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Summary. Classical inferential procedures induce conclusions from a set of data to a population of
interest, accounting for the imprecision resulting from the stochastic component of the model. Less
attention is devoted to the uncertainty arising from (unplanned) incompleteness in the data. Through
the choice of an identifiable model for non-ignorable non-response, one narrows the possible data-
generating mechanisms to the point where inference only suffers from imprecision. Some proposals
have been made for assessing the sensitivity to these modelling assumptions; many are based on
fitting several plausible but competing models. For example, we could assume that the missing data
are missing at random in one model, and then fit an additional model where non-random missing-
ness is assumed. On the basis of data from a Slovenian plebiscite, conducted in 1991, to prepare
for independence, it is shown that such an ad hoc procedure may be misleading. We propose an
approach which identifies and incorporates both sources of uncertainty in inference: imprecision due
to finite sampling and ignorance due to incompleteness. A simple sensitivity analysis considers a
finite set of plausible models. We take this idea one step further by considering more degrees of
freedom than the data support. This produces sets of estimates (regions of ignorance) and sets of
confidence regions (combined into regions of uncertainty).

Keywords: Contingency table; Missing at random; Non-ignorable missingness; Overspecified
model; Saturated model; Sensitivity parameter

1. Introduction

In 1991 Slovenians voted for independence from former Yugoslavia in a plebiscite. To pre-
pare for this result, the Slovenian Government collected data in the Slovenian public opinion
(SPO) survey, a month before the plebiscite. Rubin et al. (1995) studied the three funda-
mental questions added to the SPO survey and, in comparing it with the outcome of the
plebiscite, drew conclusions about the missing data process.

The three questions added were as follows.

(a) Are you in favour of Slovenian independence?
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(b) Are you in favour of Slovenia’s secession from Yugoslavia?
(c) Will you attend the plebiscite?

In spite of their apparant equivalence, questions (a) and (b) are different since independence
would have been possible in confederal form as well and therefore the secession question was
added. Question (c) is highly relevant since the political decision was taken that not attending
was treated as an effective answer no to question (a).

The data are presented in Table 1. Rubin et al. (1995) considered, apart from simple
models such as complete and available case analyses, both ignorable models and a non-
ignorable (NI) model. The ignorable models outperformed the NI model in that they were
much closer to the results of the plebiscite. Even though they were obtained 4 weeks after the
SPO survey, the plebiscite data do provide an important bench-mark.

From these observations Rubin er al. (1995) inferred that ignorable models are often
simpler, can provide realistic results and can therefore be a good starting-point. We add that
a deeper look into this problem is necessary, and that the analyses done should be embedded
in a, preferably formal, sensitivity analysis.

The problem of analysing data sets from which observations are missing is a common one,
and the reasons for data being missing are many and varied. In this setting two main
problems need to be addressed. The first, accommodating the lack of balance induced, has to
a great extent been answered. Modern statistical tools are not as dependent on simple data
structures as was the case before the computer became ubiquitous. The second problem is
more fundamental in nature and is far from admitting a straightforward solution. How
should we approach statistical inference that accommodates the possible, but unknown,
behaviour of the unobserved data?

Rubin (1976) provided one of the first systematic studies of this issue, and we use his
terminology for classifying different classes of processes that give rise to missing values. A
process is said to be missing completely at random (MCAR) if the probability of an obser-
vation being missing is independent of both unobserved and observed random variables
and missing at random (MAR) if, conditionally on the observed data, the probability is
independent of the unobserved variables. A process that is neither MCAR nor MAR is
termed non-random. For likelihood inference MCAR and MAR missing value processes are
said to be ignorable when the parameters governing the measurement and missing value
processes are functionally independent, whereas a non-random process is NI. The importance

Table 1. Data from the SPO surveyt

Secession Attendance Independence
Yes No *

Yes Yes 1191 8 21
No 8 0 4
* 107 3 9
No Yes 158 68 29
No 7 14 3
® 18 43 31
* Yes 90 2 109
No 1 2 25
* 19 8 96

+The ‘don’t know’ category is indicated by *.
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of the MCAR and MAR processes is that, given all the observed data, there remains no
dependence of the likelihood on unobserved variables and, broadly, inferences can be made
that ignore the missing value process. This begs the question of whether we can reasonably
make assumptions of MCAR and MAR. Sometimes a study design provides the justification
(Murray and Findlay, 1988), but typically this is not so and the incomplete data under
analysis can never alone answer the question of whether or not a missing value process
is non-random. This paper is concerned with how we might approach inference when
the possibility of a non-random missingness process cannot be ruled out on a priori
grounds.

At the technical level, it is not difficult to formulate models for the NI setting, i.e. models in
which the probability of an outcome being missing depends on unobserved values. The
observed data likelihood is then obtained by integrating over the distribution of the missing
data. Little (1995) has provided a review of such approaches. However, there is a funda-
mental interpretational problem. Molenberghs ez al. (1999) provided examples, in the
contingency table setting, where different NI models that produce the same fit to the observed
data are different in their prediction of the unobserved counts. This implies that such models
cannot be examined by using data alone. Indeed, even if two models fit the observed data
equally well, we still need to reflect on the plausibility of the assumptions made. Several issues
are listed in Molenberghs et al. (1999). Similar problems manifest themselves in the con-
tinuous setting. For example, the distributional form assumed for the unobserved outcomes
may determine whether a missingness process is found to be MAR or NI (Little and Rubin
(1987), section 11.4, and Kenward (1998)).

Such problems with NI models do not imply, however, that they are of no value. Firstly,
many of these issues apply equally well to MAR models which have no a priori justification:
an MAR model can usually be formulated as a special member of a general family of NI
models, although it may be easier to fit. It might be argued, then, that one role of NI models
is to supplement information obtained from the MAR model. The concept of fitting a single
model is then replaced by that of sensitivity analysis, where several plausible NI models are
contrasted. This route has been advocated by Vach and Blettner (1995).

Thus, a natural way to proceed is to acknowledge the inherent ambiguity and to explore
the range of inferences that are consistent with the gap in our knowledge. Essentially this
is a form of sensitivity analysis. Kenward et a/. (2000) have attempted to formalize this
idea. Indeed, although there is a formal mathematical statistical framework for imprecision
(variance, standard errors, sampling distributions, confidence intervals, hypothesis tests and
so on) most implementations of sensitivity analysis have remained ad hoc. The goal of this
paper is to develop a simple framework in which general sensitivity concepts can be form-
alized and further developed, by means of the Slovenian plebiscite case-study. For this, a
language will be proposed to describe ignorance (due to incompleteness of the data) in
addition to the familiar imprecision (due to finite sampling) and to combine both into
uncertainty. We focus here on the multinomial contingency table setting, for which interesting
and practically useful results can be obtained in a reasonably direct fashion.

The original analysis of the Slovenian plebiscite will be discussed in Section 2. An extended
family of non-random models, due to Baker et al. (1992), is considered in Section 3. Section 4
presents a formalization of sensitivity analysis by using the fundamental concept of an
overspecified likelihood and the plebiscite data are reanalysed in Section 5.

The programs that were used to analyse the data can be obtained from

http://www.blackwellpublishers.co.uk/rss/
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Table 2. Estimates of the proportion 6 attending the plebiscite and voting
for independence, as presented in Rubin et al. (1995)

Estimation method For No via
independence, 6 non-attendance, v
Conservative 0.694 0.192
Complete cases 0.928 0.020
Available cases 0.929 0.021
MAR (2 questions) 0.892 0.042
MAR (3 questions) 0.883 0.043
NI 0.782 0.122
Plebiscite 0.885 0.065

2. The original analysis

Rubin et al. (1995) conducted several analyses of the data. Their main emphasis was in
determining the proportion 6 of the population who would attend the plebiscite and vote for
independence. The three other combinations of these two binary outcomes would be treated
as voting ‘no’. Their estimates are reproduced in Table 2, which also shows the proportion v
of no via non-attendance (i.e. the proportion of the population who would not attend the
plebiscite). The conservative method is the ratio of the (yes, yes) answers to the (attendance,
independence) pair and the total sample, i.e. 1439/2074. This is the most pessimistic scenario.
At the opposite end of the spectrum, we can add to their analysis the most optimistic estimate
that replaces the numerator by all who would not definitely vote no:

1439 + 159 + 144 + 136 1878

2074 = 2074 = 290>

These figures are obtained by first collapsing over the secession variable and then summing
the counts of the (yes, yes), (yes, *), (*, yes) and (*, %) categories.
Both estimates together yield the interval

0 € [0.694; 0.905]. (D)
The corresponding interval for v (no through non-attendance) is
v €[0.031; 0.192]. 2)
The complete-case estimate for 6 is based on the subjects answering all three questions,

1191 + 158

0= 454 =0.928,

and the available case estimate is based on the subjects answering the two questions of
interest here

1191 4+ 158 +90
= 1s:9 - 0.929.

=N

It is noteworthy that both estimates fall outside the pessimistic—optimistic interval and should
be disregarded, since these seemingly straightforward estimators do not take the decision to
treat absences as no votes into account and thus discard available information.
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Fig. 1. Slovenian plebiscite: relative positions for the estimates of the proportion of yes votes, based on the
models considered in Rubin et al. (1995); the vertical lines indicate the nonparametric pessimistic—optimistic
bounds (Pess, pessimistic boundary; Opt, optimistic boundary; MAR, the MAR model of Rubin et al. (1995); NI,
the NI model of Rubin et al. (1995); AC, available cases; CC, complete cases; Pleb, outcome of the plebiscite)

Rubin et al. (1995) considered two MAR models, the first based on the two questions of
direct interest only and the second using all three, yielding § = 0.892 and 6 = 0.883 respec-
tively. Finally, they considered a single NI model, based on the assumption that missingness
on a question depends on the answer to that question but not on the other questions. They
argued that this is a plausible assumption. The corresponding estimator is § = 0.782.

Fig. 1 sketches the relative position of the estimates of Rubin et al. (1995). In summary, we
see that

(a) the available case and complete-case estimates are outside the pessimistic—optimistic
range (1) (indicated by vertical bars) and

(b) both MAR estimates are very close to and the NI estimate is very far from the ‘truth’,
which is the proportion who voted yes at the actual plebiscite: § = 0.885.

On the basis of these findings, and those from other carefully designed surveys, Rubin et al.
(1995) concluded that the MAR assumption can be plausible, when there is limited non-
response and good covariate information. Although we agree with the closeness of the MAR
analyses in this case, it is of course unclear whether the MAR mechanism will always be the
preferred non-response mechanism. In addition, we aim to place the MAR analysis within a
whole family of NI models, to shed additional light on these data.

In the next sections we shall first consider a (finite) parametric family of NI models. This
can be seen as an informal sensitivity analysis, which will then be formalized by considering
continuous intervals (or regions) of NI models.

3. A parametric family of non-ignorable models

We focus on the case of two binary outcomes with arbitrary patterns of incompleteness, such
as for the first and the third question in the SPO survey. An interesting class of models has
been proposed by Baker er al. (1992). It is based on log-linear models for the four-way
classification of both outcomes, together with their respective missingness indicators. Denote
the counts by Y, ,,x where r, r, = 0, 1 indicates whether a measurement is either missing or
taken at occasions 1 and 2 respectively, and j, kK = 1, 2 indicates the response categories for
both outcomes. The models are written as

E(Y, ljk) = My, E(YOIjk) = My Qe
E( Ylek) = mjkﬁjka E( YOOjk) = mj/(ajkﬁjk%
with my =Y, 7y, and

Yok ok i x4oo) ji

a/k 5 ik 5 .
q11)jk q111jk q10) k4901 jk
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Here, g, is the probability associated with response pattern (ry, r,), given outcomes j and
k. The subscripts are missing from + since Baker ef a/. (1992) have shown that this quantity is
independent of j and k. They considered nine identifiable models, based on setting v, and 3y
constant in one or more indices:

The interpretation is similar to that for log-linear models. For example, model BRDI is
MCAR, whereas in models BRD2 and BRD4 missingness in the first variable is constant, and
missingness in the second variable depends on the, possibly unobserved, value of the first
(BRD?2) or second (BRD4) variable. A log-linear representation for the latter two models
would be (Y,Y,, RiR,, Y|R,) and (Y, Y,, R|R,, Y, R,) respectively. Two of the main advan-
tages of this family are ease of computation in general and the existence of closed form
solutions for several of its members (models BRD2-BRD?9). The result of fitting these models
is presented in Table 3. Observe that BRDI1, being MCAR, is equivalent to MAR (two
questions) in Table 2. Model BRD2 produces an estimate for € which is extremely close to the
results of the plebiscite. It assumes that missingness on the independence question depends on
the attendence question, a mechanism that is different from the mechanism assumed by
Rubin et al. (1995). Note that model BRD8 assumes that missingness on either question
depends on the question itself and therefore is very similar to their NI model. Fig. 1, supple-
mented with the BRD estimates, is shown as Fig. 2. The range covered by models BRDI1-
BRD9 is

0 € [0.753; 0.891], 3)

which is a considerable part of the nonparametric pessimistic—optimistic range (1). We
conclude that the conclusion about NI models, as presented by Rubin er al. (1995), is at best
premature, since considering a set of models shows that, depending on the (unverifiable)
assumptions made, NI models range from relatively remote from the plebiscite data to very
close.

Table 3. Estimates of the proportion 6 (confidence interval) attending the plebiscite and voting for
independence, following from fitting the models of Baker et al. (1992)t

Model Degrees of  Log-likelihood 0 v

freedom
BRDI1 6 —2503.06 0.891 [0.877; 0.906] 0.044 [0.034; 0.054]
BRD2 7 —2476.38 0.884 [0.868; 0.899] 0.048 [0.037; 0.060]
BRD3 7 —2471.59 0.881 [0.865; 0.896] 0.047 [0.036; 0.058]
BRD4 7 —2476.38 0.779 [0.702; 0.857] 0.048 [0.037; 0.060]
BRD5 7 —2471.59 0.848 [0.814; 0.882] 0.106 [0.071; 0.141]
BRD6 8 —2440.67 0.822 [0.792; 0.850] 0.134 [0.105; 0.163]
BRD7 8 —2440.67 0.774 [0.719; 0.828] 0.050 [0.037; 0.062]
BRDS 8 —2440.67 0.753 [0.691; 0.815] 0.134 [0.105; 0.163]
BRDY9 8 —2440.67 0.866 [0.849; 0.884] 0.061 [0.047; 0.076]
10 9 —2440.67 [0.762; 0.893] [0.744; 0.907] [0.037; 0.044] [0.029; 0.055]
11 9 —2440.67 [0.766; 0.883] [0.715; 0.920]  [0.032; 0.193] [—0.037; 0.242]
12 10 —2440.67 [0.694; 0.905] [0.032; 0.193]

+BRDI-BRD?9 are identified models (Section 3) whereas models 10-12 are overspecified (Section 5).
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Fig. 2. Slovenian plebiscite: relative positions for the estimates of the proportion of yes votes, based on the
models considered in Rubin et al. (1995) and on the models of Baker et al. (1992); the vertical lines indicate the
nonparametric pessimistic—optimistic bounds (Pess, pessimistic boundary; Opt, optimistic boundary; MAR, the
MAR model of Rubin et al. (1995); NI, the NI model of Rubin et al. (1995); AC, available cases; CC, complete
cases; Pleb, outcome of the plebiscite; the numbers refer to the BRD models)

Although the conduct of such an informal sensitivity analysis is enlightening, it does not
remove all concerns. Indeed, there is no guarantee that a family of intervals will provide a
good coverage of all (NI) models within a class of plausible models. A formal sensitivity
analysis strategy that addresses this issue is discussed next.

4. A formal sensitivity analysis

It is useful to distinguish between two types of statistical uncertainty. The first, statistical
imprecision, is due to finite sampling. The SPO survey included not all Slovenians but only
2074 respondents. However, even if all had been included, there would have been resid-
ual uncertainty because some fail to report at least one answer. This second source of
uncertainty, due to incompleteness, will be called szatistical ignorance.

Statistical imprecision is classically quantified by means of estimators (standard error and
variance, confidence regions etc.) and properties of estimators (consistency, asymptotic
distribution, efficiency etc.). To quantify statistical ignorance, it is useful to distinguish
between complete and observed data. Let us focus on two binary questions, such as the
independence and attendance questions in the SPO survey. Using indices as in Section 3, the
16 theoretical complete-cell probabilities are as in Table 4, thus producing 15 complete-data
degrees of freedom. Similarly, the nine observed cells can be represented as in Table 5, which
is directly comparable with the observed data structure. In the SPO case, for example, these
nine counts are obtained from collapsing Table 1 over the secession question, hence pro-
ducing Table 6.

A sample from Table 5 produces empirical proportions representing the 7s with error. This
imprecision disappears as the sample size tends to co. What remains is ignorance regarding
the redistribution of all except the first four 7s over the missing outcomes value. This leaves
ignorance regarding any probability in which at least one of the first or second indices is
equal to 0, and hence regarding any derived parameter of scientific interest. For such a
parameter, 6 say, a region of possible values which is consistent with Table 5 is called a region
of ignorance. Analogously an observed incomplete table leaves ignorance regarding the

Table 4. Theoretical distribution over completed cells

i1 1,12 10,11 10,12 Tot, 11 To1,12 700,11 700,12

1,21 1,22 10,21 10,22 To1,21 01,22 700,21 00,22
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Table 5. Theoretical distribution over observed cells

T, 11 11,12 10,1+

‘ o1, +1 ‘ To1,+2 ‘ ‘ 7000, ++ ‘

11,21 1,22 0,24

Table 6. Observed cells for the SPO survey, collapsed over the secession question

1439 78 159
16 18 32

\144\54\\136\

would-be observed complete table, which in turn leaves imprecision regarding the true com-
plete probabilities. The region of estimators for 6 consistent with the observed data provides
an estimated region of ignorance. The 100(1 — «)% region of uncertainty is a larger region in
the spirit of a confidence region, designed to capture the combined effects of imprecision and
ignorance. Various ways of constructing regions of ignorance and regions of uncertainty are
conceivable.

4.1. Overspecified models

In standard statistical practice, ignorance is avoided by considering a single identified model,
such as models BRD1-BRD9. Among those, models BRD6-BRD9 are said to saturate the
degrees of freedom. To be precise, they saturate the observed data degrees of freedom. A
model that would saturate the complete-data degrees of freedom would need 15 rather than
eight parameters. From a classical observed data perspective, such a model would be over-
specified, as would be any model with nine or more parameters. (Note that it is possible to
construct an overspecified model with degrees of freedom less than those in an identifiable
saturated model at the observed level.)

We shall construct three such overspecified models, which will be used later for the analysis
of the SPO data. To proceed, we first consider a slightly different but equivalent parameter-
ization in terms of the joint probabilities:

oy ORI =) ka1 =) (= r)(1 =) W
T exp(Bi) + explag) + exp(By + g +7)
which contains the marginal success probabilities p; and forces the missingness probabilities
to obey their range restrictions.

We shall consider two models (models 10 and 11) with a single sensitivity parameter,

whereas model 12 will include two sensitivity parameters. Model 10 is defined as (o, 8;) with

ﬂjk = 60 + ﬂj + 6/65 (5)

an additive decomposition for missingness on the independence question. In log-linear rep-
resentation, we could write (Y, Y,, RjR,, >R, Y|R,, Y, R,).
Similarly, model 11, (o, 3;), uses
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a_}'k = + OZ/' + Oy (6)

an additive decomposition of the missingness parameter on the attendance question. An
alternative representation is (Y, Y,, R R,, Y| R|, YoR,, Y| R,).

Finally, we define model 12, (a, B4), as a combination of both equation (5) and equation
(6).

We shall now outline the general principle behind considering such overspecified models
and then focus on the sensitivity parameter approach to proceed with model fitting.

4.2. General principle

We start from the classical approach of fitting a single identifiable model M, to incomplete
data (e.g. a particular BRD model). Maximum likelihood estimation produces a parameter
estimate 7 along with measures of imprecision (estimated standard errors). From 7 four
predicted contingency tables can be derived as in Table 4.

The fitted complete tables collapse back to fitted values for the incomplete Table 5.
Contrasting the latter with the observed data shows the goodness of fit of model M. If there
is a substantial lack of fit, the original model M, needs to be reconsidered. A lack of fit has
strong bearings on imprecision and, since we want to focus on ignorance, we shall assume
that the fit is acceptable. In what follows, models with poor fit (or boundary solutions) will be
dropped.

We can now range through all possible complete tables, which collapse back to the M,
predicted incomplete table. We call the tables ‘M, compatible’ and we denote the set by
S(M,). The general principle is that to each table in S(M,) an extended model M* will be
fitted. This implies that each table produces an estimated parameter vector and a confidence
region. The unions of those are termed the region of ignorance and region of uncertainty
respectively. For scalar parameters the terms interval of ignorance and interval of uncertainty
will be used.

Apart from explicitly constructing the (real-valued) set of complete tables, we can proceed
in an alternative way. This is done by fitting the model AM* directly to the observed data. This
implies that the general principle translates to fitting an overspecified model to the observed
data, which will produce a range of parameters maximizing the observed data likelihood.
This range is then the region of ignorance. If this route is followed, there are technically
several ways to find the region. One method is described in Section 4.3.

4.3. Sensitivity parameter approach
The overspecification can be removed by considering a minimal set of parameters 7,
conditional on which the others, u, are identified. We term 7 the sensitivity parameter and p
the estimable parameter. Such a technique has been proposed for specific examples by
Nordheim (1984) and Vach and Blettner (1995). Each value of n will produce an estimate
f(n). The union of these yields the region of ignorance. It is important to realize that in
general there will not be a unique choice for n and hence for pu. Changing the partitioning
will produce the same region for @ = (17, p'). Models 10 and 11 have a single sensitivity
parameter. We chose n = 3, and n = ¢ from equations (5) and (6) respectively. In model 12,
both these parameters n = (5, o) are treated as sensitivity parameters. In practice, an easy
computation scheme is to consider a grid in the sensitivity parameter space, at each value of
which the estimable parameter is maximized.

A natural estimate of the region of uncertainty is the union of confidence regions for each
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fi(n). We must ensure that n is within the allowable range. Since the choice of sensitivity
parameter is non-unique a proper choice can greatly simplify the treatment. Another issue is
whether the parameters of direct scientific interest can overlap with the sensitivity set or not
(see White and Goetghebeur (1998)). For example, if the scientific question is a sensitivity
analysis for treatment effect, then we should consider the implications of including the
treatment effect parameters in the sensitivity set. No direct estimate of imprecision will be
available for the sensitivity parameter. Clearly, the particular choice of sensitivity parameter
will not affect the estimate of the region of ignorance. However, the region of uncertainty is
built from confidence regions which are conditional on a particular value of the sensitivity
parameter and hence will typically vary with the choice made.

5. Artificial examples

To study the behaviour of the intervals of ignorance and uncertainty, we consider eight
artificial sets of data, as presented in Table 7. The complete-data counts are presented. It is
easy to derive the observed data. For example, set (a) produces

200 100 300

300 300 600

100 200 300

The eight sets are chosen to study the effect of three factors. First, sets (a)-(d) are MCAR
(model BRD1), whereas sets (¢)—(h) are NI (model BRD9). Second, for sets (a), (b), (¢) and
(f), the proportions in the four response patterns are (25%, 25%, 25%, 25%), whereas for
the other sets they are (50%, 20%, 20%, 10%). The « and ( in equation (4) were chosen to
approximate these proportions. For sets (e) and (f), we set oy =0, o; = 0.75, 5, = 0 and
B, = —1. For sets (g) and (h), we set oy = —1.65, o; = —0.5, G, = —0.5 and B, = —1.65. In
both cases, v = 0. Owing to rounding, this is only approximately so for the NI models. Third,
the sample size in the even patterns (b), (d), (f), (h) is 10 times the size of the odd-numbered

patterns (a), (c), (e), (g).

Table 7. Artificial sets of data

Set (1,1) (1,0) (0, 1) (0,0)
(@ 200 100 200 100 200 100 200 100
100 200 100 200 100 200 100 200
(b) 2000 1000 2000 1000 2000 1000 2000 1000
1000 2000 1000 2000 1000 2000 1000 2000
() 400 200 160 80 160 80 80 40
200 400 80 160 80 160 40 80
(d) 4000 2000 1600 800 1600 800 800 400
2000 4000 800 1600 800 1600 400 800
(& 200 64 200 64 200 136 200 136
146 188 54 69 146 397 54 146
() 2000 640 2000 640 2000 1360 2000 1360
1460 1880 540 690 1460 3970 540 1460
(g 417 154 254 94 80 94 49 58
281 417 54 80 54 254 11 49
(h) 4170 1540 2540 940 800 940 490 580
2810 4170 540 800 540 2540 110 490
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Table 8. Artificial data: estimates of the proportion 6 (confidence interval) attending the plebiscite and voting
for independence, based on the pessimistic—optimistic range and on overspecified model BRD10 (interval of
ignorance and interval of uncertainty)

Set Mechanism Incompleteness Sample Pessimistic—optimistic Interval of Interval of
interval ignorance uncertainty
(a) MCAR Large Small [0.083; 0.583] [0.167; 0.417] [0.140; 0.443]
(b) MCAR Large Large [0.083; 0.583] [0.167; 0.417] [0.161; 0.425]
(© MCAR Small Small [0.167; 0.467] [0.233; 0.383] [0.215; 0.405]
(d) MCAR Small Large [0.167; 0.467] [0.233; 0.383] [0.228; 0.390]
(e) NI Large Small [0.083; 0.561] [0.167; 0.429] [0.148; 0.455]
(f) NI Large Large [0.083; 0.561] [0.167; 0.429] [0.161; 0.437]
() NI Small Small [0.174; 0.444] [0.208; 0.402] [0.191; 0.423]
(h) NI Small Large [0.174; 0.444] [0.208; 0.402] [0.203; 0.409]

The results of fitting overspecified model 10 to the artificial data are summarized in Table
8. There are three intervals. First, we present the nonparametric bounds on the probability of
voting yes—yes, as was done in interval (1). Next, we present intervals of ignorance and
intervals of uncertainty. Recall that the interval of ignorance reflects uncertainty due to
missingness, whereas the interval of uncertainty combines both sources of uncertainty, i.e. it
also reflects sampling variability.

We can make several observations. First, the effect of the sample size is seen only in the
interval of uncertainty. Indeed, each pair of sets yields the same nonparametric bounds and
the same interval of ignorance, but the even sets produce sharper intervals of uncertainty
than do the odd ones. Second, the proportion of incompleteness is larger in sets (a), (b), (e)
and (f), as opposed to in sets (c), (d), (g) and (h) respectively. This is reflected in larger
ignorance, i.e. in larger nonparametric ranges and larger intervals of ignorance.

Third, comparing the nonparametric range and the interval of ignorance shows the effect
of the modelling strategy. Indeed, the interval of ignorance is neither based on an identifiable
model nor fully nonparametric. Rather, it compromises between both by allowing over-
specification, but in a controlled fashion. In this case, we chose to illustrate the potential by
including one extra parameter (one sensitivity parameter), by means of model 10. Of course,
in a real situation we must reflect on the plausibility of such model assumptions. It then
provides a compromise between the acknowledgement of ignorance due to incompleteness
(abandoning a single point estimate) and useful lengths of the corresponding intervals
(avoiding the nonparametric bounds).

Finally, there is a striking symmetry between the results for the MCAR models (a)—(d) and
their NI counterparts in sets (e)—(h). This implies that, other things being equal, the precise
form of the NI mechanism seems to be less relevant. This feature distinguishes our sensitivity
analysis from fitting a single identified model. Let us expand on this point. If we consider
models BRDI1-BRD9 for set (a), then all models produce § = 0.333, the true value. This
follows from the fact that all the models are extensions of the MCAR model (BRD1), which
fits the data exactly. However, model 10 intrinsically includes deviations from the MCAR
mechanism by considering a whole range for the sensitivity parameter. In contrast, if we fit
models BRDI-BRD?9 to set (¢), then we obtain

BRDI, 0.317; BRD2, 0.342; BRD3, 0.321;
BRD4, 0.426; BRD?5, 0.167; BRD6, 0.167;
BRD7, 0.426; BRDSg, 0.193; BRD?9, 0.333.
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In other words, models BRD1-BRD9Y span a wide variety of estimates. This also holds for
the subset BRD6-BRD?Y of the saturated models. These almost reproduce the entire interval
of ignorance. Thus, the formal sensitivity analysis removes the ad hoc nature of intervals,
computed from fitting a number of identified models. In this case, we have shown that
intervals can be everything from a single point to almost the entire interval of ignorance.

6. Application to the plebiscite data

We shall apply these formal sensitivity concepts to the plebiscite data, based on the intro-
duction of sensitivity parameters in the model family of Baker ez al. (1992), as in models 10—
12, as introduced in Section 4.

The estimated intervals of ignorance and intervals of uncertainty are shown in Table 3,
whereas a graphical representation of the yes votes is given in Fig. 3. A representation for
the proportion of no votes via non-attendance is given in Fig. 4. Let us first discuss the
proportion 6 of yes votes. Model 10 shows an interval of ignorance which is very close to
interval (3), the range produced by the models BRD1-BRD9, whereas model 11 is somewhat
sharper and just fails to cover the plebiscite value. However, it should be noted that the
corresponding intervals of uncertainty convincingly cover the truth.

Interestingly, model 12 virtually coincides with the nonparametric range (1), even though it
does not saturate the complete-data degrees of freedom. To do so, not two but in fact seven

Pess

0.694

Fig. 3. Slovenian plebiscite: relative positions for the estimates of the proportion of yes votes, based on the
models considered in Rubin et al. (1995) and on the models of Baker et al. (1992); the vertical lines indicate the
nonparametric pessimistic—optimistic bounds (Pess, pessimistic boundary; Opt, optimistic boundary; MAR, the
MAR model of Rubin et al. (1995); NI, the NI model of Rubin et al. (1995); AC, available cases; CC, complete
cases; Pleb, outcome of the plebiscite; numbers refer to the BRD models; intervals of ignorance (models 10-12)
are represented by horizontal bars)

12
n

— 10
Pess MAR NI
1 9 s _ 8
cc IA opt
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0.032 0.193

Fig. 4. Slovenian plebiscite: relative positions for the estimates of the proportion of no votes via non-attendance,
based on the models considered in Rubin et al. (1995) and on the models of Baker et al. (1992); the vertical lines
indicate the nonparametric pessimistic—optimistic bounds (Pess, pessimistic boundary; Opt, optimistic boundary;
MAR, the MAR model of Rubin et al. (1995); NI, the NI model of Rubin et al. (1995); AC, available cases; CC,
complete cases; Pleb, outcome of the plebiscite; numbers refer to the BRD models; horizontal lines refer to
overspecified BRD models; intervals of ignorance (models 10—12) are represented by horizontal bars)
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sensitivity parameters would have to be included. Thus, it appears that a relatively simple
sensitivity analysis is sufficient to increase the insight in the information provided by the
incomplete data about the proportion of valid yes votes. This simplicity may not hold in all
cases, as will be illustrated next.

Let us now turn to v, the proportion of no votes via non-attendance. In some aspects, a
similar picture holds in the sense that model 10 just fails to cover the plebiscite value, whereas
models 11 and 12 produce intervals of ignorance which virtually coincide with the non-
parametric range. A major difference between 6 and v is that in the first case the MAR
models of Rubin et al. (1995) are very close to the plebiscite value, whereas in the second case
the MAR models are relatively far out. The plebiscite value of the proportion of no votes via
non-attendance is best reproduced by model BRD9. Thus, a specific model, such as MAR,
can be acceptable for one estimand but not necessarily for another.

We can enhance insight by studying the pair (6, v). For this, let us plot the region of
ignorance for both # and v. Since models 10 and 11 are based on a single sensitivity param-
eter, the regions of ignorance are one-dimensional curves, whereas a two-dimensional planar
region is obtained for model 12. A graphical sketch is given in Fig. 5. Figs 5(a) and 5(b)
contain the same information. Fig. 5(a) is useful to answer the substantive questions. Indeed,
the conclusion from it is that, even when ignorance is taken into account, a convincing
majority will vote for independence and only a very small proportion will provide a no vote
through non-attendance. Fig. 5(b) zooms in on the region of ignorance to distinguish its
features better.

In fact, Fig. 5 combines the univariate intervals from Figs 3 and 4. Models 10 and 11 are
represented by curves. To obtain a representation for model 12, points of the sensitivity
parameter are sampled from a bivariate uniform distribution. For each of those pairs, the
model is fitted and the corresponding (6, ) determined. These points are then plotted. A full
square marks the plebiscite values for both quantities. The MAR analysis is represented by a
full circle. It is clear that the plebiscite result is on the boundary of the range produced by
model 12, whereas it is not on the boundary of the optimistic—pessimistic range (represented
by means of a broken box). Thus, whereas the univariate intervals of ignorance convincingly
include the plebiscite value, this is less so for the bivariate region, indicating that it enhances
understanding. Note that a saturated model would incorporate five extra sensitivity param-
eters! Such an extended analysis will increase the region of ignorance into the direction of the
optimistic—pessimistic box, thereby relaxing the boundary location of the plebiscite value.

7. Discussion

In this paper we have defined the concept of ignorance and combined it with the familiar idea
of statistical imprecision, producing a measure of uncertainty. As an extension of the concept
of confidence, uncertainty is expressed as an interval for scalar unknowns (parameters) and a
region for vectors. These reduce to conventional confidence intervals and regions when it is
assumed that there is no ignorance about the statistical model underlying the data. The con-
struction of the intervals of uncertainty in the examples was seen to convey useful information
about the problems concerned, providing information that has not previously been appreciated.
In particular, we see that earlier conclusions about the selection and behaviour of classes of
models for the Slovenian plebiscite are not strictly justified.

We have introduced three paths to sensitivity analysis. The first is to look at the bounds
produced by the most pessimistic and most optimistic scenarios. In the case of the Slovenian
plebiscite, we learn that even the most pessimistic scenario translates into a clear majority in
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Fig. 5. Graphical representation of regions of ignorance for the Slovenian plebiscite, proportion of yes votes
versus proportion of no votes via non-attendance (the interval of ignorance is the envelope of the points so
obtained; , model 10; - - - - - , model 11; o, model 12; [, optimistic—pessimistic bounds): (a) absolute
impression of ignorance in the unit square; (b) focus on the relative position of the models by zooming in on the
relevant region

favour of independence. Second, a range of plausible models can be considered, such as those
proposed by Baker et al. (1992). Here, their range is qualitatively not much different from the
range obtained by the bounds but enables further distinction between

(a) well fitting and poorly fitting models and
(b) model formulations (drop-out mechanisms) that are deemed plausible, in contrast with
models where the drop-out mechanism is not tenable on substantive grounds.

This is necessarily subjective, but with incomplete data subjectivity should be controlled
rather than avoided. Third, plausible but overspecified models can be considered. More
overspecification will yield models that produce intervals of ignorance that are closer to the
bounds, whereas models that are too parsimonious or not plausible may miss the true value.
Of course, in many studies the true (plebiscite) value will not be known and such an ultimate
check cannot follow. However, the strategies presented here enable a consideration of classes
of models, and the amount of parsimony can be controlled. It is also possible to ‘average’
over models, e.g. using priors, such as in Forster and Smith (1998).

We can approach the calculation of the interval of ignorance in several ways, but it is seen
that a (possibly) overspecified model and associated likelihood are the more natural concepts
to use. We have focused on the use of a sensitivity parameter to determine the set of maxima
of this saturated likelihood.
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Formal tools to assess the validity of the new concepts are clearly needed. In a separate
paper we shall suggest consistency definitions for the region of ignorance and coverage for
the region of uncertainty.
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