

The fitted model is not shown. A striking difference with the previous analysis is that
the MAR assumption is borderline not rejected (likelihood ratio statistic 3.63). Apparently, the
onset of dropout is a major source of sensitivity. As results from theory, the measurement model
parameters do not change under the MAR model. The measurement model obtained under MNAR
has changed only slightly.

Which of the two analyses is to be preferred is debatable and depends on substantive con-
siderations as well, rather than on statistical ones only. Recall that the first analysis accounts for
the post hoc observation that no dropout occurred prior to week 15. However, there is a, perhaps
small, chance for the experiment to terminate in a field prior to week 15, and our second model
acknowledges this possibility. Nevertheless, should dropout occur prior to week 15 (e.g., when the
experiment is repeated), it is likely to occur at a lower rate than later in the sequence. The second
model is not able to acknowledge this, since it assumes a constant dropout rate, and hence may
fail to provide an adequate description. The first model on the other hand, makes the reasonable
assumption that dropout is absent during the first period, and occurs at an approximately con-
stant rate thereafter. Therefore, this model should deserve our preference. In any case, it is clear
that there is an enormous sensitivity of the results due to this model choice and hence substantial

reflection on the structure of the dropout process is necessary.
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Table 1: Milk protein trial, mazimum likelihood estimates (standard errors) of the MAR and MNAR
models, dropout starts from week 15 onwards, the entire set of data s contrasted with several deletion
schemes, (1) removal of #51, #59, and #68; (2) removal of #1, #7, #38, #43, #51, #59, #65,
#68, and #7/.

MAR
Effect Par. all set 1 set 2
Measurement model:
Barley I 4.147(0.053) 4.134(0.052)  4.132(0.053)
Mixed 12 4.046(0.052) 4.020(0.052)  4.042(0.053)
Lupins 13 3.935(0.052) 3.950(0.052)  3.957(0.053)
Time effect 8 -0.226(0.015)  -0.221(0.015) -0.226(0.015)
Rand. int. var. d -0.001(0.010)  -0.007(0.011)  -0.005(0.010)
Meas. err. var. a? 0.024(0.002)  0.024(0.002)  0.023(0.002)
Ser. var. 72 0.073(0.012) 0.074(0.013)  0.069(0.012)
Ser. corr. p 0.152(0.037) 0.145(0.037)  0.152(0.039)
Dropout model:
Intercept o 17.87(3.15) 28.69(4.97)
Prev. meas. 1 -6.02(1.00) -9.39(1.58)
-2 loglikelihood 51.844 14.575 -43.894
Wald (diet) (2 d.f.) 17.27 14.42 12.25
p value 0.0002 0.0007 0.0022
MNAR
Measurement model:
Barley I 4.152(0.053) 4.138(0.052)  4.136(0.053)
Mixed 12 4.050(0.052) 4.022(0.051)  4.046(0.053)
Lupins 3 3.941(0.052) 3.954(0.052)  3.961(0.053)
Time effect 8 -0.224(0.015)  -0.219(0.015) -0.225(0.015)
Rand. int. var. d 0.002(0.009)  -0.004(0.010) -0.002(0.010)
Meas. err. var. a? 0.025(0.002)  0.025(0.002)  0.024(0.002)
Ser. var. 72 0.067(0.011) 0.070(0.012)  0.064(0.011)
Ser. corr. p 0.163(0.039) 0.151(0.039)  0.162(0.042)
Dropout model:
Intercept o 15.64(3.54) 25.30(5.06) 30.87(6.63)
Prev. meas. 1 -10.72(2.02) -11.99(2.26) -15.06(3.31)
Curr. meas. w = 5.18(1.49) 3.56(1.60) 4.84(2.12)
-2 loglikelihood 37257 9.620 -50.210
Wald (diet) (2 d.f.) 17.31 14.55 12.27
p value 0.0002 0.0007 0.0022
G? for MNAR (1 d.f) 14.59 4.96 6.32
p value 0.0001 0.0260 0.0120

5.1 Global Influence

Global influence results are shown in Figures 1-3. They are based on fitting a MNAR model for
each cow deleted. The Cook’s distances for the f&"st model are shown in Figure 2. The individual
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Figure 1: Milk protein trial, individual profiles, with globally influential subjects highlighted, dropout
modeled from week 15.

curves with influential subjects highlighted are plotted in Figure 1 where subject #38 pertains to
the first model only.

All of the Cook’s distance plots are very similar. Subject #38 is influential on the dropout
measures C' Dy 35(1),w), CDg35(¢)), and CDy 35(w). This is not surprising since #38 is rather low
in the middle portion of the measurement sequence, while it is very high from week 15 onwards.
Therefore, this sequence is picked up in the second analysis only. By studying plots with the
evolution of the parameters separately during the deletion process (not shown here) we can conclude
that subject #38 has some impact on the serial correlation parameter while #65 is rather influential
for the measurement error. In view of the fairly smooth deviation from a straight line of the former
and the abrupt peaks in the latter, this is not a surprise. Figure 3 considers the C'Dy; measures
for the diet group contrasts. While Figure 2 revealed some influence on the measurement model
parameters, it is clear this is not affecting the diet contrasts. Of course, there is virtually no
influence coming from the cows in the diet group which does not contribute to the corresponding

contrast.

Based on our second model all forms of CDsy;(.), whether based on the entire parameter
vector 4, the dropout parameters (¢, %1,w), or subsets of the latter, indicate that subjects #51,
#59, and #68 are influential. In contrast, C'D; which is based directly on the likelihood, does not
reveal these subjects, but rather subject #65 jumps out. Thus, while the former three subjects have

a substantial impact on the parameter estimates, they do not change the likelihood in a noticeable
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Figure 2: Milk protein trial, index plots of CD1;, CDoi(x), CDoi(6), CDoy(vp,w), CDyi(),
CDy;(w), dropout modeled from week 15.

way. From a plot of the dropout parameter estimates for each deleted case (not shown here) it is
very clear that upward peaks in 120(4) for subjects #51 and #59 are compensated with downward
peaks in &(_;. An explanation for this phenomenon can be found in the variance-covariance matrix

of the dropout parameters (correlations shown in the lower triangle):

8.22 043 —2.85
(0.14) 114 —1.18
(—0.71) (=0.79)  1.94

From a principal components analysis it follows that more than 90% of the variation is captured by
the linear combination 0.93¢9 —0.37w. Hence, there is mass transfer between these two parameters,
of course with sign reversal, with little impact on the likelihood value, and little effect on the MAR

parameter ).

Let us now turn to the subjects which are globally influential. A first and common reason
for those subjects to show up is the fact that they all have a rather strange profile. Remember the
overall trend to be sloping downwards during the first three weeks and constant thereafter. Subject
#65 appears with large CDgs 1 and large CDo(0). The reason for this can be found in the fact
that its profile shows extremely low and high peaks. Subjects #51, #59 and #68 on the other
hand only show large values for CD2 (), w), CD2(¢), CDa(w). This means that these subjects are
influential for the dropout parameters. For subject #51 this can be explained by the fact that it
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Figure 3: Milk protein trial, index plots of CDo;(1 — pa), CDoi(p — ps), CDai(1e — u3), dropout
modeled from week 15.

drops out in spite of the rather high profile. Subjects #59 and #68 on the contrary, stay in the
experiment though they both have rather low profiles.

5.2 Local Influence

It is slightly easier to discuss results of the second model up front and then compare them to the
first model. Two versions are considered, based on two equivalent forms of the dropout model
linear predictor

o+ ¥+ Yoyi; = Ao+ M1 + AoV — Yig—1)- (24)

The standard analysis, corresponding to the left hand side, is termed raw analyszs, while the right
hand side refers to an #ncremental parameterization.

The plots for C; and C;(3)) are virtually identical (not shown). This is due to the relative
magnitudes of the ¢ and 8 components. Profiles #51, #59, and #66—4#68 are influential when
dropout is modeled from week 2 onwards. An explanation for the influence in % is found by studying
the local influence expressions in some detail. Without going into detail, this expression is similar

to
Fly) =yg(1 — g), (25)

which is based on the assumption that previous and current measurements are approximately

equal. Given estimates for #/ it is easy to determine numerically when this function is maximal.
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Figure 4: Milk protein trial, index plots of C;, C;(8), Ci(8), Ci(er), C;(¢h), and of the components
of the direction b,y of mazimal curvature, dropout modeled from week 15, incremental analysis.

Apparently, for 24y and ?/; the maximum is obtained for y = 2.51, exactly as seen in the influential
profiles, which are all in the lupins group. Further note that there is some agreement between the
locally and globally influential subjects though there is no compelling need for the two approaches to
be identical (#51 appears in different influential components in the two approaches). Indeed, while
global influence lumps together all sources of influence, our local influence approach is designed to
detect subjects which, due to several causes, tend to have a strong impact on w and therefore on

the conclusion about the nature of the dropout mechanism.

Observe that one factor in (25) is the square of the response. This is a direct consequence of
our raw parameterization of the dropout process, the logit of which is in terms of the previous and
current outcomes, to which no transformation is applied. Molenberghs et al (1999) argued that,
since two subsequent measurements are usually positively correlated, it is not unusual for both of
them to be high, and suggested to reparameterize the dropout model (23) in terms of the increment,
i.e., y;; is replaced by v;; — 4, ;1. This is related to the approach of Diggle and Kenward (1994)
who reparameterized their dropout model in term of the increment just introduced and the size (the
average of both measurements). Even though the raw and incremental parameterization in (24) are
equivalent for model fitting purposes, Molenberghs et al (1999) showed that they lead to different
perturbation schemes of the form (23). Thus, local influence is now focusing on a different set of
parameters and one should not expect it to give the same answer. Therefore, it is crucial to guide

the parameterization by careful substantive knowledge. In a sense, dependence on the increment is
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most dramatic since at the time of dropout there is no information about the increment, whereas

size can be assessed reasonably well from Y; ;_1, especially if the correlation is sufficiently high.

Finally, we will compare both models. The direct-variable results found in the analysis from
week 15 agree fairly well with those from week 2, the differences being the absence of #66 and #67
and the appearance of #43. The latter profile is extremely low at the end of the period, where
dropout is modeled, and therefore yields a large value for (25). For #66 and 7467, there is a logical
explanation for their disappearance. Indeed, these profiles are very low during the first part of the
experimental period, in spite of which they do not drop out. However, during the latter part, their
profile is still low and they drop out, which is totally plausible behavior and hence their influence

was marked in the second but not in this analysis.

For the incremental analysis, there is a larger discrepancy between both models. While
the direction of maximal curvature still shows no unusual subjects, C; shows somewhat different
subjects to be influential. Precisely, subjects #7, #51, and #74 are highly influential for the first
model whereas subjects #51 (again), #66, #67 and 773 are the ones detected with the second
model. It is noteworthy that #51 appears as the subject with largest C; and C;(0) for the first
model, indicating that the measurement model influence C;(6) is of the same order of magnitude
as the dropout model influence C; (), which is in contrast to the other analysis. Both #7 and #74
are on average not particularly low profiles, but they are among the lowest ones during the last
month of the experiment and, while there are some others with the same feature, these two have a

low overall level, but a high increment, which is very unusual.

5.3 Overview of Global and Local Influence

Table 2 summarizes the subjects which are found to be influential in the analyses performed. While
it can be argued that the various influence analyses serve different purposes, it is of some importance
to distinguish between those subjects who are influential overall and others which turn up in one
or a few analyses. Cow #051 is highlighted in all six analyses and cows #59 and #68 show up 4
times, all others being seen three times or less. Clearly, #51 shows up unambiguously in the global
influence plots and it yields the highest C;(0), C;(3) and C;(a) values in the local influence analysis,
even though one might argue that in some local influence plots it is closely followed by slightly lower
peaks. Inspecting its profile more closely, we conclude that it deviates from the typical profile in a
number of ways. First, it is among the highest profiles during the period of initial drop, whereafter
it is fairly low during the first half of the period, followed by a period of almost linear increase until
the end of the study. The other two, #59 and #68, are on average the lowest profiles, not only

within their group, but overall.

Whereas global influence, as stated before, starts from deleting one subject completely, local
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Table 2: Milk protein trial, summary of influeniial subjects.

Drop From Week 15 Drop From Week 2
Subject Global Loc.(Raw) Loc.(Inc) Global Loc.(Raw) Loc.(Inc)

1 * *

7 *
38 *
43 *
51 * * * * * *
59 * * * *
65 * *
66 * *
67 * *
68 * * * *

73 *
74 *

influence only changes the dropout process for one subject from random dropout to non random
dropout. Because of the completely different approach there is no need for both methods to yield
similar results. Though by looking at the influential subjects for all cases studied above we notice

some overlap.

5.4 Deleting Selected Subgroups

Focusing on the analyses where dropout is starting from week 15 onwards, we can explore the
impact of a group of influential subjects further by removing such a group from the data. We
define two sets to be removed. The first one consists of #51, #59, and #68, i.e., those subjects
that are found to be influential at least twice (see Table 2). The second set consists of all subjects
found to be influential: #1, #7, #38, #43, #51, #59, #65, #68, and #74. Results are given in
Tables 1 — 1. Clearly, the impact on the parameter estimates and their standard errors is relatively
small for the measurement model parameters, but is much larger for the dropout model parameters.
This is reflected in the likelihood ratio test for MNAR. Indeed, while this test is significant in all
cases, removing the three most influential subjects seriously reduces the evidence for non-random
dropout. Thus, the strong evidence for MNAR, stemming from the original analyses, may well

have been an overstatement.

Let us study the impact on the measurement model parameters further. An important
research question is directed towards differences in diet. To this effect, a two degree of freedom
Wald test is computed. We observe little or no difference between the two analyses (MAR and

MNAR) for a given deletion scheme, although there is somewhat of a reduction of the evidence
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when removing sets of subjects. However, these differences do not change the magnitude of the

evidence.

5.5 Pattern-Mixture Analysis

We will group the various occasions of dropout into three patterns (¢ = 1,2,3): (1) those dropping
out prior to week 14, (2) those dropping out from week 15 until week 18, and (3) the completers,
having data on all 19 weeks. To each pattern, we now fit a model equal to the selection model
described at the start of Section 5. Since we have three sets of group differences rather than a

single one, the marginal diet effects can be composed using:

3
/BK - Z/Bftﬂ_h {= 17 27 (26>
t=1
where ¢ runs over both diet contrasts. The corresponding variance is

Var(f1, 32) = AV A

V(Var(@»\ 0 )
0 ‘Var(m)

A 9(B1, P2)
O(Pr1; - - - ; P23, 1, T2, T3)

Given that marginal quantities have been determined using the pattern-mixture approach, it is

where

and

useful to compare them to the corresponding selection model. This is done graphically in Figure 5.
Let us now turn attention to the assessment of diet effect. Using a 2 degree of freedom selection
model test, one obtains F' = 8.51, whereas the marginalized pattern-mixture model test is F' = 17.82
(also on 2 degrees of freedom). The test is larger since one corrects for pattern-specific differences,
thereby rendering the test more efficient. Alternatively, a stratified test can be conducted in

the pattern-mixture setting, i.e., a test on all 6 treatment differences simultaneously, providing

F=6.05.

The pattern-mixture model fitted belongs to Strategy 2, described in Section 4. Alterna-
tively, Strategy 1 can be employed, in particular the CCMV, NCMV, ACMV, FDI1, and FD2

mechanisms.

This way, we have 5 marginal diet effects tests. The results are displayed in Table 3. Clearly,
there is very little difference among the test statistics, thus suggesting that the conclusion of a strong
difference between diets is largely unaffected across a number of identifying restrictions. However,
there is a substantial difference with the marginalized test of diet effect, reached earlier under

Strategy 2, underscoring that simple models, while tempting to use, could be deceptive.
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Figure 5: Graphical comparison of selection and pattern-mizture models. The lines correspond to
the diet effects relative to the lupins diet. The weighted profile refers to a single-parameter pattern-
maxture diet effect, as in (26).

Table 3: Marginal (2 d.f.) tests for diet effect (p values) for each of the 5 identifying restrictions
considered.

Restrictions  F p value
CCMV 6.08 < 0.0001
NCMV 5.56 < 0.0001
ACMV 5.70 < 0.0001
FD1 6.02 < 0.0001
FD2 5.77 < 0.0001

6 Concluding Remarks

Since the model of Diggle and Kenward (1994) in general, and its application to the milk protein
trial in particular, has received considerable criticism, we have argued it is useful to perform a
sensitivity analysis. To this end, we used the complementary methods of local (Verbeke et al 2001)
and global influence (Chatterjee and Hadi 1988) on the one hand, and pattern-mixture modeling
on the other hand. These methods were applied to the milk protein data of Diggle and Kenward
(1994).

Clearly, the influence analyses performed here are not the only ones possible. For example,
in local influence one may study different perturbation schemes. However, the ones considered here

focus in a clear way on the impact of the informative dropout parameter and lead to computationally
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very tractible expressions hereby avoiding the need for cumbersome integration.

We have illustrated three distinct strategies to fit pattern-mixture models. In this way,
we have brought together several existing practices. Little (1993, 1994) has proposed identifying
restrictions, which we here formalized using the connection with MAR and multiple imputation. By
contrasting these strategies on a single set of data, one obtains a range of conclusions rather than
a single one, which provides insight into the sensitivity to the assumptions made. Especially with
the identifying restrictions, one has to be very explicit about the assumptions and moreover this
approach offers the possibility to consider several forms of restrictions. Special attention should go

to the ACMYV restrictions, since they are the MAR counterpart within the pattern-mixture context.

In addition, a comparison between the selection and pattern-mixture modeling approaches

is useful to obtain additional insight into the data and/or to assess sensitivity.

We believe that our approaches can play a useful role, as a member of a collection of sensi-
tivity tools. Of course, a sensitivity analysis can be conducted within yet different frameworks, and
there are times where the setting will determine which framework is the more appropriate one (for
example Bayesian or frequentist), in conjunction with technical and computational considerations.
Draper (1995) has considered ways of dealing with uncertainty in the very natural Bayesian frame-
work and developments in the missing value setting are ongoing. A thorough comparison between

the various frameworks will be interesting and worth undertaking in the future.
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