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Abstract

Incomplete series of data is a common feature in quality of life studies, in particular
in chronic diseases where attrition of patients is high. Two alternative approaches to
modeling longitudinal data with incomplete measurements have frequently been pro-
posed in the literature, selection models and pattern-mixture models. In this paper
we focus on, by way of sensitivity analysis, extrapolating incomplete patterns using
identifying restrictions. Perhaps the best known ones are so-called complete case miss-
ing value restrictions (CCMV), where, for a given pattern, the conditional distribution
of the missing data, given the observed data, is equated to its counterpart in the
completers. Available case missing value (ACMV) restrictions equate this conditional
density to the one calculated from the subgroup of all patterns for which all required
components have been observed. Neighboring case missing value restrictions (NCMV)
equate this conditional density to the one calculated from the the pattern with one
additional measurement obtained. In this paper, these three identifying restriction
strategies are used to multiply impute missing data in a study in metastatic prostate
cancer. Multiple imputation is employed to reduce the uncertainty of single imputa-
tion. It is shown how hypothesis testing and sensitivity analyses are carried out in this
setting.

1 Introduction

One of the major complications in the analyses of quality of life (QL) data is that of missing
data. In particular drop out may be problematic in QL studies since it is likely that patients

with the poorest QL scores dropout earlier, especially in cancer clinical trials in patients with



advanced disease (Hopwood et al 1994, Curran et al 1998). A way of describing the various
mechanisms that govern incompleteness is provided by Rubin’s paradigm. Rubin (1976)
described three missing data mechanisms: missing completely at random (MCAR, dropout
is independent of observed and unobserved scores), missing at random (MAR, dropout is
independent of unobserved scores but dependent on observed scores) and missing not at

random (MNAR, dropout is dependent on at least one unobserved score).

MAR appears to be a sensible ‘middle ground’ when dealing with incomplete data. How-
ever, one has to consider the possibility of a MNAR dropout mechanism. Two alterna-
tive approaches to modeling longitudinal data with incomplete measurements are selection
models (Diggle and Kenward 1994) and pattern-mixture models (Little 1993, 1995, Hogan
and Laird 1987). These modelling frameworks approach the issue of dropout in two dis-
tinct ways: in selection models the dropout probability is conditional on the measurement
process, whereas in pattern-mixture models the measurement model is conditional on the
dropout pattern. Although selection and pattern-mixture models are interchangeable from a
probabilistic point of view, since they represent different factorizations of the same joint dis-
tribution, in practice they encourage different kinds of simplifying assumptions. In selection
models, the likelihood for both the dropout model and measurement models are maximized
simultaneously resulting in a maximized joint likelihood during which some assumptions are
made which are not fundamentally testable, e.g., the dependence of the dropout process on

measurements which have not been obtained.

In selection models, all patients contribute to the model, through their likelihood contribu-
tion, at all time points whether they have dropped out or not. However, for pattern-mixture
models patients only contribute to parameter estimates prior to dropout. Pattern-mixture
models are underidentified (Glynn, Laird, and Rubin 1986). Consequently, Little (1993,
1994, 1995) suggested the use of so-called identifying restrictions to overcome this under-

identification: inestimable parameters of the incomplete patterns are set equal to (functions



of) the parameters describing the distribution of the completers. Little (1993) shows how
these constraints can be used to identify all parameters in the model and so obtain esti-
mates for these and the marginal probabilities. For example, complete case missing value
(CCMYV) restrictions (Little 1993) essentially equate conditional distributions beyond time
t, i.e., those unidentifiable from this dropout group, to the same conditional distributions
from the completers. While some authors perceive this under-identification as a drawback,
we believe it can be an asset since it forces one to reflect on the assumptions made. In a QL
study we may wish to answer two scientific questions: (1) what is the difference with respect
to QL between the two treatment groups while patients remain on-study (progression-free)?
or (2) what is the difference with respect to QL between the two treatment groups while
patients remain alive? To answer these questions we may need to extrapolate our results
and to do so with caution and under a number of different assumptions. This may be done

using identifying restrictions.

QL data in longitudinal studies may be missing for a variety of reasons including progression
of disease, treatment toxicity or patient refusal. However, most methods of analysis focus
on a single dropout mechanism and do not take into account multiple reasons for dropout or
patterns of missing data. Using the identifying restriction strategy to impute missing data,
thus extrapolating incomplete patterns, we can incorporate both the reasons for missingness
and the patterns of missingness into the imputation process. Employing several identifying
restrictions allows us to perform a sensitivity analysis, thus addressing the uncertainty caused
by dropout. This paper further explores these concepts and illustrates how this may be used
in the context of a quality of life analysis in prostate cancer. Missing data patterns are

extended using identifying restrictions and the method of conditional mean imputation.

Multiple imputation is employed to reduce the uncertainty of single imputation. The concept
of multiple imputation refers to replacing each missing value with more than one imputed

value. The goal is to combine the simplicity of imputation strategies, with unbiasedness in



both point estimates and measures of precision. Some simple imputation procedures may
yield inconsistent point estimates as soon as the missingness mechanism surpasses MCAR.
This could be overcome to a large extent with conditional mean imputation, but the problem
of underestimating the variability of the estimators is common to all methods since they all
treat imputed values as observed values. By imputing several values for a single missing

component, this uncertainty is explicitly acknowledged.

2 The Data

EORTC trial 30903 was designed as a prospective multicenter randomized phase III study
comparing flutamide versus prednisone in hormone resistant metastatic prostate cancer pa-
tients. The main endpoint of the trial was survival. Flutamide and prednisone were adminis-
tered daily until progression whereafter patients were treated according to the investigators’
discretion. Progression was defined as either: an increase in pain score by > 1 category; an
increase in daily analgesic dose by > 25%; any need to give additional anti-pain treatment,
e.g. radiotherapy; deterioration of WHO performance status by > 1 category. Quality of
life should have been evaluated at randomization, 3 and 6 weeks later, and at subsequent
six-weekly intervals. Although, it was not clearly defined in the protocol most institutions
did not perform QL assessments after progression. The EORTC QLQ-C30 (Aaronson et al
1993) was used to assess QL. In this report, we focus on the Global health status/QL scale
of the EORTC QLQ-C30. The scale scores were constructed using the standard procedures
recommended by the EORTC Quality of Life Study Group (Fayers et al 1999), i.e., scores
were calculated by averaging items within scales and transforming average scores linearly to
a 0 to 100 scale, with higher scores representing a better QL. Further details on the clinical

analysis and the QL analysis are described elsewhere (Fossa et al 1999).

Between January 1992 and March 1998, 201 patients were entered into EORTC trial 30903



(101 patients were randomized into the prednisone treatment arm and 100 into the flutamide
treatment arm). Figure 1 presents a Kaplan-Meier plot of progression-free survival and a
table of QL assessment compliance. The median duration of progression free survival was
3.4 and 2.3 months in the prednisone and flutamide arms, respectively. The main reason for
patients going off-study was progression or death. As may be seen in Figure 1, the attrition
of patients is substantial in both treatment arms. For this reason, only the assessments up
until 24 weeks were used in this analysis. Table 1 shows the various missingness patterns.
Twenty patients completed QL questionnaires at all five assessment time points. Monotone
dropout patterns (i.e., a complete series of questionnaires before dropout) were observed in
104 cases. Intermittent missing questionnaires was also a problem with 46 patients having
exactly 1 missing questionnaire and the remaining 11 patients having more than 1 missing

questionnaire in a series before dropout.

As the main objective was to investigate (a) differences between treatment groups during
treatment and (b) change from baseline it was decided to analyze change scores from baseline,
i.e., observed scores minus baseline scores. This transformation resulted in response scores
which were approximately normally distributed and more continuous in nature than the

original QL score.

As illustrated by Curran et al (2002) it is useful to explore longitudinal QL data using
graphical techniques before advancing to model fitting. Initially we plotted the response
variable against time by treatment group and dropout pattern (see Figure 2). The dropout
patterns were defined based on the dropout times, i.e., 3, 6, 12, 18, 24 and >24 weeks.
However, as only 16 and 18 patients dropped out at week 24 and 30, respectively, patterns
4 and 5 were collapsed into a single pattern. From Figure 2 it appears that the scores in the
prednisone arm increase from baseline to 3 weeks, but tend to decrease just before dropout
suggesting that dropout is not completely at random. In contrast, the mean scores in the

flutamide arm show very little change during the treatment period.



3 Pattern-Mixture Models and MAR

The missing data taxonomy is usually presented in the selection modeling framework rather
than in the pattern-mixture context. Here, we show that pattern-mixture models can be clas-
sified similarly, and further that the intermediate MAR category is connected to particular
kinds of restrictions on the parameters of a pattern-mixture model in the case of monotone
missingness. We will now show how pattern-mixture models can be classified using exactly
the same taxonomy as is used for selection models. Furthermore, we establish a link between
this classification and the identifying restrictions proposed in Little (1993). Clearly, selection
models and pattern-mixture models coincide under the MCAR assumption as in both cases
the joint distribution of the measurements and the missing data mechanism reduces to a
distribution of the measurements and a distribution for the missing data mechanism, i.e.

using the classical taxonomy f(y,d) = f(y)f(d).

Next, we show that MAR can be expressed in a pattern-mixture framework through so-called
available case missing value (ACMV) restrictions. Little’s CCMV restrictions set a condi-
tional density of unobserved components given a particular set of observed components equal
to the corresponding conditional density in the subgroup of completers. ACMYV restrictions
equate this conditional density to the one calculated from the subgroup of all patterns for

which all required components have been observed.

Assume a complete measurement sequence is of length n. Recall that the classical taxonomy
considers the structure of f(d|y). The missing data are MAR if a subject’s missingness
mechanism depends on its observed outcomes only, f(d =t + 1|yi,...,yn) = f(d =t +
Hyr, .o oyyy), fort=1,... n.

In our setting of longitudinal data with dropouts, CCMV can be defined formally as the



condition that for each t > 2 and for j < t:

Felyr, sy, d =5+ 1) = flulyr, .- g1, d =n+1),

whereas ACMV is the condition that for all ¢ > 2 and j < t:

f(ytlyla e Y-, d= .7 + 1) = f(ytlyla ey Y1, d > t) (1)

If there are only 2 time points (n = 2), then ACMV and CCMV coincide. Based on equation
(1), Molenberghs et al (1998) have shown that, for longitudinal data with dropouts, MAR is
equivalent to ACMV. Details regarding the practical consequences of this equivalence of this
can be found in Thijs et al (2002). Kenward, Molenberghs, and Thijs (2003) have shown how
a set of restrictions can be constructed where dropout can depend on the current, possible

unobserved measurement, but not on future measurements.

The restrictions discussed here will be incorporated in strategies to fit pattern-mixture mod-

els in Section 5.

4 PMM, Sensitivity Analysis, and Identifying Restric-
tions

Sensitivity analysis for pattern-mixture models can be conceived in many different ways.
Crucial aspects are whether pattern-mixture and selection modeling are to be contrasted
with one another or whether the pattern-mixture modeling is the central focus of interest.
It is natural as well to conduct sensitivity analysis within the pattern-mixture family. The
key area where sensitivity analysis should be focused is on the unidentified components of

the model and the way(s) in which this is handled.

Little (1993, 1994) advocated the use of identifiying restrictions and presented a number of

examples. We will outline a general framework for identifying restrictions in Section 4, with



CCMYV (introduced by Little 1993), ACMV, and neighboring case missing value restrictions
(NCMV) as important special cases. Since ACMYV is the natural counterpart of MAR in
the PMM framework, this provides a way to compare ignorable selection models with their
counterpart in the pattern-mixture setting. Michiels, Molenberghs, and Lipsitz (1999) took
up this idea in the context of binary outcomes, with a marginal global odds ratio model to

describe the measurement process (Molenberghs and Lesaffre 1994).

We restrict attention to monotone patterns. In general, let us assume we have t = 1,...,T
dropout patterns where the dropout indicator is d =t + 1. For pattern ¢, the complete data
density is given by

fityr, - ye) = fillyns v feWesns o yrlyns o we). (2)

The first factor is clearly identified from the observed data, while the second factor is not. It
is assumed that the first factor is known or, more realistically, modeled using the observed

data. Then, identifying restrictions are applied in order to identify the second component.

While, in principle, completely arbitrary restrictions can be used by means of any valid
density function over the appropriate support, strategies which relate back to the observed
data deserve privileged interest. One can base identification on all patterns for which a given

component, y, say, is identified. A general expression for this is

T
Jeslys, - ys—1) = ZWijj(yS|yla o Yse1), s=t+1,...,T. (3)

j=s
We will use w, as shorthand for the set of wg;’s used. Every wy which sums to one provides

a valid identification scheme.

Let us incorporate (3) into (2):

T—t—1

feyi, - uz) = fillyr, - ue) i_[

S§=

T
Y Wi fiWrslyn, s Yros1) | - (4)
j=T—

S

o

J



Expression (4) clearly shows which information is used to complement the observed data

density in pattern ¢ in order to establish the complete data density.

Let us consider three special but important cases. Little (1993) proposes CCMV which uses

the following identification:

fe(yslyr, - ys—1) = fr(yslyr, - ys—1), s=t+1,...,T. (5)

In other words, information which is unavailable is always borrowed from the completers.

Alternatively, the nearest identified pattern can be used:

feslyn, - ys—1) = fsuslyn, - ys1), s=t+1,...,T. (6)

We will refer to these restrictions as neighboring case missing values or NCMV.

The third special case of (3) will be ACMV of which the definition is presented in (1). Thus,
ACMYV is reserved for the counterpart of MAR in the PMM context. Let us derive the

corresponding wy vectors. Expression (3) can be restated as

fe(yslyns -« ¥s—1) = foo) Wslyrs -, Ys—1), (7)

for s =t+1,...,T. Here, fi=5(.].) = f(.].,d > s), with d an indicator for time of dropout,
which is one more than the length of the observed sequence. Now, we can transform (7) as

follows:

ft(y8|y1a <. 7ys—1) = f(ZS)(yslyla <. 7y8—1)
T

Z ajfj<y17"'7ys—1)
j=s ZJTZS ajfj(yb sy Ys—1

)fj(ys|yl7"'7ys—1)' (8)

Next, comparing (8) to (3) yields:

Ozjfj(yb ~-~ays—1) (9)

Wei = .
Y S oy, e Ys—1)
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We have now derived two equivalent explicit expressions of (1). Expression (8) is the con-
ditional density of a mixture, whereas (3) with (9) is a mixture of conditional densities.
Clearly, w defined by (9) consists of components which are nonnegative and sum to one. In

other words, a valid density function is defined.

Restrictions (3), with the CCMV, NCMV, and ACMV forms as special cases, can be incor-

porated in a comprehensive strategy to fit pattern-mixture models.

4.1 Special Case: 3 Measurements

To illustrate the ideas outlined above in general, we focus on the special case where there

are only three patterns and identification (4) takes the following form:

Sy, ys) = f3(y1, 92, 08), (10)
oy ye,us) = f2(y1,92) f5(yslyr, v2), (11)
filyrye,ys) = filyn) [wha(yely) + (1 — w) f3(yaly1)]

x f3(ysly1, y2)- (12)

Since f3(y1,¥2,y3) is completely identifiable from the data, and for f(y1,y2,y3) there is only
one possible identification, given (3), the only place where a choice has to be made is for
pattern 1. Setting w = 1 corresponds to NCMV, while w = 0 implies CCMV. Using (9) in
this particular case, ACMV corresponds to

aa fa(ys)
s fo(yr) + asfa(yr)

w= (13)

The conditional density fi(y2|y;) in (12) can be rewritten as

as fo(y1,y2) + as fa(yr, y2)
aofolyr) + asfs(yr)

filyalyr) =
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4.2 Imputation and Analysis Strategy Outline

To apply PMM modeling with identifying restrictions to practical situations, the following

strategy can be followed.

1. Fit a model to the pattern-specific identifiable densities: f;(y1,..., ;). This results in

a parameter estimate, ,.
2. Select an identification method of choice.

3. Using this identification method, determine the conditional distributions of the unob-

served outcomes, given the observed ones:
Feerrs -5 Yrlyr, 5 v)- (14)

4. Using the methodology outlined in Rubin (1987), draw multiple imputations for the
unobserved components, given the observed outcomes and the correct pattern-specific

density (14).

5. Analyze the multiply-imputed sets of data using the method of choice. This can be

another pattern-mixture model, but also a selection model or any other desired model.

6. Inferences can be conducted using an F' reference distribution as proposed by Li,

Raghunathan, and Rubin (1991).

Earlier, we have seen how general identifying restrictions (3), with CCMV, NCMV, and
ACMV as special cases, lead to the conditional densities for the unobserved components,
given the observed ones. This came down to deriving expressions for w, such as in (9) for
ACMV. This endeavor corresponds to items 2 and 3 of the strategy outline (4.2). In order

to carry out item 4, we need to draw imputations from these conditional densities.
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Let us proceed by studying the special case of three measurements first. To this end, we
consider identification scheme (10)—(12) and we start off by avoiding the specification of a

parametric form for these densities. The following steps are required:

1. Estimate the parameters of the identifiable densities: f3(y1,¥2,93), fa(y1,%2), and

fi1(y1). Then, for each of the m imputations, we have to execute the following steps.

2. Draw from the parameter vectors as in the first step of the strategy. It will be assumed

that in all densities from which we draw, this parameter vector is used.

3. For pattern 2. Given an observation in this pattern, with observed values (y1,y2),

calculate the conditional density f53(ys|y1,y2) and draw from it.
4. For pattern 1. We now have to distinguish three substeps.

(a) Given y;, and the proportions ay and ag of observations in the second and third
patterns, respectively, determine w. Every w in the unit interval is valid. Special
cases are:

e For NCMV, w=1.

e For CCMV, w=0.

e For ACMV, w is calculated from (13). Note that, given ¥, this is a constant.
Generate a random uniform variate, U say. (Note that, strictly speaking, this
draw is unnecessary for the boundary NCMV and CCMV cases.)

(b) If U < w, calculate fo(y2|y1) and draw from it. Otherwise, do the same based on
f3(yalyr)-

(¢) Given the observed y; and given ys which has just been drawn, calculate the

conditional density f3(ys|y1,¥y2) and draw from it.
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All steps but the first one have to be repeated M times, to obtain the same number of imputed
datasets. Inference then proceeds as outlined in Rubin (1987) and Li, Raghunathan, and
Rubin (1991).

When the observed densities are estimated using linear mixed models, f3(y1, y2,vs), f2(y1, y2),
and fi(y1) produce fixed-effect and variance parameters. Let us group all of them in « and
assume a draw is made from their distribution, v* say. To this end, their precision estimates

need to be computed.

Let us illustrate this procedure for (11). Let us assume that the ith subject has only two
measurements, and hence belongs to the second pattern. Let its design matrices be X; and
Z; for the fixed effects and random effects, respectively. Its mean and variance for the third

pattern are:

pi(3) = XiB°(3), (15)
Vi) = Z:D*(3)Z; + %u(3), (16)

where (3) indicates that the parameters are specific to the third pattern.

Now based on (15)—(16), and the observed values y; = (yi1,ys2)’, the parameters for the

conditional density follow immediately:

M¢,2|1(3) = Ni,2(3) + ‘/},21(3) [%,11(3)]_1(% - M¢,2(3))>
Vien(3) = Viaa(3) = Viai(3) Vi1 (3)]7'V;12(3),

where a subscript 1 indicates the first two components and a subscript 2 refers to the third

component. Draws from each conditional density are entirely similar.

In several cases, the conditional density is a mixture of normal densities. Then, drawing

from (3) consists of two steps:



14

e Draw a random uniform variate U to determine which of the n — s+ 1 components one

is going to draw from. Specifically, the kth component is chosen if

k—1 k
D ows SU <Y wy,
j=s j=s

where k = s,...,n. Note that if £ = 1, the left hand sum is set equal to zero.

e Draw from the kth component.

5 Analysis of QL Data

In order to illustrate the methodology developed for identifying restrictions we will apply it
to the analysis of longitudinal QL data. We will fit a pattern-mixture model to the observed
data and use standard model simplification techniques to obtain a final model. This will be
compared with the final models obtained using the identifying restrictions in Section 5.3.
Note that this is an important advantage of the proposed methodology. Not only does it
allow to estimate the parameters and standard errors of a model under given restrictions
but in addition classical model simplification can be conducted. Indeed, starting from an
elaborate model for the quality of life scores and maintaining the restrictions, one may want

to reduce the model so that it only contains sufficiently significant effects.

5.1 Pattern Mixture Model Fitted to Observed Data

Several baseline clinical variables were considered as covariates in the model. These included
demographic variables: age, WHO performance status and pain assessed by the clinician.
Several models were fitted starting with a complex model which included a 3-way-interaction
term (time-treatment-pattern) in the means model and a variance-covariance structure which
included an autogressive order 1, AR(1), and a residual variance, ascribed to instantaneous

replication. The final model selected, which was the simplest model consistent with the data,



15

consisted of baseline covariates and an interaction between time and treatment for the mean
model while the variance-covariance was defined as a pattern specific AR(1) structure, with

in addition a variance associated with measurement error.

5.2 Fitting Models to the Imputed Data

As was described in Section 5.1 a separate model was fitted within each pattern. The
resulting parameter estimates and their estimated asymptotic covariance matrices were used

to extrapolate the patterns as described in Section 4.2.

The initial multiple imputation results are presented graphically. Figure 3 shows the mean
response profiles for the multiply imputed datasets using the identifying restrictions CCMV,
ACMYV and NCMV. For patterns 1 to 4 there is some variability in the estimated profiles
across the three restrictions. Using the CCMV identifying restriction, results in an increase
in both treatment arms in pattern 1, whereas using ACMV and NCMV restrictions, results
in the scores in the flutamide arm remaining approximately the same over time while in
the prednisone arm they tend to decrease towards the fourth and fifth assessment. Roughly
speaking, CCMV extrapolates rather towards a rise whereas NCMV seems to predict more
of a decline. Further, ACMV predominantly indicates a constant mean score over time. This
observation needs to be considered carefully. Since these patients drop out mainly because
they progress, a rise in QL seems unlikely. Hence, it is possible that the dropout mechanism
is not CCMV, since this strategy always refers to the ‘best’ group, in the sense that it groups
patients who stay longer in the study and hence have on average a better prognosis. ACMV,
which compromises between all strategies may be more realistic, but NCMV may be even
better since information is borrowed from the nearest pattern, which is then based on the
nearest patients in terms of dropout time and perhaps prognosis and quality of life evolution.
However, recall that the identification is done sequentially, and hence even under NCMV,

the parameter estimates for pattern 1 are identified borrowing from the remaining patterns
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chronologically.

5.3 Model Reduction

As in Section 5.1 we decided to define the covariance structure allowing a separate au-
toregressive structure per pattern and a residual component common to all patterns. The
mean model was initially defined using the baseline covariates and including all interaction
terms between time, treatment and pattern. Table 2 displays the F-tests obtained during
model simplification. The CCMV and NCMYV identifying strategies resulted in the same
final model. The time by pattern interaction was not significant in the ACMV model. i.e.,
yielding the same final model as was found in Section 5.1. As stated before, the ACMV
restriction extrapolated patterns predominantly indicating a constant mean score over time

thus reducing the interaction between time and pattern.

Although all the restrictions did not yield the same final model we prefer to show the
parameter estimates based on the model including the time by pattern interaction. The
final parameter estimates for the time effects for this model are presented in Figure 4. The

remaining parameter estimates are presented in Table 3.

The treatment effect is significant at the 0.05 level of significance in favour of prednisone
for both the CCMV (P=0.011) and ACMV (P=0.027) models. However, using the NCMV
strategy the treatment effect is no longer significant (P=0.123). Thus, as the identifying
restriction shifts from one extreme (CCMV) to another (NCMYV) there is an associated shift

in treatment significance.
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6 Discussion

Sensitivity analysis for pattern-mixture models can be conceived in many different ways.
Crucial guiding questions are whether a pattern-mixture model is the central focus of interest
or should rather be viewed as complementary to another model, such as a selection model.
In this paper, we focused on the unidentified components of the pattern-mixture model
and illustrated three distinct strategies to fit pattern-mixture models. By contrasting these
strategies on a single set of data, one obtains a range of conclusions rather than a single
one, which provides insight into the sensitivity to the assumptions made. Especially with
identifying restrictions, one has to be very explicit about the assumptions and moreover this
approach offers the possibility to consider several forms of restrictions. Special attention
should go to the ACMYV restrictions, since they are the MAR counterpart within the pattern-

mixture context.

The identifying restrictions strategy provides further opportunity for sensitivity analysis,
beyond what has been presented here. Indeed, since CCMV and NCMV are extremes, it is
very natural to consider the idea of ranges in the allowable space of wg. Clearly, any w;
which consists of non-negative elements that sum to one is allowable, but also the idea of
extrapolation could be useful, where negative components are allowed, given they provide

valid conditional densities.

Hogan and Laird (1997) noted that in order to estimate the large number of parameters
in general pattern-mixture models, one has to make the awkward requirement that each
dropout pattern occurs sufficiently often. In other words, one has to require large amounts
of dropout or similarly sufficient data in each pattern to estimate the conditional regression

from which imputations are calculated.

In the ‘imputation’ step we included only baseline covariates and an interaction between time
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and treatment term. The model used for imputing the missing values will generally differ
from the model used in the analysis. The primary objective in the ‘imputation’ model is
to incorporate enough information in the model to ensure unbiased estimates of the missing
values. For example, the reasons for dropout (including progression of disease, treatment
toxicity or patient refusal) and time dependent covariates such as performance status, disease
status, weight loss, cumulative dose and treatment toxicity may be included in the ‘imputa-
tion’ model. Of course, these factors should not be included in the ‘analysis’ model as they

are factors which are influenced by treatment and may confound the treatment comparisons.
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Figure 1: Progression-free survival and associated compliance by treatment arm.

Prednisone

Schedule 0 3 6 12 18 24
Expected 101 97 83 65 42 34
Received 92 77 57 41 29 25
% 91 79 69 63 69 73
Flutamide

Schedule 0 3 6 12 18 24
Expected 100 97 78 44 30 27
Received 89 73 60 32 21 19
% 8 75 77 73 70 70
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Figure 2: EORTC Trial 30903. Mean profiles by dropout pattern and treatment a) prednisone

b) flutamide.
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Figure 3: EORTC Trial 30903. Mean response profiles for the multiply imputed datasets
using the identifying restrictions CCMV, ACMYV and NCMYV. Solid line: CCMYV, Dotted
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Pattern 1

Figure 4: EORTC Trial 30903. Parameter estimates for the time effects for all three patterns,
presented by way of profiles over time, for each of the identifying restrictions CCMV, ACMV
and NCMYV. Solid line: CCMYV, Dotted line: ACMYV, Dashed line: NCMV



Table 1: Patterns of missing data.

Weeks

3 6 12 18 24 >24 N Percent
+ + + 4+ + 4+ 16 9.9
+ + + + + 4 2.5
+ + + + + 3 1.9
+ + + + 8 5.0
+ + + + + 4 2.5
+ + + + 4 2.5
+ + + 20 12.4
+ + + + + 6 3.7
+ + + + 1 0.6
+ + + 5) 3.1
+ + 28 17.4
+ + + + + 2 1.2
+ + + + 2 1.2
+ +  + 2 1.2
+ + + + 1 0.6
+ + 3 1.9
+ + + + 3 1.9
+ + + 1 0.6
+ + 1 0.6
+ 28 17.4
+ + + + + 2 1.2
+ + + + 3 1.9
+ + + 2 1.2
+ + + + 1 0.6
+  + 1 0.6
+ + + + 1 0.6
+ + + 1 0.6
+ 5 3.1
+ + 1 0.6
+ 1 0.6
+ + + 1 0.6
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Table 2: FORTC Trial 30903. F-tests for multiple imputation estimates for CCMV, NCMYV,
and ACMYV restrictions. Apart from the F test and p values, numerator and denominator
degrees of freedom are shown.

Model  Effect F statistic n.d.f. d.d.f. p value
CCMV

I 3-way interaction 0.760 16 406.6 0.731
II treatment*pattern 0.886 4 438.8 0.472
111 treatment*time 0.598 4 50.7  0.666
v time*pattern 2.590 16 266.2  0.001
ACMV

I 3-way interaction 0.671 16 513.8 0.824
IT treatment*pattern 0.712 4 904.7  0.584
111 treatment*time 1.241 4 3055  0.293
1A% time*pattern 1.591 16 2754  0.070
NCMV

I J-way interaction 1.461 16 601.1 0.109
IT treatment*pattern 0.486 4 7715  0.746
111 treatment*time 0.578 4 56.8  0.680
v time*pattern 2.589 16 599.8 0.001
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Table 3: EORTC Trial 30903. Multiple imputation parameter estimates using CCMYV,
NCMYV, and ACMYV restrictions, excluding time by pattern effects which are graphically pre-
sented in Figure 4.

CCMV ACMV NCMV

Effect Est. s.e. P Est. s.e. P Est. s.e. P
Mean Structure Parameters:

Intercept 15.3  14.0 0.274 14.5  13.8 0.294 3.6 12.9 0.783
Age -0.6 3.0 0.830 -1.7 3.1 0.570 -4.4 2.8 0.118
WHO Category 1 4.2 4.3 0.331 4.8 4.3 0.264 4.9 4.2 0.245
WHO Category 2 7.4 5.3 0.161 6.4 5.7 0.264 2.8 5.9 0.637
WHO Category 3 9.9 8.2 0.227 8.9 8.0 0.264 8.8 8.0 0.275
Pain Category 0 -20.2  13.7 0.141 177 144 0.221 -3.4 128 0.789
Pain Category 1 -17.5  13.2 0.185 -17.2 128 0.179 -2.2 11.0 0.839
Pain Category 2 -109 128 0.397 9.7 131 0.460 0.9 11.6 0.936
Pain Category 4 -109  13.1 0.408 -106 12.7 0.404 3.6 11.8 0.760
Treatment Effect 7.6 3.0 0.011 6.6 3.0 0.027 4.8 3.0 0.123
Pattern 1 -8.2 8.8 0.349 -29.8 125 0.032 -36.2 9.6 <0.001
Pattern 2 -9.2 5.8 0.114 -18.8 7.7 0.024 -30.8 8.0 0.001
Pattern 3 -18.7 7.3 0.014 -20.7 7.5 0.008 -26.8 7.6 0.001
Pattern 4 -20.4 5.3 <0.001 -25.8 5.6 <0.001 -29.5 5.3 <0.001

Variance Components:

AR(1) Variance for Patt. 1  599.8 230.9 0.016 643.7 253.1 0.024 4444 1554 0.015

AR(1) Corr. for Patt. 1 0.9 0.1 0.001 0.8 0.1 <0.001 0.2 04 0.567
AR(1) Variance for Patt. 2 280.2 1374  0.077 380.9 1344  0.018 373.6 832 <0.001
AR(1) Corr. for Patt. 2 0.8 0.2 0.010 0.7 0.2 0.008 0.4 0.2 0.041
AR(1) Variance for Patt. 3 322.8 134.4 0.031 393.7 136.9 0.015 312.7 783 <0.001
AR(1) Corr. for Patt. 3 0.8 0.2 0.021 0.6 0.2 0.036 0.5 0.1 <0.001
AR(1) Variance for Patt. 4 354.6 107.2 0.002 362.9 116.9 0.007 309.9  88.7 0.001
AR(1) Corr. for Patt. 4 0.9 0.2 0.004 0.8 0.2 0.013 0.8 0.1 <0.001
AR(1) Variance for Patt. 5 311.5 109.6 0.014 3449  90.6 0.001 3334 82.2 <0.001
AR(1) Corr. for Patt. 5 0.9 0.2 0.003 0.9 0.2  0.007 1.0 0.1 <0.001

Common meas. error var. 128.2 79.6 0.178 90.4 90.6 0.373 119.3 24.5 <0.001




